NixNet/openpgp.js

42865 lines
1.4 MiB
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

(function(f){if(typeof exports==="object"&&typeof module!=="undefined"){module.exports=f()}else if(typeof define==="function"&&define.amd){define([],f)}else{var g;if(typeof window!=="undefined"){g=window}else if(typeof global!=="undefined"){g=global}else if(typeof self!=="undefined"){g=self}else{g=this}g.openpgp = f()}})(function(){var define,module,exports;return (function(){function r(e,n,t){function o(i,f){if(!n[i]){if(!e[i]){var c="function"==typeof require&&require;if(!f&&c)return c(i,!0);if(u)return u(i,!0);var a=new Error("Cannot find module '"+i+"'");throw a.code="MODULE_NOT_FOUND",a}var p=n[i]={exports:{}};e[i][0].call(p.exports,function(r){var n=e[i][1][r];return o(n||r)},p,p.exports,r,e,n,t)}return n[i].exports}for(var u="function"==typeof require&&require,i=0;i<t.length;i++)o(t[i]);return o}return r})()({1:[function(require,module,exports){
(function (global){
"use strict";
!function (e, t) {
"object" == typeof exports && "undefined" != typeof module ? t(exports) : "function" == typeof define && define.amd ? define(["exports"], t) : t((e = e || self).WebStreamsPolyfill = {});
}(undefined, function (e) {
"use strict";
const t = "function" == typeof Symbol && "symbol" == typeof Symbol.iterator ? Symbol : e => `Symbol(${e})`;const r = "undefined" != typeof self ? self : "undefined" != typeof window ? window : "undefined" != typeof global ? global : void 0,
o = Number.isNaN || function (e) {
return e != e;
};function n(e) {
return "object" == typeof e && null !== e || "function" == typeof e;
}function i(e, t, r) {
Object.defineProperty(e, t, { value: r, writable: !0, enumerable: !0, configurable: !0 });
}function a(e) {
return e.slice();
}function s(e, t, r, o, n) {
new Uint8Array(e).set(new Uint8Array(r, o, n), t);
}function l(e) {
return !1 !== function (e) {
if ("number" != typeof e) return !1;if (o(e)) return !1;if (e < 0) return !1;return !0;
}(e) && e !== 1 / 0;
}function c(e, t, r) {
if ("function" != typeof e) throw new TypeError("Argument is not a function");return Function.prototype.apply.call(e, t, r);
}function u(e, t, r, o) {
const n = e[t];if (void 0 !== n) {
if ("function" != typeof n) throw new TypeError(`${n} is not a method`);switch (r) {case 0:
return () => f(n, e, o);case 1:
return t => {
const r = [t].concat(o);return f(n, e, r);
};}
}return () => Promise.resolve();
}function d(e, t, r) {
const o = e[t];if (void 0 !== o) return c(o, e, r);
}function f(e, t, r) {
try {
return Promise.resolve(c(e, t, r));
} catch (e) {
return Promise.reject(e);
}
}function _(e) {
return e;
}function h(e) {
if (e = Number(e), o(e) || e < 0) throw new RangeError("highWaterMark property of a queuing strategy must be non-negative and non-NaN");return e;
}function b(e) {
if (void 0 === e) return () => 1;if ("function" != typeof e) throw new TypeError("size property of a queuing strategy must be a function");return t => e(t);
}function m(e, t, r) {
return Promise.prototype.then.call(e, t, r);
}function y(e, t, r) {
let o, n;const i = new Promise((e, t) => {
o = e, n = t;
});void 0 === r && (r = e => {
throw e;
});return function (e, t, r) {
let o = !1;const n = e => {
!1 === o && (o = !0, r(e));
};let i = 0,
a = 0;const s = e.length,
l = new Array(s);for (const r of e) {
const e = i;m(r, r => {
l[e] = r, ++a === s && t(l);
}, n), ++i;
}
}(e, e => {
try {
const r = t(e);o(r);
} catch (e) {
n(e);
}
}, e => {
try {
const t = r(e);o(t);
} catch (e) {
n(e);
}
}), i;
}function p(e) {}function w(e) {
e && e instanceof p.AssertionError && setTimeout(() => {
throw e;
}, 0);
}function g(e) {
const t = e._queue.shift();return e._queueTotalSize -= t.size, e._queueTotalSize < 0 && (e._queueTotalSize = 0), t.value;
}function S(e, t, r) {
if (!l(r = Number(r))) throw new RangeError("Size must be a finite, non-NaN, non-negative number.");e._queue.push({ value: t, size: r }), e._queueTotalSize += r;
}function v(e) {
e._queue = [], e._queueTotalSize = 0;
}p.AssertionError = function () {};const R = t("[[AbortSteps]]"),
P = t("[[ErrorSteps]]");class WritableStream {
constructor(e = {}, t = {}) {
q(this);const r = t.size;let o = t.highWaterMark;if (void 0 !== e.type) throw new RangeError("Invalid type is specified");const n = b(r);void 0 === o && (o = 1), function (e, t, r, o) {
const n = Object.create(WritableStreamDefaultController.prototype);const i = u(t, "write", 1, [n]),
a = u(t, "close", 0, []),
s = u(t, "abort", 1, []);$(e, n, function () {
return d(t, "start", [n]);
}, i, a, s, r, o);
}(this, e, o = h(o), n);
}get locked() {
if (!1 === E(this)) throw G("locked");return C(this);
}abort(e) {
return !1 === E(this) ? Promise.reject(G("abort")) : !0 === C(this) ? Promise.reject(new TypeError("Cannot abort a stream that already has a writer")) : j(this, e);
}getWriter() {
if (!1 === E(this)) throw G("getWriter");return T(this);
}
}function T(e) {
return new WritableStreamDefaultWriter(e);
}function q(e) {
e._state = "writable", e._storedError = void 0, e._writer = void 0, e._writableStreamController = void 0, e._writeRequests = [], e._inFlightWriteRequest = void 0, e._closeRequest = void 0, e._inFlightCloseRequest = void 0, e._pendingAbortRequest = void 0, e._backpressure = !1;
}function E(e) {
return !!n(e) && !!Object.prototype.hasOwnProperty.call(e, "_writableStreamController");
}function C(e) {
return void 0 !== e._writer;
}function j(e, t) {
const r = e._state;if ("closed" === r || "errored" === r) return Promise.resolve(void 0);if (void 0 !== e._pendingAbortRequest) return e._pendingAbortRequest._promise;let o = !1;"erroring" === r && (o = !0, t = void 0);const n = new Promise((r, n) => {
e._pendingAbortRequest = { _promise: void 0, _resolve: r, _reject: n, _reason: t, _wasAlreadyErroring: o };
});return e._pendingAbortRequest._promise = n, !1 === o && W(e, t), n;
}function A(e, t) {
"writable" !== e._state ? B(e) : W(e, t);
}function W(e, t) {
const r = e._writableStreamController;e._state = "erroring", e._storedError = t;const o = e._writer;void 0 !== o && D(o, t), !1 === function (e) {
if (void 0 === e._inFlightWriteRequest && void 0 === e._inFlightCloseRequest) return !1;return !0;
}(e) && !0 === r._started && B(e);
}function B(e) {
e._state = "errored", e._writableStreamController[P]();const t = e._storedError;for (const r of e._writeRequests) r._reject(t);if (e._writeRequests = [], void 0 === e._pendingAbortRequest) return void z(e);const r = e._pendingAbortRequest;if (e._pendingAbortRequest = void 0, !0 === r._wasAlreadyErroring) return r._reject(t), void z(e);e._writableStreamController[R](r._reason).then(() => {
r._resolve(), z(e);
}, t => {
r._reject(t), z(e);
});
}function O(e) {
return void 0 !== e._closeRequest || void 0 !== e._inFlightCloseRequest;
}function z(e) {
void 0 !== e._closeRequest && (e._closeRequest._reject(e._storedError), e._closeRequest = void 0);const t = e._writer;void 0 !== t && ee(t, e._storedError);
}function k(e, t) {
const r = e._writer;void 0 !== r && t !== e._backpressure && (!0 === t ? function (e) {
re(e);
}(r) : ae(r)), e._backpressure = t;
}class WritableStreamDefaultWriter {
constructor(e) {
if (!1 === E(e)) throw new TypeError("WritableStreamDefaultWriter can only be constructed with a WritableStream instance");if (!0 === C(e)) throw new TypeError("This stream has already been locked for exclusive writing by another writer");this._ownerWritableStream = e, e._writer = this;const t = e._state;if ("writable" === t) !1 === O(e) && !0 === e._backpressure ? re(this) : ne(this), X(this);else if ("erroring" === t) oe(this, e._storedError), X(this);else if ("closed" === t) ne(this), function (e) {
X(e), te(e);
}(this);else {
const t = e._storedError;oe(this, t), Z(this, t);
}
}get closed() {
return !1 === F(this) ? Promise.reject(J("closed")) : this._closedPromise;
}get desiredSize() {
if (!1 === F(this)) throw J("desiredSize");if (void 0 === this._ownerWritableStream) throw K("desiredSize");return function (e) {
const t = e._ownerWritableStream,
r = t._state;if ("errored" === r || "erroring" === r) return null;if ("closed" === r) return 0;return Q(t._writableStreamController);
}(this);
}get ready() {
return !1 === F(this) ? Promise.reject(J("ready")) : this._readyPromise;
}abort(e) {
return !1 === F(this) ? Promise.reject(J("abort")) : void 0 === this._ownerWritableStream ? Promise.reject(K("abort")) : function (e, t) {
return j(e._ownerWritableStream, t);
}(this, e);
}close() {
if (!1 === F(this)) return Promise.reject(J("close"));const e = this._ownerWritableStream;return void 0 === e ? Promise.reject(K("close")) : !0 === O(e) ? Promise.reject(new TypeError("cannot close an already-closing stream")) : L(this);
}releaseLock() {
if (!1 === F(this)) throw J("releaseLock");void 0 !== this._ownerWritableStream && M(this);
}write(e) {
return !1 === F(this) ? Promise.reject(J("write")) : void 0 === this._ownerWritableStream ? Promise.reject(K("write to")) : Y(this, e);
}
}function F(e) {
return !!n(e) && !!Object.prototype.hasOwnProperty.call(e, "_ownerWritableStream");
}function L(e) {
const t = e._ownerWritableStream,
r = t._state;if ("closed" === r || "errored" === r) return Promise.reject(new TypeError(`The stream (in ${r} state) is not in the writable state and cannot be closed`));const o = new Promise((e, r) => {
const o = { _resolve: e, _reject: r };t._closeRequest = o;
});return !0 === t._backpressure && "writable" === r && ae(e), function (e) {
S(e, "close", 0), x(e);
}(t._writableStreamController), o;
}function I(e, t) {
"pending" === e._closedPromiseState ? ee(e, t) : function (e, t) {
Z(e, t);
}(e, t);
}function D(e, t) {
"pending" === e._readyPromiseState ? ie(e, t) : function (e, t) {
oe(e, t);
}(e, t);
}function M(e) {
const t = e._ownerWritableStream,
r = new TypeError("Writer was released and can no longer be used to monitor the stream's closedness");D(e, r), I(e, r), t._writer = void 0, e._ownerWritableStream = void 0;
}function Y(e, t) {
const r = e._ownerWritableStream,
o = r._writableStreamController,
n = function (e, t) {
try {
return e._strategySizeAlgorithm(t);
} catch (t) {
return H(e, t), 1;
}
}(o, t);if (r !== e._ownerWritableStream) return Promise.reject(K("write to"));const i = r._state;if ("errored" === i) return Promise.reject(r._storedError);if (!0 === O(r) || "closed" === i) return Promise.reject(new TypeError("The stream is closing or closed and cannot be written to"));if ("erroring" === i) return Promise.reject(r._storedError);const a = function (e) {
return new Promise((t, r) => {
const o = { _resolve: t, _reject: r };e._writeRequests.push(o);
});
}(r);return function (e, t, r) {
const o = { chunk: t };try {
S(e, o, r);
} catch (t) {
return void H(e, t);
}const n = e._controlledWritableStream;if (!1 === O(n) && "writable" === n._state) {
const t = U(e);k(n, t);
}x(e);
}(o, t, n), a;
}class WritableStreamDefaultController {
constructor() {
throw new TypeError("WritableStreamDefaultController cannot be constructed explicitly");
}error(e) {
if (!1 === function (e) {
if (!n(e)) return !1;if (!Object.prototype.hasOwnProperty.call(e, "_controlledWritableStream")) return !1;return !0;
}(this)) throw new TypeError("WritableStreamDefaultController.prototype.error can only be used on a WritableStreamDefaultController");"writable" === this._controlledWritableStream._state && V(this, e);
}[R](e) {
const t = this._abortAlgorithm(e);return N(this), t;
}[P]() {
v(this);
}
}function $(e, t, r, o, n, i, a, s) {
t._controlledWritableStream = e, e._writableStreamController = t, t._queue = void 0, t._queueTotalSize = void 0, v(t), t._started = !1, t._strategySizeAlgorithm = s, t._strategyHWM = a, t._writeAlgorithm = o, t._closeAlgorithm = n, t._abortAlgorithm = i;const l = U(t);k(e, l);const c = r();Promise.resolve(c).then(() => {
t._started = !0, x(t);
}, r => {
t._started = !0, A(e, r);
}).catch(w);
}function N(e) {
e._writeAlgorithm = void 0, e._closeAlgorithm = void 0, e._abortAlgorithm = void 0, e._strategySizeAlgorithm = void 0;
}function Q(e) {
return e._strategyHWM - e._queueTotalSize;
}function x(e) {
const t = e._controlledWritableStream;if (!1 === e._started) return;if (void 0 !== t._inFlightWriteRequest) return;const r = t._state;if ("closed" === r || "errored" === r) return;if ("erroring" === r) return void B(t);if (0 === e._queue.length) return;const o = function (e) {
return e._queue[0].value;
}(e);"close" === o ? function (e) {
const t = e._controlledWritableStream;(function (e) {
e._inFlightCloseRequest = e._closeRequest, e._closeRequest = void 0;
})(t), g(e);const r = e._closeAlgorithm();N(e), r.then(() => {
!function (e) {
e._inFlightCloseRequest._resolve(void 0), e._inFlightCloseRequest = void 0, "erroring" === e._state && (e._storedError = void 0, void 0 !== e._pendingAbortRequest && (e._pendingAbortRequest._resolve(), e._pendingAbortRequest = void 0)), e._state = "closed";const t = e._writer;void 0 !== t && te(t);
}(t);
}, e => {
!function (e, t) {
e._inFlightCloseRequest._reject(t), e._inFlightCloseRequest = void 0, void 0 !== e._pendingAbortRequest && (e._pendingAbortRequest._reject(t), e._pendingAbortRequest = void 0), A(e, t);
}(t, e);
}).catch(w);
}(e) : function (e, t) {
const r = e._controlledWritableStream;(function (e) {
e._inFlightWriteRequest = e._writeRequests.shift();
})(r), e._writeAlgorithm(t).then(() => {
!function (e) {
e._inFlightWriteRequest._resolve(void 0), e._inFlightWriteRequest = void 0;
}(r);const t = r._state;if (g(e), !1 === O(r) && "writable" === t) {
const t = U(e);k(r, t);
}x(e);
}, t => {
"writable" === r._state && N(e), function (e, t) {
e._inFlightWriteRequest._reject(t), e._inFlightWriteRequest = void 0, A(e, t);
}(r, t);
}).catch(w);
}(e, o.chunk);
}function H(e, t) {
"writable" === e._controlledWritableStream._state && V(e, t);
}function U(e) {
return Q(e) <= 0;
}function V(e, t) {
const r = e._controlledWritableStream;N(e), W(r, t);
}function G(e) {
return new TypeError(`WritableStream.prototype.${e} can only be used on a WritableStream`);
}function J(e) {
return new TypeError(`WritableStreamDefaultWriter.prototype.${e} can only be used on a WritableStreamDefaultWriter`);
}function K(e) {
return new TypeError("Cannot " + e + " a stream using a released writer");
}function X(e) {
e._closedPromise = new Promise((t, r) => {
e._closedPromise_resolve = t, e._closedPromise_reject = r, e._closedPromiseState = "pending";
});
}function Z(e, t) {
X(e), ee(e, t);
}function ee(e, t) {
e._closedPromise.catch(() => {}), e._closedPromise_reject(t), e._closedPromise_resolve = void 0, e._closedPromise_reject = void 0, e._closedPromiseState = "rejected";
}function te(e) {
e._closedPromise_resolve(void 0), e._closedPromise_resolve = void 0, e._closedPromise_reject = void 0, e._closedPromiseState = "resolved";
}function re(e) {
e._readyPromise = new Promise((t, r) => {
e._readyPromise_resolve = t, e._readyPromise_reject = r;
}), e._readyPromiseState = "pending";
}function oe(e, t) {
re(e), ie(e, t);
}function ne(e) {
re(e), ae(e);
}function ie(e, t) {
e._readyPromise.catch(() => {}), e._readyPromise_reject(t), e._readyPromise_resolve = void 0, e._readyPromise_reject = void 0, e._readyPromiseState = "rejected";
}function ae(e) {
e._readyPromise_resolve(void 0), e._readyPromise_resolve = void 0, e._readyPromise_reject = void 0, e._readyPromiseState = "fulfilled";
}const se = Number.isInteger || function (e) {
return "number" == typeof e && isFinite(e) && Math.floor(e) === e;
},
le = t("[[CancelSteps]]"),
ce = t("[[PullSteps]]");class ReadableStream {
constructor(e = {}, t = {}) {
fe(this);const r = t.size;let o = t.highWaterMark;const n = e.type;if ("bytes" === String(n)) {
if (void 0 !== r) throw new RangeError("The strategy for a byte stream cannot have a size function");void 0 === o && (o = 0), function (e, t, r) {
const o = Object.create(ReadableByteStreamController.prototype);const n = u(t, "pull", 0, [o]),
i = u(t, "cancel", 1, []);let a = t.autoAllocateChunkSize;if (void 0 !== a && (a = Number(a), !1 === se(a) || a <= 0)) throw new RangeError("autoAllocateChunkSize must be a positive integer");!function (e, t, r, o, n, i, a) {
t._controlledReadableByteStream = e, t._pullAgain = !1, t._pulling = !1, He(t), t._queue = t._queueTotalSize = void 0, v(t), t._closeRequested = !1, t._started = !1, t._strategyHWM = h(i), t._pullAlgorithm = o, t._cancelAlgorithm = n, t._autoAllocateChunkSize = a, t._pendingPullIntos = [], e._readableStreamController = t;const s = r();Promise.resolve(s).then(() => {
t._started = !0, xe(t);
}, e => {
nt(t, e);
}).catch(w);
}(e, o, function () {
return d(t, "start", [o]);
}, n, i, r, a);
}(this, e, o = h(o));
} else {
if (void 0 !== n) throw new RangeError("Invalid type is specified");{
const t = b(r);void 0 === o && (o = 1), function (e, t, r, o) {
const n = Object.create(ReadableStreamDefaultController.prototype);const i = u(t, "pull", 0, [n]),
a = u(t, "cancel", 1, []);$e(e, n, function () {
return d(t, "start", [n]);
}, i, a, r, o);
}(this, e, o = h(o), t);
}
}
}get locked() {
if (!1 === _e(this)) throw st("locked");return he(this);
}cancel(e) {
return !1 === _e(this) ? Promise.reject(st("cancel")) : !0 === he(this) ? Promise.reject(new TypeError("Cannot cancel a stream that already has a reader")) : pe(this, e);
}getReader({ mode: e } = {}) {
if (!1 === _e(this)) throw st("getReader");if (void 0 === e) return ue(this);if ("byob" === (e = String(e))) return function (e) {
return new ReadableStreamBYOBReader(e);
}(this);throw new RangeError("Invalid mode is specified");
}pipeThrough({ writable: e, readable: t }, { preventClose: r, preventAbort: o, preventCancel: n, signal: i } = {}) {
if (!1 === _e(this)) throw st("pipeThrough");if (!1 === E(e)) throw new TypeError("writable argument to pipeThrough must be a WritableStream");if (!1 === _e(t)) throw new TypeError("readable argument to pipeThrough must be a ReadableStream");if (r = Boolean(r), o = Boolean(o), n = Boolean(n), void 0 !== i && !at(i)) throw new TypeError("ReadableStream.prototype.pipeThrough's signal option must be an AbortSignal");if (!0 === he(this)) throw new TypeError("ReadableStream.prototype.pipeThrough cannot be used on a locked ReadableStream");if (!0 === C(e)) throw new TypeError("ReadableStream.prototype.pipeThrough cannot be used on a locked WritableStream");return be(this, e, r, o, n, i).catch(() => {}), t;
}pipeTo(e, { preventClose: t, preventAbort: r, preventCancel: o, signal: n } = {}) {
return !1 === _e(this) ? Promise.reject(st("pipeTo")) : !1 === E(e) ? Promise.reject(new TypeError("ReadableStream.prototype.pipeTo's first argument must be a WritableStream")) : (t = Boolean(t), r = Boolean(r), o = Boolean(o), void 0 === n || at(n) ? !0 === he(this) ? Promise.reject(new TypeError("ReadableStream.prototype.pipeTo cannot be used on a locked ReadableStream")) : !0 === C(e) ? Promise.reject(new TypeError("ReadableStream.prototype.pipeTo cannot be used on a locked WritableStream")) : be(this, e, t, r, o, n) : Promise.reject(new TypeError("ReadableStream.prototype.pipeTo's signal option must be an AbortSignal")));
}tee() {
if (!1 === _e(this)) throw st("tee");const e = function (e, t) {
const r = ue(e);let o,
n,
i,
s,
l,
c = !1,
u = !1,
d = !1;const f = new Promise(e => {
l = e;
});function _() {
return Be(r).then(e => {
const t = e.value,
r = e.done;if (!0 === r && !1 === c && (!1 === u && Le(i._readableStreamController), !1 === d && Le(s._readableStreamController), c = !0), !0 === c) return;const o = t,
n = t;!1 === u && Ie(i._readableStreamController, o), !1 === d && Ie(s._readableStreamController, n);
});
}function h() {}return i = de(h, _, function (t) {
if (u = !0, o = t, !0 === d) {
const t = a([o, n]),
r = pe(e, t);l(r);
}return f;
}), s = de(h, _, function (t) {
if (d = !0, n = t, !0 === u) {
const t = a([o, n]),
r = pe(e, t);l(r);
}return f;
}), r._closedPromise.catch(e => {
!0 !== c && (De(i._readableStreamController, e), De(s._readableStreamController, e), c = !0);
}), [i, s];
}(this);return a(e);
}
}function ue(e) {
return new ReadableStreamDefaultReader(e);
}function de(e, t, r, o = 1, n = () => 1) {
const i = Object.create(ReadableStream.prototype);return fe(i), $e(i, Object.create(ReadableStreamDefaultController.prototype), e, t, r, o, n), i;
}function fe(e) {
e._state = "readable", e._reader = void 0, e._storedError = void 0, e._disturbed = !1;
}function _e(e) {
return !!n(e) && !!Object.prototype.hasOwnProperty.call(e, "_readableStreamController");
}function he(e) {
return void 0 !== e._reader;
}function be(e, t, r, o, n, i) {
const a = ue(e),
s = T(t);let l = !1,
c = Promise.resolve();return new Promise((u, d) => {
let f;if (void 0 !== i) {
if (f = () => {
const r = new DOMException("Aborted", "AbortError"),
i = [];!1 === o && i.push(() => "writable" === t._state ? j(t, r) : Promise.resolve()), !1 === n && i.push(() => "readable" === e._state ? pe(e, r) : Promise.resolve()), b(() => y(i.map(e => e()), e => e), !0, r);
}, !0 === i.aborted) return void f();i.addEventListener("abort", f);
}if (h(e, a._closedPromise, e => {
!1 === o ? b(() => j(t, e), !0, e) : m(!0, e);
}), h(t, s._closedPromise, t => {
!1 === n ? b(() => pe(e, t), !0, t) : m(!0, t);
}), function (e, t, r) {
"closed" === e._state ? r() : t.then(r).catch(w);
}(e, a._closedPromise, () => {
!1 === r ? b(() => function (e) {
const t = e._ownerWritableStream,
r = t._state;return !0 === O(t) || "closed" === r ? Promise.resolve() : "errored" === r ? Promise.reject(t._storedError) : L(e);
}(s)) : m();
}), !0 === O(t) || "closed" === t._state) {
const t = new TypeError("the destination writable stream closed before all data could be piped to it");!1 === n ? b(() => pe(e, t), !0, t) : m(!0, t);
}function _() {
const e = c;return c.then(() => e !== c ? _() : void 0);
}function h(e, t, r) {
"errored" === e._state ? r(e._storedError) : t.catch(r).catch(w);
}function b(e, r, o) {
function n() {
e().then(() => p(r, o), e => p(!0, e)).catch(w);
}!0 !== l && (l = !0, "writable" === t._state && !1 === O(t) ? _().then(n) : n());
}function m(e, r) {
!0 !== l && (l = !0, "writable" === t._state && !1 === O(t) ? _().then(() => p(e, r)).catch(w) : p(e, r));
}function p(e, t) {
M(s), We(a), void 0 !== i && i.removeEventListener("abort", f), e ? d(t) : u(void 0);
}new Promise((e, t) => {
!function r(o) {
o ? e() : (!0 === l ? Promise.resolve(!0) : s._readyPromise.then(() => Be(a).then(({ value: e, done: t }) => !0 === t || (c = Y(s, e).catch(() => {}), !1)))).then(r, t);
}(!1);
}).catch(e => {
c = Promise.resolve(), w(e);
});
});
}function me(e, t) {
return new Promise((r, o) => {
const n = { _resolve: r, _reject: o, _forAuthorCode: t };e._reader._readIntoRequests.push(n);
});
}function ye(e, t) {
return new Promise((r, o) => {
const n = { _resolve: r, _reject: o, _forAuthorCode: t };e._reader._readRequests.push(n);
});
}function pe(e, t) {
if (e._disturbed = !0, "closed" === e._state) return Promise.resolve(void 0);if ("errored" === e._state) return Promise.reject(e._storedError);return we(e), e._readableStreamController[le](t).then(() => void 0);
}function we(e) {
e._state = "closed";const t = e._reader;if (void 0 !== t) {
if (Ce(t)) {
for (const _ref of t._readRequests) {
const e = _ref._resolve;
const r = _ref._forAuthorCode;
e(ge(void 0, !0, r));
}t._readRequests = [];
}_t(t);
}
}function ge(e, t, r) {
let o = null;!0 === r && (o = Object.prototype);const n = Object.create(o);return Object.defineProperty(n, "value", { value: e, enumerable: !0, writable: !0, configurable: !0 }), Object.defineProperty(n, "done", { value: t, enumerable: !0, writable: !0, configurable: !0 }), n;
}function Se(e, t) {
e._state = "errored", e._storedError = t;const r = e._reader;if (void 0 !== r) {
if (Ce(r)) {
for (const e of r._readRequests) e._reject(t);r._readRequests = [];
} else {
for (const e of r._readIntoRequests) e._reject(t);r._readIntoRequests = [];
}ft(r, t);
}
}function ve(e, t, r) {
const o = e._reader._readRequests.shift();o._resolve(ge(t, r, o._forAuthorCode));
}function Re(e) {
return e._reader._readIntoRequests.length;
}function Pe(e) {
return e._reader._readRequests.length;
}function Te(e) {
const t = e._reader;return void 0 !== t && !!Ee(t);
}function qe(e) {
const t = e._reader;return void 0 !== t && !!Ce(t);
}class ReadableStreamDefaultReader {
constructor(e) {
if (!1 === _e(e)) throw new TypeError("ReadableStreamDefaultReader can only be constructed with a ReadableStream instance");if (!0 === he(e)) throw new TypeError("This stream has already been locked for exclusive reading by another reader");je(this, e), this._readRequests = [];
}get closed() {
return Ce(this) ? this._closedPromise : Promise.reject(ct("closed"));
}cancel(e) {
return Ce(this) ? void 0 === this._ownerReadableStream ? Promise.reject(lt("cancel")) : Ae(this, e) : Promise.reject(ct("cancel"));
}read() {
return Ce(this) ? void 0 === this._ownerReadableStream ? Promise.reject(lt("read from")) : Be(this, !0) : Promise.reject(ct("read"));
}releaseLock() {
if (!Ce(this)) throw ct("releaseLock");if (void 0 !== this._ownerReadableStream) {
if (this._readRequests.length > 0) throw new TypeError("Tried to release a reader lock when that reader has pending read() calls un-settled");We(this);
}
}
}class ReadableStreamBYOBReader {
constructor(e) {
if (!_e(e)) throw new TypeError("ReadableStreamBYOBReader can only be constructed with a ReadableStream instance given a byte source");if (!1 === Ne(e._readableStreamController)) throw new TypeError("Cannot construct a ReadableStreamBYOBReader for a stream not constructed with a byte source");if (he(e)) throw new TypeError("This stream has already been locked for exclusive reading by another reader");je(this, e), this._readIntoRequests = [];
}get closed() {
return Ee(this) ? this._closedPromise : Promise.reject(ht("closed"));
}cancel(e) {
return Ee(this) ? void 0 === this._ownerReadableStream ? Promise.reject(lt("cancel")) : Ae(this, e) : Promise.reject(ht("cancel"));
}read(e) {
return Ee(this) ? void 0 === this._ownerReadableStream ? Promise.reject(lt("read from")) : ArrayBuffer.isView(e) ? (e.buffer, 0 === e.byteLength ? Promise.reject(new TypeError("view must have non-zero byteLength")) : function (e, t, r = !1) {
const o = e._ownerReadableStream;if (o._disturbed = !0, "errored" === o._state) return Promise.reject(o._storedError);return function (e, t, r) {
const o = e._controlledReadableByteStream;let n = 1;t.constructor !== DataView && (n = t.constructor.BYTES_PER_ELEMENT);const i = t.constructor,
a = { buffer: _(t.buffer), byteOffset: t.byteOffset, byteLength: t.byteLength, bytesFilled: 0, elementSize: n, ctor: i, readerType: "byob" };if (e._pendingPullIntos.length > 0) return e._pendingPullIntos.push(a), me(o, r);if ("closed" === o._state) {
const e = new i(a.buffer, a.byteOffset, 0);return Promise.resolve(ge(e, !0, r));
}if (e._queueTotalSize > 0) {
if (!0 === Je(e, a)) {
const t = Ve(a);return Xe(e), Promise.resolve(ge(t, !1, r));
}if (!0 === e._closeRequested) {
const t = new TypeError("Insufficient bytes to fill elements in the given buffer");return nt(e, t), Promise.reject(t);
}
}e._pendingPullIntos.push(a);const s = me(o, r);return xe(e), s;
}(o._readableStreamController, t, r);
}(this, e, !0)) : Promise.reject(new TypeError("view must be an array buffer view")) : Promise.reject(ht("read"));
}releaseLock() {
if (!Ee(this)) throw ht("releaseLock");if (void 0 !== this._ownerReadableStream) {
if (this._readIntoRequests.length > 0) throw new TypeError("Tried to release a reader lock when that reader has pending read() calls un-settled");We(this);
}
}
}function Ee(e) {
return !!n(e) && !!Object.prototype.hasOwnProperty.call(e, "_readIntoRequests");
}function Ce(e) {
return !!n(e) && !!Object.prototype.hasOwnProperty.call(e, "_readRequests");
}function je(e, t) {
e._ownerReadableStream = t, t._reader = e, "readable" === t._state ? ut(e) : "closed" === t._state ? function (e) {
ut(e), _t(e);
}(e) : dt(e, t._storedError);
}function Ae(e, t) {
return pe(e._ownerReadableStream, t);
}function We(e) {
"readable" === e._ownerReadableStream._state ? ft(e, new TypeError("Reader was released and can no longer be used to monitor the stream's closedness")) : function (e, t) {
dt(e, t);
}(e, new TypeError("Reader was released and can no longer be used to monitor the stream's closedness")), e._ownerReadableStream._reader = void 0, e._ownerReadableStream = void 0;
}function Be(e, t = !1) {
const r = e._ownerReadableStream;return r._disturbed = !0, "closed" === r._state ? Promise.resolve(ge(void 0, !0, t)) : "errored" === r._state ? Promise.reject(r._storedError) : r._readableStreamController[ce](t);
}class ReadableStreamDefaultController {
constructor() {
throw new TypeError();
}get desiredSize() {
if (!1 === Oe(this)) throw bt("desiredSize");return Me(this);
}close() {
if (!1 === Oe(this)) throw bt("close");if (!1 === Ye(this)) throw new TypeError("The stream is not in a state that permits close");Le(this);
}enqueue(e) {
if (!1 === Oe(this)) throw bt("enqueue");if (!1 === Ye(this)) throw new TypeError("The stream is not in a state that permits enqueue");return Ie(this, e);
}error(e) {
if (!1 === Oe(this)) throw bt("error");De(this, e);
}[le](e) {
v(this);const t = this._cancelAlgorithm(e);return Fe(this), t;
}[ce](e) {
const t = this._controlledReadableStream;if (this._queue.length > 0) {
const r = g(this);return !0 === this._closeRequested && 0 === this._queue.length ? (Fe(this), we(t)) : ze(this), Promise.resolve(ge(r, !1, e));
}const r = ye(t, e);return ze(this), r;
}
}function Oe(e) {
return !!n(e) && !!Object.prototype.hasOwnProperty.call(e, "_controlledReadableStream");
}function ze(e) {
!1 !== ke(e) && (!0 !== e._pulling ? (e._pulling = !0, e._pullAlgorithm().then(() => {
if (e._pulling = !1, !0 === e._pullAgain) return e._pullAgain = !1, ze(e);
}, t => {
De(e, t);
}).catch(w)) : e._pullAgain = !0);
}function ke(e) {
const t = e._controlledReadableStream;return !1 !== Ye(e) && !1 !== e._started && (!0 === he(t) && Pe(t) > 0 || Me(e) > 0);
}function Fe(e) {
e._pullAlgorithm = void 0, e._cancelAlgorithm = void 0, e._strategySizeAlgorithm = void 0;
}function Le(e) {
const t = e._controlledReadableStream;e._closeRequested = !0, 0 === e._queue.length && (Fe(e), we(t));
}function Ie(e, t) {
const r = e._controlledReadableStream;if (!0 === he(r) && Pe(r) > 0) ve(r, t, !1);else {
let r;try {
r = e._strategySizeAlgorithm(t);
} catch (t) {
throw De(e, t), t;
}try {
S(e, t, r);
} catch (t) {
throw De(e, t), t;
}
}ze(e);
}function De(e, t) {
const r = e._controlledReadableStream;"readable" === r._state && (v(e), Fe(e), Se(r, t));
}function Me(e) {
const t = e._controlledReadableStream._state;return "errored" === t ? null : "closed" === t ? 0 : e._strategyHWM - e._queueTotalSize;
}function Ye(e) {
const t = e._controlledReadableStream._state;return !1 === e._closeRequested && "readable" === t;
}function $e(e, t, r, o, n, i, a) {
t._controlledReadableStream = e, t._queue = void 0, t._queueTotalSize = void 0, v(t), t._started = !1, t._closeRequested = !1, t._pullAgain = !1, t._pulling = !1, t._strategySizeAlgorithm = a, t._strategyHWM = i, t._pullAlgorithm = o, t._cancelAlgorithm = n, e._readableStreamController = t;const s = r();Promise.resolve(s).then(() => {
t._started = !0, ze(t);
}, e => {
De(t, e);
}).catch(w);
}class ReadableStreamBYOBRequest {
constructor() {
throw new TypeError("ReadableStreamBYOBRequest cannot be used directly");
}get view() {
if (!1 === Qe(this)) throw mt("view");return this._view;
}respond(e) {
if (!1 === Qe(this)) throw mt("respond");if (void 0 === this._associatedReadableByteStreamController) throw new TypeError("This BYOB request has been invalidated");this._view.buffer, function (e, t) {
if (!1 === l(t = Number(t))) throw new RangeError("bytesWritten must be a finite");tt(e, t);
}(this._associatedReadableByteStreamController, e);
}respondWithNewView(e) {
if (!1 === Qe(this)) throw mt("respond");if (void 0 === this._associatedReadableByteStreamController) throw new TypeError("This BYOB request has been invalidated");if (!ArrayBuffer.isView(e)) throw new TypeError("You can only respond with array buffer views");e.buffer, function (e, t) {
const r = e._pendingPullIntos[0];if (r.byteOffset + r.bytesFilled !== t.byteOffset) throw new RangeError("The region specified by view does not match byobRequest");if (r.byteLength !== t.byteLength) throw new RangeError("The buffer of view has different capacity than byobRequest");r.buffer = t.buffer, tt(e, t.byteLength);
}(this._associatedReadableByteStreamController, e);
}
}class ReadableByteStreamController {
constructor() {
throw new TypeError("ReadableByteStreamController constructor cannot be used directly");
}get byobRequest() {
if (!1 === Ne(this)) throw yt("byobRequest");if (void 0 === this._byobRequest && this._pendingPullIntos.length > 0) {
const e = this._pendingPullIntos[0],
t = new Uint8Array(e.buffer, e.byteOffset + e.bytesFilled, e.byteLength - e.bytesFilled),
r = Object.create(ReadableStreamBYOBRequest.prototype);!function (e, t, r) {
e._associatedReadableByteStreamController = t, e._view = r;
}(r, this, t), this._byobRequest = r;
}return this._byobRequest;
}get desiredSize() {
if (!1 === Ne(this)) throw yt("desiredSize");return it(this);
}close() {
if (!1 === Ne(this)) throw yt("close");if (!0 === this._closeRequested) throw new TypeError("The stream has already been closed; do not close it again!");const e = this._controlledReadableByteStream._state;if ("readable" !== e) throw new TypeError(`The stream (in ${e} state) is not in the readable state and cannot be closed`);!function (e) {
const t = e._controlledReadableByteStream;if (e._queueTotalSize > 0) return void (e._closeRequested = !0);if (e._pendingPullIntos.length > 0) {
const t = e._pendingPullIntos[0];if (t.bytesFilled > 0) {
const t = new TypeError("Insufficient bytes to fill elements in the given buffer");throw nt(e, t), t;
}
}ot(e), we(t);
}(this);
}enqueue(e) {
if (!1 === Ne(this)) throw yt("enqueue");if (!0 === this._closeRequested) throw new TypeError("stream is closed or draining");const t = this._controlledReadableByteStream._state;if ("readable" !== t) throw new TypeError(`The stream (in ${t} state) is not in the readable state and cannot be enqueued to`);if (!ArrayBuffer.isView(e)) throw new TypeError("You can only enqueue array buffer views when using a ReadableByteStreamController");e.buffer, function (e, t) {
const r = e._controlledReadableByteStream,
o = t.buffer,
n = t.byteOffset,
i = t.byteLength,
a = _(o);if (!0 === qe(r)) {
if (0 === Pe(r)) Ge(e, a, n, i);else {
const e = new Uint8Array(a, n, i);ve(r, e, !1);
}
} else !0 === Te(r) ? (Ge(e, a, n, i), et(e)) : Ge(e, a, n, i);xe(e);
}(this, e);
}error(e) {
if (!1 === Ne(this)) throw yt("error");nt(this, e);
}[le](e) {
if (this._pendingPullIntos.length > 0) {
this._pendingPullIntos[0].bytesFilled = 0;
}v(this);const t = this._cancelAlgorithm(e);return ot(this), t;
}[ce](e) {
const t = this._controlledReadableByteStream;if (this._queueTotalSize > 0) {
const t = this._queue.shift();let r;this._queueTotalSize -= t.byteLength, Xe(this);try {
r = new Uint8Array(t.buffer, t.byteOffset, t.byteLength);
} catch (e) {
return Promise.reject(e);
}return Promise.resolve(ge(r, !1, e));
}const r = this._autoAllocateChunkSize;if (void 0 !== r) {
let e;try {
e = new ArrayBuffer(r);
} catch (e) {
return Promise.reject(e);
}const t = { buffer: e, byteOffset: 0, byteLength: r, bytesFilled: 0, elementSize: 1, ctor: Uint8Array, readerType: "default" };this._pendingPullIntos.push(t);
}const o = ye(t, e);return xe(this), o;
}
}function Ne(e) {
return !!n(e) && !!Object.prototype.hasOwnProperty.call(e, "_controlledReadableByteStream");
}function Qe(e) {
return !!n(e) && !!Object.prototype.hasOwnProperty.call(e, "_associatedReadableByteStreamController");
}function xe(e) {
!1 !== function (e) {
const t = e._controlledReadableByteStream;if ("readable" !== t._state) return !1;if (!0 === e._closeRequested) return !1;if (!1 === e._started) return !1;if (!0 === qe(t) && Pe(t) > 0) return !0;if (!0 === Te(t) && Re(t) > 0) return !0;if (it(e) > 0) return !0;return !1;
}(e) && (!0 !== e._pulling ? (e._pulling = !0, e._pullAlgorithm().then(() => {
e._pulling = !1, !0 === e._pullAgain && (e._pullAgain = !1, xe(e));
}, t => {
nt(e, t);
}).catch(w)) : e._pullAgain = !0);
}function He(e) {
Ze(e), e._pendingPullIntos = [];
}function Ue(e, t) {
let r = !1;"closed" === e._state && (r = !0);const o = Ve(t);"default" === t.readerType ? ve(e, o, r) : function (e, t, r) {
const o = e._reader._readIntoRequests.shift();o._resolve(ge(t, r, o._forAuthorCode));
}(e, o, r);
}function Ve(e) {
const t = e.bytesFilled,
r = e.elementSize;return new e.ctor(e.buffer, e.byteOffset, t / r);
}function Ge(e, t, r, o) {
e._queue.push({ buffer: t, byteOffset: r, byteLength: o }), e._queueTotalSize += o;
}function Je(e, t) {
const r = t.elementSize,
o = t.bytesFilled - t.bytesFilled % r,
n = Math.min(e._queueTotalSize, t.byteLength - t.bytesFilled),
i = t.bytesFilled + n,
a = i - i % r;let l = n,
c = !1;a > o && (l = a - t.bytesFilled, c = !0);const u = e._queue;for (; l > 0;) {
const r = u[0],
o = Math.min(l, r.byteLength),
n = t.byteOffset + t.bytesFilled;s(t.buffer, n, r.buffer, r.byteOffset, o), r.byteLength === o ? u.shift() : (r.byteOffset += o, r.byteLength -= o), e._queueTotalSize -= o, Ke(e, o, t), l -= o;
}return c;
}function Ke(e, t, r) {
Ze(e), r.bytesFilled += t;
}function Xe(e) {
0 === e._queueTotalSize && !0 === e._closeRequested ? (ot(e), we(e._controlledReadableByteStream)) : xe(e);
}function Ze(e) {
void 0 !== e._byobRequest && (e._byobRequest._associatedReadableByteStreamController = void 0, e._byobRequest._view = void 0, e._byobRequest = void 0);
}function et(e) {
for (; e._pendingPullIntos.length > 0;) {
if (0 === e._queueTotalSize) return;const t = e._pendingPullIntos[0];!0 === Je(e, t) && (rt(e), Ue(e._controlledReadableByteStream, t));
}
}function tt(e, t) {
const r = e._pendingPullIntos[0];if ("closed" === e._controlledReadableByteStream._state) {
if (0 !== t) throw new TypeError("bytesWritten must be 0 when calling respond() on a closed stream");!function (e, t) {
t.buffer = _(t.buffer);const r = e._controlledReadableByteStream;if (!0 === Te(r)) for (; Re(r) > 0;) Ue(r, rt(e));
}(e, r);
} else !function (e, t, r) {
if (r.bytesFilled + t > r.byteLength) throw new RangeError("bytesWritten out of range");if (Ke(e, t, r), r.bytesFilled < r.elementSize) return;rt(e);const o = r.bytesFilled % r.elementSize;if (o > 0) {
const t = r.byteOffset + r.bytesFilled,
n = r.buffer.slice(t - o, t);Ge(e, n, 0, n.byteLength);
}r.buffer = _(r.buffer), r.bytesFilled -= o, Ue(e._controlledReadableByteStream, r), et(e);
}(e, t, r);xe(e);
}function rt(e) {
const t = e._pendingPullIntos.shift();return Ze(e), t;
}function ot(e) {
e._pullAlgorithm = void 0, e._cancelAlgorithm = void 0;
}function nt(e, t) {
const r = e._controlledReadableByteStream;"readable" === r._state && (He(e), v(e), ot(e), Se(r, t));
}function it(e) {
const t = e._controlledReadableByteStream._state;return "errored" === t ? null : "closed" === t ? 0 : e._strategyHWM - e._queueTotalSize;
}function at(e) {
if ("object" != typeof e || null === e) return !1;const t = Object.getOwnPropertyDescriptor(AbortSignal.prototype, "aborted").get;try {
return t.call(e), !0;
} catch (e) {
return !1;
}
}function st(e) {
return new TypeError(`ReadableStream.prototype.${e} can only be used on a ReadableStream`);
}function lt(e) {
return new TypeError("Cannot " + e + " a stream using a released reader");
}function ct(e) {
return new TypeError(`ReadableStreamDefaultReader.prototype.${e} can only be used on a ReadableStreamDefaultReader`);
}function ut(e) {
e._closedPromise = new Promise((t, r) => {
e._closedPromise_resolve = t, e._closedPromise_reject = r;
});
}function dt(e, t) {
ut(e), ft(e, t);
}function ft(e, t) {
e._closedPromise.catch(() => {}), e._closedPromise_reject(t), e._closedPromise_resolve = void 0, e._closedPromise_reject = void 0;
}function _t(e) {
e._closedPromise_resolve(void 0), e._closedPromise_resolve = void 0, e._closedPromise_reject = void 0;
}function ht(e) {
return new TypeError(`ReadableStreamBYOBReader.prototype.${e} can only be used on a ReadableStreamBYOBReader`);
}function bt(e) {
return new TypeError(`ReadableStreamDefaultController.prototype.${e} can only be used on a ReadableStreamDefaultController`);
}function mt(e) {
return new TypeError(`ReadableStreamBYOBRequest.prototype.${e} can only be used on a ReadableStreamBYOBRequest`);
}function yt(e) {
return new TypeError(`ReadableByteStreamController.prototype.${e} can only be used on a ReadableByteStreamController`);
}class ByteLengthQueuingStrategy {
constructor({ highWaterMark: e }) {
i(this, "highWaterMark", e);
}size(e) {
return e.byteLength;
}
}class CountQueuingStrategy {
constructor({ highWaterMark: e }) {
i(this, "highWaterMark", e);
}size() {
return 1;
}
}class TransformStream {
constructor(e = {}, t = {}, r = {}) {
const o = t.size;let n = t.highWaterMark;const i = r.size;let a = r.highWaterMark;if (void 0 !== e.writableType) throw new RangeError("Invalid writable type specified");const s = b(o);if (void 0 === n && (n = 1), n = h(n), void 0 !== e.readableType) throw new RangeError("Invalid readable type specified");const l = b(i);let c;void 0 === a && (a = 0), a = h(a), function (e, t, r, o, n, i) {
function a() {
return t;
}e._writable = function (e, t, r, o, n = 1, i = () => 1) {
const a = Object.create(WritableStream.prototype);return q(a), $(a, Object.create(WritableStreamDefaultController.prototype), e, t, r, o, n, i), a;
}(a, function (t) {
return function (e, t) {
const r = e._transformStreamController;if (!0 === e._backpressure) {
const o = e._backpressureChangePromise;return o.then(() => {
const o = e._writable,
n = o._state;if ("erroring" === n) throw o._storedError;return Tt(r, t);
});
}return Tt(r, t);
}(e, t);
}, function () {
return function (e) {
const t = e._readable,
r = e._transformStreamController,
o = r._flushAlgorithm();return Rt(r), o.then(() => {
if ("errored" === t._state) throw t._storedError;const e = t._readableStreamController;!0 === Ye(e) && Le(e);
}).catch(r => {
throw wt(e, r), t._storedError;
});
}(e);
}, function (t) {
return function (e, t) {
return wt(e, t), Promise.resolve();
}(e, t);
}, r, o), e._readable = de(a, function () {
return function (e) {
return St(e, !1), e._backpressureChangePromise;
}(e);
}, function (t) {
return gt(e, t), Promise.resolve();
}, n, i), e._backpressure = void 0, e._backpressureChangePromise = void 0, e._backpressureChangePromise_resolve = void 0, St(e, !0), e._transformStreamController = void 0;
}(this, new Promise(e => {
c = e;
}), n, s, a, l), function (e, t) {
const r = Object.create(TransformStreamDefaultController.prototype);let o = e => {
try {
return Pt(r, e), Promise.resolve();
} catch (e) {
return Promise.reject(e);
}
};const n = t.transform;if (void 0 !== n) {
if ("function" != typeof n) throw new TypeError("transform is not a method");o = e => f(n, t, [e, r]);
}const i = u(t, "flush", 0, [r]);!function (e, t, r, o) {
t._controlledTransformStream = e, e._transformStreamController = t, t._transformAlgorithm = r, t._flushAlgorithm = o;
}(e, r, o, i);
}(this, e);const _ = d(e, "start", [this._transformStreamController]);c(_);
}get readable() {
if (!1 === pt(this)) throw Et("readable");return this._readable;
}get writable() {
if (!1 === pt(this)) throw Et("writable");return this._writable;
}
}function pt(e) {
return !!n(e) && !!Object.prototype.hasOwnProperty.call(e, "_transformStreamController");
}function wt(e, t) {
De(e._readable._readableStreamController, t), gt(e, t);
}function gt(e, t) {
Rt(e._transformStreamController), H(e._writable._writableStreamController, t), !0 === e._backpressure && St(e, !1);
}function St(e, t) {
void 0 !== e._backpressureChangePromise && e._backpressureChangePromise_resolve(), e._backpressureChangePromise = new Promise(t => {
e._backpressureChangePromise_resolve = t;
}), e._backpressure = t;
}class TransformStreamDefaultController {
constructor() {
throw new TypeError("TransformStreamDefaultController instances cannot be created directly");
}get desiredSize() {
if (!1 === vt(this)) throw qt("desiredSize");return Me(this._controlledTransformStream._readable._readableStreamController);
}enqueue(e) {
if (!1 === vt(this)) throw qt("enqueue");Pt(this, e);
}error(e) {
if (!1 === vt(this)) throw qt("error");!function (e, t) {
wt(e._controlledTransformStream, t);
}(this, e);
}terminate() {
if (!1 === vt(this)) throw qt("terminate");!function (e) {
const t = e._controlledTransformStream,
r = t._readable._readableStreamController;!0 === Ye(r) && Le(r);const o = new TypeError("TransformStream terminated");gt(t, o);
}(this);
}
}function vt(e) {
return !!n(e) && !!Object.prototype.hasOwnProperty.call(e, "_controlledTransformStream");
}function Rt(e) {
e._transformAlgorithm = void 0, e._flushAlgorithm = void 0;
}function Pt(e, t) {
const r = e._controlledTransformStream,
o = r._readable._readableStreamController;if (!1 === Ye(o)) throw new TypeError("Readable side is not in a state that permits enqueue");try {
Ie(o, t);
} catch (e) {
throw gt(r, e), r._readable._storedError;
}(function (e) {
return !0 !== ke(e);
})(o) !== r._backpressure && St(r, !0);
}function Tt(e, t) {
return e._transformAlgorithm(t).catch(t => {
throw wt(e._controlledTransformStream, t), t;
});
}function qt(e) {
return new TypeError(`TransformStreamDefaultController.prototype.${e} can only be used on a TransformStreamDefaultController`);
}function Et(e) {
return new TypeError(`TransformStream.prototype.${e} can only be used on a TransformStream`);
}const Ct = { ReadableStream: ReadableStream, WritableStream: WritableStream, ByteLengthQueuingStrategy: ByteLengthQueuingStrategy, CountQueuingStrategy: CountQueuingStrategy, TransformStream: TransformStream };void 0 !== r && Object.assign(r, Ct), e.ReadableStream = ReadableStream, e.WritableStream = WritableStream, e.ByteLengthQueuingStrategy = ByteLengthQueuingStrategy, e.CountQueuingStrategy = CountQueuingStrategy, e.TransformStream = TransformStream, Object.defineProperty(e, "__esModule", { value: !0 });
});
}).call(this,typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {})
},{}],2:[function(require,module,exports){
'use strict';
const ea_lib = require('email-addresses');
exports.parse = function parse(line, startAt) {
if (!line) throw 'Nothing to parse';
line = line.trim();
const addr = ea_lib({
input: line,
rfc6532: true, // unicode
partial: false, // return failed parses
simple: false, // simple AST
strict: false, // turn off obs- features in the rfc
rejectTLD: false, // domains require a "."
startAt: startAt || null
});
if (!addr) throw 'No results';
// console.log("Parsed to: ", require('util').inspect(addr, {depth: 10, colors: true}));
return addr.addresses.map(map_addresses);
};
function map_addresses(adr) {
if (adr.type === 'group') {
return new Group(adr.name, adr.addresses.map(map_addresses));
}
let comments;
if (adr.parts.comments) {
comments = adr.parts.comments.map(function (c) {
return c.tokens.trim();
}).join(' ').trim();
// if (comments.length) {
// comments = '(' + comments + ')';
// }
}
let l = adr.local;
if (!adr.name && /:/.test(l)) l = '"' + l + '"';
return new Address(adr.name, l + '@' + adr.domain, comments);
}
exports.parseFrom = function (line) {
return exports.parse(line, 'from');
};
exports.parseSender = function (line) {
return exports.parse(line, 'sender');
};
exports.parseReplyTo = function (line) {
return exports.parse(line, 'reply-to');
};
class Group {
constructor(display_name, addresses) {
this.phrase = display_name;
this.addresses = addresses;
}
format() {
return this.phrase + ":" + this.addresses.map(function (a) {
return a.format();
}).join(',');
}
name() {
let phrase = this.phrase;
if (!(phrase && phrase.length)) {
phrase = this.comment;
}
const name = _extract_name(phrase);
return name;
}
}
class Address {
constructor(phrase, address, comment) {
this.phrase = phrase || '';
this.address = address || '';
this.comment = comment || '';
}
host() {
const match = /.*@(.*)$/.exec(this.address);
if (!match) return null;
return match[1];
}
user() {
const match = /^(.*)@/.exec(this.address);
if (!match) return null;
return match[1];
}
format() {
const phrase = this.phrase;
const email = this.address;
let comment = this.comment;
const addr = [];
const atext = new RegExp('^[\\-\\w !#$%&\'*+/=?^`{|}~]+$');
if (phrase && phrase.length) {
addr.push(atext.test(phrase.trim()) ? phrase : _quote_no_esc(phrase) ? phrase : '"' + phrase + '"');
if (email && email.length) {
addr.push("<" + email + ">");
}
} else if (email && email.length) {
addr.push(email);
}
if (comment && /\S/.test(comment)) {
comment = comment.replace(/^\s*\(?/, '(').replace(/\)?\s*$/, ')');
}
if (comment && comment.length) {
addr.push(comment);
}
return addr.join(' ');
}
name() {
let phrase = this.phrase;
const addr = this.address;
if (!(phrase && phrase.length)) {
phrase = this.comment;
}
let name = _extract_name(phrase);
// first.last@domain address
if (name === '') {
const match = /([^%.@_]+([._][^%.@_]+)+)[@%]/.exec(addr);
if (match) {
name = match[1].replace(/[._]+/g, ' ');
name = _extract_name(name);
}
}
if (name === '' && /\/g=/i.test(addr)) {
// X400 style address
let match = /\/g=([^/]*)/i.exec(addr);
const f = match[1];
match = /\/s=([^/]*)/i.exec(addr);
const l = match[1];
name = _extract_name(f + " " + l);
}
return name;
}
}
exports.Address = Address;
// This is because JS regexps have no equivalent of
// zero-width negative look-behind assertion for: /(?<!\\)"/
function _quote_no_esc(str) {
if (/^"/.test(str)) return true;
let match;
while (match = /^[\s\S]*?([\s\S])"/.exec(str)) {
if (match[1] !== '\\') {
return true;
}
str = str.substr(match[0].length);
}
return false;
}
exports.isAllLower = function (string) {
return string === string.toLowerCase();
};
exports.isAllUpper = function (string) {
return string === string.toUpperCase();
};
exports.nameCase = function (string) {
return string.toLowerCase().replace(/\b(\w+)/g, function (_, d1) {
// Set the case of the name to first char upper rest lower
return d1.charAt(0).toUpperCase() + d1.slice(1);
}).replace(/\bMc(\w)/gi, function (_, d1) {
// Scottish names such as 'McLeod'
return 'Mc' + d1.toUpperCase();
}).replace(/\bo'(\w)/gi, function (_, d1) {
// Irish names such as 'O'Malley, O'Reilly'
return 'O\'' + d1.toUpperCase();
}).replace(/\b(x*(ix)?v*(iv)?i*)\b/ig, function (_, d1) {
// Roman numerals, eg 'Level III Support'
return d1.toUpperCase();
});
};
// given a comment, attempt to extract a person's name
function _extract_name(name) {
// Using encodings, too hard. See Mail::Message::Field::Full.
if (/=?.*?\?=/.test(name)) return '';
// trim whitespace
name = name.trim();
name = name.replace(/\s+/, ' ');
// Disregard numeric names (e.g. 123456.1234@compuserve.com)
if (/^[\d ]+$/.test(name)) return '';
name = name.replace(/^\((.*)\)$/, '$1') // remove outermost parenthesis
.replace(/^"(.*)"$/, '$1') // remove outer quotation marks
.replace(/\(.*?\)/g, '') // remove minimal embedded comments
.replace(/\\/g, '') // remove all escapes
.replace(/^"(.*)"$/, '$1') // remove internal quotation marks
.replace(/^([^\s]+) ?, ?(.*)$/, '$2 $1') // reverse "Last, First M." if applicable
.replace(/,.*/, '');
// Change casing only when the name contains only upper or only
// lower cased characters.
if (exports.isAllUpper(name) || exports.isAllLower(name)) {
// console.log("Changing case of: " + name);
name = exports.nameCase(name);
// console.log("Now: " + name);
}
// some cleanup
name = name.replace(/\[[^\]]*\]/g, '').replace(/(^[\s'"]+|[\s'"]+$)/g, '').replace(/\s{2,}/g, ' ');
return name;
}
},{"email-addresses":34}],3:[function(require,module,exports){
"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
/**
* @file {@link http://asmjs.org Asm.js} implementation of the {@link https://en.wikipedia.org/wiki/Advanced_Encryption_Standard Advanced Encryption Standard}.
* @author Artem S Vybornov <vybornov@gmail.com>
* @license MIT
*/
var AES_asm = exports.AES_asm = function () {
"use strict";
/**
* Galois Field stuff init flag
*/
var ginit_done = false;
/**
* Galois Field exponentiation and logarithm tables for 3 (the generator)
*/
var gexp3, glog3;
/**
* Init Galois Field tables
*/
function ginit() {
gexp3 = [], glog3 = [];
var a = 1,
c,
d;
for (c = 0; c < 255; c++) {
gexp3[c] = a;
// Multiply by three
d = a & 0x80, a <<= 1, a &= 255;
if (d === 0x80) a ^= 0x1b;
a ^= gexp3[c];
// Set the log table value
glog3[gexp3[c]] = c;
}
gexp3[255] = gexp3[0];
glog3[0] = 0;
ginit_done = true;
}
/**
* Galois Field multiplication
* @param {number} a
* @param {number} b
* @return {number}
*/
function gmul(a, b) {
var c = gexp3[(glog3[a] + glog3[b]) % 255];
if (a === 0 || b === 0) c = 0;
return c;
}
/**
* Galois Field reciprocal
* @param {number} a
* @return {number}
*/
function ginv(a) {
var i = gexp3[255 - glog3[a]];
if (a === 0) i = 0;
return i;
}
/**
* AES stuff init flag
*/
var aes_init_done = false;
/**
* Encryption, Decryption, S-Box and KeyTransform tables
*
* @type {number[]}
*/
var aes_sbox;
/**
* @type {number[]}
*/
var aes_sinv;
/**
* @type {number[][]}
*/
var aes_enc;
/**
* @type {number[][]}
*/
var aes_dec;
/**
* Init AES tables
*/
function aes_init() {
if (!ginit_done) ginit();
// Calculates AES S-Box value
function _s(a) {
var c, s, x;
s = x = ginv(a);
for (c = 0; c < 4; c++) {
s = (s << 1 | s >>> 7) & 255;
x ^= s;
}
x ^= 99;
return x;
}
// Tables
aes_sbox = [], aes_sinv = [], aes_enc = [[], [], [], []], aes_dec = [[], [], [], []];
for (var i = 0; i < 256; i++) {
var s = _s(i);
// S-Box and its inverse
aes_sbox[i] = s;
aes_sinv[s] = i;
// Ecryption and Decryption tables
aes_enc[0][i] = gmul(2, s) << 24 | s << 16 | s << 8 | gmul(3, s);
aes_dec[0][s] = gmul(14, i) << 24 | gmul(9, i) << 16 | gmul(13, i) << 8 | gmul(11, i);
// Rotate tables
for (var t = 1; t < 4; t++) {
aes_enc[t][i] = aes_enc[t - 1][i] >>> 8 | aes_enc[t - 1][i] << 24;
aes_dec[t][s] = aes_dec[t - 1][s] >>> 8 | aes_dec[t - 1][s] << 24;
}
}
aes_init_done = true;
}
/**
* Asm.js module constructor.
*
* <p>
* Heap buffer layout by offset:
* <pre>
* 0x0000 encryption key schedule
* 0x0400 decryption key schedule
* 0x0800 sbox
* 0x0c00 inv sbox
* 0x1000 encryption tables
* 0x2000 decryption tables
* 0x3000 reserved (future GCM multiplication lookup table)
* 0x4000 data
* </pre>
* Don't touch anything before <code>0x400</code>.
* </p>
*
* @alias AES_asm
* @class
* @param foreign - <i>ignored</i>
* @param buffer - heap buffer to link with
*/
var wrapper = function wrapper(foreign, buffer) {
// Init AES stuff for the first time
if (!aes_init_done) aes_init();
// Fill up AES tables
var heap = new Uint32Array(buffer);
heap.set(aes_sbox, 0x0800 >> 2);
heap.set(aes_sinv, 0x0c00 >> 2);
for (var i = 0; i < 4; i++) {
heap.set(aes_enc[i], 0x1000 + 0x400 * i >> 2);
heap.set(aes_dec[i], 0x2000 + 0x400 * i >> 2);
}
/**
* Calculate AES key schedules.
* @instance
* @memberof AES_asm
* @param {number} ks - key size, 4/6/8 (for 128/192/256-bit key correspondingly)
* @param {number} k0 - key vector components
* @param {number} k1 - key vector components
* @param {number} k2 - key vector components
* @param {number} k3 - key vector components
* @param {number} k4 - key vector components
* @param {number} k5 - key vector components
* @param {number} k6 - key vector components
* @param {number} k7 - key vector components
*/
function set_key(ks, k0, k1, k2, k3, k4, k5, k6, k7) {
var ekeys = heap.subarray(0x000, 60),
dkeys = heap.subarray(0x100, 0x100 + 60);
// Encryption key schedule
ekeys.set([k0, k1, k2, k3, k4, k5, k6, k7]);
for (var i = ks, rcon = 1; i < 4 * ks + 28; i++) {
var k = ekeys[i - 1];
if (i % ks === 0 || ks === 8 && i % ks === 4) {
k = aes_sbox[k >>> 24] << 24 ^ aes_sbox[k >>> 16 & 255] << 16 ^ aes_sbox[k >>> 8 & 255] << 8 ^ aes_sbox[k & 255];
}
if (i % ks === 0) {
k = k << 8 ^ k >>> 24 ^ rcon << 24;
rcon = rcon << 1 ^ (rcon & 0x80 ? 0x1b : 0);
}
ekeys[i] = ekeys[i - ks] ^ k;
}
// Decryption key schedule
for (var j = 0; j < i; j += 4) {
for (var jj = 0; jj < 4; jj++) {
var k = ekeys[i - (4 + j) + (4 - jj) % 4];
if (j < 4 || j >= i - 4) {
dkeys[j + jj] = k;
} else {
dkeys[j + jj] = aes_dec[0][aes_sbox[k >>> 24]] ^ aes_dec[1][aes_sbox[k >>> 16 & 255]] ^ aes_dec[2][aes_sbox[k >>> 8 & 255]] ^ aes_dec[3][aes_sbox[k & 255]];
}
}
}
// Set rounds number
asm.set_rounds(ks + 5);
}
// create library object with necessary properties
var stdlib = { Uint8Array: Uint8Array, Uint32Array: Uint32Array };
var asm = function (stdlib, foreign, buffer) {
"use asm";
var S0 = 0,
S1 = 0,
S2 = 0,
S3 = 0,
I0 = 0,
I1 = 0,
I2 = 0,
I3 = 0,
N0 = 0,
N1 = 0,
N2 = 0,
N3 = 0,
M0 = 0,
M1 = 0,
M2 = 0,
M3 = 0,
H0 = 0,
H1 = 0,
H2 = 0,
H3 = 0,
R = 0;
var HEAP = new stdlib.Uint32Array(buffer),
DATA = new stdlib.Uint8Array(buffer);
/**
* AES core
* @param {number} k - precomputed key schedule offset
* @param {number} s - precomputed sbox table offset
* @param {number} t - precomputed round table offset
* @param {number} r - number of inner rounds to perform
* @param {number} x0 - 128-bit input block vector
* @param {number} x1 - 128-bit input block vector
* @param {number} x2 - 128-bit input block vector
* @param {number} x3 - 128-bit input block vector
*/
function _core(k, s, t, r, x0, x1, x2, x3) {
k = k | 0;
s = s | 0;
t = t | 0;
r = r | 0;
x0 = x0 | 0;
x1 = x1 | 0;
x2 = x2 | 0;
x3 = x3 | 0;
var t1 = 0,
t2 = 0,
t3 = 0,
y0 = 0,
y1 = 0,
y2 = 0,
y3 = 0,
i = 0;
t1 = t | 0x400, t2 = t | 0x800, t3 = t | 0xc00;
// round 0
x0 = x0 ^ HEAP[(k | 0) >> 2], x1 = x1 ^ HEAP[(k | 4) >> 2], x2 = x2 ^ HEAP[(k | 8) >> 2], x3 = x3 ^ HEAP[(k | 12) >> 2];
// round 1..r
for (i = 16; (i | 0) <= r << 4; i = i + 16 | 0) {
y0 = HEAP[(t | x0 >> 22 & 1020) >> 2] ^ HEAP[(t1 | x1 >> 14 & 1020) >> 2] ^ HEAP[(t2 | x2 >> 6 & 1020) >> 2] ^ HEAP[(t3 | x3 << 2 & 1020) >> 2] ^ HEAP[(k | i | 0) >> 2], y1 = HEAP[(t | x1 >> 22 & 1020) >> 2] ^ HEAP[(t1 | x2 >> 14 & 1020) >> 2] ^ HEAP[(t2 | x3 >> 6 & 1020) >> 2] ^ HEAP[(t3 | x0 << 2 & 1020) >> 2] ^ HEAP[(k | i | 4) >> 2], y2 = HEAP[(t | x2 >> 22 & 1020) >> 2] ^ HEAP[(t1 | x3 >> 14 & 1020) >> 2] ^ HEAP[(t2 | x0 >> 6 & 1020) >> 2] ^ HEAP[(t3 | x1 << 2 & 1020) >> 2] ^ HEAP[(k | i | 8) >> 2], y3 = HEAP[(t | x3 >> 22 & 1020) >> 2] ^ HEAP[(t1 | x0 >> 14 & 1020) >> 2] ^ HEAP[(t2 | x1 >> 6 & 1020) >> 2] ^ HEAP[(t3 | x2 << 2 & 1020) >> 2] ^ HEAP[(k | i | 12) >> 2];
x0 = y0, x1 = y1, x2 = y2, x3 = y3;
}
// final round
S0 = HEAP[(s | x0 >> 22 & 1020) >> 2] << 24 ^ HEAP[(s | x1 >> 14 & 1020) >> 2] << 16 ^ HEAP[(s | x2 >> 6 & 1020) >> 2] << 8 ^ HEAP[(s | x3 << 2 & 1020) >> 2] ^ HEAP[(k | i | 0) >> 2], S1 = HEAP[(s | x1 >> 22 & 1020) >> 2] << 24 ^ HEAP[(s | x2 >> 14 & 1020) >> 2] << 16 ^ HEAP[(s | x3 >> 6 & 1020) >> 2] << 8 ^ HEAP[(s | x0 << 2 & 1020) >> 2] ^ HEAP[(k | i | 4) >> 2], S2 = HEAP[(s | x2 >> 22 & 1020) >> 2] << 24 ^ HEAP[(s | x3 >> 14 & 1020) >> 2] << 16 ^ HEAP[(s | x0 >> 6 & 1020) >> 2] << 8 ^ HEAP[(s | x1 << 2 & 1020) >> 2] ^ HEAP[(k | i | 8) >> 2], S3 = HEAP[(s | x3 >> 22 & 1020) >> 2] << 24 ^ HEAP[(s | x0 >> 14 & 1020) >> 2] << 16 ^ HEAP[(s | x1 >> 6 & 1020) >> 2] << 8 ^ HEAP[(s | x2 << 2 & 1020) >> 2] ^ HEAP[(k | i | 12) >> 2];
}
/**
* ECB mode encryption
* @param {number} x0 - 128-bit input block vector
* @param {number} x1 - 128-bit input block vector
* @param {number} x2 - 128-bit input block vector
* @param {number} x3 - 128-bit input block vector
*/
function _ecb_enc(x0, x1, x2, x3) {
x0 = x0 | 0;
x1 = x1 | 0;
x2 = x2 | 0;
x3 = x3 | 0;
_core(0x0000, 0x0800, 0x1000, R, x0, x1, x2, x3);
}
/**
* ECB mode decryption
* @param {number} x0 - 128-bit input block vector
* @param {number} x1 - 128-bit input block vector
* @param {number} x2 - 128-bit input block vector
* @param {number} x3 - 128-bit input block vector
*/
function _ecb_dec(x0, x1, x2, x3) {
x0 = x0 | 0;
x1 = x1 | 0;
x2 = x2 | 0;
x3 = x3 | 0;
var t = 0;
_core(0x0400, 0x0c00, 0x2000, R, x0, x3, x2, x1);
t = S1, S1 = S3, S3 = t;
}
/**
* CBC mode encryption
* @param {number} x0 - 128-bit input block vector
* @param {number} x1 - 128-bit input block vector
* @param {number} x2 - 128-bit input block vector
* @param {number} x3 - 128-bit input block vector
*/
function _cbc_enc(x0, x1, x2, x3) {
x0 = x0 | 0;
x1 = x1 | 0;
x2 = x2 | 0;
x3 = x3 | 0;
_core(0x0000, 0x0800, 0x1000, R, I0 ^ x0, I1 ^ x1, I2 ^ x2, I3 ^ x3);
I0 = S0, I1 = S1, I2 = S2, I3 = S3;
}
/**
* CBC mode decryption
* @param {number} x0 - 128-bit input block vector
* @param {number} x1 - 128-bit input block vector
* @param {number} x2 - 128-bit input block vector
* @param {number} x3 - 128-bit input block vector
*/
function _cbc_dec(x0, x1, x2, x3) {
x0 = x0 | 0;
x1 = x1 | 0;
x2 = x2 | 0;
x3 = x3 | 0;
var t = 0;
_core(0x0400, 0x0c00, 0x2000, R, x0, x3, x2, x1);
t = S1, S1 = S3, S3 = t;
S0 = S0 ^ I0, S1 = S1 ^ I1, S2 = S2 ^ I2, S3 = S3 ^ I3;
I0 = x0, I1 = x1, I2 = x2, I3 = x3;
}
/**
* CFB mode encryption
* @param {number} x0 - 128-bit input block vector
* @param {number} x1 - 128-bit input block vector
* @param {number} x2 - 128-bit input block vector
* @param {number} x3 - 128-bit input block vector
*/
function _cfb_enc(x0, x1, x2, x3) {
x0 = x0 | 0;
x1 = x1 | 0;
x2 = x2 | 0;
x3 = x3 | 0;
_core(0x0000, 0x0800, 0x1000, R, I0, I1, I2, I3);
I0 = S0 = S0 ^ x0, I1 = S1 = S1 ^ x1, I2 = S2 = S2 ^ x2, I3 = S3 = S3 ^ x3;
}
/**
* CFB mode decryption
* @param {number} x0 - 128-bit input block vector
* @param {number} x1 - 128-bit input block vector
* @param {number} x2 - 128-bit input block vector
* @param {number} x3 - 128-bit input block vector
*/
function _cfb_dec(x0, x1, x2, x3) {
x0 = x0 | 0;
x1 = x1 | 0;
x2 = x2 | 0;
x3 = x3 | 0;
_core(0x0000, 0x0800, 0x1000, R, I0, I1, I2, I3);
S0 = S0 ^ x0, S1 = S1 ^ x1, S2 = S2 ^ x2, S3 = S3 ^ x3;
I0 = x0, I1 = x1, I2 = x2, I3 = x3;
}
/**
* OFB mode encryption / decryption
* @param {number} x0 - 128-bit input block vector
* @param {number} x1 - 128-bit input block vector
* @param {number} x2 - 128-bit input block vector
* @param {number} x3 - 128-bit input block vector
*/
function _ofb(x0, x1, x2, x3) {
x0 = x0 | 0;
x1 = x1 | 0;
x2 = x2 | 0;
x3 = x3 | 0;
_core(0x0000, 0x0800, 0x1000, R, I0, I1, I2, I3);
I0 = S0, I1 = S1, I2 = S2, I3 = S3;
S0 = S0 ^ x0, S1 = S1 ^ x1, S2 = S2 ^ x2, S3 = S3 ^ x3;
}
/**
* CTR mode encryption / decryption
* @param {number} x0 - 128-bit input block vector
* @param {number} x1 - 128-bit input block vector
* @param {number} x2 - 128-bit input block vector
* @param {number} x3 - 128-bit input block vector
*/
function _ctr(x0, x1, x2, x3) {
x0 = x0 | 0;
x1 = x1 | 0;
x2 = x2 | 0;
x3 = x3 | 0;
_core(0x0000, 0x0800, 0x1000, R, N0, N1, N2, N3);
N3 = ~M3 & N3 | M3 & N3 + 1;
N2 = ~M2 & N2 | M2 & N2 + ((N3 | 0) == 0);
N1 = ~M1 & N1 | M1 & N1 + ((N2 | 0) == 0);
N0 = ~M0 & N0 | M0 & N0 + ((N1 | 0) == 0);
S0 = S0 ^ x0;
S1 = S1 ^ x1;
S2 = S2 ^ x2;
S3 = S3 ^ x3;
}
/**
* GCM mode MAC calculation
* @param {number} x0 - 128-bit input block vector
* @param {number} x1 - 128-bit input block vector
* @param {number} x2 - 128-bit input block vector
* @param {number} x3 - 128-bit input block vector
*/
function _gcm_mac(x0, x1, x2, x3) {
x0 = x0 | 0;
x1 = x1 | 0;
x2 = x2 | 0;
x3 = x3 | 0;
var y0 = 0,
y1 = 0,
y2 = 0,
y3 = 0,
z0 = 0,
z1 = 0,
z2 = 0,
z3 = 0,
i = 0,
c = 0;
x0 = x0 ^ I0, x1 = x1 ^ I1, x2 = x2 ^ I2, x3 = x3 ^ I3;
y0 = H0 | 0, y1 = H1 | 0, y2 = H2 | 0, y3 = H3 | 0;
for (; (i | 0) < 128; i = i + 1 | 0) {
if (y0 >>> 31) {
z0 = z0 ^ x0, z1 = z1 ^ x1, z2 = z2 ^ x2, z3 = z3 ^ x3;
}
y0 = y0 << 1 | y1 >>> 31, y1 = y1 << 1 | y2 >>> 31, y2 = y2 << 1 | y3 >>> 31, y3 = y3 << 1;
c = x3 & 1;
x3 = x3 >>> 1 | x2 << 31, x2 = x2 >>> 1 | x1 << 31, x1 = x1 >>> 1 | x0 << 31, x0 = x0 >>> 1;
if (c) x0 = x0 ^ 0xe1000000;
}
I0 = z0, I1 = z1, I2 = z2, I3 = z3;
}
/**
* Set the internal rounds number.
* @instance
* @memberof AES_asm
* @param {number} r - number if inner AES rounds
*/
function set_rounds(r) {
r = r | 0;
R = r;
}
/**
* Populate the internal state of the module.
* @instance
* @memberof AES_asm
* @param {number} s0 - state vector
* @param {number} s1 - state vector
* @param {number} s2 - state vector
* @param {number} s3 - state vector
*/
function set_state(s0, s1, s2, s3) {
s0 = s0 | 0;
s1 = s1 | 0;
s2 = s2 | 0;
s3 = s3 | 0;
S0 = s0, S1 = s1, S2 = s2, S3 = s3;
}
/**
* Populate the internal iv of the module.
* @instance
* @memberof AES_asm
* @param {number} i0 - iv vector
* @param {number} i1 - iv vector
* @param {number} i2 - iv vector
* @param {number} i3 - iv vector
*/
function set_iv(i0, i1, i2, i3) {
i0 = i0 | 0;
i1 = i1 | 0;
i2 = i2 | 0;
i3 = i3 | 0;
I0 = i0, I1 = i1, I2 = i2, I3 = i3;
}
/**
* Set nonce for CTR-family modes.
* @instance
* @memberof AES_asm
* @param {number} n0 - nonce vector
* @param {number} n1 - nonce vector
* @param {number} n2 - nonce vector
* @param {number} n3 - nonce vector
*/
function set_nonce(n0, n1, n2, n3) {
n0 = n0 | 0;
n1 = n1 | 0;
n2 = n2 | 0;
n3 = n3 | 0;
N0 = n0, N1 = n1, N2 = n2, N3 = n3;
}
/**
* Set counter mask for CTR-family modes.
* @instance
* @memberof AES_asm
* @param {number} m0 - counter mask vector
* @param {number} m1 - counter mask vector
* @param {number} m2 - counter mask vector
* @param {number} m3 - counter mask vector
*/
function set_mask(m0, m1, m2, m3) {
m0 = m0 | 0;
m1 = m1 | 0;
m2 = m2 | 0;
m3 = m3 | 0;
M0 = m0, M1 = m1, M2 = m2, M3 = m3;
}
/**
* Set counter for CTR-family modes.
* @instance
* @memberof AES_asm
* @param {number} c0 - counter vector
* @param {number} c1 - counter vector
* @param {number} c2 - counter vector
* @param {number} c3 - counter vector
*/
function set_counter(c0, c1, c2, c3) {
c0 = c0 | 0;
c1 = c1 | 0;
c2 = c2 | 0;
c3 = c3 | 0;
N3 = ~M3 & N3 | M3 & c3, N2 = ~M2 & N2 | M2 & c2, N1 = ~M1 & N1 | M1 & c1, N0 = ~M0 & N0 | M0 & c0;
}
/**
* Store the internal state vector into the heap.
* @instance
* @memberof AES_asm
* @param {number} pos - offset where to put the data
* @return {number} The number of bytes have been written into the heap, always 16.
*/
function get_state(pos) {
pos = pos | 0;
if (pos & 15) return -1;
DATA[pos | 0] = S0 >>> 24, DATA[pos | 1] = S0 >>> 16 & 255, DATA[pos | 2] = S0 >>> 8 & 255, DATA[pos | 3] = S0 & 255, DATA[pos | 4] = S1 >>> 24, DATA[pos | 5] = S1 >>> 16 & 255, DATA[pos | 6] = S1 >>> 8 & 255, DATA[pos | 7] = S1 & 255, DATA[pos | 8] = S2 >>> 24, DATA[pos | 9] = S2 >>> 16 & 255, DATA[pos | 10] = S2 >>> 8 & 255, DATA[pos | 11] = S2 & 255, DATA[pos | 12] = S3 >>> 24, DATA[pos | 13] = S3 >>> 16 & 255, DATA[pos | 14] = S3 >>> 8 & 255, DATA[pos | 15] = S3 & 255;
return 16;
}
/**
* Store the internal iv vector into the heap.
* @instance
* @memberof AES_asm
* @param {number} pos - offset where to put the data
* @return {number} The number of bytes have been written into the heap, always 16.
*/
function get_iv(pos) {
pos = pos | 0;
if (pos & 15) return -1;
DATA[pos | 0] = I0 >>> 24, DATA[pos | 1] = I0 >>> 16 & 255, DATA[pos | 2] = I0 >>> 8 & 255, DATA[pos | 3] = I0 & 255, DATA[pos | 4] = I1 >>> 24, DATA[pos | 5] = I1 >>> 16 & 255, DATA[pos | 6] = I1 >>> 8 & 255, DATA[pos | 7] = I1 & 255, DATA[pos | 8] = I2 >>> 24, DATA[pos | 9] = I2 >>> 16 & 255, DATA[pos | 10] = I2 >>> 8 & 255, DATA[pos | 11] = I2 & 255, DATA[pos | 12] = I3 >>> 24, DATA[pos | 13] = I3 >>> 16 & 255, DATA[pos | 14] = I3 >>> 8 & 255, DATA[pos | 15] = I3 & 255;
return 16;
}
/**
* GCM initialization.
* @instance
* @memberof AES_asm
*/
function gcm_init() {
_ecb_enc(0, 0, 0, 0);
H0 = S0, H1 = S1, H2 = S2, H3 = S3;
}
/**
* Perform ciphering operation on the supplied data.
* @instance
* @memberof AES_asm
* @param {number} mode - block cipher mode (see {@link AES_asm} mode constants)
* @param {number} pos - offset of the data being processed
* @param {number} len - length of the data being processed
* @return {number} Actual amount of data have been processed.
*/
function cipher(mode, pos, len) {
mode = mode | 0;
pos = pos | 0;
len = len | 0;
var ret = 0;
if (pos & 15) return -1;
while ((len | 0) >= 16) {
_cipher_modes[mode & 7](DATA[pos | 0] << 24 | DATA[pos | 1] << 16 | DATA[pos | 2] << 8 | DATA[pos | 3], DATA[pos | 4] << 24 | DATA[pos | 5] << 16 | DATA[pos | 6] << 8 | DATA[pos | 7], DATA[pos | 8] << 24 | DATA[pos | 9] << 16 | DATA[pos | 10] << 8 | DATA[pos | 11], DATA[pos | 12] << 24 | DATA[pos | 13] << 16 | DATA[pos | 14] << 8 | DATA[pos | 15]);
DATA[pos | 0] = S0 >>> 24, DATA[pos | 1] = S0 >>> 16 & 255, DATA[pos | 2] = S0 >>> 8 & 255, DATA[pos | 3] = S0 & 255, DATA[pos | 4] = S1 >>> 24, DATA[pos | 5] = S1 >>> 16 & 255, DATA[pos | 6] = S1 >>> 8 & 255, DATA[pos | 7] = S1 & 255, DATA[pos | 8] = S2 >>> 24, DATA[pos | 9] = S2 >>> 16 & 255, DATA[pos | 10] = S2 >>> 8 & 255, DATA[pos | 11] = S2 & 255, DATA[pos | 12] = S3 >>> 24, DATA[pos | 13] = S3 >>> 16 & 255, DATA[pos | 14] = S3 >>> 8 & 255, DATA[pos | 15] = S3 & 255;
ret = ret + 16 | 0, pos = pos + 16 | 0, len = len - 16 | 0;
}
return ret | 0;
}
/**
* Calculates MAC of the supplied data.
* @instance
* @memberof AES_asm
* @param {number} mode - block cipher mode (see {@link AES_asm} mode constants)
* @param {number} pos - offset of the data being processed
* @param {number} len - length of the data being processed
* @return {number} Actual amount of data have been processed.
*/
function mac(mode, pos, len) {
mode = mode | 0;
pos = pos | 0;
len = len | 0;
var ret = 0;
if (pos & 15) return -1;
while ((len | 0) >= 16) {
_mac_modes[mode & 1](DATA[pos | 0] << 24 | DATA[pos | 1] << 16 | DATA[pos | 2] << 8 | DATA[pos | 3], DATA[pos | 4] << 24 | DATA[pos | 5] << 16 | DATA[pos | 6] << 8 | DATA[pos | 7], DATA[pos | 8] << 24 | DATA[pos | 9] << 16 | DATA[pos | 10] << 8 | DATA[pos | 11], DATA[pos | 12] << 24 | DATA[pos | 13] << 16 | DATA[pos | 14] << 8 | DATA[pos | 15]);
ret = ret + 16 | 0, pos = pos + 16 | 0, len = len - 16 | 0;
}
return ret | 0;
}
/**
* AES cipher modes table (virual methods)
*/
var _cipher_modes = [_ecb_enc, _ecb_dec, _cbc_enc, _cbc_dec, _cfb_enc, _cfb_dec, _ofb, _ctr];
/**
* AES MAC modes table (virual methods)
*/
var _mac_modes = [_cbc_enc, _gcm_mac];
/**
* Asm.js module exports
*/
return {
set_rounds: set_rounds,
set_state: set_state,
set_iv: set_iv,
set_nonce: set_nonce,
set_mask: set_mask,
set_counter: set_counter,
get_state: get_state,
get_iv: get_iv,
gcm_init: gcm_init,
cipher: cipher,
mac: mac
};
}(stdlib, foreign, buffer);
asm.set_key = set_key;
return asm;
};
/**
* AES enciphering mode constants
* @enum {number}
* @const
*/
wrapper.ENC = {
ECB: 0,
CBC: 2,
CFB: 4,
OFB: 6,
CTR: 7
},
/**
* AES deciphering mode constants
* @enum {number}
* @const
*/
wrapper.DEC = {
ECB: 1,
CBC: 3,
CFB: 5,
OFB: 6,
CTR: 7
},
/**
* AES MAC mode constants
* @enum {number}
* @const
*/
wrapper.MAC = {
CBC: 0,
GCM: 1
};
/**
* Heap data offset
* @type {number}
* @const
*/
wrapper.HEAP_DATA = 0x4000;
return wrapper;
}();
},{}],4:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.AES = undefined;
var _aes = require('./aes.asm');
var _utils = require('../other/utils');
var _errors = require('../other/errors');
var heap_pool = [];
var asm_pool = [];
var AES = /** @class */function () {
function AES(key, iv, padding, mode) {
if (padding === void 0) {
padding = true;
}
this.pos = 0;
this.len = 0;
this.mode = mode;
// The AES object state
this.pos = 0;
this.len = 0;
this.key = key;
this.iv = iv;
this.padding = padding;
// The AES "worker"
this.acquire_asm();
}
AES.prototype.acquire_asm = function () {
if (this.heap === undefined && this.asm === undefined) {
this.heap = heap_pool.pop() || (0, _utils._heap_init)().subarray(_aes.AES_asm.HEAP_DATA);
this.asm = asm_pool.pop() || (0, _aes.AES_asm)(null, this.heap.buffer);
this.reset(this.key, this.iv);
}
};
AES.prototype.release_asm = function () {
heap_pool.push(this.heap);
;
asm_pool.push(this.asm);
this.heap = undefined;
this.asm = undefined;
};
AES.prototype.reset = function (key, iv) {
// Key
var keylen = key.length;
if (keylen !== 16 && keylen !== 24 && keylen !== 32) throw new _errors.IllegalArgumentError('illegal key size');
var keyview = new DataView(key.buffer, key.byteOffset, key.byteLength);
this.asm.set_key(keylen >> 2, keyview.getUint32(0), keyview.getUint32(4), keyview.getUint32(8), keyview.getUint32(12), keylen > 16 ? keyview.getUint32(16) : 0, keylen > 16 ? keyview.getUint32(20) : 0, keylen > 24 ? keyview.getUint32(24) : 0, keylen > 24 ? keyview.getUint32(28) : 0);
// IV
if (iv !== undefined) {
if (iv.length !== 16) throw new _errors.IllegalArgumentError('illegal iv size');
var ivview = new DataView(iv.buffer, iv.byteOffset, iv.byteLength);
this.asm.set_iv(ivview.getUint32(0), ivview.getUint32(4), ivview.getUint32(8), ivview.getUint32(12));
} else {
this.asm.set_iv(0, 0, 0, 0);
}
};
AES.prototype.AES_Encrypt_process = function (data) {
if (!(0, _utils.is_bytes)(data)) throw new TypeError("data isn't of expected type");
this.acquire_asm();
var asm = this.asm;
var heap = this.heap;
var amode = _aes.AES_asm.ENC[this.mode];
var hpos = _aes.AES_asm.HEAP_DATA;
var pos = this.pos;
var len = this.len;
var dpos = 0;
var dlen = data.length || 0;
var rpos = 0;
var rlen = len + dlen & -16;
var wlen = 0;
var result = new Uint8Array(rlen);
while (dlen > 0) {
wlen = (0, _utils._heap_write)(heap, pos + len, data, dpos, dlen);
len += wlen;
dpos += wlen;
dlen -= wlen;
wlen = asm.cipher(amode, hpos + pos, len);
if (wlen) result.set(heap.subarray(pos, pos + wlen), rpos);
rpos += wlen;
if (wlen < len) {
pos += wlen;
len -= wlen;
} else {
pos = 0;
len = 0;
}
}
this.pos = pos;
this.len = len;
return result;
};
AES.prototype.AES_Encrypt_finish = function () {
this.acquire_asm();
var asm = this.asm;
var heap = this.heap;
var amode = _aes.AES_asm.ENC[this.mode];
var hpos = _aes.AES_asm.HEAP_DATA;
var pos = this.pos;
var len = this.len;
var plen = 16 - len % 16;
var rlen = len;
if (this.hasOwnProperty('padding')) {
if (this.padding) {
for (var p = 0; p < plen; ++p) {
heap[pos + len + p] = plen;
}
len += plen;
rlen = len;
} else if (len % 16) {
throw new _errors.IllegalArgumentError('data length must be a multiple of the block size');
}
} else {
len += plen;
}
var result = new Uint8Array(rlen);
if (len) asm.cipher(amode, hpos + pos, len);
if (rlen) result.set(heap.subarray(pos, pos + rlen));
this.pos = 0;
this.len = 0;
this.release_asm();
return result;
};
AES.prototype.AES_Decrypt_process = function (data) {
if (!(0, _utils.is_bytes)(data)) throw new TypeError("data isn't of expected type");
this.acquire_asm();
var asm = this.asm;
var heap = this.heap;
var amode = _aes.AES_asm.DEC[this.mode];
var hpos = _aes.AES_asm.HEAP_DATA;
var pos = this.pos;
var len = this.len;
var dpos = 0;
var dlen = data.length || 0;
var rpos = 0;
var rlen = len + dlen & -16;
var plen = 0;
var wlen = 0;
if (this.padding) {
plen = len + dlen - rlen || 16;
rlen -= plen;
}
var result = new Uint8Array(rlen);
while (dlen > 0) {
wlen = (0, _utils._heap_write)(heap, pos + len, data, dpos, dlen);
len += wlen;
dpos += wlen;
dlen -= wlen;
wlen = asm.cipher(amode, hpos + pos, len - (!dlen ? plen : 0));
if (wlen) result.set(heap.subarray(pos, pos + wlen), rpos);
rpos += wlen;
if (wlen < len) {
pos += wlen;
len -= wlen;
} else {
pos = 0;
len = 0;
}
}
this.pos = pos;
this.len = len;
return result;
};
AES.prototype.AES_Decrypt_finish = function () {
this.acquire_asm();
var asm = this.asm;
var heap = this.heap;
var amode = _aes.AES_asm.DEC[this.mode];
var hpos = _aes.AES_asm.HEAP_DATA;
var pos = this.pos;
var len = this.len;
var rlen = len;
if (len > 0) {
if (len % 16) {
if (this.hasOwnProperty('padding')) {
throw new _errors.IllegalArgumentError('data length must be a multiple of the block size');
} else {
len += 16 - len % 16;
}
}
asm.cipher(amode, hpos + pos, len);
if (this.hasOwnProperty('padding') && this.padding) {
var pad = heap[pos + rlen - 1];
if (pad < 1 || pad > 16 || pad > rlen) throw new _errors.SecurityError('bad padding');
var pcheck = 0;
for (var i = pad; i > 1; i--) pcheck |= pad ^ heap[pos + rlen - i];
if (pcheck) throw new _errors.SecurityError('bad padding');
rlen -= pad;
}
}
var result = new Uint8Array(rlen);
if (rlen > 0) {
result.set(heap.subarray(pos, pos + rlen));
}
this.pos = 0;
this.len = 0;
this.release_asm();
return result;
};
return AES;
}();
exports.AES = AES;
},{"../other/errors":15,"../other/utils":16,"./aes.asm":3}],5:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.AES_CBC = undefined;
var _aes = require('./aes');
var _utils = require('../other/utils');
var __extends = undefined && undefined.__extends || function () {
var extendStatics = Object.setPrototypeOf || { __proto__: [] } instanceof Array && function (d, b) {
d.__proto__ = b;
} || function (d, b) {
for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];
};
return function (d, b) {
extendStatics(d, b);
function __() {
this.constructor = d;
}
d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());
};
}();
var AES_CBC = /** @class */function (_super) {
__extends(AES_CBC, _super);
function AES_CBC(key, iv, padding) {
if (padding === void 0) {
padding = true;
}
return _super.call(this, key, iv, padding, 'CBC') || this;
}
AES_CBC.encrypt = function (data, key, padding, iv) {
if (padding === void 0) {
padding = true;
}
return new AES_CBC(key, iv, padding).encrypt(data);
};
AES_CBC.decrypt = function (data, key, padding, iv) {
if (padding === void 0) {
padding = true;
}
return new AES_CBC(key, iv, padding).decrypt(data);
};
AES_CBC.prototype.encrypt = function (data) {
var r1 = this.AES_Encrypt_process(data);
var r2 = this.AES_Encrypt_finish();
return (0, _utils.joinBytes)(r1, r2);
};
AES_CBC.prototype.decrypt = function (data) {
var r1 = this.AES_Decrypt_process(data);
var r2 = this.AES_Decrypt_finish();
return (0, _utils.joinBytes)(r1, r2);
};
return AES_CBC;
}(_aes.AES);
exports.AES_CBC = AES_CBC;
},{"../other/utils":16,"./aes":4}],6:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.AES_CFB = undefined;
var _aes = require('./aes');
var _utils = require('../other/utils');
var __extends = undefined && undefined.__extends || function () {
var extendStatics = Object.setPrototypeOf || { __proto__: [] } instanceof Array && function (d, b) {
d.__proto__ = b;
} || function (d, b) {
for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];
};
return function (d, b) {
extendStatics(d, b);
function __() {
this.constructor = d;
}
d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());
};
}();
var AES_CFB = /** @class */function (_super) {
__extends(AES_CFB, _super);
function AES_CFB(key, iv) {
var _this = _super.call(this, key, iv, true, 'CFB') || this;
delete _this.padding;
return _this;
}
AES_CFB.encrypt = function (data, key, iv) {
return new AES_CFB(key, iv).encrypt(data);
};
AES_CFB.decrypt = function (data, key, iv) {
return new AES_CFB(key, iv).decrypt(data);
};
AES_CFB.prototype.encrypt = function (data) {
var r1 = this.AES_Encrypt_process(data);
var r2 = this.AES_Encrypt_finish();
return (0, _utils.joinBytes)(r1, r2);
};
AES_CFB.prototype.decrypt = function (data) {
var r1 = this.AES_Decrypt_process(data);
var r2 = this.AES_Decrypt_finish();
return (0, _utils.joinBytes)(r1, r2);
};
return AES_CFB;
}(_aes.AES);
exports.AES_CFB = AES_CFB;
},{"../other/utils":16,"./aes":4}],7:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.AES_CTR = undefined;
var _aes = require('./aes');
var _errors = require('../other/errors');
var _utils = require('../other/utils');
var __extends = undefined && undefined.__extends || function () {
var extendStatics = Object.setPrototypeOf || { __proto__: [] } instanceof Array && function (d, b) {
d.__proto__ = b;
} || function (d, b) {
for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];
};
return function (d, b) {
extendStatics(d, b);
function __() {
this.constructor = d;
}
d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());
};
}();
var AES_CTR = /** @class */function (_super) {
__extends(AES_CTR, _super);
function AES_CTR(key, nonce) {
var _this = _super.call(this, key, undefined, false, 'CTR') || this;
delete _this.padding;
_this.AES_CTR_set_options(nonce);
return _this;
}
AES_CTR.encrypt = function (data, key, nonce) {
return new AES_CTR(key, nonce).encrypt(data);
};
AES_CTR.decrypt = function (data, key, nonce) {
return new AES_CTR(key, nonce).encrypt(data);
};
AES_CTR.prototype.encrypt = function (data) {
var r1 = this.AES_Encrypt_process(data);
var r2 = this.AES_Encrypt_finish();
return (0, _utils.joinBytes)(r1, r2);
};
AES_CTR.prototype.decrypt = function (data) {
var r1 = this.AES_Encrypt_process(data);
var r2 = this.AES_Encrypt_finish();
return (0, _utils.joinBytes)(r1, r2);
};
AES_CTR.prototype.AES_CTR_set_options = function (nonce, counter, size) {
if (size !== undefined) {
if (size < 8 || size > 48) throw new _errors.IllegalArgumentError('illegal counter size');
var mask = Math.pow(2, size) - 1;
this.asm.set_mask(0, 0, mask / 0x100000000 | 0, mask | 0);
} else {
size = 48;
this.asm.set_mask(0, 0, 0xffff, 0xffffffff);
}
if (nonce !== undefined) {
var len = nonce.length;
if (!len || len > 16) throw new _errors.IllegalArgumentError('illegal nonce size');
var view = new DataView(new ArrayBuffer(16));
new Uint8Array(view.buffer).set(nonce);
this.asm.set_nonce(view.getUint32(0), view.getUint32(4), view.getUint32(8), view.getUint32(12));
} else {
throw new Error('nonce is required');
}
if (counter !== undefined) {
if (counter < 0 || counter >= Math.pow(2, size)) throw new _errors.IllegalArgumentError('illegal counter value');
this.asm.set_counter(0, 0, counter / 0x100000000 | 0, counter | 0);
}
};
return AES_CTR;
}(_aes.AES);
exports.AES_CTR = AES_CTR;
},{"../other/errors":15,"../other/utils":16,"./aes":4}],8:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.AES_ECB = undefined;
var _aes = require('./aes');
var _utils = require('../other/utils');
var __extends = undefined && undefined.__extends || function () {
var extendStatics = Object.setPrototypeOf || { __proto__: [] } instanceof Array && function (d, b) {
d.__proto__ = b;
} || function (d, b) {
for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];
};
return function (d, b) {
extendStatics(d, b);
function __() {
this.constructor = d;
}
d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());
};
}();
var AES_ECB = /** @class */function (_super) {
__extends(AES_ECB, _super);
function AES_ECB(key, padding) {
if (padding === void 0) {
padding = false;
}
return _super.call(this, key, undefined, padding, 'ECB') || this;
}
AES_ECB.encrypt = function (data, key, padding) {
if (padding === void 0) {
padding = false;
}
return new AES_ECB(key, padding).encrypt(data);
};
AES_ECB.decrypt = function (data, key, padding) {
if (padding === void 0) {
padding = false;
}
return new AES_ECB(key, padding).decrypt(data);
};
AES_ECB.prototype.encrypt = function (data) {
var r1 = this.AES_Encrypt_process(data);
var r2 = this.AES_Encrypt_finish();
return (0, _utils.joinBytes)(r1, r2);
};
AES_ECB.prototype.decrypt = function (data) {
var r1 = this.AES_Decrypt_process(data);
var r2 = this.AES_Decrypt_finish();
return (0, _utils.joinBytes)(r1, r2);
};
return AES_ECB;
}(_aes.AES);
exports.AES_ECB = AES_ECB;
},{"../other/utils":16,"./aes":4}],9:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.AES_GCM = undefined;
var _errors = require('../other/errors');
var _utils = require('../other/utils');
var _aes = require('./aes');
var _aes2 = require('./aes.asm');
var __extends = undefined && undefined.__extends || function () {
var extendStatics = Object.setPrototypeOf || { __proto__: [] } instanceof Array && function (d, b) {
d.__proto__ = b;
} || function (d, b) {
for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];
};
return function (d, b) {
extendStatics(d, b);
function __() {
this.constructor = d;
}
d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());
};
}();
var _AES_GCM_data_maxLength = 68719476704; // 2^36 - 2^5
var AES_GCM = /** @class */function (_super) {
__extends(AES_GCM, _super);
function AES_GCM(key, nonce, adata, tagSize) {
if (tagSize === void 0) {
tagSize = 16;
}
var _this = _super.call(this, key, undefined, false, 'CTR') || this;
_this.tagSize = tagSize;
_this.gamma0 = 0;
_this.counter = 1;
// Init GCM
_this.asm.gcm_init();
// Tag size
if (_this.tagSize < 4 || _this.tagSize > 16) throw new _errors.IllegalArgumentError('illegal tagSize value');
// Nonce
var noncelen = nonce.length || 0;
var noncebuf = new Uint8Array(16);
if (noncelen !== 12) {
_this._gcm_mac_process(nonce);
_this.heap[0] = 0;
_this.heap[1] = 0;
_this.heap[2] = 0;
_this.heap[3] = 0;
_this.heap[4] = 0;
_this.heap[5] = 0;
_this.heap[6] = 0;
_this.heap[7] = 0;
_this.heap[8] = 0;
_this.heap[9] = 0;
_this.heap[10] = 0;
_this.heap[11] = noncelen >>> 29;
_this.heap[12] = noncelen >>> 21 & 255;
_this.heap[13] = noncelen >>> 13 & 255;
_this.heap[14] = noncelen >>> 5 & 255;
_this.heap[15] = noncelen << 3 & 255;
_this.asm.mac(_aes2.AES_asm.MAC.GCM, _aes2.AES_asm.HEAP_DATA, 16);
_this.asm.get_iv(_aes2.AES_asm.HEAP_DATA);
_this.asm.set_iv(0, 0, 0, 0);
noncebuf.set(_this.heap.subarray(0, 16));
} else {
noncebuf.set(nonce);
noncebuf[15] = 1;
}
var nonceview = new DataView(noncebuf.buffer);
_this.gamma0 = nonceview.getUint32(12);
_this.asm.set_nonce(nonceview.getUint32(0), nonceview.getUint32(4), nonceview.getUint32(8), 0);
_this.asm.set_mask(0, 0, 0, 0xffffffff);
// Associated data
if (adata !== undefined) {
if (adata.length > _AES_GCM_data_maxLength) throw new _errors.IllegalArgumentError('illegal adata length');
if (adata.length) {
_this.adata = adata;
_this._gcm_mac_process(adata);
} else {
_this.adata = undefined;
}
} else {
_this.adata = undefined;
}
// Counter
if (_this.counter < 1 || _this.counter > 0xffffffff) throw new RangeError('counter must be a positive 32-bit integer');
_this.asm.set_counter(0, 0, 0, _this.gamma0 + _this.counter | 0);
return _this;
}
AES_GCM.encrypt = function (cleartext, key, nonce, adata, tagsize) {
return new AES_GCM(key, nonce, adata, tagsize).encrypt(cleartext);
};
AES_GCM.decrypt = function (ciphertext, key, nonce, adata, tagsize) {
return new AES_GCM(key, nonce, adata, tagsize).decrypt(ciphertext);
};
AES_GCM.prototype.encrypt = function (data) {
return this.AES_GCM_encrypt(data);
};
AES_GCM.prototype.decrypt = function (data) {
return this.AES_GCM_decrypt(data);
};
AES_GCM.prototype.AES_GCM_Encrypt_process = function (data) {
var dpos = 0;
var dlen = data.length || 0;
var asm = this.asm;
var heap = this.heap;
var counter = this.counter;
var pos = this.pos;
var len = this.len;
var rpos = 0;
var rlen = len + dlen & -16;
var wlen = 0;
if ((counter - 1 << 4) + len + dlen > _AES_GCM_data_maxLength) throw new RangeError('counter overflow');
var result = new Uint8Array(rlen);
while (dlen > 0) {
wlen = (0, _utils._heap_write)(heap, pos + len, data, dpos, dlen);
len += wlen;
dpos += wlen;
dlen -= wlen;
wlen = asm.cipher(_aes2.AES_asm.ENC.CTR, _aes2.AES_asm.HEAP_DATA + pos, len);
wlen = asm.mac(_aes2.AES_asm.MAC.GCM, _aes2.AES_asm.HEAP_DATA + pos, wlen);
if (wlen) result.set(heap.subarray(pos, pos + wlen), rpos);
counter += wlen >>> 4;
rpos += wlen;
if (wlen < len) {
pos += wlen;
len -= wlen;
} else {
pos = 0;
len = 0;
}
}
this.counter = counter;
this.pos = pos;
this.len = len;
return result;
};
AES_GCM.prototype.AES_GCM_Encrypt_finish = function () {
var asm = this.asm;
var heap = this.heap;
var counter = this.counter;
var tagSize = this.tagSize;
var adata = this.adata;
var pos = this.pos;
var len = this.len;
var result = new Uint8Array(len + tagSize);
asm.cipher(_aes2.AES_asm.ENC.CTR, _aes2.AES_asm.HEAP_DATA + pos, len + 15 & -16);
if (len) result.set(heap.subarray(pos, pos + len));
var i = len;
for (; i & 15; i++) heap[pos + i] = 0;
asm.mac(_aes2.AES_asm.MAC.GCM, _aes2.AES_asm.HEAP_DATA + pos, i);
var alen = adata !== undefined ? adata.length : 0;
var clen = (counter - 1 << 4) + len;
heap[0] = 0;
heap[1] = 0;
heap[2] = 0;
heap[3] = alen >>> 29;
heap[4] = alen >>> 21;
heap[5] = alen >>> 13 & 255;
heap[6] = alen >>> 5 & 255;
heap[7] = alen << 3 & 255;
heap[8] = heap[9] = heap[10] = 0;
heap[11] = clen >>> 29;
heap[12] = clen >>> 21 & 255;
heap[13] = clen >>> 13 & 255;
heap[14] = clen >>> 5 & 255;
heap[15] = clen << 3 & 255;
asm.mac(_aes2.AES_asm.MAC.GCM, _aes2.AES_asm.HEAP_DATA, 16);
asm.get_iv(_aes2.AES_asm.HEAP_DATA);
asm.set_counter(0, 0, 0, this.gamma0);
asm.cipher(_aes2.AES_asm.ENC.CTR, _aes2.AES_asm.HEAP_DATA, 16);
result.set(heap.subarray(0, tagSize), len);
this.counter = 1;
this.pos = 0;
this.len = 0;
return result;
};
AES_GCM.prototype.AES_GCM_Decrypt_process = function (data) {
var dpos = 0;
var dlen = data.length || 0;
var asm = this.asm;
var heap = this.heap;
var counter = this.counter;
var tagSize = this.tagSize;
var pos = this.pos;
var len = this.len;
var rpos = 0;
var rlen = len + dlen > tagSize ? len + dlen - tagSize & -16 : 0;
var tlen = len + dlen - rlen;
var wlen = 0;
if ((counter - 1 << 4) + len + dlen > _AES_GCM_data_maxLength) throw new RangeError('counter overflow');
var result = new Uint8Array(rlen);
while (dlen > tlen) {
wlen = (0, _utils._heap_write)(heap, pos + len, data, dpos, dlen - tlen);
len += wlen;
dpos += wlen;
dlen -= wlen;
wlen = asm.mac(_aes2.AES_asm.MAC.GCM, _aes2.AES_asm.HEAP_DATA + pos, wlen);
wlen = asm.cipher(_aes2.AES_asm.DEC.CTR, _aes2.AES_asm.HEAP_DATA + pos, wlen);
if (wlen) result.set(heap.subarray(pos, pos + wlen), rpos);
counter += wlen >>> 4;
rpos += wlen;
pos = 0;
len = 0;
}
if (dlen > 0) {
len += (0, _utils._heap_write)(heap, 0, data, dpos, dlen);
}
this.counter = counter;
this.pos = pos;
this.len = len;
return result;
};
AES_GCM.prototype.AES_GCM_Decrypt_finish = function () {
var asm = this.asm;
var heap = this.heap;
var tagSize = this.tagSize;
var adata = this.adata;
var counter = this.counter;
var pos = this.pos;
var len = this.len;
var rlen = len - tagSize;
if (len < tagSize) throw new _errors.IllegalStateError('authentication tag not found');
var result = new Uint8Array(rlen);
var atag = new Uint8Array(heap.subarray(pos + rlen, pos + len));
var i = rlen;
for (; i & 15; i++) heap[pos + i] = 0;
asm.mac(_aes2.AES_asm.MAC.GCM, _aes2.AES_asm.HEAP_DATA + pos, i);
asm.cipher(_aes2.AES_asm.DEC.CTR, _aes2.AES_asm.HEAP_DATA + pos, i);
if (rlen) result.set(heap.subarray(pos, pos + rlen));
var alen = adata !== undefined ? adata.length : 0;
var clen = (counter - 1 << 4) + len - tagSize;
heap[0] = 0;
heap[1] = 0;
heap[2] = 0;
heap[3] = alen >>> 29;
heap[4] = alen >>> 21;
heap[5] = alen >>> 13 & 255;
heap[6] = alen >>> 5 & 255;
heap[7] = alen << 3 & 255;
heap[8] = heap[9] = heap[10] = 0;
heap[11] = clen >>> 29;
heap[12] = clen >>> 21 & 255;
heap[13] = clen >>> 13 & 255;
heap[14] = clen >>> 5 & 255;
heap[15] = clen << 3 & 255;
asm.mac(_aes2.AES_asm.MAC.GCM, _aes2.AES_asm.HEAP_DATA, 16);
asm.get_iv(_aes2.AES_asm.HEAP_DATA);
asm.set_counter(0, 0, 0, this.gamma0);
asm.cipher(_aes2.AES_asm.ENC.CTR, _aes2.AES_asm.HEAP_DATA, 16);
var acheck = 0;
for (var i_1 = 0; i_1 < tagSize; ++i_1) acheck |= atag[i_1] ^ heap[i_1];
if (acheck) throw new _errors.SecurityError('data integrity check failed');
this.counter = 1;
this.pos = 0;
this.len = 0;
return result;
};
AES_GCM.prototype.AES_GCM_decrypt = function (data) {
var result1 = this.AES_GCM_Decrypt_process(data);
var result2 = this.AES_GCM_Decrypt_finish();
var result = new Uint8Array(result1.length + result2.length);
if (result1.length) result.set(result1);
if (result2.length) result.set(result2, result1.length);
return result;
};
AES_GCM.prototype.AES_GCM_encrypt = function (data) {
var result1 = this.AES_GCM_Encrypt_process(data);
var result2 = this.AES_GCM_Encrypt_finish();
var result = new Uint8Array(result1.length + result2.length);
if (result1.length) result.set(result1);
if (result2.length) result.set(result2, result1.length);
return result;
};
AES_GCM.prototype._gcm_mac_process = function (data) {
var heap = this.heap;
var asm = this.asm;
var dpos = 0;
var dlen = data.length || 0;
var wlen = 0;
while (dlen > 0) {
wlen = (0, _utils._heap_write)(heap, 0, data, dpos, dlen);
dpos += wlen;
dlen -= wlen;
while (wlen & 15) heap[wlen++] = 0;
asm.mac(_aes2.AES_asm.MAC.GCM, _aes2.AES_asm.HEAP_DATA, wlen);
}
};
return AES_GCM;
}(_aes.AES);
exports.AES_GCM = AES_GCM;
},{"../other/errors":15,"../other/utils":16,"./aes":4,"./aes.asm":3}],10:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.Hash = undefined;
var _utils = require('../other/utils');
var _errors = require('../other/errors');
var Hash = /** @class */function () {
function Hash() {
this.pos = 0;
this.len = 0;
this.acquire_asm();
}
Hash.prototype.acquire_asm = function () {
if (this.heap === undefined && this.asm === undefined) {
this.heap = this.constructor.heap_pool.pop() || (0, _utils._heap_init)();
this.asm = this.constructor.asm_pool.pop() || this.constructor.asm_function({ Uint8Array: Uint8Array }, null, this.heap.buffer);
this.reset();
}
};
Hash.prototype.release_asm = function () {
this.constructor.heap_pool.push(this.heap);
;
this.constructor.asm_pool.push(this.asm);
this.heap = undefined;
this.asm = undefined;
};
Hash.prototype.reset = function () {
this.acquire_asm();
this.result = null;
this.pos = 0;
this.len = 0;
this.asm.reset();
return this;
};
Hash.prototype.process = function (data) {
if (this.result !== null) throw new _errors.IllegalStateError('state must be reset before processing new data');
this.acquire_asm();
var asm = this.asm;
var heap = this.heap;
var hpos = this.pos;
var hlen = this.len;
var dpos = 0;
var dlen = data.length;
var wlen = 0;
while (dlen > 0) {
wlen = (0, _utils._heap_write)(heap, hpos + hlen, data, dpos, dlen);
hlen += wlen;
dpos += wlen;
dlen -= wlen;
wlen = asm.process(hpos, hlen);
hpos += wlen;
hlen -= wlen;
if (!hlen) hpos = 0;
}
this.pos = hpos;
this.len = hlen;
return this;
};
Hash.prototype.finish = function () {
if (this.result !== null) throw new _errors.IllegalStateError('state must be reset before processing new data');
this.acquire_asm();
this.asm.finish(this.pos, this.len, 0);
this.result = new Uint8Array(this.HASH_SIZE);
this.result.set(this.heap.subarray(0, this.HASH_SIZE));
this.pos = 0;
this.len = 0;
this.release_asm();
return this;
};
return Hash;
}();
exports.Hash = Hash;
},{"../other/errors":15,"../other/utils":16}],11:[function(require,module,exports){
"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.sha1_asm = sha1_asm;
function sha1_asm(stdlib, foreign, buffer) {
"use asm";
// SHA256 state
var H0 = 0,
H1 = 0,
H2 = 0,
H3 = 0,
H4 = 0,
TOTAL0 = 0,
TOTAL1 = 0;
// HMAC state
var I0 = 0,
I1 = 0,
I2 = 0,
I3 = 0,
I4 = 0,
O0 = 0,
O1 = 0,
O2 = 0,
O3 = 0,
O4 = 0;
// I/O buffer
var HEAP = new stdlib.Uint8Array(buffer);
function _core(w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15) {
w0 = w0 | 0;
w1 = w1 | 0;
w2 = w2 | 0;
w3 = w3 | 0;
w4 = w4 | 0;
w5 = w5 | 0;
w6 = w6 | 0;
w7 = w7 | 0;
w8 = w8 | 0;
w9 = w9 | 0;
w10 = w10 | 0;
w11 = w11 | 0;
w12 = w12 | 0;
w13 = w13 | 0;
w14 = w14 | 0;
w15 = w15 | 0;
var a = 0,
b = 0,
c = 0,
d = 0,
e = 0,
n = 0,
t = 0,
w16 = 0,
w17 = 0,
w18 = 0,
w19 = 0,
w20 = 0,
w21 = 0,
w22 = 0,
w23 = 0,
w24 = 0,
w25 = 0,
w26 = 0,
w27 = 0,
w28 = 0,
w29 = 0,
w30 = 0,
w31 = 0,
w32 = 0,
w33 = 0,
w34 = 0,
w35 = 0,
w36 = 0,
w37 = 0,
w38 = 0,
w39 = 0,
w40 = 0,
w41 = 0,
w42 = 0,
w43 = 0,
w44 = 0,
w45 = 0,
w46 = 0,
w47 = 0,
w48 = 0,
w49 = 0,
w50 = 0,
w51 = 0,
w52 = 0,
w53 = 0,
w54 = 0,
w55 = 0,
w56 = 0,
w57 = 0,
w58 = 0,
w59 = 0,
w60 = 0,
w61 = 0,
w62 = 0,
w63 = 0,
w64 = 0,
w65 = 0,
w66 = 0,
w67 = 0,
w68 = 0,
w69 = 0,
w70 = 0,
w71 = 0,
w72 = 0,
w73 = 0,
w74 = 0,
w75 = 0,
w76 = 0,
w77 = 0,
w78 = 0,
w79 = 0;
a = H0;
b = H1;
c = H2;
d = H3;
e = H4;
// 0
t = w0 + (a << 5 | a >>> 27) + e + (b & c | ~b & d) + 0x5a827999 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 1
t = w1 + (a << 5 | a >>> 27) + e + (b & c | ~b & d) + 0x5a827999 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 2
t = w2 + (a << 5 | a >>> 27) + e + (b & c | ~b & d) + 0x5a827999 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 3
t = w3 + (a << 5 | a >>> 27) + e + (b & c | ~b & d) + 0x5a827999 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 4
t = w4 + (a << 5 | a >>> 27) + e + (b & c | ~b & d) + 0x5a827999 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 5
t = w5 + (a << 5 | a >>> 27) + e + (b & c | ~b & d) + 0x5a827999 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 6
t = w6 + (a << 5 | a >>> 27) + e + (b & c | ~b & d) + 0x5a827999 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 7
t = w7 + (a << 5 | a >>> 27) + e + (b & c | ~b & d) + 0x5a827999 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 8
t = w8 + (a << 5 | a >>> 27) + e + (b & c | ~b & d) + 0x5a827999 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 9
t = w9 + (a << 5 | a >>> 27) + e + (b & c | ~b & d) + 0x5a827999 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 10
t = w10 + (a << 5 | a >>> 27) + e + (b & c | ~b & d) + 0x5a827999 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 11
t = w11 + (a << 5 | a >>> 27) + e + (b & c | ~b & d) + 0x5a827999 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 12
t = w12 + (a << 5 | a >>> 27) + e + (b & c | ~b & d) + 0x5a827999 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 13
t = w13 + (a << 5 | a >>> 27) + e + (b & c | ~b & d) + 0x5a827999 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 14
t = w14 + (a << 5 | a >>> 27) + e + (b & c | ~b & d) + 0x5a827999 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 15
t = w15 + (a << 5 | a >>> 27) + e + (b & c | ~b & d) + 0x5a827999 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 16
n = w13 ^ w8 ^ w2 ^ w0;
w16 = n << 1 | n >>> 31;
t = w16 + (a << 5 | a >>> 27) + e + (b & c | ~b & d) + 0x5a827999 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 17
n = w14 ^ w9 ^ w3 ^ w1;
w17 = n << 1 | n >>> 31;
t = w17 + (a << 5 | a >>> 27) + e + (b & c | ~b & d) + 0x5a827999 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 18
n = w15 ^ w10 ^ w4 ^ w2;
w18 = n << 1 | n >>> 31;
t = w18 + (a << 5 | a >>> 27) + e + (b & c | ~b & d) + 0x5a827999 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 19
n = w16 ^ w11 ^ w5 ^ w3;
w19 = n << 1 | n >>> 31;
t = w19 + (a << 5 | a >>> 27) + e + (b & c | ~b & d) + 0x5a827999 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 20
n = w17 ^ w12 ^ w6 ^ w4;
w20 = n << 1 | n >>> 31;
t = w20 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) + 0x6ed9eba1 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 21
n = w18 ^ w13 ^ w7 ^ w5;
w21 = n << 1 | n >>> 31;
t = w21 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) + 0x6ed9eba1 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 22
n = w19 ^ w14 ^ w8 ^ w6;
w22 = n << 1 | n >>> 31;
t = w22 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) + 0x6ed9eba1 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 23
n = w20 ^ w15 ^ w9 ^ w7;
w23 = n << 1 | n >>> 31;
t = w23 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) + 0x6ed9eba1 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 24
n = w21 ^ w16 ^ w10 ^ w8;
w24 = n << 1 | n >>> 31;
t = w24 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) + 0x6ed9eba1 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 25
n = w22 ^ w17 ^ w11 ^ w9;
w25 = n << 1 | n >>> 31;
t = w25 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) + 0x6ed9eba1 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 26
n = w23 ^ w18 ^ w12 ^ w10;
w26 = n << 1 | n >>> 31;
t = w26 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) + 0x6ed9eba1 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 27
n = w24 ^ w19 ^ w13 ^ w11;
w27 = n << 1 | n >>> 31;
t = w27 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) + 0x6ed9eba1 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 28
n = w25 ^ w20 ^ w14 ^ w12;
w28 = n << 1 | n >>> 31;
t = w28 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) + 0x6ed9eba1 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 29
n = w26 ^ w21 ^ w15 ^ w13;
w29 = n << 1 | n >>> 31;
t = w29 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) + 0x6ed9eba1 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 30
n = w27 ^ w22 ^ w16 ^ w14;
w30 = n << 1 | n >>> 31;
t = w30 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) + 0x6ed9eba1 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 31
n = w28 ^ w23 ^ w17 ^ w15;
w31 = n << 1 | n >>> 31;
t = w31 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) + 0x6ed9eba1 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 32
n = w29 ^ w24 ^ w18 ^ w16;
w32 = n << 1 | n >>> 31;
t = w32 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) + 0x6ed9eba1 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 33
n = w30 ^ w25 ^ w19 ^ w17;
w33 = n << 1 | n >>> 31;
t = w33 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) + 0x6ed9eba1 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 34
n = w31 ^ w26 ^ w20 ^ w18;
w34 = n << 1 | n >>> 31;
t = w34 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) + 0x6ed9eba1 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 35
n = w32 ^ w27 ^ w21 ^ w19;
w35 = n << 1 | n >>> 31;
t = w35 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) + 0x6ed9eba1 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 36
n = w33 ^ w28 ^ w22 ^ w20;
w36 = n << 1 | n >>> 31;
t = w36 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) + 0x6ed9eba1 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 37
n = w34 ^ w29 ^ w23 ^ w21;
w37 = n << 1 | n >>> 31;
t = w37 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) + 0x6ed9eba1 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 38
n = w35 ^ w30 ^ w24 ^ w22;
w38 = n << 1 | n >>> 31;
t = w38 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) + 0x6ed9eba1 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 39
n = w36 ^ w31 ^ w25 ^ w23;
w39 = n << 1 | n >>> 31;
t = w39 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) + 0x6ed9eba1 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 40
n = w37 ^ w32 ^ w26 ^ w24;
w40 = n << 1 | n >>> 31;
t = w40 + (a << 5 | a >>> 27) + e + (b & c | b & d | c & d) - 0x70e44324 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 41
n = w38 ^ w33 ^ w27 ^ w25;
w41 = n << 1 | n >>> 31;
t = w41 + (a << 5 | a >>> 27) + e + (b & c | b & d | c & d) - 0x70e44324 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 42
n = w39 ^ w34 ^ w28 ^ w26;
w42 = n << 1 | n >>> 31;
t = w42 + (a << 5 | a >>> 27) + e + (b & c | b & d | c & d) - 0x70e44324 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 43
n = w40 ^ w35 ^ w29 ^ w27;
w43 = n << 1 | n >>> 31;
t = w43 + (a << 5 | a >>> 27) + e + (b & c | b & d | c & d) - 0x70e44324 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 44
n = w41 ^ w36 ^ w30 ^ w28;
w44 = n << 1 | n >>> 31;
t = w44 + (a << 5 | a >>> 27) + e + (b & c | b & d | c & d) - 0x70e44324 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 45
n = w42 ^ w37 ^ w31 ^ w29;
w45 = n << 1 | n >>> 31;
t = w45 + (a << 5 | a >>> 27) + e + (b & c | b & d | c & d) - 0x70e44324 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 46
n = w43 ^ w38 ^ w32 ^ w30;
w46 = n << 1 | n >>> 31;
t = w46 + (a << 5 | a >>> 27) + e + (b & c | b & d | c & d) - 0x70e44324 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 47
n = w44 ^ w39 ^ w33 ^ w31;
w47 = n << 1 | n >>> 31;
t = w47 + (a << 5 | a >>> 27) + e + (b & c | b & d | c & d) - 0x70e44324 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 48
n = w45 ^ w40 ^ w34 ^ w32;
w48 = n << 1 | n >>> 31;
t = w48 + (a << 5 | a >>> 27) + e + (b & c | b & d | c & d) - 0x70e44324 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 49
n = w46 ^ w41 ^ w35 ^ w33;
w49 = n << 1 | n >>> 31;
t = w49 + (a << 5 | a >>> 27) + e + (b & c | b & d | c & d) - 0x70e44324 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 50
n = w47 ^ w42 ^ w36 ^ w34;
w50 = n << 1 | n >>> 31;
t = w50 + (a << 5 | a >>> 27) + e + (b & c | b & d | c & d) - 0x70e44324 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 51
n = w48 ^ w43 ^ w37 ^ w35;
w51 = n << 1 | n >>> 31;
t = w51 + (a << 5 | a >>> 27) + e + (b & c | b & d | c & d) - 0x70e44324 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 52
n = w49 ^ w44 ^ w38 ^ w36;
w52 = n << 1 | n >>> 31;
t = w52 + (a << 5 | a >>> 27) + e + (b & c | b & d | c & d) - 0x70e44324 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 53
n = w50 ^ w45 ^ w39 ^ w37;
w53 = n << 1 | n >>> 31;
t = w53 + (a << 5 | a >>> 27) + e + (b & c | b & d | c & d) - 0x70e44324 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 54
n = w51 ^ w46 ^ w40 ^ w38;
w54 = n << 1 | n >>> 31;
t = w54 + (a << 5 | a >>> 27) + e + (b & c | b & d | c & d) - 0x70e44324 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 55
n = w52 ^ w47 ^ w41 ^ w39;
w55 = n << 1 | n >>> 31;
t = w55 + (a << 5 | a >>> 27) + e + (b & c | b & d | c & d) - 0x70e44324 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 56
n = w53 ^ w48 ^ w42 ^ w40;
w56 = n << 1 | n >>> 31;
t = w56 + (a << 5 | a >>> 27) + e + (b & c | b & d | c & d) - 0x70e44324 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 57
n = w54 ^ w49 ^ w43 ^ w41;
w57 = n << 1 | n >>> 31;
t = w57 + (a << 5 | a >>> 27) + e + (b & c | b & d | c & d) - 0x70e44324 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 58
n = w55 ^ w50 ^ w44 ^ w42;
w58 = n << 1 | n >>> 31;
t = w58 + (a << 5 | a >>> 27) + e + (b & c | b & d | c & d) - 0x70e44324 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 59
n = w56 ^ w51 ^ w45 ^ w43;
w59 = n << 1 | n >>> 31;
t = w59 + (a << 5 | a >>> 27) + e + (b & c | b & d | c & d) - 0x70e44324 | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 60
n = w57 ^ w52 ^ w46 ^ w44;
w60 = n << 1 | n >>> 31;
t = w60 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) - 0x359d3e2a | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 61
n = w58 ^ w53 ^ w47 ^ w45;
w61 = n << 1 | n >>> 31;
t = w61 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) - 0x359d3e2a | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 62
n = w59 ^ w54 ^ w48 ^ w46;
w62 = n << 1 | n >>> 31;
t = w62 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) - 0x359d3e2a | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 63
n = w60 ^ w55 ^ w49 ^ w47;
w63 = n << 1 | n >>> 31;
t = w63 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) - 0x359d3e2a | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 64
n = w61 ^ w56 ^ w50 ^ w48;
w64 = n << 1 | n >>> 31;
t = w64 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) - 0x359d3e2a | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 65
n = w62 ^ w57 ^ w51 ^ w49;
w65 = n << 1 | n >>> 31;
t = w65 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) - 0x359d3e2a | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 66
n = w63 ^ w58 ^ w52 ^ w50;
w66 = n << 1 | n >>> 31;
t = w66 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) - 0x359d3e2a | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 67
n = w64 ^ w59 ^ w53 ^ w51;
w67 = n << 1 | n >>> 31;
t = w67 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) - 0x359d3e2a | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 68
n = w65 ^ w60 ^ w54 ^ w52;
w68 = n << 1 | n >>> 31;
t = w68 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) - 0x359d3e2a | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 69
n = w66 ^ w61 ^ w55 ^ w53;
w69 = n << 1 | n >>> 31;
t = w69 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) - 0x359d3e2a | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 70
n = w67 ^ w62 ^ w56 ^ w54;
w70 = n << 1 | n >>> 31;
t = w70 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) - 0x359d3e2a | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 71
n = w68 ^ w63 ^ w57 ^ w55;
w71 = n << 1 | n >>> 31;
t = w71 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) - 0x359d3e2a | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 72
n = w69 ^ w64 ^ w58 ^ w56;
w72 = n << 1 | n >>> 31;
t = w72 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) - 0x359d3e2a | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 73
n = w70 ^ w65 ^ w59 ^ w57;
w73 = n << 1 | n >>> 31;
t = w73 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) - 0x359d3e2a | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 74
n = w71 ^ w66 ^ w60 ^ w58;
w74 = n << 1 | n >>> 31;
t = w74 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) - 0x359d3e2a | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 75
n = w72 ^ w67 ^ w61 ^ w59;
w75 = n << 1 | n >>> 31;
t = w75 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) - 0x359d3e2a | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 76
n = w73 ^ w68 ^ w62 ^ w60;
w76 = n << 1 | n >>> 31;
t = w76 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) - 0x359d3e2a | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 77
n = w74 ^ w69 ^ w63 ^ w61;
w77 = n << 1 | n >>> 31;
t = w77 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) - 0x359d3e2a | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 78
n = w75 ^ w70 ^ w64 ^ w62;
w78 = n << 1 | n >>> 31;
t = w78 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) - 0x359d3e2a | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
// 79
n = w76 ^ w71 ^ w65 ^ w63;
w79 = n << 1 | n >>> 31;
t = w79 + (a << 5 | a >>> 27) + e + (b ^ c ^ d) - 0x359d3e2a | 0;
e = d;d = c;c = b << 30 | b >>> 2;b = a;a = t;
H0 = H0 + a | 0;
H1 = H1 + b | 0;
H2 = H2 + c | 0;
H3 = H3 + d | 0;
H4 = H4 + e | 0;
}
function _core_heap(offset) {
offset = offset | 0;
_core(HEAP[offset | 0] << 24 | HEAP[offset | 1] << 16 | HEAP[offset | 2] << 8 | HEAP[offset | 3], HEAP[offset | 4] << 24 | HEAP[offset | 5] << 16 | HEAP[offset | 6] << 8 | HEAP[offset | 7], HEAP[offset | 8] << 24 | HEAP[offset | 9] << 16 | HEAP[offset | 10] << 8 | HEAP[offset | 11], HEAP[offset | 12] << 24 | HEAP[offset | 13] << 16 | HEAP[offset | 14] << 8 | HEAP[offset | 15], HEAP[offset | 16] << 24 | HEAP[offset | 17] << 16 | HEAP[offset | 18] << 8 | HEAP[offset | 19], HEAP[offset | 20] << 24 | HEAP[offset | 21] << 16 | HEAP[offset | 22] << 8 | HEAP[offset | 23], HEAP[offset | 24] << 24 | HEAP[offset | 25] << 16 | HEAP[offset | 26] << 8 | HEAP[offset | 27], HEAP[offset | 28] << 24 | HEAP[offset | 29] << 16 | HEAP[offset | 30] << 8 | HEAP[offset | 31], HEAP[offset | 32] << 24 | HEAP[offset | 33] << 16 | HEAP[offset | 34] << 8 | HEAP[offset | 35], HEAP[offset | 36] << 24 | HEAP[offset | 37] << 16 | HEAP[offset | 38] << 8 | HEAP[offset | 39], HEAP[offset | 40] << 24 | HEAP[offset | 41] << 16 | HEAP[offset | 42] << 8 | HEAP[offset | 43], HEAP[offset | 44] << 24 | HEAP[offset | 45] << 16 | HEAP[offset | 46] << 8 | HEAP[offset | 47], HEAP[offset | 48] << 24 | HEAP[offset | 49] << 16 | HEAP[offset | 50] << 8 | HEAP[offset | 51], HEAP[offset | 52] << 24 | HEAP[offset | 53] << 16 | HEAP[offset | 54] << 8 | HEAP[offset | 55], HEAP[offset | 56] << 24 | HEAP[offset | 57] << 16 | HEAP[offset | 58] << 8 | HEAP[offset | 59], HEAP[offset | 60] << 24 | HEAP[offset | 61] << 16 | HEAP[offset | 62] << 8 | HEAP[offset | 63]);
}
// offset — multiple of 32
function _state_to_heap(output) {
output = output | 0;
HEAP[output | 0] = H0 >>> 24;
HEAP[output | 1] = H0 >>> 16 & 255;
HEAP[output | 2] = H0 >>> 8 & 255;
HEAP[output | 3] = H0 & 255;
HEAP[output | 4] = H1 >>> 24;
HEAP[output | 5] = H1 >>> 16 & 255;
HEAP[output | 6] = H1 >>> 8 & 255;
HEAP[output | 7] = H1 & 255;
HEAP[output | 8] = H2 >>> 24;
HEAP[output | 9] = H2 >>> 16 & 255;
HEAP[output | 10] = H2 >>> 8 & 255;
HEAP[output | 11] = H2 & 255;
HEAP[output | 12] = H3 >>> 24;
HEAP[output | 13] = H3 >>> 16 & 255;
HEAP[output | 14] = H3 >>> 8 & 255;
HEAP[output | 15] = H3 & 255;
HEAP[output | 16] = H4 >>> 24;
HEAP[output | 17] = H4 >>> 16 & 255;
HEAP[output | 18] = H4 >>> 8 & 255;
HEAP[output | 19] = H4 & 255;
}
function reset() {
H0 = 0x67452301;
H1 = 0xefcdab89;
H2 = 0x98badcfe;
H3 = 0x10325476;
H4 = 0xc3d2e1f0;
TOTAL0 = TOTAL1 = 0;
}
function init(h0, h1, h2, h3, h4, total0, total1) {
h0 = h0 | 0;
h1 = h1 | 0;
h2 = h2 | 0;
h3 = h3 | 0;
h4 = h4 | 0;
total0 = total0 | 0;
total1 = total1 | 0;
H0 = h0;
H1 = h1;
H2 = h2;
H3 = h3;
H4 = h4;
TOTAL0 = total0;
TOTAL1 = total1;
}
// offset — multiple of 64
function process(offset, length) {
offset = offset | 0;
length = length | 0;
var hashed = 0;
if (offset & 63) return -1;
while ((length | 0) >= 64) {
_core_heap(offset);
offset = offset + 64 | 0;
length = length - 64 | 0;
hashed = hashed + 64 | 0;
}
TOTAL0 = TOTAL0 + hashed | 0;
if (TOTAL0 >>> 0 < hashed >>> 0) TOTAL1 = TOTAL1 + 1 | 0;
return hashed | 0;
}
// offset — multiple of 64
// output — multiple of 32
function finish(offset, length, output) {
offset = offset | 0;
length = length | 0;
output = output | 0;
var hashed = 0,
i = 0;
if (offset & 63) return -1;
if (~output) if (output & 31) return -1;
if ((length | 0) >= 64) {
hashed = process(offset, length) | 0;
if ((hashed | 0) == -1) return -1;
offset = offset + hashed | 0;
length = length - hashed | 0;
}
hashed = hashed + length | 0;
TOTAL0 = TOTAL0 + length | 0;
if (TOTAL0 >>> 0 < length >>> 0) TOTAL1 = TOTAL1 + 1 | 0;
HEAP[offset | length] = 0x80;
if ((length | 0) >= 56) {
for (i = length + 1 | 0; (i | 0) < 64; i = i + 1 | 0) HEAP[offset | i] = 0x00;
_core_heap(offset);
length = 0;
HEAP[offset | 0] = 0;
}
for (i = length + 1 | 0; (i | 0) < 59; i = i + 1 | 0) HEAP[offset | i] = 0;
HEAP[offset | 56] = TOTAL1 >>> 21 & 255;
HEAP[offset | 57] = TOTAL1 >>> 13 & 255;
HEAP[offset | 58] = TOTAL1 >>> 5 & 255;
HEAP[offset | 59] = TOTAL1 << 3 & 255 | TOTAL0 >>> 29;
HEAP[offset | 60] = TOTAL0 >>> 21 & 255;
HEAP[offset | 61] = TOTAL0 >>> 13 & 255;
HEAP[offset | 62] = TOTAL0 >>> 5 & 255;
HEAP[offset | 63] = TOTAL0 << 3 & 255;
_core_heap(offset);
if (~output) _state_to_heap(output);
return hashed | 0;
}
function hmac_reset() {
H0 = I0;
H1 = I1;
H2 = I2;
H3 = I3;
H4 = I4;
TOTAL0 = 64;
TOTAL1 = 0;
}
function _hmac_opad() {
H0 = O0;
H1 = O1;
H2 = O2;
H3 = O3;
H4 = O4;
TOTAL0 = 64;
TOTAL1 = 0;
}
function hmac_init(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15) {
p0 = p0 | 0;
p1 = p1 | 0;
p2 = p2 | 0;
p3 = p3 | 0;
p4 = p4 | 0;
p5 = p5 | 0;
p6 = p6 | 0;
p7 = p7 | 0;
p8 = p8 | 0;
p9 = p9 | 0;
p10 = p10 | 0;
p11 = p11 | 0;
p12 = p12 | 0;
p13 = p13 | 0;
p14 = p14 | 0;
p15 = p15 | 0;
// opad
reset();
_core(p0 ^ 0x5c5c5c5c, p1 ^ 0x5c5c5c5c, p2 ^ 0x5c5c5c5c, p3 ^ 0x5c5c5c5c, p4 ^ 0x5c5c5c5c, p5 ^ 0x5c5c5c5c, p6 ^ 0x5c5c5c5c, p7 ^ 0x5c5c5c5c, p8 ^ 0x5c5c5c5c, p9 ^ 0x5c5c5c5c, p10 ^ 0x5c5c5c5c, p11 ^ 0x5c5c5c5c, p12 ^ 0x5c5c5c5c, p13 ^ 0x5c5c5c5c, p14 ^ 0x5c5c5c5c, p15 ^ 0x5c5c5c5c);
O0 = H0;
O1 = H1;
O2 = H2;
O3 = H3;
O4 = H4;
// ipad
reset();
_core(p0 ^ 0x36363636, p1 ^ 0x36363636, p2 ^ 0x36363636, p3 ^ 0x36363636, p4 ^ 0x36363636, p5 ^ 0x36363636, p6 ^ 0x36363636, p7 ^ 0x36363636, p8 ^ 0x36363636, p9 ^ 0x36363636, p10 ^ 0x36363636, p11 ^ 0x36363636, p12 ^ 0x36363636, p13 ^ 0x36363636, p14 ^ 0x36363636, p15 ^ 0x36363636);
I0 = H0;
I1 = H1;
I2 = H2;
I3 = H3;
I4 = H4;
TOTAL0 = 64;
TOTAL1 = 0;
}
// offset — multiple of 64
// output — multiple of 32
function hmac_finish(offset, length, output) {
offset = offset | 0;
length = length | 0;
output = output | 0;
var t0 = 0,
t1 = 0,
t2 = 0,
t3 = 0,
t4 = 0,
hashed = 0;
if (offset & 63) return -1;
if (~output) if (output & 31) return -1;
hashed = finish(offset, length, -1) | 0;
t0 = H0, t1 = H1, t2 = H2, t3 = H3, t4 = H4;
_hmac_opad();
_core(t0, t1, t2, t3, t4, 0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 672);
if (~output) _state_to_heap(output);
return hashed | 0;
}
// salt is assumed to be already processed
// offset — multiple of 64
// output — multiple of 32
function pbkdf2_generate_block(offset, length, block, count, output) {
offset = offset | 0;
length = length | 0;
block = block | 0;
count = count | 0;
output = output | 0;
var h0 = 0,
h1 = 0,
h2 = 0,
h3 = 0,
h4 = 0,
t0 = 0,
t1 = 0,
t2 = 0,
t3 = 0,
t4 = 0;
if (offset & 63) return -1;
if (~output) if (output & 31) return -1;
// pad block number into heap
// FIXME probable OOB write
HEAP[offset + length | 0] = block >>> 24;
HEAP[offset + length + 1 | 0] = block >>> 16 & 255;
HEAP[offset + length + 2 | 0] = block >>> 8 & 255;
HEAP[offset + length + 3 | 0] = block & 255;
// finish first iteration
hmac_finish(offset, length + 4 | 0, -1) | 0;
h0 = t0 = H0, h1 = t1 = H1, h2 = t2 = H2, h3 = t3 = H3, h4 = t4 = H4;
count = count - 1 | 0;
// perform the rest iterations
while ((count | 0) > 0) {
hmac_reset();
_core(t0, t1, t2, t3, t4, 0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 672);
t0 = H0, t1 = H1, t2 = H2, t3 = H3, t4 = H4;
_hmac_opad();
_core(t0, t1, t2, t3, t4, 0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 672);
t0 = H0, t1 = H1, t2 = H2, t3 = H3, t4 = H4;
h0 = h0 ^ H0;
h1 = h1 ^ H1;
h2 = h2 ^ H2;
h3 = h3 ^ H3;
h4 = h4 ^ H4;
count = count - 1 | 0;
}
H0 = h0;
H1 = h1;
H2 = h2;
H3 = h3;
H4 = h4;
if (~output) _state_to_heap(output);
return 0;
}
return {
// SHA1
reset: reset,
init: init,
process: process,
finish: finish,
// HMAC-SHA1
hmac_reset: hmac_reset,
hmac_init: hmac_init,
hmac_finish: hmac_finish,
// PBKDF2-HMAC-SHA1
pbkdf2_generate_block: pbkdf2_generate_block
};
}
},{}],12:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.Sha1 = exports._sha1_hash_size = exports._sha1_block_size = undefined;
var _sha = require('./sha1.asm');
var _hash = require('../hash');
var __extends = undefined && undefined.__extends || function () {
var extendStatics = Object.setPrototypeOf || { __proto__: [] } instanceof Array && function (d, b) {
d.__proto__ = b;
} || function (d, b) {
for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];
};
return function (d, b) {
extendStatics(d, b);
function __() {
this.constructor = d;
}
d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());
};
}();
var _sha1_block_size = exports._sha1_block_size = 64;
var _sha1_hash_size = exports._sha1_hash_size = 20;
var Sha1 = /** @class */function (_super) {
__extends(Sha1, _super);
function Sha1() {
var _this = _super !== null && _super.apply(this, arguments) || this;
_this.NAME = 'sha1';
_this.BLOCK_SIZE = _sha1_block_size;
_this.HASH_SIZE = _sha1_hash_size;
return _this;
}
Sha1.bytes = function (data) {
return new Sha1().process(data).finish().result;
};
Sha1.NAME = 'sha1';
Sha1.heap_pool = [];
Sha1.asm_pool = [];
Sha1.asm_function = _sha.sha1_asm;
return Sha1;
}(_hash.Hash);
exports.Sha1 = Sha1;
},{"../hash":10,"./sha1.asm":11}],13:[function(require,module,exports){
"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.sha256_asm = sha256_asm;
function sha256_asm(stdlib, foreign, buffer) {
"use asm";
// SHA256 state
var H0 = 0,
H1 = 0,
H2 = 0,
H3 = 0,
H4 = 0,
H5 = 0,
H6 = 0,
H7 = 0,
TOTAL0 = 0,
TOTAL1 = 0;
// HMAC state
var I0 = 0,
I1 = 0,
I2 = 0,
I3 = 0,
I4 = 0,
I5 = 0,
I6 = 0,
I7 = 0,
O0 = 0,
O1 = 0,
O2 = 0,
O3 = 0,
O4 = 0,
O5 = 0,
O6 = 0,
O7 = 0;
// I/O buffer
var HEAP = new stdlib.Uint8Array(buffer);
function _core(w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15) {
w0 = w0 | 0;
w1 = w1 | 0;
w2 = w2 | 0;
w3 = w3 | 0;
w4 = w4 | 0;
w5 = w5 | 0;
w6 = w6 | 0;
w7 = w7 | 0;
w8 = w8 | 0;
w9 = w9 | 0;
w10 = w10 | 0;
w11 = w11 | 0;
w12 = w12 | 0;
w13 = w13 | 0;
w14 = w14 | 0;
w15 = w15 | 0;
var a = 0,
b = 0,
c = 0,
d = 0,
e = 0,
f = 0,
g = 0,
h = 0;
a = H0;
b = H1;
c = H2;
d = H3;
e = H4;
f = H5;
g = H6;
h = H7;
// 0
h = w0 + h + (e >>> 6 ^ e >>> 11 ^ e >>> 25 ^ e << 26 ^ e << 21 ^ e << 7) + (g ^ e & (f ^ g)) + 0x428a2f98 | 0;
d = d + h | 0;
h = h + (a & b ^ c & (a ^ b)) + (a >>> 2 ^ a >>> 13 ^ a >>> 22 ^ a << 30 ^ a << 19 ^ a << 10) | 0;
// 1
g = w1 + g + (d >>> 6 ^ d >>> 11 ^ d >>> 25 ^ d << 26 ^ d << 21 ^ d << 7) + (f ^ d & (e ^ f)) + 0x71374491 | 0;
c = c + g | 0;
g = g + (h & a ^ b & (h ^ a)) + (h >>> 2 ^ h >>> 13 ^ h >>> 22 ^ h << 30 ^ h << 19 ^ h << 10) | 0;
// 2
f = w2 + f + (c >>> 6 ^ c >>> 11 ^ c >>> 25 ^ c << 26 ^ c << 21 ^ c << 7) + (e ^ c & (d ^ e)) + 0xb5c0fbcf | 0;
b = b + f | 0;
f = f + (g & h ^ a & (g ^ h)) + (g >>> 2 ^ g >>> 13 ^ g >>> 22 ^ g << 30 ^ g << 19 ^ g << 10) | 0;
// 3
e = w3 + e + (b >>> 6 ^ b >>> 11 ^ b >>> 25 ^ b << 26 ^ b << 21 ^ b << 7) + (d ^ b & (c ^ d)) + 0xe9b5dba5 | 0;
a = a + e | 0;
e = e + (f & g ^ h & (f ^ g)) + (f >>> 2 ^ f >>> 13 ^ f >>> 22 ^ f << 30 ^ f << 19 ^ f << 10) | 0;
// 4
d = w4 + d + (a >>> 6 ^ a >>> 11 ^ a >>> 25 ^ a << 26 ^ a << 21 ^ a << 7) + (c ^ a & (b ^ c)) + 0x3956c25b | 0;
h = h + d | 0;
d = d + (e & f ^ g & (e ^ f)) + (e >>> 2 ^ e >>> 13 ^ e >>> 22 ^ e << 30 ^ e << 19 ^ e << 10) | 0;
// 5
c = w5 + c + (h >>> 6 ^ h >>> 11 ^ h >>> 25 ^ h << 26 ^ h << 21 ^ h << 7) + (b ^ h & (a ^ b)) + 0x59f111f1 | 0;
g = g + c | 0;
c = c + (d & e ^ f & (d ^ e)) + (d >>> 2 ^ d >>> 13 ^ d >>> 22 ^ d << 30 ^ d << 19 ^ d << 10) | 0;
// 6
b = w6 + b + (g >>> 6 ^ g >>> 11 ^ g >>> 25 ^ g << 26 ^ g << 21 ^ g << 7) + (a ^ g & (h ^ a)) + 0x923f82a4 | 0;
f = f + b | 0;
b = b + (c & d ^ e & (c ^ d)) + (c >>> 2 ^ c >>> 13 ^ c >>> 22 ^ c << 30 ^ c << 19 ^ c << 10) | 0;
// 7
a = w7 + a + (f >>> 6 ^ f >>> 11 ^ f >>> 25 ^ f << 26 ^ f << 21 ^ f << 7) + (h ^ f & (g ^ h)) + 0xab1c5ed5 | 0;
e = e + a | 0;
a = a + (b & c ^ d & (b ^ c)) + (b >>> 2 ^ b >>> 13 ^ b >>> 22 ^ b << 30 ^ b << 19 ^ b << 10) | 0;
// 8
h = w8 + h + (e >>> 6 ^ e >>> 11 ^ e >>> 25 ^ e << 26 ^ e << 21 ^ e << 7) + (g ^ e & (f ^ g)) + 0xd807aa98 | 0;
d = d + h | 0;
h = h + (a & b ^ c & (a ^ b)) + (a >>> 2 ^ a >>> 13 ^ a >>> 22 ^ a << 30 ^ a << 19 ^ a << 10) | 0;
// 9
g = w9 + g + (d >>> 6 ^ d >>> 11 ^ d >>> 25 ^ d << 26 ^ d << 21 ^ d << 7) + (f ^ d & (e ^ f)) + 0x12835b01 | 0;
c = c + g | 0;
g = g + (h & a ^ b & (h ^ a)) + (h >>> 2 ^ h >>> 13 ^ h >>> 22 ^ h << 30 ^ h << 19 ^ h << 10) | 0;
// 10
f = w10 + f + (c >>> 6 ^ c >>> 11 ^ c >>> 25 ^ c << 26 ^ c << 21 ^ c << 7) + (e ^ c & (d ^ e)) + 0x243185be | 0;
b = b + f | 0;
f = f + (g & h ^ a & (g ^ h)) + (g >>> 2 ^ g >>> 13 ^ g >>> 22 ^ g << 30 ^ g << 19 ^ g << 10) | 0;
// 11
e = w11 + e + (b >>> 6 ^ b >>> 11 ^ b >>> 25 ^ b << 26 ^ b << 21 ^ b << 7) + (d ^ b & (c ^ d)) + 0x550c7dc3 | 0;
a = a + e | 0;
e = e + (f & g ^ h & (f ^ g)) + (f >>> 2 ^ f >>> 13 ^ f >>> 22 ^ f << 30 ^ f << 19 ^ f << 10) | 0;
// 12
d = w12 + d + (a >>> 6 ^ a >>> 11 ^ a >>> 25 ^ a << 26 ^ a << 21 ^ a << 7) + (c ^ a & (b ^ c)) + 0x72be5d74 | 0;
h = h + d | 0;
d = d + (e & f ^ g & (e ^ f)) + (e >>> 2 ^ e >>> 13 ^ e >>> 22 ^ e << 30 ^ e << 19 ^ e << 10) | 0;
// 13
c = w13 + c + (h >>> 6 ^ h >>> 11 ^ h >>> 25 ^ h << 26 ^ h << 21 ^ h << 7) + (b ^ h & (a ^ b)) + 0x80deb1fe | 0;
g = g + c | 0;
c = c + (d & e ^ f & (d ^ e)) + (d >>> 2 ^ d >>> 13 ^ d >>> 22 ^ d << 30 ^ d << 19 ^ d << 10) | 0;
// 14
b = w14 + b + (g >>> 6 ^ g >>> 11 ^ g >>> 25 ^ g << 26 ^ g << 21 ^ g << 7) + (a ^ g & (h ^ a)) + 0x9bdc06a7 | 0;
f = f + b | 0;
b = b + (c & d ^ e & (c ^ d)) + (c >>> 2 ^ c >>> 13 ^ c >>> 22 ^ c << 30 ^ c << 19 ^ c << 10) | 0;
// 15
a = w15 + a + (f >>> 6 ^ f >>> 11 ^ f >>> 25 ^ f << 26 ^ f << 21 ^ f << 7) + (h ^ f & (g ^ h)) + 0xc19bf174 | 0;
e = e + a | 0;
a = a + (b & c ^ d & (b ^ c)) + (b >>> 2 ^ b >>> 13 ^ b >>> 22 ^ b << 30 ^ b << 19 ^ b << 10) | 0;
// 16
w0 = (w1 >>> 7 ^ w1 >>> 18 ^ w1 >>> 3 ^ w1 << 25 ^ w1 << 14) + (w14 >>> 17 ^ w14 >>> 19 ^ w14 >>> 10 ^ w14 << 15 ^ w14 << 13) + w0 + w9 | 0;
h = w0 + h + (e >>> 6 ^ e >>> 11 ^ e >>> 25 ^ e << 26 ^ e << 21 ^ e << 7) + (g ^ e & (f ^ g)) + 0xe49b69c1 | 0;
d = d + h | 0;
h = h + (a & b ^ c & (a ^ b)) + (a >>> 2 ^ a >>> 13 ^ a >>> 22 ^ a << 30 ^ a << 19 ^ a << 10) | 0;
// 17
w1 = (w2 >>> 7 ^ w2 >>> 18 ^ w2 >>> 3 ^ w2 << 25 ^ w2 << 14) + (w15 >>> 17 ^ w15 >>> 19 ^ w15 >>> 10 ^ w15 << 15 ^ w15 << 13) + w1 + w10 | 0;
g = w1 + g + (d >>> 6 ^ d >>> 11 ^ d >>> 25 ^ d << 26 ^ d << 21 ^ d << 7) + (f ^ d & (e ^ f)) + 0xefbe4786 | 0;
c = c + g | 0;
g = g + (h & a ^ b & (h ^ a)) + (h >>> 2 ^ h >>> 13 ^ h >>> 22 ^ h << 30 ^ h << 19 ^ h << 10) | 0;
// 18
w2 = (w3 >>> 7 ^ w3 >>> 18 ^ w3 >>> 3 ^ w3 << 25 ^ w3 << 14) + (w0 >>> 17 ^ w0 >>> 19 ^ w0 >>> 10 ^ w0 << 15 ^ w0 << 13) + w2 + w11 | 0;
f = w2 + f + (c >>> 6 ^ c >>> 11 ^ c >>> 25 ^ c << 26 ^ c << 21 ^ c << 7) + (e ^ c & (d ^ e)) + 0x0fc19dc6 | 0;
b = b + f | 0;
f = f + (g & h ^ a & (g ^ h)) + (g >>> 2 ^ g >>> 13 ^ g >>> 22 ^ g << 30 ^ g << 19 ^ g << 10) | 0;
// 19
w3 = (w4 >>> 7 ^ w4 >>> 18 ^ w4 >>> 3 ^ w4 << 25 ^ w4 << 14) + (w1 >>> 17 ^ w1 >>> 19 ^ w1 >>> 10 ^ w1 << 15 ^ w1 << 13) + w3 + w12 | 0;
e = w3 + e + (b >>> 6 ^ b >>> 11 ^ b >>> 25 ^ b << 26 ^ b << 21 ^ b << 7) + (d ^ b & (c ^ d)) + 0x240ca1cc | 0;
a = a + e | 0;
e = e + (f & g ^ h & (f ^ g)) + (f >>> 2 ^ f >>> 13 ^ f >>> 22 ^ f << 30 ^ f << 19 ^ f << 10) | 0;
// 20
w4 = (w5 >>> 7 ^ w5 >>> 18 ^ w5 >>> 3 ^ w5 << 25 ^ w5 << 14) + (w2 >>> 17 ^ w2 >>> 19 ^ w2 >>> 10 ^ w2 << 15 ^ w2 << 13) + w4 + w13 | 0;
d = w4 + d + (a >>> 6 ^ a >>> 11 ^ a >>> 25 ^ a << 26 ^ a << 21 ^ a << 7) + (c ^ a & (b ^ c)) + 0x2de92c6f | 0;
h = h + d | 0;
d = d + (e & f ^ g & (e ^ f)) + (e >>> 2 ^ e >>> 13 ^ e >>> 22 ^ e << 30 ^ e << 19 ^ e << 10) | 0;
// 21
w5 = (w6 >>> 7 ^ w6 >>> 18 ^ w6 >>> 3 ^ w6 << 25 ^ w6 << 14) + (w3 >>> 17 ^ w3 >>> 19 ^ w3 >>> 10 ^ w3 << 15 ^ w3 << 13) + w5 + w14 | 0;
c = w5 + c + (h >>> 6 ^ h >>> 11 ^ h >>> 25 ^ h << 26 ^ h << 21 ^ h << 7) + (b ^ h & (a ^ b)) + 0x4a7484aa | 0;
g = g + c | 0;
c = c + (d & e ^ f & (d ^ e)) + (d >>> 2 ^ d >>> 13 ^ d >>> 22 ^ d << 30 ^ d << 19 ^ d << 10) | 0;
// 22
w6 = (w7 >>> 7 ^ w7 >>> 18 ^ w7 >>> 3 ^ w7 << 25 ^ w7 << 14) + (w4 >>> 17 ^ w4 >>> 19 ^ w4 >>> 10 ^ w4 << 15 ^ w4 << 13) + w6 + w15 | 0;
b = w6 + b + (g >>> 6 ^ g >>> 11 ^ g >>> 25 ^ g << 26 ^ g << 21 ^ g << 7) + (a ^ g & (h ^ a)) + 0x5cb0a9dc | 0;
f = f + b | 0;
b = b + (c & d ^ e & (c ^ d)) + (c >>> 2 ^ c >>> 13 ^ c >>> 22 ^ c << 30 ^ c << 19 ^ c << 10) | 0;
// 23
w7 = (w8 >>> 7 ^ w8 >>> 18 ^ w8 >>> 3 ^ w8 << 25 ^ w8 << 14) + (w5 >>> 17 ^ w5 >>> 19 ^ w5 >>> 10 ^ w5 << 15 ^ w5 << 13) + w7 + w0 | 0;
a = w7 + a + (f >>> 6 ^ f >>> 11 ^ f >>> 25 ^ f << 26 ^ f << 21 ^ f << 7) + (h ^ f & (g ^ h)) + 0x76f988da | 0;
e = e + a | 0;
a = a + (b & c ^ d & (b ^ c)) + (b >>> 2 ^ b >>> 13 ^ b >>> 22 ^ b << 30 ^ b << 19 ^ b << 10) | 0;
// 24
w8 = (w9 >>> 7 ^ w9 >>> 18 ^ w9 >>> 3 ^ w9 << 25 ^ w9 << 14) + (w6 >>> 17 ^ w6 >>> 19 ^ w6 >>> 10 ^ w6 << 15 ^ w6 << 13) + w8 + w1 | 0;
h = w8 + h + (e >>> 6 ^ e >>> 11 ^ e >>> 25 ^ e << 26 ^ e << 21 ^ e << 7) + (g ^ e & (f ^ g)) + 0x983e5152 | 0;
d = d + h | 0;
h = h + (a & b ^ c & (a ^ b)) + (a >>> 2 ^ a >>> 13 ^ a >>> 22 ^ a << 30 ^ a << 19 ^ a << 10) | 0;
// 25
w9 = (w10 >>> 7 ^ w10 >>> 18 ^ w10 >>> 3 ^ w10 << 25 ^ w10 << 14) + (w7 >>> 17 ^ w7 >>> 19 ^ w7 >>> 10 ^ w7 << 15 ^ w7 << 13) + w9 + w2 | 0;
g = w9 + g + (d >>> 6 ^ d >>> 11 ^ d >>> 25 ^ d << 26 ^ d << 21 ^ d << 7) + (f ^ d & (e ^ f)) + 0xa831c66d | 0;
c = c + g | 0;
g = g + (h & a ^ b & (h ^ a)) + (h >>> 2 ^ h >>> 13 ^ h >>> 22 ^ h << 30 ^ h << 19 ^ h << 10) | 0;
// 26
w10 = (w11 >>> 7 ^ w11 >>> 18 ^ w11 >>> 3 ^ w11 << 25 ^ w11 << 14) + (w8 >>> 17 ^ w8 >>> 19 ^ w8 >>> 10 ^ w8 << 15 ^ w8 << 13) + w10 + w3 | 0;
f = w10 + f + (c >>> 6 ^ c >>> 11 ^ c >>> 25 ^ c << 26 ^ c << 21 ^ c << 7) + (e ^ c & (d ^ e)) + 0xb00327c8 | 0;
b = b + f | 0;
f = f + (g & h ^ a & (g ^ h)) + (g >>> 2 ^ g >>> 13 ^ g >>> 22 ^ g << 30 ^ g << 19 ^ g << 10) | 0;
// 27
w11 = (w12 >>> 7 ^ w12 >>> 18 ^ w12 >>> 3 ^ w12 << 25 ^ w12 << 14) + (w9 >>> 17 ^ w9 >>> 19 ^ w9 >>> 10 ^ w9 << 15 ^ w9 << 13) + w11 + w4 | 0;
e = w11 + e + (b >>> 6 ^ b >>> 11 ^ b >>> 25 ^ b << 26 ^ b << 21 ^ b << 7) + (d ^ b & (c ^ d)) + 0xbf597fc7 | 0;
a = a + e | 0;
e = e + (f & g ^ h & (f ^ g)) + (f >>> 2 ^ f >>> 13 ^ f >>> 22 ^ f << 30 ^ f << 19 ^ f << 10) | 0;
// 28
w12 = (w13 >>> 7 ^ w13 >>> 18 ^ w13 >>> 3 ^ w13 << 25 ^ w13 << 14) + (w10 >>> 17 ^ w10 >>> 19 ^ w10 >>> 10 ^ w10 << 15 ^ w10 << 13) + w12 + w5 | 0;
d = w12 + d + (a >>> 6 ^ a >>> 11 ^ a >>> 25 ^ a << 26 ^ a << 21 ^ a << 7) + (c ^ a & (b ^ c)) + 0xc6e00bf3 | 0;
h = h + d | 0;
d = d + (e & f ^ g & (e ^ f)) + (e >>> 2 ^ e >>> 13 ^ e >>> 22 ^ e << 30 ^ e << 19 ^ e << 10) | 0;
// 29
w13 = (w14 >>> 7 ^ w14 >>> 18 ^ w14 >>> 3 ^ w14 << 25 ^ w14 << 14) + (w11 >>> 17 ^ w11 >>> 19 ^ w11 >>> 10 ^ w11 << 15 ^ w11 << 13) + w13 + w6 | 0;
c = w13 + c + (h >>> 6 ^ h >>> 11 ^ h >>> 25 ^ h << 26 ^ h << 21 ^ h << 7) + (b ^ h & (a ^ b)) + 0xd5a79147 | 0;
g = g + c | 0;
c = c + (d & e ^ f & (d ^ e)) + (d >>> 2 ^ d >>> 13 ^ d >>> 22 ^ d << 30 ^ d << 19 ^ d << 10) | 0;
// 30
w14 = (w15 >>> 7 ^ w15 >>> 18 ^ w15 >>> 3 ^ w15 << 25 ^ w15 << 14) + (w12 >>> 17 ^ w12 >>> 19 ^ w12 >>> 10 ^ w12 << 15 ^ w12 << 13) + w14 + w7 | 0;
b = w14 + b + (g >>> 6 ^ g >>> 11 ^ g >>> 25 ^ g << 26 ^ g << 21 ^ g << 7) + (a ^ g & (h ^ a)) + 0x06ca6351 | 0;
f = f + b | 0;
b = b + (c & d ^ e & (c ^ d)) + (c >>> 2 ^ c >>> 13 ^ c >>> 22 ^ c << 30 ^ c << 19 ^ c << 10) | 0;
// 31
w15 = (w0 >>> 7 ^ w0 >>> 18 ^ w0 >>> 3 ^ w0 << 25 ^ w0 << 14) + (w13 >>> 17 ^ w13 >>> 19 ^ w13 >>> 10 ^ w13 << 15 ^ w13 << 13) + w15 + w8 | 0;
a = w15 + a + (f >>> 6 ^ f >>> 11 ^ f >>> 25 ^ f << 26 ^ f << 21 ^ f << 7) + (h ^ f & (g ^ h)) + 0x14292967 | 0;
e = e + a | 0;
a = a + (b & c ^ d & (b ^ c)) + (b >>> 2 ^ b >>> 13 ^ b >>> 22 ^ b << 30 ^ b << 19 ^ b << 10) | 0;
// 32
w0 = (w1 >>> 7 ^ w1 >>> 18 ^ w1 >>> 3 ^ w1 << 25 ^ w1 << 14) + (w14 >>> 17 ^ w14 >>> 19 ^ w14 >>> 10 ^ w14 << 15 ^ w14 << 13) + w0 + w9 | 0;
h = w0 + h + (e >>> 6 ^ e >>> 11 ^ e >>> 25 ^ e << 26 ^ e << 21 ^ e << 7) + (g ^ e & (f ^ g)) + 0x27b70a85 | 0;
d = d + h | 0;
h = h + (a & b ^ c & (a ^ b)) + (a >>> 2 ^ a >>> 13 ^ a >>> 22 ^ a << 30 ^ a << 19 ^ a << 10) | 0;
// 33
w1 = (w2 >>> 7 ^ w2 >>> 18 ^ w2 >>> 3 ^ w2 << 25 ^ w2 << 14) + (w15 >>> 17 ^ w15 >>> 19 ^ w15 >>> 10 ^ w15 << 15 ^ w15 << 13) + w1 + w10 | 0;
g = w1 + g + (d >>> 6 ^ d >>> 11 ^ d >>> 25 ^ d << 26 ^ d << 21 ^ d << 7) + (f ^ d & (e ^ f)) + 0x2e1b2138 | 0;
c = c + g | 0;
g = g + (h & a ^ b & (h ^ a)) + (h >>> 2 ^ h >>> 13 ^ h >>> 22 ^ h << 30 ^ h << 19 ^ h << 10) | 0;
// 34
w2 = (w3 >>> 7 ^ w3 >>> 18 ^ w3 >>> 3 ^ w3 << 25 ^ w3 << 14) + (w0 >>> 17 ^ w0 >>> 19 ^ w0 >>> 10 ^ w0 << 15 ^ w0 << 13) + w2 + w11 | 0;
f = w2 + f + (c >>> 6 ^ c >>> 11 ^ c >>> 25 ^ c << 26 ^ c << 21 ^ c << 7) + (e ^ c & (d ^ e)) + 0x4d2c6dfc | 0;
b = b + f | 0;
f = f + (g & h ^ a & (g ^ h)) + (g >>> 2 ^ g >>> 13 ^ g >>> 22 ^ g << 30 ^ g << 19 ^ g << 10) | 0;
// 35
w3 = (w4 >>> 7 ^ w4 >>> 18 ^ w4 >>> 3 ^ w4 << 25 ^ w4 << 14) + (w1 >>> 17 ^ w1 >>> 19 ^ w1 >>> 10 ^ w1 << 15 ^ w1 << 13) + w3 + w12 | 0;
e = w3 + e + (b >>> 6 ^ b >>> 11 ^ b >>> 25 ^ b << 26 ^ b << 21 ^ b << 7) + (d ^ b & (c ^ d)) + 0x53380d13 | 0;
a = a + e | 0;
e = e + (f & g ^ h & (f ^ g)) + (f >>> 2 ^ f >>> 13 ^ f >>> 22 ^ f << 30 ^ f << 19 ^ f << 10) | 0;
// 36
w4 = (w5 >>> 7 ^ w5 >>> 18 ^ w5 >>> 3 ^ w5 << 25 ^ w5 << 14) + (w2 >>> 17 ^ w2 >>> 19 ^ w2 >>> 10 ^ w2 << 15 ^ w2 << 13) + w4 + w13 | 0;
d = w4 + d + (a >>> 6 ^ a >>> 11 ^ a >>> 25 ^ a << 26 ^ a << 21 ^ a << 7) + (c ^ a & (b ^ c)) + 0x650a7354 | 0;
h = h + d | 0;
d = d + (e & f ^ g & (e ^ f)) + (e >>> 2 ^ e >>> 13 ^ e >>> 22 ^ e << 30 ^ e << 19 ^ e << 10) | 0;
// 37
w5 = (w6 >>> 7 ^ w6 >>> 18 ^ w6 >>> 3 ^ w6 << 25 ^ w6 << 14) + (w3 >>> 17 ^ w3 >>> 19 ^ w3 >>> 10 ^ w3 << 15 ^ w3 << 13) + w5 + w14 | 0;
c = w5 + c + (h >>> 6 ^ h >>> 11 ^ h >>> 25 ^ h << 26 ^ h << 21 ^ h << 7) + (b ^ h & (a ^ b)) + 0x766a0abb | 0;
g = g + c | 0;
c = c + (d & e ^ f & (d ^ e)) + (d >>> 2 ^ d >>> 13 ^ d >>> 22 ^ d << 30 ^ d << 19 ^ d << 10) | 0;
// 38
w6 = (w7 >>> 7 ^ w7 >>> 18 ^ w7 >>> 3 ^ w7 << 25 ^ w7 << 14) + (w4 >>> 17 ^ w4 >>> 19 ^ w4 >>> 10 ^ w4 << 15 ^ w4 << 13) + w6 + w15 | 0;
b = w6 + b + (g >>> 6 ^ g >>> 11 ^ g >>> 25 ^ g << 26 ^ g << 21 ^ g << 7) + (a ^ g & (h ^ a)) + 0x81c2c92e | 0;
f = f + b | 0;
b = b + (c & d ^ e & (c ^ d)) + (c >>> 2 ^ c >>> 13 ^ c >>> 22 ^ c << 30 ^ c << 19 ^ c << 10) | 0;
// 39
w7 = (w8 >>> 7 ^ w8 >>> 18 ^ w8 >>> 3 ^ w8 << 25 ^ w8 << 14) + (w5 >>> 17 ^ w5 >>> 19 ^ w5 >>> 10 ^ w5 << 15 ^ w5 << 13) + w7 + w0 | 0;
a = w7 + a + (f >>> 6 ^ f >>> 11 ^ f >>> 25 ^ f << 26 ^ f << 21 ^ f << 7) + (h ^ f & (g ^ h)) + 0x92722c85 | 0;
e = e + a | 0;
a = a + (b & c ^ d & (b ^ c)) + (b >>> 2 ^ b >>> 13 ^ b >>> 22 ^ b << 30 ^ b << 19 ^ b << 10) | 0;
// 40
w8 = (w9 >>> 7 ^ w9 >>> 18 ^ w9 >>> 3 ^ w9 << 25 ^ w9 << 14) + (w6 >>> 17 ^ w6 >>> 19 ^ w6 >>> 10 ^ w6 << 15 ^ w6 << 13) + w8 + w1 | 0;
h = w8 + h + (e >>> 6 ^ e >>> 11 ^ e >>> 25 ^ e << 26 ^ e << 21 ^ e << 7) + (g ^ e & (f ^ g)) + 0xa2bfe8a1 | 0;
d = d + h | 0;
h = h + (a & b ^ c & (a ^ b)) + (a >>> 2 ^ a >>> 13 ^ a >>> 22 ^ a << 30 ^ a << 19 ^ a << 10) | 0;
// 41
w9 = (w10 >>> 7 ^ w10 >>> 18 ^ w10 >>> 3 ^ w10 << 25 ^ w10 << 14) + (w7 >>> 17 ^ w7 >>> 19 ^ w7 >>> 10 ^ w7 << 15 ^ w7 << 13) + w9 + w2 | 0;
g = w9 + g + (d >>> 6 ^ d >>> 11 ^ d >>> 25 ^ d << 26 ^ d << 21 ^ d << 7) + (f ^ d & (e ^ f)) + 0xa81a664b | 0;
c = c + g | 0;
g = g + (h & a ^ b & (h ^ a)) + (h >>> 2 ^ h >>> 13 ^ h >>> 22 ^ h << 30 ^ h << 19 ^ h << 10) | 0;
// 42
w10 = (w11 >>> 7 ^ w11 >>> 18 ^ w11 >>> 3 ^ w11 << 25 ^ w11 << 14) + (w8 >>> 17 ^ w8 >>> 19 ^ w8 >>> 10 ^ w8 << 15 ^ w8 << 13) + w10 + w3 | 0;
f = w10 + f + (c >>> 6 ^ c >>> 11 ^ c >>> 25 ^ c << 26 ^ c << 21 ^ c << 7) + (e ^ c & (d ^ e)) + 0xc24b8b70 | 0;
b = b + f | 0;
f = f + (g & h ^ a & (g ^ h)) + (g >>> 2 ^ g >>> 13 ^ g >>> 22 ^ g << 30 ^ g << 19 ^ g << 10) | 0;
// 43
w11 = (w12 >>> 7 ^ w12 >>> 18 ^ w12 >>> 3 ^ w12 << 25 ^ w12 << 14) + (w9 >>> 17 ^ w9 >>> 19 ^ w9 >>> 10 ^ w9 << 15 ^ w9 << 13) + w11 + w4 | 0;
e = w11 + e + (b >>> 6 ^ b >>> 11 ^ b >>> 25 ^ b << 26 ^ b << 21 ^ b << 7) + (d ^ b & (c ^ d)) + 0xc76c51a3 | 0;
a = a + e | 0;
e = e + (f & g ^ h & (f ^ g)) + (f >>> 2 ^ f >>> 13 ^ f >>> 22 ^ f << 30 ^ f << 19 ^ f << 10) | 0;
// 44
w12 = (w13 >>> 7 ^ w13 >>> 18 ^ w13 >>> 3 ^ w13 << 25 ^ w13 << 14) + (w10 >>> 17 ^ w10 >>> 19 ^ w10 >>> 10 ^ w10 << 15 ^ w10 << 13) + w12 + w5 | 0;
d = w12 + d + (a >>> 6 ^ a >>> 11 ^ a >>> 25 ^ a << 26 ^ a << 21 ^ a << 7) + (c ^ a & (b ^ c)) + 0xd192e819 | 0;
h = h + d | 0;
d = d + (e & f ^ g & (e ^ f)) + (e >>> 2 ^ e >>> 13 ^ e >>> 22 ^ e << 30 ^ e << 19 ^ e << 10) | 0;
// 45
w13 = (w14 >>> 7 ^ w14 >>> 18 ^ w14 >>> 3 ^ w14 << 25 ^ w14 << 14) + (w11 >>> 17 ^ w11 >>> 19 ^ w11 >>> 10 ^ w11 << 15 ^ w11 << 13) + w13 + w6 | 0;
c = w13 + c + (h >>> 6 ^ h >>> 11 ^ h >>> 25 ^ h << 26 ^ h << 21 ^ h << 7) + (b ^ h & (a ^ b)) + 0xd6990624 | 0;
g = g + c | 0;
c = c + (d & e ^ f & (d ^ e)) + (d >>> 2 ^ d >>> 13 ^ d >>> 22 ^ d << 30 ^ d << 19 ^ d << 10) | 0;
// 46
w14 = (w15 >>> 7 ^ w15 >>> 18 ^ w15 >>> 3 ^ w15 << 25 ^ w15 << 14) + (w12 >>> 17 ^ w12 >>> 19 ^ w12 >>> 10 ^ w12 << 15 ^ w12 << 13) + w14 + w7 | 0;
b = w14 + b + (g >>> 6 ^ g >>> 11 ^ g >>> 25 ^ g << 26 ^ g << 21 ^ g << 7) + (a ^ g & (h ^ a)) + 0xf40e3585 | 0;
f = f + b | 0;
b = b + (c & d ^ e & (c ^ d)) + (c >>> 2 ^ c >>> 13 ^ c >>> 22 ^ c << 30 ^ c << 19 ^ c << 10) | 0;
// 47
w15 = (w0 >>> 7 ^ w0 >>> 18 ^ w0 >>> 3 ^ w0 << 25 ^ w0 << 14) + (w13 >>> 17 ^ w13 >>> 19 ^ w13 >>> 10 ^ w13 << 15 ^ w13 << 13) + w15 + w8 | 0;
a = w15 + a + (f >>> 6 ^ f >>> 11 ^ f >>> 25 ^ f << 26 ^ f << 21 ^ f << 7) + (h ^ f & (g ^ h)) + 0x106aa070 | 0;
e = e + a | 0;
a = a + (b & c ^ d & (b ^ c)) + (b >>> 2 ^ b >>> 13 ^ b >>> 22 ^ b << 30 ^ b << 19 ^ b << 10) | 0;
// 48
w0 = (w1 >>> 7 ^ w1 >>> 18 ^ w1 >>> 3 ^ w1 << 25 ^ w1 << 14) + (w14 >>> 17 ^ w14 >>> 19 ^ w14 >>> 10 ^ w14 << 15 ^ w14 << 13) + w0 + w9 | 0;
h = w0 + h + (e >>> 6 ^ e >>> 11 ^ e >>> 25 ^ e << 26 ^ e << 21 ^ e << 7) + (g ^ e & (f ^ g)) + 0x19a4c116 | 0;
d = d + h | 0;
h = h + (a & b ^ c & (a ^ b)) + (a >>> 2 ^ a >>> 13 ^ a >>> 22 ^ a << 30 ^ a << 19 ^ a << 10) | 0;
// 49
w1 = (w2 >>> 7 ^ w2 >>> 18 ^ w2 >>> 3 ^ w2 << 25 ^ w2 << 14) + (w15 >>> 17 ^ w15 >>> 19 ^ w15 >>> 10 ^ w15 << 15 ^ w15 << 13) + w1 + w10 | 0;
g = w1 + g + (d >>> 6 ^ d >>> 11 ^ d >>> 25 ^ d << 26 ^ d << 21 ^ d << 7) + (f ^ d & (e ^ f)) + 0x1e376c08 | 0;
c = c + g | 0;
g = g + (h & a ^ b & (h ^ a)) + (h >>> 2 ^ h >>> 13 ^ h >>> 22 ^ h << 30 ^ h << 19 ^ h << 10) | 0;
// 50
w2 = (w3 >>> 7 ^ w3 >>> 18 ^ w3 >>> 3 ^ w3 << 25 ^ w3 << 14) + (w0 >>> 17 ^ w0 >>> 19 ^ w0 >>> 10 ^ w0 << 15 ^ w0 << 13) + w2 + w11 | 0;
f = w2 + f + (c >>> 6 ^ c >>> 11 ^ c >>> 25 ^ c << 26 ^ c << 21 ^ c << 7) + (e ^ c & (d ^ e)) + 0x2748774c | 0;
b = b + f | 0;
f = f + (g & h ^ a & (g ^ h)) + (g >>> 2 ^ g >>> 13 ^ g >>> 22 ^ g << 30 ^ g << 19 ^ g << 10) | 0;
// 51
w3 = (w4 >>> 7 ^ w4 >>> 18 ^ w4 >>> 3 ^ w4 << 25 ^ w4 << 14) + (w1 >>> 17 ^ w1 >>> 19 ^ w1 >>> 10 ^ w1 << 15 ^ w1 << 13) + w3 + w12 | 0;
e = w3 + e + (b >>> 6 ^ b >>> 11 ^ b >>> 25 ^ b << 26 ^ b << 21 ^ b << 7) + (d ^ b & (c ^ d)) + 0x34b0bcb5 | 0;
a = a + e | 0;
e = e + (f & g ^ h & (f ^ g)) + (f >>> 2 ^ f >>> 13 ^ f >>> 22 ^ f << 30 ^ f << 19 ^ f << 10) | 0;
// 52
w4 = (w5 >>> 7 ^ w5 >>> 18 ^ w5 >>> 3 ^ w5 << 25 ^ w5 << 14) + (w2 >>> 17 ^ w2 >>> 19 ^ w2 >>> 10 ^ w2 << 15 ^ w2 << 13) + w4 + w13 | 0;
d = w4 + d + (a >>> 6 ^ a >>> 11 ^ a >>> 25 ^ a << 26 ^ a << 21 ^ a << 7) + (c ^ a & (b ^ c)) + 0x391c0cb3 | 0;
h = h + d | 0;
d = d + (e & f ^ g & (e ^ f)) + (e >>> 2 ^ e >>> 13 ^ e >>> 22 ^ e << 30 ^ e << 19 ^ e << 10) | 0;
// 53
w5 = (w6 >>> 7 ^ w6 >>> 18 ^ w6 >>> 3 ^ w6 << 25 ^ w6 << 14) + (w3 >>> 17 ^ w3 >>> 19 ^ w3 >>> 10 ^ w3 << 15 ^ w3 << 13) + w5 + w14 | 0;
c = w5 + c + (h >>> 6 ^ h >>> 11 ^ h >>> 25 ^ h << 26 ^ h << 21 ^ h << 7) + (b ^ h & (a ^ b)) + 0x4ed8aa4a | 0;
g = g + c | 0;
c = c + (d & e ^ f & (d ^ e)) + (d >>> 2 ^ d >>> 13 ^ d >>> 22 ^ d << 30 ^ d << 19 ^ d << 10) | 0;
// 54
w6 = (w7 >>> 7 ^ w7 >>> 18 ^ w7 >>> 3 ^ w7 << 25 ^ w7 << 14) + (w4 >>> 17 ^ w4 >>> 19 ^ w4 >>> 10 ^ w4 << 15 ^ w4 << 13) + w6 + w15 | 0;
b = w6 + b + (g >>> 6 ^ g >>> 11 ^ g >>> 25 ^ g << 26 ^ g << 21 ^ g << 7) + (a ^ g & (h ^ a)) + 0x5b9cca4f | 0;
f = f + b | 0;
b = b + (c & d ^ e & (c ^ d)) + (c >>> 2 ^ c >>> 13 ^ c >>> 22 ^ c << 30 ^ c << 19 ^ c << 10) | 0;
// 55
w7 = (w8 >>> 7 ^ w8 >>> 18 ^ w8 >>> 3 ^ w8 << 25 ^ w8 << 14) + (w5 >>> 17 ^ w5 >>> 19 ^ w5 >>> 10 ^ w5 << 15 ^ w5 << 13) + w7 + w0 | 0;
a = w7 + a + (f >>> 6 ^ f >>> 11 ^ f >>> 25 ^ f << 26 ^ f << 21 ^ f << 7) + (h ^ f & (g ^ h)) + 0x682e6ff3 | 0;
e = e + a | 0;
a = a + (b & c ^ d & (b ^ c)) + (b >>> 2 ^ b >>> 13 ^ b >>> 22 ^ b << 30 ^ b << 19 ^ b << 10) | 0;
// 56
w8 = (w9 >>> 7 ^ w9 >>> 18 ^ w9 >>> 3 ^ w9 << 25 ^ w9 << 14) + (w6 >>> 17 ^ w6 >>> 19 ^ w6 >>> 10 ^ w6 << 15 ^ w6 << 13) + w8 + w1 | 0;
h = w8 + h + (e >>> 6 ^ e >>> 11 ^ e >>> 25 ^ e << 26 ^ e << 21 ^ e << 7) + (g ^ e & (f ^ g)) + 0x748f82ee | 0;
d = d + h | 0;
h = h + (a & b ^ c & (a ^ b)) + (a >>> 2 ^ a >>> 13 ^ a >>> 22 ^ a << 30 ^ a << 19 ^ a << 10) | 0;
// 57
w9 = (w10 >>> 7 ^ w10 >>> 18 ^ w10 >>> 3 ^ w10 << 25 ^ w10 << 14) + (w7 >>> 17 ^ w7 >>> 19 ^ w7 >>> 10 ^ w7 << 15 ^ w7 << 13) + w9 + w2 | 0;
g = w9 + g + (d >>> 6 ^ d >>> 11 ^ d >>> 25 ^ d << 26 ^ d << 21 ^ d << 7) + (f ^ d & (e ^ f)) + 0x78a5636f | 0;
c = c + g | 0;
g = g + (h & a ^ b & (h ^ a)) + (h >>> 2 ^ h >>> 13 ^ h >>> 22 ^ h << 30 ^ h << 19 ^ h << 10) | 0;
// 58
w10 = (w11 >>> 7 ^ w11 >>> 18 ^ w11 >>> 3 ^ w11 << 25 ^ w11 << 14) + (w8 >>> 17 ^ w8 >>> 19 ^ w8 >>> 10 ^ w8 << 15 ^ w8 << 13) + w10 + w3 | 0;
f = w10 + f + (c >>> 6 ^ c >>> 11 ^ c >>> 25 ^ c << 26 ^ c << 21 ^ c << 7) + (e ^ c & (d ^ e)) + 0x84c87814 | 0;
b = b + f | 0;
f = f + (g & h ^ a & (g ^ h)) + (g >>> 2 ^ g >>> 13 ^ g >>> 22 ^ g << 30 ^ g << 19 ^ g << 10) | 0;
// 59
w11 = (w12 >>> 7 ^ w12 >>> 18 ^ w12 >>> 3 ^ w12 << 25 ^ w12 << 14) + (w9 >>> 17 ^ w9 >>> 19 ^ w9 >>> 10 ^ w9 << 15 ^ w9 << 13) + w11 + w4 | 0;
e = w11 + e + (b >>> 6 ^ b >>> 11 ^ b >>> 25 ^ b << 26 ^ b << 21 ^ b << 7) + (d ^ b & (c ^ d)) + 0x8cc70208 | 0;
a = a + e | 0;
e = e + (f & g ^ h & (f ^ g)) + (f >>> 2 ^ f >>> 13 ^ f >>> 22 ^ f << 30 ^ f << 19 ^ f << 10) | 0;
// 60
w12 = (w13 >>> 7 ^ w13 >>> 18 ^ w13 >>> 3 ^ w13 << 25 ^ w13 << 14) + (w10 >>> 17 ^ w10 >>> 19 ^ w10 >>> 10 ^ w10 << 15 ^ w10 << 13) + w12 + w5 | 0;
d = w12 + d + (a >>> 6 ^ a >>> 11 ^ a >>> 25 ^ a << 26 ^ a << 21 ^ a << 7) + (c ^ a & (b ^ c)) + 0x90befffa | 0;
h = h + d | 0;
d = d + (e & f ^ g & (e ^ f)) + (e >>> 2 ^ e >>> 13 ^ e >>> 22 ^ e << 30 ^ e << 19 ^ e << 10) | 0;
// 61
w13 = (w14 >>> 7 ^ w14 >>> 18 ^ w14 >>> 3 ^ w14 << 25 ^ w14 << 14) + (w11 >>> 17 ^ w11 >>> 19 ^ w11 >>> 10 ^ w11 << 15 ^ w11 << 13) + w13 + w6 | 0;
c = w13 + c + (h >>> 6 ^ h >>> 11 ^ h >>> 25 ^ h << 26 ^ h << 21 ^ h << 7) + (b ^ h & (a ^ b)) + 0xa4506ceb | 0;
g = g + c | 0;
c = c + (d & e ^ f & (d ^ e)) + (d >>> 2 ^ d >>> 13 ^ d >>> 22 ^ d << 30 ^ d << 19 ^ d << 10) | 0;
// 62
w14 = (w15 >>> 7 ^ w15 >>> 18 ^ w15 >>> 3 ^ w15 << 25 ^ w15 << 14) + (w12 >>> 17 ^ w12 >>> 19 ^ w12 >>> 10 ^ w12 << 15 ^ w12 << 13) + w14 + w7 | 0;
b = w14 + b + (g >>> 6 ^ g >>> 11 ^ g >>> 25 ^ g << 26 ^ g << 21 ^ g << 7) + (a ^ g & (h ^ a)) + 0xbef9a3f7 | 0;
f = f + b | 0;
b = b + (c & d ^ e & (c ^ d)) + (c >>> 2 ^ c >>> 13 ^ c >>> 22 ^ c << 30 ^ c << 19 ^ c << 10) | 0;
// 63
w15 = (w0 >>> 7 ^ w0 >>> 18 ^ w0 >>> 3 ^ w0 << 25 ^ w0 << 14) + (w13 >>> 17 ^ w13 >>> 19 ^ w13 >>> 10 ^ w13 << 15 ^ w13 << 13) + w15 + w8 | 0;
a = w15 + a + (f >>> 6 ^ f >>> 11 ^ f >>> 25 ^ f << 26 ^ f << 21 ^ f << 7) + (h ^ f & (g ^ h)) + 0xc67178f2 | 0;
e = e + a | 0;
a = a + (b & c ^ d & (b ^ c)) + (b >>> 2 ^ b >>> 13 ^ b >>> 22 ^ b << 30 ^ b << 19 ^ b << 10) | 0;
H0 = H0 + a | 0;
H1 = H1 + b | 0;
H2 = H2 + c | 0;
H3 = H3 + d | 0;
H4 = H4 + e | 0;
H5 = H5 + f | 0;
H6 = H6 + g | 0;
H7 = H7 + h | 0;
}
function _core_heap(offset) {
offset = offset | 0;
_core(HEAP[offset | 0] << 24 | HEAP[offset | 1] << 16 | HEAP[offset | 2] << 8 | HEAP[offset | 3], HEAP[offset | 4] << 24 | HEAP[offset | 5] << 16 | HEAP[offset | 6] << 8 | HEAP[offset | 7], HEAP[offset | 8] << 24 | HEAP[offset | 9] << 16 | HEAP[offset | 10] << 8 | HEAP[offset | 11], HEAP[offset | 12] << 24 | HEAP[offset | 13] << 16 | HEAP[offset | 14] << 8 | HEAP[offset | 15], HEAP[offset | 16] << 24 | HEAP[offset | 17] << 16 | HEAP[offset | 18] << 8 | HEAP[offset | 19], HEAP[offset | 20] << 24 | HEAP[offset | 21] << 16 | HEAP[offset | 22] << 8 | HEAP[offset | 23], HEAP[offset | 24] << 24 | HEAP[offset | 25] << 16 | HEAP[offset | 26] << 8 | HEAP[offset | 27], HEAP[offset | 28] << 24 | HEAP[offset | 29] << 16 | HEAP[offset | 30] << 8 | HEAP[offset | 31], HEAP[offset | 32] << 24 | HEAP[offset | 33] << 16 | HEAP[offset | 34] << 8 | HEAP[offset | 35], HEAP[offset | 36] << 24 | HEAP[offset | 37] << 16 | HEAP[offset | 38] << 8 | HEAP[offset | 39], HEAP[offset | 40] << 24 | HEAP[offset | 41] << 16 | HEAP[offset | 42] << 8 | HEAP[offset | 43], HEAP[offset | 44] << 24 | HEAP[offset | 45] << 16 | HEAP[offset | 46] << 8 | HEAP[offset | 47], HEAP[offset | 48] << 24 | HEAP[offset | 49] << 16 | HEAP[offset | 50] << 8 | HEAP[offset | 51], HEAP[offset | 52] << 24 | HEAP[offset | 53] << 16 | HEAP[offset | 54] << 8 | HEAP[offset | 55], HEAP[offset | 56] << 24 | HEAP[offset | 57] << 16 | HEAP[offset | 58] << 8 | HEAP[offset | 59], HEAP[offset | 60] << 24 | HEAP[offset | 61] << 16 | HEAP[offset | 62] << 8 | HEAP[offset | 63]);
}
// offset — multiple of 32
function _state_to_heap(output) {
output = output | 0;
HEAP[output | 0] = H0 >>> 24;
HEAP[output | 1] = H0 >>> 16 & 255;
HEAP[output | 2] = H0 >>> 8 & 255;
HEAP[output | 3] = H0 & 255;
HEAP[output | 4] = H1 >>> 24;
HEAP[output | 5] = H1 >>> 16 & 255;
HEAP[output | 6] = H1 >>> 8 & 255;
HEAP[output | 7] = H1 & 255;
HEAP[output | 8] = H2 >>> 24;
HEAP[output | 9] = H2 >>> 16 & 255;
HEAP[output | 10] = H2 >>> 8 & 255;
HEAP[output | 11] = H2 & 255;
HEAP[output | 12] = H3 >>> 24;
HEAP[output | 13] = H3 >>> 16 & 255;
HEAP[output | 14] = H3 >>> 8 & 255;
HEAP[output | 15] = H3 & 255;
HEAP[output | 16] = H4 >>> 24;
HEAP[output | 17] = H4 >>> 16 & 255;
HEAP[output | 18] = H4 >>> 8 & 255;
HEAP[output | 19] = H4 & 255;
HEAP[output | 20] = H5 >>> 24;
HEAP[output | 21] = H5 >>> 16 & 255;
HEAP[output | 22] = H5 >>> 8 & 255;
HEAP[output | 23] = H5 & 255;
HEAP[output | 24] = H6 >>> 24;
HEAP[output | 25] = H6 >>> 16 & 255;
HEAP[output | 26] = H6 >>> 8 & 255;
HEAP[output | 27] = H6 & 255;
HEAP[output | 28] = H7 >>> 24;
HEAP[output | 29] = H7 >>> 16 & 255;
HEAP[output | 30] = H7 >>> 8 & 255;
HEAP[output | 31] = H7 & 255;
}
function reset() {
H0 = 0x6a09e667;
H1 = 0xbb67ae85;
H2 = 0x3c6ef372;
H3 = 0xa54ff53a;
H4 = 0x510e527f;
H5 = 0x9b05688c;
H6 = 0x1f83d9ab;
H7 = 0x5be0cd19;
TOTAL0 = TOTAL1 = 0;
}
function init(h0, h1, h2, h3, h4, h5, h6, h7, total0, total1) {
h0 = h0 | 0;
h1 = h1 | 0;
h2 = h2 | 0;
h3 = h3 | 0;
h4 = h4 | 0;
h5 = h5 | 0;
h6 = h6 | 0;
h7 = h7 | 0;
total0 = total0 | 0;
total1 = total1 | 0;
H0 = h0;
H1 = h1;
H2 = h2;
H3 = h3;
H4 = h4;
H5 = h5;
H6 = h6;
H7 = h7;
TOTAL0 = total0;
TOTAL1 = total1;
}
// offset — multiple of 64
function process(offset, length) {
offset = offset | 0;
length = length | 0;
var hashed = 0;
if (offset & 63) return -1;
while ((length | 0) >= 64) {
_core_heap(offset);
offset = offset + 64 | 0;
length = length - 64 | 0;
hashed = hashed + 64 | 0;
}
TOTAL0 = TOTAL0 + hashed | 0;
if (TOTAL0 >>> 0 < hashed >>> 0) TOTAL1 = TOTAL1 + 1 | 0;
return hashed | 0;
}
// offset — multiple of 64
// output — multiple of 32
function finish(offset, length, output) {
offset = offset | 0;
length = length | 0;
output = output | 0;
var hashed = 0,
i = 0;
if (offset & 63) return -1;
if (~output) if (output & 31) return -1;
if ((length | 0) >= 64) {
hashed = process(offset, length) | 0;
if ((hashed | 0) == -1) return -1;
offset = offset + hashed | 0;
length = length - hashed | 0;
}
hashed = hashed + length | 0;
TOTAL0 = TOTAL0 + length | 0;
if (TOTAL0 >>> 0 < length >>> 0) TOTAL1 = TOTAL1 + 1 | 0;
HEAP[offset | length] = 0x80;
if ((length | 0) >= 56) {
for (i = length + 1 | 0; (i | 0) < 64; i = i + 1 | 0) HEAP[offset | i] = 0x00;
_core_heap(offset);
length = 0;
HEAP[offset | 0] = 0;
}
for (i = length + 1 | 0; (i | 0) < 59; i = i + 1 | 0) HEAP[offset | i] = 0;
HEAP[offset | 56] = TOTAL1 >>> 21 & 255;
HEAP[offset | 57] = TOTAL1 >>> 13 & 255;
HEAP[offset | 58] = TOTAL1 >>> 5 & 255;
HEAP[offset | 59] = TOTAL1 << 3 & 255 | TOTAL0 >>> 29;
HEAP[offset | 60] = TOTAL0 >>> 21 & 255;
HEAP[offset | 61] = TOTAL0 >>> 13 & 255;
HEAP[offset | 62] = TOTAL0 >>> 5 & 255;
HEAP[offset | 63] = TOTAL0 << 3 & 255;
_core_heap(offset);
if (~output) _state_to_heap(output);
return hashed | 0;
}
function hmac_reset() {
H0 = I0;
H1 = I1;
H2 = I2;
H3 = I3;
H4 = I4;
H5 = I5;
H6 = I6;
H7 = I7;
TOTAL0 = 64;
TOTAL1 = 0;
}
function _hmac_opad() {
H0 = O0;
H1 = O1;
H2 = O2;
H3 = O3;
H4 = O4;
H5 = O5;
H6 = O6;
H7 = O7;
TOTAL0 = 64;
TOTAL1 = 0;
}
function hmac_init(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15) {
p0 = p0 | 0;
p1 = p1 | 0;
p2 = p2 | 0;
p3 = p3 | 0;
p4 = p4 | 0;
p5 = p5 | 0;
p6 = p6 | 0;
p7 = p7 | 0;
p8 = p8 | 0;
p9 = p9 | 0;
p10 = p10 | 0;
p11 = p11 | 0;
p12 = p12 | 0;
p13 = p13 | 0;
p14 = p14 | 0;
p15 = p15 | 0;
// opad
reset();
_core(p0 ^ 0x5c5c5c5c, p1 ^ 0x5c5c5c5c, p2 ^ 0x5c5c5c5c, p3 ^ 0x5c5c5c5c, p4 ^ 0x5c5c5c5c, p5 ^ 0x5c5c5c5c, p6 ^ 0x5c5c5c5c, p7 ^ 0x5c5c5c5c, p8 ^ 0x5c5c5c5c, p9 ^ 0x5c5c5c5c, p10 ^ 0x5c5c5c5c, p11 ^ 0x5c5c5c5c, p12 ^ 0x5c5c5c5c, p13 ^ 0x5c5c5c5c, p14 ^ 0x5c5c5c5c, p15 ^ 0x5c5c5c5c);
O0 = H0;
O1 = H1;
O2 = H2;
O3 = H3;
O4 = H4;
O5 = H5;
O6 = H6;
O7 = H7;
// ipad
reset();
_core(p0 ^ 0x36363636, p1 ^ 0x36363636, p2 ^ 0x36363636, p3 ^ 0x36363636, p4 ^ 0x36363636, p5 ^ 0x36363636, p6 ^ 0x36363636, p7 ^ 0x36363636, p8 ^ 0x36363636, p9 ^ 0x36363636, p10 ^ 0x36363636, p11 ^ 0x36363636, p12 ^ 0x36363636, p13 ^ 0x36363636, p14 ^ 0x36363636, p15 ^ 0x36363636);
I0 = H0;
I1 = H1;
I2 = H2;
I3 = H3;
I4 = H4;
I5 = H5;
I6 = H6;
I7 = H7;
TOTAL0 = 64;
TOTAL1 = 0;
}
// offset — multiple of 64
// output — multiple of 32
function hmac_finish(offset, length, output) {
offset = offset | 0;
length = length | 0;
output = output | 0;
var t0 = 0,
t1 = 0,
t2 = 0,
t3 = 0,
t4 = 0,
t5 = 0,
t6 = 0,
t7 = 0,
hashed = 0;
if (offset & 63) return -1;
if (~output) if (output & 31) return -1;
hashed = finish(offset, length, -1) | 0;
t0 = H0, t1 = H1, t2 = H2, t3 = H3, t4 = H4, t5 = H5, t6 = H6, t7 = H7;
_hmac_opad();
_core(t0, t1, t2, t3, t4, t5, t6, t7, 0x80000000, 0, 0, 0, 0, 0, 0, 768);
if (~output) _state_to_heap(output);
return hashed | 0;
}
// salt is assumed to be already processed
// offset — multiple of 64
// output — multiple of 32
function pbkdf2_generate_block(offset, length, block, count, output) {
offset = offset | 0;
length = length | 0;
block = block | 0;
count = count | 0;
output = output | 0;
var h0 = 0,
h1 = 0,
h2 = 0,
h3 = 0,
h4 = 0,
h5 = 0,
h6 = 0,
h7 = 0,
t0 = 0,
t1 = 0,
t2 = 0,
t3 = 0,
t4 = 0,
t5 = 0,
t6 = 0,
t7 = 0;
if (offset & 63) return -1;
if (~output) if (output & 31) return -1;
// pad block number into heap
// FIXME probable OOB write
HEAP[offset + length | 0] = block >>> 24;
HEAP[offset + length + 1 | 0] = block >>> 16 & 255;
HEAP[offset + length + 2 | 0] = block >>> 8 & 255;
HEAP[offset + length + 3 | 0] = block & 255;
// finish first iteration
hmac_finish(offset, length + 4 | 0, -1) | 0;
h0 = t0 = H0, h1 = t1 = H1, h2 = t2 = H2, h3 = t3 = H3, h4 = t4 = H4, h5 = t5 = H5, h6 = t6 = H6, h7 = t7 = H7;
count = count - 1 | 0;
// perform the rest iterations
while ((count | 0) > 0) {
hmac_reset();
_core(t0, t1, t2, t3, t4, t5, t6, t7, 0x80000000, 0, 0, 0, 0, 0, 0, 768);
t0 = H0, t1 = H1, t2 = H2, t3 = H3, t4 = H4, t5 = H5, t6 = H6, t7 = H7;
_hmac_opad();
_core(t0, t1, t2, t3, t4, t5, t6, t7, 0x80000000, 0, 0, 0, 0, 0, 0, 768);
t0 = H0, t1 = H1, t2 = H2, t3 = H3, t4 = H4, t5 = H5, t6 = H6, t7 = H7;
h0 = h0 ^ H0;
h1 = h1 ^ H1;
h2 = h2 ^ H2;
h3 = h3 ^ H3;
h4 = h4 ^ H4;
h5 = h5 ^ H5;
h6 = h6 ^ H6;
h7 = h7 ^ H7;
count = count - 1 | 0;
}
H0 = h0;
H1 = h1;
H2 = h2;
H3 = h3;
H4 = h4;
H5 = h5;
H6 = h6;
H7 = h7;
if (~output) _state_to_heap(output);
return 0;
}
return {
// SHA256
reset: reset,
init: init,
process: process,
finish: finish,
// HMAC-SHA256
hmac_reset: hmac_reset,
hmac_init: hmac_init,
hmac_finish: hmac_finish,
// PBKDF2-HMAC-SHA256
pbkdf2_generate_block: pbkdf2_generate_block
};
}
},{}],14:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.Sha256 = exports._sha256_hash_size = exports._sha256_block_size = undefined;
var _sha = require('./sha256.asm');
var _hash = require('../hash');
var __extends = undefined && undefined.__extends || function () {
var extendStatics = Object.setPrototypeOf || { __proto__: [] } instanceof Array && function (d, b) {
d.__proto__ = b;
} || function (d, b) {
for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];
};
return function (d, b) {
extendStatics(d, b);
function __() {
this.constructor = d;
}
d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());
};
}();
var _sha256_block_size = exports._sha256_block_size = 64;
var _sha256_hash_size = exports._sha256_hash_size = 32;
var Sha256 = /** @class */function (_super) {
__extends(Sha256, _super);
function Sha256() {
var _this = _super !== null && _super.apply(this, arguments) || this;
_this.NAME = 'sha256';
_this.BLOCK_SIZE = _sha256_block_size;
_this.HASH_SIZE = _sha256_hash_size;
return _this;
}
Sha256.bytes = function (data) {
return new Sha256().process(data).finish().result;
};
Sha256.NAME = 'sha256';
Sha256.heap_pool = [];
Sha256.asm_pool = [];
Sha256.asm_function = _sha.sha256_asm;
return Sha256;
}(_hash.Hash);
exports.Sha256 = Sha256;
},{"../hash":10,"./sha256.asm":13}],15:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var __extends = undefined && undefined.__extends || function () {
var extendStatics = Object.setPrototypeOf || { __proto__: [] } instanceof Array && function (d, b) {
d.__proto__ = b;
} || function (d, b) {
for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];
};
return function (d, b) {
extendStatics(d, b);
function __() {
this.constructor = d;
}
d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());
};
}();
var IllegalStateError = /** @class */function (_super) {
__extends(IllegalStateError, _super);
function IllegalStateError() {
var args = [];
for (var _i = 0; _i < arguments.length; _i++) {
args[_i] = arguments[_i];
}
var _this = _super.apply(this, args) || this;
Object.create(Error.prototype, { name: { value: 'IllegalStateError' } });
return _this;
}
return IllegalStateError;
}(Error);
exports.IllegalStateError = IllegalStateError;
var IllegalArgumentError = /** @class */function (_super) {
__extends(IllegalArgumentError, _super);
function IllegalArgumentError() {
var args = [];
for (var _i = 0; _i < arguments.length; _i++) {
args[_i] = arguments[_i];
}
var _this = _super.apply(this, args) || this;
Object.create(Error.prototype, { name: { value: 'IllegalArgumentError' } });
return _this;
}
return IllegalArgumentError;
}(Error);
exports.IllegalArgumentError = IllegalArgumentError;
var SecurityError = /** @class */function (_super) {
__extends(SecurityError, _super);
function SecurityError() {
var args = [];
for (var _i = 0; _i < arguments.length; _i++) {
args[_i] = arguments[_i];
}
var _this = _super.apply(this, args) || this;
Object.create(Error.prototype, { name: { value: 'SecurityError' } });
return _this;
}
return SecurityError;
}(Error);
exports.SecurityError = SecurityError;
},{}],16:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.string_to_bytes = string_to_bytes;
exports.hex_to_bytes = hex_to_bytes;
exports.base64_to_bytes = base64_to_bytes;
exports.bytes_to_string = bytes_to_string;
exports.bytes_to_hex = bytes_to_hex;
exports.bytes_to_base64 = bytes_to_base64;
exports.pow2_ceil = pow2_ceil;
exports.is_number = is_number;
exports.is_string = is_string;
exports.is_buffer = is_buffer;
exports.is_bytes = is_bytes;
exports.is_typed_array = is_typed_array;
exports._heap_init = _heap_init;
exports._heap_write = _heap_write;
exports.joinBytes = joinBytes;
var local_atob = typeof atob === 'undefined' ? function (str) {
return require('buffer').Buffer.from(str, 'base64').toString('binary');
} : atob;
var local_btoa = typeof btoa === 'undefined' ? function (str) {
return require('buffer').Buffer.from(str, 'binary').toString('base64');
} : btoa;
function string_to_bytes(str, utf8) {
if (utf8 === void 0) {
utf8 = false;
}
var len = str.length,
bytes = new Uint8Array(utf8 ? 4 * len : len);
for (var i = 0, j = 0; i < len; i++) {
var c = str.charCodeAt(i);
if (utf8 && 0xd800 <= c && c <= 0xdbff) {
if (++i >= len) throw new Error('Malformed string, low surrogate expected at position ' + i);
c = (c ^ 0xd800) << 10 | 0x10000 | str.charCodeAt(i) ^ 0xdc00;
} else if (!utf8 && c >>> 8) {
throw new Error('Wide characters are not allowed.');
}
if (!utf8 || c <= 0x7f) {
bytes[j++] = c;
} else if (c <= 0x7ff) {
bytes[j++] = 0xc0 | c >> 6;
bytes[j++] = 0x80 | c & 0x3f;
} else if (c <= 0xffff) {
bytes[j++] = 0xe0 | c >> 12;
bytes[j++] = 0x80 | c >> 6 & 0x3f;
bytes[j++] = 0x80 | c & 0x3f;
} else {
bytes[j++] = 0xf0 | c >> 18;
bytes[j++] = 0x80 | c >> 12 & 0x3f;
bytes[j++] = 0x80 | c >> 6 & 0x3f;
bytes[j++] = 0x80 | c & 0x3f;
}
}
return bytes.subarray(0, j);
}
function hex_to_bytes(str) {
var len = str.length;
if (len & 1) {
str = '0' + str;
len++;
}
var bytes = new Uint8Array(len >> 1);
for (var i = 0; i < len; i += 2) {
bytes[i >> 1] = parseInt(str.substr(i, 2), 16);
}
return bytes;
}
function base64_to_bytes(str) {
return string_to_bytes(local_atob(str));
}
function bytes_to_string(bytes, utf8) {
if (utf8 === void 0) {
utf8 = false;
}
var len = bytes.length,
chars = new Array(len);
for (var i = 0, j = 0; i < len; i++) {
var b = bytes[i];
if (!utf8 || b < 128) {
chars[j++] = b;
} else if (b >= 192 && b < 224 && i + 1 < len) {
chars[j++] = (b & 0x1f) << 6 | bytes[++i] & 0x3f;
} else if (b >= 224 && b < 240 && i + 2 < len) {
chars[j++] = (b & 0xf) << 12 | (bytes[++i] & 0x3f) << 6 | bytes[++i] & 0x3f;
} else if (b >= 240 && b < 248 && i + 3 < len) {
var c = (b & 7) << 18 | (bytes[++i] & 0x3f) << 12 | (bytes[++i] & 0x3f) << 6 | bytes[++i] & 0x3f;
if (c <= 0xffff) {
chars[j++] = c;
} else {
c ^= 0x10000;
chars[j++] = 0xd800 | c >> 10;
chars[j++] = 0xdc00 | c & 0x3ff;
}
} else {
throw new Error('Malformed UTF8 character at byte offset ' + i);
}
}
var str = '',
bs = 16384;
for (var i = 0; i < j; i += bs) {
str += String.fromCharCode.apply(String, chars.slice(i, i + bs <= j ? i + bs : j));
}
return str;
}
function bytes_to_hex(arr) {
var str = '';
for (var i = 0; i < arr.length; i++) {
var h = (arr[i] & 0xff).toString(16);
if (h.length < 2) str += '0';
str += h;
}
return str;
}
function bytes_to_base64(arr) {
return local_btoa(bytes_to_string(arr));
}
function pow2_ceil(a) {
a -= 1;
a |= a >>> 1;
a |= a >>> 2;
a |= a >>> 4;
a |= a >>> 8;
a |= a >>> 16;
a += 1;
return a;
}
function is_number(a) {
return typeof a === 'number';
}
function is_string(a) {
return typeof a === 'string';
}
function is_buffer(a) {
return a instanceof ArrayBuffer;
}
function is_bytes(a) {
return a instanceof Uint8Array;
}
function is_typed_array(a) {
return a instanceof Int8Array || a instanceof Uint8Array || a instanceof Int16Array || a instanceof Uint16Array || a instanceof Int32Array || a instanceof Uint32Array || a instanceof Float32Array || a instanceof Float64Array;
}
function _heap_init(heap, heapSize) {
var size = heap ? heap.byteLength : heapSize || 65536;
if (size & 0xfff || size <= 0) throw new Error('heap size must be a positive integer and a multiple of 4096');
heap = heap || new Uint8Array(new ArrayBuffer(size));
return heap;
}
function _heap_write(heap, hpos, data, dpos, dlen) {
var hlen = heap.length - hpos;
var wlen = hlen < dlen ? hlen : dlen;
heap.set(data.subarray(dpos, dpos + wlen), hpos);
return wlen;
}
function joinBytes() {
var arg = [];
for (var _i = 0; _i < arguments.length; _i++) {
arg[_i] = arguments[_i];
}
var totalLenght = arg.reduce(function (sum, curr) {
return sum + curr.length;
}, 0);
var ret = new Uint8Array(totalLenght);
var cursor = 0;
for (var i = 0; i < arg.length; i++) {
ret.set(arg[i], cursor);
cursor += arg[i].length;
}
return ret;
}
},{"buffer":"buffer"}],17:[function(require,module,exports){
(function (module, exports) {
'use strict';
// Utils
function assert (val, msg) {
if (!val) throw new Error(msg || 'Assertion failed');
}
// Could use `inherits` module, but don't want to move from single file
// architecture yet.
function inherits (ctor, superCtor) {
ctor.super_ = superCtor;
var TempCtor = function () {};
TempCtor.prototype = superCtor.prototype;
ctor.prototype = new TempCtor();
ctor.prototype.constructor = ctor;
}
// BN
function BN (number, base, endian) {
if (BN.isBN(number)) {
return number;
}
this.negative = 0;
this.words = null;
this.length = 0;
// Reduction context
this.red = null;
if (number !== null) {
if (base === 'le' || base === 'be') {
endian = base;
base = 10;
}
this._init(number || 0, base || 10, endian || 'be');
}
}
if (typeof module === 'object') {
module.exports = BN;
} else {
exports.BN = BN;
}
BN.BN = BN;
BN.wordSize = 26;
var Buffer;
try {
Buffer = require('buffer').Buffer;
} catch (e) {
}
BN.isBN = function isBN (num) {
if (num instanceof BN) {
return true;
}
return num !== null && typeof num === 'object' &&
num.constructor.wordSize === BN.wordSize && Array.isArray(num.words);
};
BN.max = function max (left, right) {
if (left.cmp(right) > 0) return left;
return right;
};
BN.min = function min (left, right) {
if (left.cmp(right) < 0) return left;
return right;
};
BN.prototype._init = function init (number, base, endian) {
if (typeof number === 'number') {
return this._initNumber(number, base, endian);
}
if (typeof number === 'object') {
return this._initArray(number, base, endian);
}
if (base === 'hex') {
base = 16;
}
assert(base === (base | 0) && base >= 2 && base <= 36);
number = number.toString().replace(/\s+/g, '');
var start = 0;
if (number[0] === '-') {
start++;
}
if (base === 16) {
this._parseHex(number, start);
} else {
this._parseBase(number, base, start);
}
if (number[0] === '-') {
this.negative = 1;
}
this.strip();
if (endian !== 'le') return;
this._initArray(this.toArray(), base, endian);
};
BN.prototype._initNumber = function _initNumber (number, base, endian) {
if (number < 0) {
this.negative = 1;
number = -number;
}
if (number < 0x4000000) {
this.words = [ number & 0x3ffffff ];
this.length = 1;
} else if (number < 0x10000000000000) {
this.words = [
number & 0x3ffffff,
(number / 0x4000000) & 0x3ffffff
];
this.length = 2;
} else {
assert(number < 0x20000000000000); // 2 ^ 53 (unsafe)
this.words = [
number & 0x3ffffff,
(number / 0x4000000) & 0x3ffffff,
1
];
this.length = 3;
}
if (endian !== 'le') return;
// Reverse the bytes
this._initArray(this.toArray(), base, endian);
};
BN.prototype._initArray = function _initArray (number, base, endian) {
// Perhaps a Uint8Array
assert(typeof number.length === 'number');
if (number.length <= 0) {
this.words = [ 0 ];
this.length = 1;
return this;
}
this.length = Math.ceil(number.length / 3);
this.words = new Array(this.length);
for (var i = 0; i < this.length; i++) {
this.words[i] = 0;
}
var j, w;
var off = 0;
if (endian === 'be') {
for (i = number.length - 1, j = 0; i >= 0; i -= 3) {
w = number[i] | (number[i - 1] << 8) | (number[i - 2] << 16);
this.words[j] |= (w << off) & 0x3ffffff;
this.words[j + 1] = (w >>> (26 - off)) & 0x3ffffff;
off += 24;
if (off >= 26) {
off -= 26;
j++;
}
}
} else if (endian === 'le') {
for (i = 0, j = 0; i < number.length; i += 3) {
w = number[i] | (number[i + 1] << 8) | (number[i + 2] << 16);
this.words[j] |= (w << off) & 0x3ffffff;
this.words[j + 1] = (w >>> (26 - off)) & 0x3ffffff;
off += 24;
if (off >= 26) {
off -= 26;
j++;
}
}
}
return this.strip();
};
function parseHex (str, start, end) {
var r = 0;
var len = Math.min(str.length, end);
for (var i = start; i < len; i++) {
var c = str.charCodeAt(i) - 48;
r <<= 4;
// 'a' - 'f'
if (c >= 49 && c <= 54) {
r |= c - 49 + 0xa;
// 'A' - 'F'
} else if (c >= 17 && c <= 22) {
r |= c - 17 + 0xa;
// '0' - '9'
} else {
r |= c & 0xf;
}
}
return r;
}
BN.prototype._parseHex = function _parseHex (number, start) {
// Create possibly bigger array to ensure that it fits the number
this.length = Math.ceil((number.length - start) / 6);
this.words = new Array(this.length);
for (var i = 0; i < this.length; i++) {
this.words[i] = 0;
}
var j, w;
// Scan 24-bit chunks and add them to the number
var off = 0;
for (i = number.length - 6, j = 0; i >= start; i -= 6) {
w = parseHex(number, i, i + 6);
this.words[j] |= (w << off) & 0x3ffffff;
// NOTE: `0x3fffff` is intentional here, 26bits max shift + 24bit hex limb
this.words[j + 1] |= w >>> (26 - off) & 0x3fffff;
off += 24;
if (off >= 26) {
off -= 26;
j++;
}
}
if (i + 6 !== start) {
w = parseHex(number, start, i + 6);
this.words[j] |= (w << off) & 0x3ffffff;
this.words[j + 1] |= w >>> (26 - off) & 0x3fffff;
}
this.strip();
};
function parseBase (str, start, end, mul) {
var r = 0;
var len = Math.min(str.length, end);
for (var i = start; i < len; i++) {
var c = str.charCodeAt(i) - 48;
r *= mul;
// 'a'
if (c >= 49) {
r += c - 49 + 0xa;
// 'A'
} else if (c >= 17) {
r += c - 17 + 0xa;
// '0' - '9'
} else {
r += c;
}
}
return r;
}
BN.prototype._parseBase = function _parseBase (number, base, start) {
// Initialize as zero
this.words = [ 0 ];
this.length = 1;
// Find length of limb in base
for (var limbLen = 0, limbPow = 1; limbPow <= 0x3ffffff; limbPow *= base) {
limbLen++;
}
limbLen--;
limbPow = (limbPow / base) | 0;
var total = number.length - start;
var mod = total % limbLen;
var end = Math.min(total, total - mod) + start;
var word = 0;
for (var i = start; i < end; i += limbLen) {
word = parseBase(number, i, i + limbLen, base);
this.imuln(limbPow);
if (this.words[0] + word < 0x4000000) {
this.words[0] += word;
} else {
this._iaddn(word);
}
}
if (mod !== 0) {
var pow = 1;
word = parseBase(number, i, number.length, base);
for (i = 0; i < mod; i++) {
pow *= base;
}
this.imuln(pow);
if (this.words[0] + word < 0x4000000) {
this.words[0] += word;
} else {
this._iaddn(word);
}
}
};
BN.prototype.copy = function copy (dest) {
dest.words = new Array(this.length);
for (var i = 0; i < this.length; i++) {
dest.words[i] = this.words[i];
}
dest.length = this.length;
dest.negative = this.negative;
dest.red = this.red;
};
BN.prototype.clone = function clone () {
var r = new BN(null);
this.copy(r);
return r;
};
BN.prototype._expand = function _expand (size) {
while (this.length < size) {
this.words[this.length++] = 0;
}
return this;
};
// Remove leading `0` from `this`
BN.prototype.strip = function strip () {
while (this.length > 1 && this.words[this.length - 1] === 0) {
this.length--;
}
return this._normSign();
};
BN.prototype._normSign = function _normSign () {
// -0 = 0
if (this.length === 1 && this.words[0] === 0) {
this.negative = 0;
}
return this;
};
BN.prototype.inspect = function inspect () {
return (this.red ? '<BN-R: ' : '<BN: ') + this.toString(16) + '>';
};
/*
var zeros = [];
var groupSizes = [];
var groupBases = [];
var s = '';
var i = -1;
while (++i < BN.wordSize) {
zeros[i] = s;
s += '0';
}
groupSizes[0] = 0;
groupSizes[1] = 0;
groupBases[0] = 0;
groupBases[1] = 0;
var base = 2 - 1;
while (++base < 36 + 1) {
var groupSize = 0;
var groupBase = 1;
while (groupBase < (1 << BN.wordSize) / base) {
groupBase *= base;
groupSize += 1;
}
groupSizes[base] = groupSize;
groupBases[base] = groupBase;
}
*/
var zeros = [
'',
'0',
'00',
'000',
'0000',
'00000',
'000000',
'0000000',
'00000000',
'000000000',
'0000000000',
'00000000000',
'000000000000',
'0000000000000',
'00000000000000',
'000000000000000',
'0000000000000000',
'00000000000000000',
'000000000000000000',
'0000000000000000000',
'00000000000000000000',
'000000000000000000000',
'0000000000000000000000',
'00000000000000000000000',
'000000000000000000000000',
'0000000000000000000000000'
];
var groupSizes = [
0, 0,
25, 16, 12, 11, 10, 9, 8,
8, 7, 7, 7, 7, 6, 6,
6, 6, 6, 6, 6, 5, 5,
5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5
];
var groupBases = [
0, 0,
33554432, 43046721, 16777216, 48828125, 60466176, 40353607, 16777216,
43046721, 10000000, 19487171, 35831808, 62748517, 7529536, 11390625,
16777216, 24137569, 34012224, 47045881, 64000000, 4084101, 5153632,
6436343, 7962624, 9765625, 11881376, 14348907, 17210368, 20511149,
24300000, 28629151, 33554432, 39135393, 45435424, 52521875, 60466176
];
BN.prototype.toString = function toString (base, padding) {
base = base || 10;
padding = padding | 0 || 1;
var out;
if (base === 16 || base === 'hex') {
out = '';
var off = 0;
var carry = 0;
for (var i = 0; i < this.length; i++) {
var w = this.words[i];
var word = (((w << off) | carry) & 0xffffff).toString(16);
carry = (w >>> (24 - off)) & 0xffffff;
if (carry !== 0 || i !== this.length - 1) {
out = zeros[6 - word.length] + word + out;
} else {
out = word + out;
}
off += 2;
if (off >= 26) {
off -= 26;
i--;
}
}
if (carry !== 0) {
out = carry.toString(16) + out;
}
while (out.length % padding !== 0) {
out = '0' + out;
}
if (this.negative !== 0) {
out = '-' + out;
}
return out;
}
if (base === (base | 0) && base >= 2 && base <= 36) {
// var groupSize = Math.floor(BN.wordSize * Math.LN2 / Math.log(base));
var groupSize = groupSizes[base];
// var groupBase = Math.pow(base, groupSize);
var groupBase = groupBases[base];
out = '';
var c = this.clone();
c.negative = 0;
while (!c.isZero()) {
var r = c.modn(groupBase).toString(base);
c = c.idivn(groupBase);
if (!c.isZero()) {
out = zeros[groupSize - r.length] + r + out;
} else {
out = r + out;
}
}
if (this.isZero()) {
out = '0' + out;
}
while (out.length % padding !== 0) {
out = '0' + out;
}
if (this.negative !== 0) {
out = '-' + out;
}
return out;
}
assert(false, 'Base should be between 2 and 36');
};
BN.prototype.toNumber = function toNumber () {
var ret = this.words[0];
if (this.length === 2) {
ret += this.words[1] * 0x4000000;
} else if (this.length === 3 && this.words[2] === 0x01) {
// NOTE: at this stage it is known that the top bit is set
ret += 0x10000000000000 + (this.words[1] * 0x4000000);
} else if (this.length > 2) {
assert(false, 'Number can only safely store up to 53 bits');
}
return (this.negative !== 0) ? -ret : ret;
};
BN.prototype.toJSON = function toJSON () {
return this.toString(16);
};
BN.prototype.toBuffer = function toBuffer (endian, length) {
assert(typeof Buffer !== 'undefined');
return this.toArrayLike(Buffer, endian, length);
};
BN.prototype.toArray = function toArray (endian, length) {
return this.toArrayLike(Array, endian, length);
};
BN.prototype.toArrayLike = function toArrayLike (ArrayType, endian, length) {
var byteLength = this.byteLength();
var reqLength = length || Math.max(1, byteLength);
assert(byteLength <= reqLength, 'byte array longer than desired length');
assert(reqLength > 0, 'Requested array length <= 0');
this.strip();
var littleEndian = endian === 'le';
var res = new ArrayType(reqLength);
var b, i;
var q = this.clone();
if (!littleEndian) {
// Assume big-endian
for (i = 0; i < reqLength - byteLength; i++) {
res[i] = 0;
}
for (i = 0; !q.isZero(); i++) {
b = q.andln(0xff);
q.iushrn(8);
res[reqLength - i - 1] = b;
}
} else {
for (i = 0; !q.isZero(); i++) {
b = q.andln(0xff);
q.iushrn(8);
res[i] = b;
}
for (; i < reqLength; i++) {
res[i] = 0;
}
}
return res;
};
if (Math.clz32) {
BN.prototype._countBits = function _countBits (w) {
return 32 - Math.clz32(w);
};
} else {
BN.prototype._countBits = function _countBits (w) {
var t = w;
var r = 0;
if (t >= 0x1000) {
r += 13;
t >>>= 13;
}
if (t >= 0x40) {
r += 7;
t >>>= 7;
}
if (t >= 0x8) {
r += 4;
t >>>= 4;
}
if (t >= 0x02) {
r += 2;
t >>>= 2;
}
return r + t;
};
}
BN.prototype._zeroBits = function _zeroBits (w) {
// Short-cut
if (w === 0) return 26;
var t = w;
var r = 0;
if ((t & 0x1fff) === 0) {
r += 13;
t >>>= 13;
}
if ((t & 0x7f) === 0) {
r += 7;
t >>>= 7;
}
if ((t & 0xf) === 0) {
r += 4;
t >>>= 4;
}
if ((t & 0x3) === 0) {
r += 2;
t >>>= 2;
}
if ((t & 0x1) === 0) {
r++;
}
return r;
};
// Return number of used bits in a BN
BN.prototype.bitLength = function bitLength () {
var w = this.words[this.length - 1];
var hi = this._countBits(w);
return (this.length - 1) * 26 + hi;
};
function toBitArray (num) {
var w = new Array(num.bitLength());
for (var bit = 0; bit < w.length; bit++) {
var off = (bit / 26) | 0;
var wbit = bit % 26;
w[bit] = (num.words[off] & (1 << wbit)) >>> wbit;
}
return w;
}
// Number of trailing zero bits
BN.prototype.zeroBits = function zeroBits () {
if (this.isZero()) return 0;
var r = 0;
for (var i = 0; i < this.length; i++) {
var b = this._zeroBits(this.words[i]);
r += b;
if (b !== 26) break;
}
return r;
};
BN.prototype.byteLength = function byteLength () {
return Math.ceil(this.bitLength() / 8);
};
BN.prototype.toTwos = function toTwos (width) {
if (this.negative !== 0) {
return this.abs().inotn(width).iaddn(1);
}
return this.clone();
};
BN.prototype.fromTwos = function fromTwos (width) {
if (this.testn(width - 1)) {
return this.notn(width).iaddn(1).ineg();
}
return this.clone();
};
BN.prototype.isNeg = function isNeg () {
return this.negative !== 0;
};
// Return negative clone of `this`
BN.prototype.neg = function neg () {
return this.clone().ineg();
};
BN.prototype.ineg = function ineg () {
if (!this.isZero()) {
this.negative ^= 1;
}
return this;
};
// Or `num` with `this` in-place
BN.prototype.iuor = function iuor (num) {
while (this.length < num.length) {
this.words[this.length++] = 0;
}
for (var i = 0; i < num.length; i++) {
this.words[i] = this.words[i] | num.words[i];
}
return this.strip();
};
BN.prototype.ior = function ior (num) {
assert((this.negative | num.negative) === 0);
return this.iuor(num);
};
// Or `num` with `this`
BN.prototype.or = function or (num) {
if (this.length > num.length) return this.clone().ior(num);
return num.clone().ior(this);
};
BN.prototype.uor = function uor (num) {
if (this.length > num.length) return this.clone().iuor(num);
return num.clone().iuor(this);
};
// And `num` with `this` in-place
BN.prototype.iuand = function iuand (num) {
// b = min-length(num, this)
var b;
if (this.length > num.length) {
b = num;
} else {
b = this;
}
for (var i = 0; i < b.length; i++) {
this.words[i] = this.words[i] & num.words[i];
}
this.length = b.length;
return this.strip();
};
BN.prototype.iand = function iand (num) {
assert((this.negative | num.negative) === 0);
return this.iuand(num);
};
// And `num` with `this`
BN.prototype.and = function and (num) {
if (this.length > num.length) return this.clone().iand(num);
return num.clone().iand(this);
};
BN.prototype.uand = function uand (num) {
if (this.length > num.length) return this.clone().iuand(num);
return num.clone().iuand(this);
};
// Xor `num` with `this` in-place
BN.prototype.iuxor = function iuxor (num) {
// a.length > b.length
var a;
var b;
if (this.length > num.length) {
a = this;
b = num;
} else {
a = num;
b = this;
}
for (var i = 0; i < b.length; i++) {
this.words[i] = a.words[i] ^ b.words[i];
}
if (this !== a) {
for (; i < a.length; i++) {
this.words[i] = a.words[i];
}
}
this.length = a.length;
return this.strip();
};
BN.prototype.ixor = function ixor (num) {
assert((this.negative | num.negative) === 0);
return this.iuxor(num);
};
// Xor `num` with `this`
BN.prototype.xor = function xor (num) {
if (this.length > num.length) return this.clone().ixor(num);
return num.clone().ixor(this);
};
BN.prototype.uxor = function uxor (num) {
if (this.length > num.length) return this.clone().iuxor(num);
return num.clone().iuxor(this);
};
// Not ``this`` with ``width`` bitwidth
BN.prototype.inotn = function inotn (width) {
assert(typeof width === 'number' && width >= 0);
var bytesNeeded = Math.ceil(width / 26) | 0;
var bitsLeft = width % 26;
// Extend the buffer with leading zeroes
this._expand(bytesNeeded);
if (bitsLeft > 0) {
bytesNeeded--;
}
// Handle complete words
for (var i = 0; i < bytesNeeded; i++) {
this.words[i] = ~this.words[i] & 0x3ffffff;
}
// Handle the residue
if (bitsLeft > 0) {
this.words[i] = ~this.words[i] & (0x3ffffff >> (26 - bitsLeft));
}
// And remove leading zeroes
return this.strip();
};
BN.prototype.notn = function notn (width) {
return this.clone().inotn(width);
};
// Set `bit` of `this`
BN.prototype.setn = function setn (bit, val) {
assert(typeof bit === 'number' && bit >= 0);
var off = (bit / 26) | 0;
var wbit = bit % 26;
this._expand(off + 1);
if (val) {
this.words[off] = this.words[off] | (1 << wbit);
} else {
this.words[off] = this.words[off] & ~(1 << wbit);
}
return this.strip();
};
// Add `num` to `this` in-place
BN.prototype.iadd = function iadd (num) {
var r;
// negative + positive
if (this.negative !== 0 && num.negative === 0) {
this.negative = 0;
r = this.isub(num);
this.negative ^= 1;
return this._normSign();
// positive + negative
} else if (this.negative === 0 && num.negative !== 0) {
num.negative = 0;
r = this.isub(num);
num.negative = 1;
return r._normSign();
}
// a.length > b.length
var a, b;
if (this.length > num.length) {
a = this;
b = num;
} else {
a = num;
b = this;
}
var carry = 0;
for (var i = 0; i < b.length; i++) {
r = (a.words[i] | 0) + (b.words[i] | 0) + carry;
this.words[i] = r & 0x3ffffff;
carry = r >>> 26;
}
for (; carry !== 0 && i < a.length; i++) {
r = (a.words[i] | 0) + carry;
this.words[i] = r & 0x3ffffff;
carry = r >>> 26;
}
this.length = a.length;
if (carry !== 0) {
this.words[this.length] = carry;
this.length++;
// Copy the rest of the words
} else if (a !== this) {
for (; i < a.length; i++) {
this.words[i] = a.words[i];
}
}
return this;
};
// Add `num` to `this`
BN.prototype.add = function add (num) {
var res;
if (num.negative !== 0 && this.negative === 0) {
num.negative = 0;
res = this.sub(num);
num.negative ^= 1;
return res;
} else if (num.negative === 0 && this.negative !== 0) {
this.negative = 0;
res = num.sub(this);
this.negative = 1;
return res;
}
if (this.length > num.length) return this.clone().iadd(num);
return num.clone().iadd(this);
};
// Subtract `num` from `this` in-place
BN.prototype.isub = function isub (num) {
// this - (-num) = this + num
if (num.negative !== 0) {
num.negative = 0;
var r = this.iadd(num);
num.negative = 1;
return r._normSign();
// -this - num = -(this + num)
} else if (this.negative !== 0) {
this.negative = 0;
this.iadd(num);
this.negative = 1;
return this._normSign();
}
// At this point both numbers are positive
var cmp = this.cmp(num);
// Optimization - zeroify
if (cmp === 0) {
this.negative = 0;
this.length = 1;
this.words[0] = 0;
return this;
}
// a > b
var a, b;
if (cmp > 0) {
a = this;
b = num;
} else {
a = num;
b = this;
}
var carry = 0;
for (var i = 0; i < b.length; i++) {
r = (a.words[i] | 0) - (b.words[i] | 0) + carry;
carry = r >> 26;
this.words[i] = r & 0x3ffffff;
}
for (; carry !== 0 && i < a.length; i++) {
r = (a.words[i] | 0) + carry;
carry = r >> 26;
this.words[i] = r & 0x3ffffff;
}
// Copy rest of the words
if (carry === 0 && i < a.length && a !== this) {
for (; i < a.length; i++) {
this.words[i] = a.words[i];
}
}
this.length = Math.max(this.length, i);
if (a !== this) {
this.negative = 1;
}
return this.strip();
};
// Subtract `num` from `this`
BN.prototype.sub = function sub (num) {
return this.clone().isub(num);
};
function smallMulTo (self, num, out) {
out.negative = num.negative ^ self.negative;
var len = (self.length + num.length) | 0;
out.length = len;
len = (len - 1) | 0;
// Peel one iteration (compiler can't do it, because of code complexity)
var a = self.words[0] | 0;
var b = num.words[0] | 0;
var r = a * b;
var lo = r & 0x3ffffff;
var carry = (r / 0x4000000) | 0;
out.words[0] = lo;
for (var k = 1; k < len; k++) {
// Sum all words with the same `i + j = k` and accumulate `ncarry`,
// note that ncarry could be >= 0x3ffffff
var ncarry = carry >>> 26;
var rword = carry & 0x3ffffff;
var maxJ = Math.min(k, num.length - 1);
for (var j = Math.max(0, k - self.length + 1); j <= maxJ; j++) {
var i = (k - j) | 0;
a = self.words[i] | 0;
b = num.words[j] | 0;
r = a * b + rword;
ncarry += (r / 0x4000000) | 0;
rword = r & 0x3ffffff;
}
out.words[k] = rword | 0;
carry = ncarry | 0;
}
if (carry !== 0) {
out.words[k] = carry | 0;
} else {
out.length--;
}
return out.strip();
}
// TODO(indutny): it may be reasonable to omit it for users who don't need
// to work with 256-bit numbers, otherwise it gives 20% improvement for 256-bit
// multiplication (like elliptic secp256k1).
var comb10MulTo = function comb10MulTo (self, num, out) {
var a = self.words;
var b = num.words;
var o = out.words;
var c = 0;
var lo;
var mid;
var hi;
var a0 = a[0] | 0;
var al0 = a0 & 0x1fff;
var ah0 = a0 >>> 13;
var a1 = a[1] | 0;
var al1 = a1 & 0x1fff;
var ah1 = a1 >>> 13;
var a2 = a[2] | 0;
var al2 = a2 & 0x1fff;
var ah2 = a2 >>> 13;
var a3 = a[3] | 0;
var al3 = a3 & 0x1fff;
var ah3 = a3 >>> 13;
var a4 = a[4] | 0;
var al4 = a4 & 0x1fff;
var ah4 = a4 >>> 13;
var a5 = a[5] | 0;
var al5 = a5 & 0x1fff;
var ah5 = a5 >>> 13;
var a6 = a[6] | 0;
var al6 = a6 & 0x1fff;
var ah6 = a6 >>> 13;
var a7 = a[7] | 0;
var al7 = a7 & 0x1fff;
var ah7 = a7 >>> 13;
var a8 = a[8] | 0;
var al8 = a8 & 0x1fff;
var ah8 = a8 >>> 13;
var a9 = a[9] | 0;
var al9 = a9 & 0x1fff;
var ah9 = a9 >>> 13;
var b0 = b[0] | 0;
var bl0 = b0 & 0x1fff;
var bh0 = b0 >>> 13;
var b1 = b[1] | 0;
var bl1 = b1 & 0x1fff;
var bh1 = b1 >>> 13;
var b2 = b[2] | 0;
var bl2 = b2 & 0x1fff;
var bh2 = b2 >>> 13;
var b3 = b[3] | 0;
var bl3 = b3 & 0x1fff;
var bh3 = b3 >>> 13;
var b4 = b[4] | 0;
var bl4 = b4 & 0x1fff;
var bh4 = b4 >>> 13;
var b5 = b[5] | 0;
var bl5 = b5 & 0x1fff;
var bh5 = b5 >>> 13;
var b6 = b[6] | 0;
var bl6 = b6 & 0x1fff;
var bh6 = b6 >>> 13;
var b7 = b[7] | 0;
var bl7 = b7 & 0x1fff;
var bh7 = b7 >>> 13;
var b8 = b[8] | 0;
var bl8 = b8 & 0x1fff;
var bh8 = b8 >>> 13;
var b9 = b[9] | 0;
var bl9 = b9 & 0x1fff;
var bh9 = b9 >>> 13;
out.negative = self.negative ^ num.negative;
out.length = 19;
/* k = 0 */
lo = Math.imul(al0, bl0);
mid = Math.imul(al0, bh0);
mid = (mid + Math.imul(ah0, bl0)) | 0;
hi = Math.imul(ah0, bh0);
var w0 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
c = (((hi + (mid >>> 13)) | 0) + (w0 >>> 26)) | 0;
w0 &= 0x3ffffff;
/* k = 1 */
lo = Math.imul(al1, bl0);
mid = Math.imul(al1, bh0);
mid = (mid + Math.imul(ah1, bl0)) | 0;
hi = Math.imul(ah1, bh0);
lo = (lo + Math.imul(al0, bl1)) | 0;
mid = (mid + Math.imul(al0, bh1)) | 0;
mid = (mid + Math.imul(ah0, bl1)) | 0;
hi = (hi + Math.imul(ah0, bh1)) | 0;
var w1 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
c = (((hi + (mid >>> 13)) | 0) + (w1 >>> 26)) | 0;
w1 &= 0x3ffffff;
/* k = 2 */
lo = Math.imul(al2, bl0);
mid = Math.imul(al2, bh0);
mid = (mid + Math.imul(ah2, bl0)) | 0;
hi = Math.imul(ah2, bh0);
lo = (lo + Math.imul(al1, bl1)) | 0;
mid = (mid + Math.imul(al1, bh1)) | 0;
mid = (mid + Math.imul(ah1, bl1)) | 0;
hi = (hi + Math.imul(ah1, bh1)) | 0;
lo = (lo + Math.imul(al0, bl2)) | 0;
mid = (mid + Math.imul(al0, bh2)) | 0;
mid = (mid + Math.imul(ah0, bl2)) | 0;
hi = (hi + Math.imul(ah0, bh2)) | 0;
var w2 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
c = (((hi + (mid >>> 13)) | 0) + (w2 >>> 26)) | 0;
w2 &= 0x3ffffff;
/* k = 3 */
lo = Math.imul(al3, bl0);
mid = Math.imul(al3, bh0);
mid = (mid + Math.imul(ah3, bl0)) | 0;
hi = Math.imul(ah3, bh0);
lo = (lo + Math.imul(al2, bl1)) | 0;
mid = (mid + Math.imul(al2, bh1)) | 0;
mid = (mid + Math.imul(ah2, bl1)) | 0;
hi = (hi + Math.imul(ah2, bh1)) | 0;
lo = (lo + Math.imul(al1, bl2)) | 0;
mid = (mid + Math.imul(al1, bh2)) | 0;
mid = (mid + Math.imul(ah1, bl2)) | 0;
hi = (hi + Math.imul(ah1, bh2)) | 0;
lo = (lo + Math.imul(al0, bl3)) | 0;
mid = (mid + Math.imul(al0, bh3)) | 0;
mid = (mid + Math.imul(ah0, bl3)) | 0;
hi = (hi + Math.imul(ah0, bh3)) | 0;
var w3 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
c = (((hi + (mid >>> 13)) | 0) + (w3 >>> 26)) | 0;
w3 &= 0x3ffffff;
/* k = 4 */
lo = Math.imul(al4, bl0);
mid = Math.imul(al4, bh0);
mid = (mid + Math.imul(ah4, bl0)) | 0;
hi = Math.imul(ah4, bh0);
lo = (lo + Math.imul(al3, bl1)) | 0;
mid = (mid + Math.imul(al3, bh1)) | 0;
mid = (mid + Math.imul(ah3, bl1)) | 0;
hi = (hi + Math.imul(ah3, bh1)) | 0;
lo = (lo + Math.imul(al2, bl2)) | 0;
mid = (mid + Math.imul(al2, bh2)) | 0;
mid = (mid + Math.imul(ah2, bl2)) | 0;
hi = (hi + Math.imul(ah2, bh2)) | 0;
lo = (lo + Math.imul(al1, bl3)) | 0;
mid = (mid + Math.imul(al1, bh3)) | 0;
mid = (mid + Math.imul(ah1, bl3)) | 0;
hi = (hi + Math.imul(ah1, bh3)) | 0;
lo = (lo + Math.imul(al0, bl4)) | 0;
mid = (mid + Math.imul(al0, bh4)) | 0;
mid = (mid + Math.imul(ah0, bl4)) | 0;
hi = (hi + Math.imul(ah0, bh4)) | 0;
var w4 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
c = (((hi + (mid >>> 13)) | 0) + (w4 >>> 26)) | 0;
w4 &= 0x3ffffff;
/* k = 5 */
lo = Math.imul(al5, bl0);
mid = Math.imul(al5, bh0);
mid = (mid + Math.imul(ah5, bl0)) | 0;
hi = Math.imul(ah5, bh0);
lo = (lo + Math.imul(al4, bl1)) | 0;
mid = (mid + Math.imul(al4, bh1)) | 0;
mid = (mid + Math.imul(ah4, bl1)) | 0;
hi = (hi + Math.imul(ah4, bh1)) | 0;
lo = (lo + Math.imul(al3, bl2)) | 0;
mid = (mid + Math.imul(al3, bh2)) | 0;
mid = (mid + Math.imul(ah3, bl2)) | 0;
hi = (hi + Math.imul(ah3, bh2)) | 0;
lo = (lo + Math.imul(al2, bl3)) | 0;
mid = (mid + Math.imul(al2, bh3)) | 0;
mid = (mid + Math.imul(ah2, bl3)) | 0;
hi = (hi + Math.imul(ah2, bh3)) | 0;
lo = (lo + Math.imul(al1, bl4)) | 0;
mid = (mid + Math.imul(al1, bh4)) | 0;
mid = (mid + Math.imul(ah1, bl4)) | 0;
hi = (hi + Math.imul(ah1, bh4)) | 0;
lo = (lo + Math.imul(al0, bl5)) | 0;
mid = (mid + Math.imul(al0, bh5)) | 0;
mid = (mid + Math.imul(ah0, bl5)) | 0;
hi = (hi + Math.imul(ah0, bh5)) | 0;
var w5 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
c = (((hi + (mid >>> 13)) | 0) + (w5 >>> 26)) | 0;
w5 &= 0x3ffffff;
/* k = 6 */
lo = Math.imul(al6, bl0);
mid = Math.imul(al6, bh0);
mid = (mid + Math.imul(ah6, bl0)) | 0;
hi = Math.imul(ah6, bh0);
lo = (lo + Math.imul(al5, bl1)) | 0;
mid = (mid + Math.imul(al5, bh1)) | 0;
mid = (mid + Math.imul(ah5, bl1)) | 0;
hi = (hi + Math.imul(ah5, bh1)) | 0;
lo = (lo + Math.imul(al4, bl2)) | 0;
mid = (mid + Math.imul(al4, bh2)) | 0;
mid = (mid + Math.imul(ah4, bl2)) | 0;
hi = (hi + Math.imul(ah4, bh2)) | 0;
lo = (lo + Math.imul(al3, bl3)) | 0;
mid = (mid + Math.imul(al3, bh3)) | 0;
mid = (mid + Math.imul(ah3, bl3)) | 0;
hi = (hi + Math.imul(ah3, bh3)) | 0;
lo = (lo + Math.imul(al2, bl4)) | 0;
mid = (mid + Math.imul(al2, bh4)) | 0;
mid = (mid + Math.imul(ah2, bl4)) | 0;
hi = (hi + Math.imul(ah2, bh4)) | 0;
lo = (lo + Math.imul(al1, bl5)) | 0;
mid = (mid + Math.imul(al1, bh5)) | 0;
mid = (mid + Math.imul(ah1, bl5)) | 0;
hi = (hi + Math.imul(ah1, bh5)) | 0;
lo = (lo + Math.imul(al0, bl6)) | 0;
mid = (mid + Math.imul(al0, bh6)) | 0;
mid = (mid + Math.imul(ah0, bl6)) | 0;
hi = (hi + Math.imul(ah0, bh6)) | 0;
var w6 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
c = (((hi + (mid >>> 13)) | 0) + (w6 >>> 26)) | 0;
w6 &= 0x3ffffff;
/* k = 7 */
lo = Math.imul(al7, bl0);
mid = Math.imul(al7, bh0);
mid = (mid + Math.imul(ah7, bl0)) | 0;
hi = Math.imul(ah7, bh0);
lo = (lo + Math.imul(al6, bl1)) | 0;
mid = (mid + Math.imul(al6, bh1)) | 0;
mid = (mid + Math.imul(ah6, bl1)) | 0;
hi = (hi + Math.imul(ah6, bh1)) | 0;
lo = (lo + Math.imul(al5, bl2)) | 0;
mid = (mid + Math.imul(al5, bh2)) | 0;
mid = (mid + Math.imul(ah5, bl2)) | 0;
hi = (hi + Math.imul(ah5, bh2)) | 0;
lo = (lo + Math.imul(al4, bl3)) | 0;
mid = (mid + Math.imul(al4, bh3)) | 0;
mid = (mid + Math.imul(ah4, bl3)) | 0;
hi = (hi + Math.imul(ah4, bh3)) | 0;
lo = (lo + Math.imul(al3, bl4)) | 0;
mid = (mid + Math.imul(al3, bh4)) | 0;
mid = (mid + Math.imul(ah3, bl4)) | 0;
hi = (hi + Math.imul(ah3, bh4)) | 0;
lo = (lo + Math.imul(al2, bl5)) | 0;
mid = (mid + Math.imul(al2, bh5)) | 0;
mid = (mid + Math.imul(ah2, bl5)) | 0;
hi = (hi + Math.imul(ah2, bh5)) | 0;
lo = (lo + Math.imul(al1, bl6)) | 0;
mid = (mid + Math.imul(al1, bh6)) | 0;
mid = (mid + Math.imul(ah1, bl6)) | 0;
hi = (hi + Math.imul(ah1, bh6)) | 0;
lo = (lo + Math.imul(al0, bl7)) | 0;
mid = (mid + Math.imul(al0, bh7)) | 0;
mid = (mid + Math.imul(ah0, bl7)) | 0;
hi = (hi + Math.imul(ah0, bh7)) | 0;
var w7 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
c = (((hi + (mid >>> 13)) | 0) + (w7 >>> 26)) | 0;
w7 &= 0x3ffffff;
/* k = 8 */
lo = Math.imul(al8, bl0);
mid = Math.imul(al8, bh0);
mid = (mid + Math.imul(ah8, bl0)) | 0;
hi = Math.imul(ah8, bh0);
lo = (lo + Math.imul(al7, bl1)) | 0;
mid = (mid + Math.imul(al7, bh1)) | 0;
mid = (mid + Math.imul(ah7, bl1)) | 0;
hi = (hi + Math.imul(ah7, bh1)) | 0;
lo = (lo + Math.imul(al6, bl2)) | 0;
mid = (mid + Math.imul(al6, bh2)) | 0;
mid = (mid + Math.imul(ah6, bl2)) | 0;
hi = (hi + Math.imul(ah6, bh2)) | 0;
lo = (lo + Math.imul(al5, bl3)) | 0;
mid = (mid + Math.imul(al5, bh3)) | 0;
mid = (mid + Math.imul(ah5, bl3)) | 0;
hi = (hi + Math.imul(ah5, bh3)) | 0;
lo = (lo + Math.imul(al4, bl4)) | 0;
mid = (mid + Math.imul(al4, bh4)) | 0;
mid = (mid + Math.imul(ah4, bl4)) | 0;
hi = (hi + Math.imul(ah4, bh4)) | 0;
lo = (lo + Math.imul(al3, bl5)) | 0;
mid = (mid + Math.imul(al3, bh5)) | 0;
mid = (mid + Math.imul(ah3, bl5)) | 0;
hi = (hi + Math.imul(ah3, bh5)) | 0;
lo = (lo + Math.imul(al2, bl6)) | 0;
mid = (mid + Math.imul(al2, bh6)) | 0;
mid = (mid + Math.imul(ah2, bl6)) | 0;
hi = (hi + Math.imul(ah2, bh6)) | 0;
lo = (lo + Math.imul(al1, bl7)) | 0;
mid = (mid + Math.imul(al1, bh7)) | 0;
mid = (mid + Math.imul(ah1, bl7)) | 0;
hi = (hi + Math.imul(ah1, bh7)) | 0;
lo = (lo + Math.imul(al0, bl8)) | 0;
mid = (mid + Math.imul(al0, bh8)) | 0;
mid = (mid + Math.imul(ah0, bl8)) | 0;
hi = (hi + Math.imul(ah0, bh8)) | 0;
var w8 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
c = (((hi + (mid >>> 13)) | 0) + (w8 >>> 26)) | 0;
w8 &= 0x3ffffff;
/* k = 9 */
lo = Math.imul(al9, bl0);
mid = Math.imul(al9, bh0);
mid = (mid + Math.imul(ah9, bl0)) | 0;
hi = Math.imul(ah9, bh0);
lo = (lo + Math.imul(al8, bl1)) | 0;
mid = (mid + Math.imul(al8, bh1)) | 0;
mid = (mid + Math.imul(ah8, bl1)) | 0;
hi = (hi + Math.imul(ah8, bh1)) | 0;
lo = (lo + Math.imul(al7, bl2)) | 0;
mid = (mid + Math.imul(al7, bh2)) | 0;
mid = (mid + Math.imul(ah7, bl2)) | 0;
hi = (hi + Math.imul(ah7, bh2)) | 0;
lo = (lo + Math.imul(al6, bl3)) | 0;
mid = (mid + Math.imul(al6, bh3)) | 0;
mid = (mid + Math.imul(ah6, bl3)) | 0;
hi = (hi + Math.imul(ah6, bh3)) | 0;
lo = (lo + Math.imul(al5, bl4)) | 0;
mid = (mid + Math.imul(al5, bh4)) | 0;
mid = (mid + Math.imul(ah5, bl4)) | 0;
hi = (hi + Math.imul(ah5, bh4)) | 0;
lo = (lo + Math.imul(al4, bl5)) | 0;
mid = (mid + Math.imul(al4, bh5)) | 0;
mid = (mid + Math.imul(ah4, bl5)) | 0;
hi = (hi + Math.imul(ah4, bh5)) | 0;
lo = (lo + Math.imul(al3, bl6)) | 0;
mid = (mid + Math.imul(al3, bh6)) | 0;
mid = (mid + Math.imul(ah3, bl6)) | 0;
hi = (hi + Math.imul(ah3, bh6)) | 0;
lo = (lo + Math.imul(al2, bl7)) | 0;
mid = (mid + Math.imul(al2, bh7)) | 0;
mid = (mid + Math.imul(ah2, bl7)) | 0;
hi = (hi + Math.imul(ah2, bh7)) | 0;
lo = (lo + Math.imul(al1, bl8)) | 0;
mid = (mid + Math.imul(al1, bh8)) | 0;
mid = (mid + Math.imul(ah1, bl8)) | 0;
hi = (hi + Math.imul(ah1, bh8)) | 0;
lo = (lo + Math.imul(al0, bl9)) | 0;
mid = (mid + Math.imul(al0, bh9)) | 0;
mid = (mid + Math.imul(ah0, bl9)) | 0;
hi = (hi + Math.imul(ah0, bh9)) | 0;
var w9 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
c = (((hi + (mid >>> 13)) | 0) + (w9 >>> 26)) | 0;
w9 &= 0x3ffffff;
/* k = 10 */
lo = Math.imul(al9, bl1);
mid = Math.imul(al9, bh1);
mid = (mid + Math.imul(ah9, bl1)) | 0;
hi = Math.imul(ah9, bh1);
lo = (lo + Math.imul(al8, bl2)) | 0;
mid = (mid + Math.imul(al8, bh2)) | 0;
mid = (mid + Math.imul(ah8, bl2)) | 0;
hi = (hi + Math.imul(ah8, bh2)) | 0;
lo = (lo + Math.imul(al7, bl3)) | 0;
mid = (mid + Math.imul(al7, bh3)) | 0;
mid = (mid + Math.imul(ah7, bl3)) | 0;
hi = (hi + Math.imul(ah7, bh3)) | 0;
lo = (lo + Math.imul(al6, bl4)) | 0;
mid = (mid + Math.imul(al6, bh4)) | 0;
mid = (mid + Math.imul(ah6, bl4)) | 0;
hi = (hi + Math.imul(ah6, bh4)) | 0;
lo = (lo + Math.imul(al5, bl5)) | 0;
mid = (mid + Math.imul(al5, bh5)) | 0;
mid = (mid + Math.imul(ah5, bl5)) | 0;
hi = (hi + Math.imul(ah5, bh5)) | 0;
lo = (lo + Math.imul(al4, bl6)) | 0;
mid = (mid + Math.imul(al4, bh6)) | 0;
mid = (mid + Math.imul(ah4, bl6)) | 0;
hi = (hi + Math.imul(ah4, bh6)) | 0;
lo = (lo + Math.imul(al3, bl7)) | 0;
mid = (mid + Math.imul(al3, bh7)) | 0;
mid = (mid + Math.imul(ah3, bl7)) | 0;
hi = (hi + Math.imul(ah3, bh7)) | 0;
lo = (lo + Math.imul(al2, bl8)) | 0;
mid = (mid + Math.imul(al2, bh8)) | 0;
mid = (mid + Math.imul(ah2, bl8)) | 0;
hi = (hi + Math.imul(ah2, bh8)) | 0;
lo = (lo + Math.imul(al1, bl9)) | 0;
mid = (mid + Math.imul(al1, bh9)) | 0;
mid = (mid + Math.imul(ah1, bl9)) | 0;
hi = (hi + Math.imul(ah1, bh9)) | 0;
var w10 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
c = (((hi + (mid >>> 13)) | 0) + (w10 >>> 26)) | 0;
w10 &= 0x3ffffff;
/* k = 11 */
lo = Math.imul(al9, bl2);
mid = Math.imul(al9, bh2);
mid = (mid + Math.imul(ah9, bl2)) | 0;
hi = Math.imul(ah9, bh2);
lo = (lo + Math.imul(al8, bl3)) | 0;
mid = (mid + Math.imul(al8, bh3)) | 0;
mid = (mid + Math.imul(ah8, bl3)) | 0;
hi = (hi + Math.imul(ah8, bh3)) | 0;
lo = (lo + Math.imul(al7, bl4)) | 0;
mid = (mid + Math.imul(al7, bh4)) | 0;
mid = (mid + Math.imul(ah7, bl4)) | 0;
hi = (hi + Math.imul(ah7, bh4)) | 0;
lo = (lo + Math.imul(al6, bl5)) | 0;
mid = (mid + Math.imul(al6, bh5)) | 0;
mid = (mid + Math.imul(ah6, bl5)) | 0;
hi = (hi + Math.imul(ah6, bh5)) | 0;
lo = (lo + Math.imul(al5, bl6)) | 0;
mid = (mid + Math.imul(al5, bh6)) | 0;
mid = (mid + Math.imul(ah5, bl6)) | 0;
hi = (hi + Math.imul(ah5, bh6)) | 0;
lo = (lo + Math.imul(al4, bl7)) | 0;
mid = (mid + Math.imul(al4, bh7)) | 0;
mid = (mid + Math.imul(ah4, bl7)) | 0;
hi = (hi + Math.imul(ah4, bh7)) | 0;
lo = (lo + Math.imul(al3, bl8)) | 0;
mid = (mid + Math.imul(al3, bh8)) | 0;
mid = (mid + Math.imul(ah3, bl8)) | 0;
hi = (hi + Math.imul(ah3, bh8)) | 0;
lo = (lo + Math.imul(al2, bl9)) | 0;
mid = (mid + Math.imul(al2, bh9)) | 0;
mid = (mid + Math.imul(ah2, bl9)) | 0;
hi = (hi + Math.imul(ah2, bh9)) | 0;
var w11 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
c = (((hi + (mid >>> 13)) | 0) + (w11 >>> 26)) | 0;
w11 &= 0x3ffffff;
/* k = 12 */
lo = Math.imul(al9, bl3);
mid = Math.imul(al9, bh3);
mid = (mid + Math.imul(ah9, bl3)) | 0;
hi = Math.imul(ah9, bh3);
lo = (lo + Math.imul(al8, bl4)) | 0;
mid = (mid + Math.imul(al8, bh4)) | 0;
mid = (mid + Math.imul(ah8, bl4)) | 0;
hi = (hi + Math.imul(ah8, bh4)) | 0;
lo = (lo + Math.imul(al7, bl5)) | 0;
mid = (mid + Math.imul(al7, bh5)) | 0;
mid = (mid + Math.imul(ah7, bl5)) | 0;
hi = (hi + Math.imul(ah7, bh5)) | 0;
lo = (lo + Math.imul(al6, bl6)) | 0;
mid = (mid + Math.imul(al6, bh6)) | 0;
mid = (mid + Math.imul(ah6, bl6)) | 0;
hi = (hi + Math.imul(ah6, bh6)) | 0;
lo = (lo + Math.imul(al5, bl7)) | 0;
mid = (mid + Math.imul(al5, bh7)) | 0;
mid = (mid + Math.imul(ah5, bl7)) | 0;
hi = (hi + Math.imul(ah5, bh7)) | 0;
lo = (lo + Math.imul(al4, bl8)) | 0;
mid = (mid + Math.imul(al4, bh8)) | 0;
mid = (mid + Math.imul(ah4, bl8)) | 0;
hi = (hi + Math.imul(ah4, bh8)) | 0;
lo = (lo + Math.imul(al3, bl9)) | 0;
mid = (mid + Math.imul(al3, bh9)) | 0;
mid = (mid + Math.imul(ah3, bl9)) | 0;
hi = (hi + Math.imul(ah3, bh9)) | 0;
var w12 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
c = (((hi + (mid >>> 13)) | 0) + (w12 >>> 26)) | 0;
w12 &= 0x3ffffff;
/* k = 13 */
lo = Math.imul(al9, bl4);
mid = Math.imul(al9, bh4);
mid = (mid + Math.imul(ah9, bl4)) | 0;
hi = Math.imul(ah9, bh4);
lo = (lo + Math.imul(al8, bl5)) | 0;
mid = (mid + Math.imul(al8, bh5)) | 0;
mid = (mid + Math.imul(ah8, bl5)) | 0;
hi = (hi + Math.imul(ah8, bh5)) | 0;
lo = (lo + Math.imul(al7, bl6)) | 0;
mid = (mid + Math.imul(al7, bh6)) | 0;
mid = (mid + Math.imul(ah7, bl6)) | 0;
hi = (hi + Math.imul(ah7, bh6)) | 0;
lo = (lo + Math.imul(al6, bl7)) | 0;
mid = (mid + Math.imul(al6, bh7)) | 0;
mid = (mid + Math.imul(ah6, bl7)) | 0;
hi = (hi + Math.imul(ah6, bh7)) | 0;
lo = (lo + Math.imul(al5, bl8)) | 0;
mid = (mid + Math.imul(al5, bh8)) | 0;
mid = (mid + Math.imul(ah5, bl8)) | 0;
hi = (hi + Math.imul(ah5, bh8)) | 0;
lo = (lo + Math.imul(al4, bl9)) | 0;
mid = (mid + Math.imul(al4, bh9)) | 0;
mid = (mid + Math.imul(ah4, bl9)) | 0;
hi = (hi + Math.imul(ah4, bh9)) | 0;
var w13 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
c = (((hi + (mid >>> 13)) | 0) + (w13 >>> 26)) | 0;
w13 &= 0x3ffffff;
/* k = 14 */
lo = Math.imul(al9, bl5);
mid = Math.imul(al9, bh5);
mid = (mid + Math.imul(ah9, bl5)) | 0;
hi = Math.imul(ah9, bh5);
lo = (lo + Math.imul(al8, bl6)) | 0;
mid = (mid + Math.imul(al8, bh6)) | 0;
mid = (mid + Math.imul(ah8, bl6)) | 0;
hi = (hi + Math.imul(ah8, bh6)) | 0;
lo = (lo + Math.imul(al7, bl7)) | 0;
mid = (mid + Math.imul(al7, bh7)) | 0;
mid = (mid + Math.imul(ah7, bl7)) | 0;
hi = (hi + Math.imul(ah7, bh7)) | 0;
lo = (lo + Math.imul(al6, bl8)) | 0;
mid = (mid + Math.imul(al6, bh8)) | 0;
mid = (mid + Math.imul(ah6, bl8)) | 0;
hi = (hi + Math.imul(ah6, bh8)) | 0;
lo = (lo + Math.imul(al5, bl9)) | 0;
mid = (mid + Math.imul(al5, bh9)) | 0;
mid = (mid + Math.imul(ah5, bl9)) | 0;
hi = (hi + Math.imul(ah5, bh9)) | 0;
var w14 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
c = (((hi + (mid >>> 13)) | 0) + (w14 >>> 26)) | 0;
w14 &= 0x3ffffff;
/* k = 15 */
lo = Math.imul(al9, bl6);
mid = Math.imul(al9, bh6);
mid = (mid + Math.imul(ah9, bl6)) | 0;
hi = Math.imul(ah9, bh6);
lo = (lo + Math.imul(al8, bl7)) | 0;
mid = (mid + Math.imul(al8, bh7)) | 0;
mid = (mid + Math.imul(ah8, bl7)) | 0;
hi = (hi + Math.imul(ah8, bh7)) | 0;
lo = (lo + Math.imul(al7, bl8)) | 0;
mid = (mid + Math.imul(al7, bh8)) | 0;
mid = (mid + Math.imul(ah7, bl8)) | 0;
hi = (hi + Math.imul(ah7, bh8)) | 0;
lo = (lo + Math.imul(al6, bl9)) | 0;
mid = (mid + Math.imul(al6, bh9)) | 0;
mid = (mid + Math.imul(ah6, bl9)) | 0;
hi = (hi + Math.imul(ah6, bh9)) | 0;
var w15 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
c = (((hi + (mid >>> 13)) | 0) + (w15 >>> 26)) | 0;
w15 &= 0x3ffffff;
/* k = 16 */
lo = Math.imul(al9, bl7);
mid = Math.imul(al9, bh7);
mid = (mid + Math.imul(ah9, bl7)) | 0;
hi = Math.imul(ah9, bh7);
lo = (lo + Math.imul(al8, bl8)) | 0;
mid = (mid + Math.imul(al8, bh8)) | 0;
mid = (mid + Math.imul(ah8, bl8)) | 0;
hi = (hi + Math.imul(ah8, bh8)) | 0;
lo = (lo + Math.imul(al7, bl9)) | 0;
mid = (mid + Math.imul(al7, bh9)) | 0;
mid = (mid + Math.imul(ah7, bl9)) | 0;
hi = (hi + Math.imul(ah7, bh9)) | 0;
var w16 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
c = (((hi + (mid >>> 13)) | 0) + (w16 >>> 26)) | 0;
w16 &= 0x3ffffff;
/* k = 17 */
lo = Math.imul(al9, bl8);
mid = Math.imul(al9, bh8);
mid = (mid + Math.imul(ah9, bl8)) | 0;
hi = Math.imul(ah9, bh8);
lo = (lo + Math.imul(al8, bl9)) | 0;
mid = (mid + Math.imul(al8, bh9)) | 0;
mid = (mid + Math.imul(ah8, bl9)) | 0;
hi = (hi + Math.imul(ah8, bh9)) | 0;
var w17 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
c = (((hi + (mid >>> 13)) | 0) + (w17 >>> 26)) | 0;
w17 &= 0x3ffffff;
/* k = 18 */
lo = Math.imul(al9, bl9);
mid = Math.imul(al9, bh9);
mid = (mid + Math.imul(ah9, bl9)) | 0;
hi = Math.imul(ah9, bh9);
var w18 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
c = (((hi + (mid >>> 13)) | 0) + (w18 >>> 26)) | 0;
w18 &= 0x3ffffff;
o[0] = w0;
o[1] = w1;
o[2] = w2;
o[3] = w3;
o[4] = w4;
o[5] = w5;
o[6] = w6;
o[7] = w7;
o[8] = w8;
o[9] = w9;
o[10] = w10;
o[11] = w11;
o[12] = w12;
o[13] = w13;
o[14] = w14;
o[15] = w15;
o[16] = w16;
o[17] = w17;
o[18] = w18;
if (c !== 0) {
o[19] = c;
out.length++;
}
return out;
};
// Polyfill comb
if (!Math.imul) {
comb10MulTo = smallMulTo;
}
function bigMulTo (self, num, out) {
out.negative = num.negative ^ self.negative;
out.length = self.length + num.length;
var carry = 0;
var hncarry = 0;
for (var k = 0; k < out.length - 1; k++) {
// Sum all words with the same `i + j = k` and accumulate `ncarry`,
// note that ncarry could be >= 0x3ffffff
var ncarry = hncarry;
hncarry = 0;
var rword = carry & 0x3ffffff;
var maxJ = Math.min(k, num.length - 1);
for (var j = Math.max(0, k - self.length + 1); j <= maxJ; j++) {
var i = k - j;
var a = self.words[i] | 0;
var b = num.words[j] | 0;
var r = a * b;
var lo = r & 0x3ffffff;
ncarry = (ncarry + ((r / 0x4000000) | 0)) | 0;
lo = (lo + rword) | 0;
rword = lo & 0x3ffffff;
ncarry = (ncarry + (lo >>> 26)) | 0;
hncarry += ncarry >>> 26;
ncarry &= 0x3ffffff;
}
out.words[k] = rword;
carry = ncarry;
ncarry = hncarry;
}
if (carry !== 0) {
out.words[k] = carry;
} else {
out.length--;
}
return out.strip();
}
function jumboMulTo (self, num, out) {
var fftm = new FFTM();
return fftm.mulp(self, num, out);
}
BN.prototype.mulTo = function mulTo (num, out) {
var res;
var len = this.length + num.length;
if (this.length === 10 && num.length === 10) {
res = comb10MulTo(this, num, out);
} else if (len < 63) {
res = smallMulTo(this, num, out);
} else if (len < 1024) {
res = bigMulTo(this, num, out);
} else {
res = jumboMulTo(this, num, out);
}
return res;
};
// Cooley-Tukey algorithm for FFT
// slightly revisited to rely on looping instead of recursion
function FFTM (x, y) {
this.x = x;
this.y = y;
}
FFTM.prototype.makeRBT = function makeRBT (N) {
var t = new Array(N);
var l = BN.prototype._countBits(N) - 1;
for (var i = 0; i < N; i++) {
t[i] = this.revBin(i, l, N);
}
return t;
};
// Returns binary-reversed representation of `x`
FFTM.prototype.revBin = function revBin (x, l, N) {
if (x === 0 || x === N - 1) return x;
var rb = 0;
for (var i = 0; i < l; i++) {
rb |= (x & 1) << (l - i - 1);
x >>= 1;
}
return rb;
};
// Performs "tweedling" phase, therefore 'emulating'
// behaviour of the recursive algorithm
FFTM.prototype.permute = function permute (rbt, rws, iws, rtws, itws, N) {
for (var i = 0; i < N; i++) {
rtws[i] = rws[rbt[i]];
itws[i] = iws[rbt[i]];
}
};
FFTM.prototype.transform = function transform (rws, iws, rtws, itws, N, rbt) {
this.permute(rbt, rws, iws, rtws, itws, N);
for (var s = 1; s < N; s <<= 1) {
var l = s << 1;
var rtwdf = Math.cos(2 * Math.PI / l);
var itwdf = Math.sin(2 * Math.PI / l);
for (var p = 0; p < N; p += l) {
var rtwdf_ = rtwdf;
var itwdf_ = itwdf;
for (var j = 0; j < s; j++) {
var re = rtws[p + j];
var ie = itws[p + j];
var ro = rtws[p + j + s];
var io = itws[p + j + s];
var rx = rtwdf_ * ro - itwdf_ * io;
io = rtwdf_ * io + itwdf_ * ro;
ro = rx;
rtws[p + j] = re + ro;
itws[p + j] = ie + io;
rtws[p + j + s] = re - ro;
itws[p + j + s] = ie - io;
/* jshint maxdepth : false */
if (j !== l) {
rx = rtwdf * rtwdf_ - itwdf * itwdf_;
itwdf_ = rtwdf * itwdf_ + itwdf * rtwdf_;
rtwdf_ = rx;
}
}
}
}
};
FFTM.prototype.guessLen13b = function guessLen13b (n, m) {
var N = Math.max(m, n) | 1;
var odd = N & 1;
var i = 0;
for (N = N / 2 | 0; N; N = N >>> 1) {
i++;
}
return 1 << i + 1 + odd;
};
FFTM.prototype.conjugate = function conjugate (rws, iws, N) {
if (N <= 1) return;
for (var i = 0; i < N / 2; i++) {
var t = rws[i];
rws[i] = rws[N - i - 1];
rws[N - i - 1] = t;
t = iws[i];
iws[i] = -iws[N - i - 1];
iws[N - i - 1] = -t;
}
};
FFTM.prototype.normalize13b = function normalize13b (ws, N) {
var carry = 0;
for (var i = 0; i < N / 2; i++) {
var w = Math.round(ws[2 * i + 1] / N) * 0x2000 +
Math.round(ws[2 * i] / N) +
carry;
ws[i] = w & 0x3ffffff;
if (w < 0x4000000) {
carry = 0;
} else {
carry = w / 0x4000000 | 0;
}
}
return ws;
};
FFTM.prototype.convert13b = function convert13b (ws, len, rws, N) {
var carry = 0;
for (var i = 0; i < len; i++) {
carry = carry + (ws[i] | 0);
rws[2 * i] = carry & 0x1fff; carry = carry >>> 13;
rws[2 * i + 1] = carry & 0x1fff; carry = carry >>> 13;
}
// Pad with zeroes
for (i = 2 * len; i < N; ++i) {
rws[i] = 0;
}
assert(carry === 0);
assert((carry & ~0x1fff) === 0);
};
FFTM.prototype.stub = function stub (N) {
var ph = new Array(N);
for (var i = 0; i < N; i++) {
ph[i] = 0;
}
return ph;
};
FFTM.prototype.mulp = function mulp (x, y, out) {
var N = 2 * this.guessLen13b(x.length, y.length);
var rbt = this.makeRBT(N);
var _ = this.stub(N);
var rws = new Array(N);
var rwst = new Array(N);
var iwst = new Array(N);
var nrws = new Array(N);
var nrwst = new Array(N);
var niwst = new Array(N);
var rmws = out.words;
rmws.length = N;
this.convert13b(x.words, x.length, rws, N);
this.convert13b(y.words, y.length, nrws, N);
this.transform(rws, _, rwst, iwst, N, rbt);
this.transform(nrws, _, nrwst, niwst, N, rbt);
for (var i = 0; i < N; i++) {
var rx = rwst[i] * nrwst[i] - iwst[i] * niwst[i];
iwst[i] = rwst[i] * niwst[i] + iwst[i] * nrwst[i];
rwst[i] = rx;
}
this.conjugate(rwst, iwst, N);
this.transform(rwst, iwst, rmws, _, N, rbt);
this.conjugate(rmws, _, N);
this.normalize13b(rmws, N);
out.negative = x.negative ^ y.negative;
out.length = x.length + y.length;
return out.strip();
};
// Multiply `this` by `num`
BN.prototype.mul = function mul (num) {
var out = new BN(null);
out.words = new Array(this.length + num.length);
return this.mulTo(num, out);
};
// Multiply employing FFT
BN.prototype.mulf = function mulf (num) {
var out = new BN(null);
out.words = new Array(this.length + num.length);
return jumboMulTo(this, num, out);
};
// In-place Multiplication
BN.prototype.imul = function imul (num) {
return this.clone().mulTo(num, this);
};
BN.prototype.imuln = function imuln (num) {
assert(typeof num === 'number');
assert(num < 0x4000000);
// Carry
var carry = 0;
for (var i = 0; i < this.length; i++) {
var w = (this.words[i] | 0) * num;
var lo = (w & 0x3ffffff) + (carry & 0x3ffffff);
carry >>= 26;
carry += (w / 0x4000000) | 0;
// NOTE: lo is 27bit maximum
carry += lo >>> 26;
this.words[i] = lo & 0x3ffffff;
}
if (carry !== 0) {
this.words[i] = carry;
this.length++;
}
return this;
};
BN.prototype.muln = function muln (num) {
return this.clone().imuln(num);
};
// `this` * `this`
BN.prototype.sqr = function sqr () {
return this.mul(this);
};
// `this` * `this` in-place
BN.prototype.isqr = function isqr () {
return this.imul(this.clone());
};
// Math.pow(`this`, `num`)
BN.prototype.pow = function pow (num) {
var w = toBitArray(num);
if (w.length === 0) return new BN(1);
// Skip leading zeroes
var res = this;
for (var i = 0; i < w.length; i++, res = res.sqr()) {
if (w[i] !== 0) break;
}
if (++i < w.length) {
for (var q = res.sqr(); i < w.length; i++, q = q.sqr()) {
if (w[i] === 0) continue;
res = res.mul(q);
}
}
return res;
};
// Shift-left in-place
BN.prototype.iushln = function iushln (bits) {
assert(typeof bits === 'number' && bits >= 0);
var r = bits % 26;
var s = (bits - r) / 26;
var carryMask = (0x3ffffff >>> (26 - r)) << (26 - r);
var i;
if (r !== 0) {
var carry = 0;
for (i = 0; i < this.length; i++) {
var newCarry = this.words[i] & carryMask;
var c = ((this.words[i] | 0) - newCarry) << r;
this.words[i] = c | carry;
carry = newCarry >>> (26 - r);
}
if (carry) {
this.words[i] = carry;
this.length++;
}
}
if (s !== 0) {
for (i = this.length - 1; i >= 0; i--) {
this.words[i + s] = this.words[i];
}
for (i = 0; i < s; i++) {
this.words[i] = 0;
}
this.length += s;
}
return this.strip();
};
BN.prototype.ishln = function ishln (bits) {
// TODO(indutny): implement me
assert(this.negative === 0);
return this.iushln(bits);
};
// Shift-right in-place
// NOTE: `hint` is a lowest bit before trailing zeroes
// NOTE: if `extended` is present - it will be filled with destroyed bits
BN.prototype.iushrn = function iushrn (bits, hint, extended) {
assert(typeof bits === 'number' && bits >= 0);
var h;
if (hint) {
h = (hint - (hint % 26)) / 26;
} else {
h = 0;
}
var r = bits % 26;
var s = Math.min((bits - r) / 26, this.length);
var mask = 0x3ffffff ^ ((0x3ffffff >>> r) << r);
var maskedWords = extended;
h -= s;
h = Math.max(0, h);
// Extended mode, copy masked part
if (maskedWords) {
for (var i = 0; i < s; i++) {
maskedWords.words[i] = this.words[i];
}
maskedWords.length = s;
}
if (s === 0) {
// No-op, we should not move anything at all
} else if (this.length > s) {
this.length -= s;
for (i = 0; i < this.length; i++) {
this.words[i] = this.words[i + s];
}
} else {
this.words[0] = 0;
this.length = 1;
}
var carry = 0;
for (i = this.length - 1; i >= 0 && (carry !== 0 || i >= h); i--) {
var word = this.words[i] | 0;
this.words[i] = (carry << (26 - r)) | (word >>> r);
carry = word & mask;
}
// Push carried bits as a mask
if (maskedWords && carry !== 0) {
maskedWords.words[maskedWords.length++] = carry;
}
if (this.length === 0) {
this.words[0] = 0;
this.length = 1;
}
return this.strip();
};
BN.prototype.ishrn = function ishrn (bits, hint, extended) {
// TODO(indutny): implement me
assert(this.negative === 0);
return this.iushrn(bits, hint, extended);
};
// Shift-left
BN.prototype.shln = function shln (bits) {
return this.clone().ishln(bits);
};
BN.prototype.ushln = function ushln (bits) {
return this.clone().iushln(bits);
};
// Shift-right
BN.prototype.shrn = function shrn (bits) {
return this.clone().ishrn(bits);
};
BN.prototype.ushrn = function ushrn (bits) {
return this.clone().iushrn(bits);
};
// Test if n bit is set
BN.prototype.testn = function testn (bit) {
assert(typeof bit === 'number' && bit >= 0);
var r = bit % 26;
var s = (bit - r) / 26;
var q = 1 << r;
// Fast case: bit is much higher than all existing words
if (this.length <= s) return false;
// Check bit and return
var w = this.words[s];
return !!(w & q);
};
// Return only lowers bits of number (in-place)
BN.prototype.imaskn = function imaskn (bits) {
assert(typeof bits === 'number' && bits >= 0);
var r = bits % 26;
var s = (bits - r) / 26;
assert(this.negative === 0, 'imaskn works only with positive numbers');
if (this.length <= s) {
return this;
}
if (r !== 0) {
s++;
}
this.length = Math.min(s, this.length);
if (r !== 0) {
var mask = 0x3ffffff ^ ((0x3ffffff >>> r) << r);
this.words[this.length - 1] &= mask;
}
return this.strip();
};
// Return only lowers bits of number
BN.prototype.maskn = function maskn (bits) {
return this.clone().imaskn(bits);
};
// Add plain number `num` to `this`
BN.prototype.iaddn = function iaddn (num) {
assert(typeof num === 'number');
assert(num < 0x4000000);
if (num < 0) return this.isubn(-num);
// Possible sign change
if (this.negative !== 0) {
if (this.length === 1 && (this.words[0] | 0) < num) {
this.words[0] = num - (this.words[0] | 0);
this.negative = 0;
return this;
}
this.negative = 0;
this.isubn(num);
this.negative = 1;
return this;
}
// Add without checks
return this._iaddn(num);
};
BN.prototype._iaddn = function _iaddn (num) {
this.words[0] += num;
// Carry
for (var i = 0; i < this.length && this.words[i] >= 0x4000000; i++) {
this.words[i] -= 0x4000000;
if (i === this.length - 1) {
this.words[i + 1] = 1;
} else {
this.words[i + 1]++;
}
}
this.length = Math.max(this.length, i + 1);
return this;
};
// Subtract plain number `num` from `this`
BN.prototype.isubn = function isubn (num) {
assert(typeof num === 'number');
assert(num < 0x4000000);
if (num < 0) return this.iaddn(-num);
if (this.negative !== 0) {
this.negative = 0;
this.iaddn(num);
this.negative = 1;
return this;
}
this.words[0] -= num;
if (this.length === 1 && this.words[0] < 0) {
this.words[0] = -this.words[0];
this.negative = 1;
} else {
// Carry
for (var i = 0; i < this.length && this.words[i] < 0; i++) {
this.words[i] += 0x4000000;
this.words[i + 1] -= 1;
}
}
return this.strip();
};
BN.prototype.addn = function addn (num) {
return this.clone().iaddn(num);
};
BN.prototype.subn = function subn (num) {
return this.clone().isubn(num);
};
BN.prototype.iabs = function iabs () {
this.negative = 0;
return this;
};
BN.prototype.abs = function abs () {
return this.clone().iabs();
};
BN.prototype._ishlnsubmul = function _ishlnsubmul (num, mul, shift) {
var len = num.length + shift;
var i;
this._expand(len);
var w;
var carry = 0;
for (i = 0; i < num.length; i++) {
w = (this.words[i + shift] | 0) + carry;
var right = (num.words[i] | 0) * mul;
w -= right & 0x3ffffff;
carry = (w >> 26) - ((right / 0x4000000) | 0);
this.words[i + shift] = w & 0x3ffffff;
}
for (; i < this.length - shift; i++) {
w = (this.words[i + shift] | 0) + carry;
carry = w >> 26;
this.words[i + shift] = w & 0x3ffffff;
}
if (carry === 0) return this.strip();
// Subtraction overflow
assert(carry === -1);
carry = 0;
for (i = 0; i < this.length; i++) {
w = -(this.words[i] | 0) + carry;
carry = w >> 26;
this.words[i] = w & 0x3ffffff;
}
this.negative = 1;
return this.strip();
};
BN.prototype._wordDiv = function _wordDiv (num, mode) {
var shift = this.length - num.length;
var a = this.clone();
var b = num;
// Normalize
var bhi = b.words[b.length - 1] | 0;
var bhiBits = this._countBits(bhi);
shift = 26 - bhiBits;
if (shift !== 0) {
b = b.ushln(shift);
a.iushln(shift);
bhi = b.words[b.length - 1] | 0;
}
// Initialize quotient
var m = a.length - b.length;
var q;
if (mode !== 'mod') {
q = new BN(null);
q.length = m + 1;
q.words = new Array(q.length);
for (var i = 0; i < q.length; i++) {
q.words[i] = 0;
}
}
var diff = a.clone()._ishlnsubmul(b, 1, m);
if (diff.negative === 0) {
a = diff;
if (q) {
q.words[m] = 1;
}
}
for (var j = m - 1; j >= 0; j--) {
var qj = (a.words[b.length + j] | 0) * 0x4000000 +
(a.words[b.length + j - 1] | 0);
// NOTE: (qj / bhi) is (0x3ffffff * 0x4000000 + 0x3ffffff) / 0x2000000 max
// (0x7ffffff)
qj = Math.min((qj / bhi) | 0, 0x3ffffff);
a._ishlnsubmul(b, qj, j);
while (a.negative !== 0) {
qj--;
a.negative = 0;
a._ishlnsubmul(b, 1, j);
if (!a.isZero()) {
a.negative ^= 1;
}
}
if (q) {
q.words[j] = qj;
}
}
if (q) {
q.strip();
}
a.strip();
// Denormalize
if (mode !== 'div' && shift !== 0) {
a.iushrn(shift);
}
return {
div: q || null,
mod: a
};
};
// NOTE: 1) `mode` can be set to `mod` to request mod only,
// to `div` to request div only, or be absent to
// request both div & mod
// 2) `positive` is true if unsigned mod is requested
BN.prototype.divmod = function divmod (num, mode, positive) {
assert(!num.isZero());
if (this.isZero()) {
return {
div: new BN(0),
mod: new BN(0)
};
}
var div, mod, res;
if (this.negative !== 0 && num.negative === 0) {
res = this.neg().divmod(num, mode);
if (mode !== 'mod') {
div = res.div.neg();
}
if (mode !== 'div') {
mod = res.mod.neg();
if (positive && mod.negative !== 0) {
mod.iadd(num);
}
}
return {
div: div,
mod: mod
};
}
if (this.negative === 0 && num.negative !== 0) {
res = this.divmod(num.neg(), mode);
if (mode !== 'mod') {
div = res.div.neg();
}
return {
div: div,
mod: res.mod
};
}
if ((this.negative & num.negative) !== 0) {
res = this.neg().divmod(num.neg(), mode);
if (mode !== 'div') {
mod = res.mod.neg();
if (positive && mod.negative !== 0) {
mod.isub(num);
}
}
return {
div: res.div,
mod: mod
};
}
// Both numbers are positive at this point
// Strip both numbers to approximate shift value
if (num.length > this.length || this.cmp(num) < 0) {
return {
div: new BN(0),
mod: this
};
}
// Very short reduction
if (num.length === 1) {
if (mode === 'div') {
return {
div: this.divn(num.words[0]),
mod: null
};
}
if (mode === 'mod') {
return {
div: null,
mod: new BN(this.modn(num.words[0]))
};
}
return {
div: this.divn(num.words[0]),
mod: new BN(this.modn(num.words[0]))
};
}
return this._wordDiv(num, mode);
};
// Find `this` / `num`
BN.prototype.div = function div (num) {
return this.divmod(num, 'div', false).div;
};
// Find `this` % `num`
BN.prototype.mod = function mod (num) {
return this.divmod(num, 'mod', false).mod;
};
BN.prototype.umod = function umod (num) {
return this.divmod(num, 'mod', true).mod;
};
// Find Round(`this` / `num`)
BN.prototype.divRound = function divRound (num) {
var dm = this.divmod(num);
// Fast case - exact division
if (dm.mod.isZero()) return dm.div;
var mod = dm.div.negative !== 0 ? dm.mod.isub(num) : dm.mod;
var half = num.ushrn(1);
var r2 = num.andln(1);
var cmp = mod.cmp(half);
// Round down
if (cmp < 0 || r2 === 1 && cmp === 0) return dm.div;
// Round up
return dm.div.negative !== 0 ? dm.div.isubn(1) : dm.div.iaddn(1);
};
BN.prototype.modn = function modn (num) {
assert(num <= 0x3ffffff);
var p = (1 << 26) % num;
var acc = 0;
for (var i = this.length - 1; i >= 0; i--) {
acc = (p * acc + (this.words[i] | 0)) % num;
}
return acc;
};
// In-place division by number
BN.prototype.idivn = function idivn (num) {
assert(num <= 0x3ffffff);
var carry = 0;
for (var i = this.length - 1; i >= 0; i--) {
var w = (this.words[i] | 0) + carry * 0x4000000;
this.words[i] = (w / num) | 0;
carry = w % num;
}
return this.strip();
};
BN.prototype.divn = function divn (num) {
return this.clone().idivn(num);
};
BN.prototype.egcd = function egcd (p) {
assert(p.negative === 0);
assert(!p.isZero());
var x = this;
var y = p.clone();
if (x.negative !== 0) {
x = x.umod(p);
} else {
x = x.clone();
}
// A * x + B * y = x
var A = new BN(1);
var B = new BN(0);
// C * x + D * y = y
var C = new BN(0);
var D = new BN(1);
var g = 0;
while (x.isEven() && y.isEven()) {
x.iushrn(1);
y.iushrn(1);
++g;
}
var yp = y.clone();
var xp = x.clone();
while (!x.isZero()) {
for (var i = 0, im = 1; (x.words[0] & im) === 0 && i < 26; ++i, im <<= 1);
if (i > 0) {
x.iushrn(i);
while (i-- > 0) {
if (A.isOdd() || B.isOdd()) {
A.iadd(yp);
B.isub(xp);
}
A.iushrn(1);
B.iushrn(1);
}
}
for (var j = 0, jm = 1; (y.words[0] & jm) === 0 && j < 26; ++j, jm <<= 1);
if (j > 0) {
y.iushrn(j);
while (j-- > 0) {
if (C.isOdd() || D.isOdd()) {
C.iadd(yp);
D.isub(xp);
}
C.iushrn(1);
D.iushrn(1);
}
}
if (x.cmp(y) >= 0) {
x.isub(y);
A.isub(C);
B.isub(D);
} else {
y.isub(x);
C.isub(A);
D.isub(B);
}
}
return {
a: C,
b: D,
gcd: y.iushln(g)
};
};
// This is reduced incarnation of the binary EEA
// above, designated to invert members of the
// _prime_ fields F(p) at a maximal speed
BN.prototype._invmp = function _invmp (p) {
assert(p.negative === 0);
assert(!p.isZero());
var a = this;
var b = p.clone();
if (a.negative !== 0) {
a = a.umod(p);
} else {
a = a.clone();
}
var x1 = new BN(1);
var x2 = new BN(0);
var delta = b.clone();
while (a.cmpn(1) > 0 && b.cmpn(1) > 0) {
for (var i = 0, im = 1; (a.words[0] & im) === 0 && i < 26; ++i, im <<= 1);
if (i > 0) {
a.iushrn(i);
while (i-- > 0) {
if (x1.isOdd()) {
x1.iadd(delta);
}
x1.iushrn(1);
}
}
for (var j = 0, jm = 1; (b.words[0] & jm) === 0 && j < 26; ++j, jm <<= 1);
if (j > 0) {
b.iushrn(j);
while (j-- > 0) {
if (x2.isOdd()) {
x2.iadd(delta);
}
x2.iushrn(1);
}
}
if (a.cmp(b) >= 0) {
a.isub(b);
x1.isub(x2);
} else {
b.isub(a);
x2.isub(x1);
}
}
var res;
if (a.cmpn(1) === 0) {
res = x1;
} else {
res = x2;
}
if (res.cmpn(0) < 0) {
res.iadd(p);
}
return res;
};
BN.prototype.gcd = function gcd (num) {
if (this.isZero()) return num.abs();
if (num.isZero()) return this.abs();
var a = this.clone();
var b = num.clone();
a.negative = 0;
b.negative = 0;
// Remove common factor of two
for (var shift = 0; a.isEven() && b.isEven(); shift++) {
a.iushrn(1);
b.iushrn(1);
}
do {
while (a.isEven()) {
a.iushrn(1);
}
while (b.isEven()) {
b.iushrn(1);
}
var r = a.cmp(b);
if (r < 0) {
// Swap `a` and `b` to make `a` always bigger than `b`
var t = a;
a = b;
b = t;
} else if (r === 0 || b.cmpn(1) === 0) {
break;
}
a.isub(b);
} while (true);
return b.iushln(shift);
};
// Invert number in the field F(num)
BN.prototype.invm = function invm (num) {
return this.egcd(num).a.umod(num);
};
BN.prototype.isEven = function isEven () {
return (this.words[0] & 1) === 0;
};
BN.prototype.isOdd = function isOdd () {
return (this.words[0] & 1) === 1;
};
// And first word and num
BN.prototype.andln = function andln (num) {
return this.words[0] & num;
};
// Increment at the bit position in-line
BN.prototype.bincn = function bincn (bit) {
assert(typeof bit === 'number');
var r = bit % 26;
var s = (bit - r) / 26;
var q = 1 << r;
// Fast case: bit is much higher than all existing words
if (this.length <= s) {
this._expand(s + 1);
this.words[s] |= q;
return this;
}
// Add bit and propagate, if needed
var carry = q;
for (var i = s; carry !== 0 && i < this.length; i++) {
var w = this.words[i] | 0;
w += carry;
carry = w >>> 26;
w &= 0x3ffffff;
this.words[i] = w;
}
if (carry !== 0) {
this.words[i] = carry;
this.length++;
}
return this;
};
BN.prototype.isZero = function isZero () {
return this.length === 1 && this.words[0] === 0;
};
BN.prototype.cmpn = function cmpn (num) {
var negative = num < 0;
if (this.negative !== 0 && !negative) return -1;
if (this.negative === 0 && negative) return 1;
this.strip();
var res;
if (this.length > 1) {
res = 1;
} else {
if (negative) {
num = -num;
}
assert(num <= 0x3ffffff, 'Number is too big');
var w = this.words[0] | 0;
res = w === num ? 0 : w < num ? -1 : 1;
}
if (this.negative !== 0) return -res | 0;
return res;
};
// Compare two numbers and return:
// 1 - if `this` > `num`
// 0 - if `this` == `num`
// -1 - if `this` < `num`
BN.prototype.cmp = function cmp (num) {
if (this.negative !== 0 && num.negative === 0) return -1;
if (this.negative === 0 && num.negative !== 0) return 1;
var res = this.ucmp(num);
if (this.negative !== 0) return -res | 0;
return res;
};
// Unsigned comparison
BN.prototype.ucmp = function ucmp (num) {
// At this point both numbers have the same sign
if (this.length > num.length) return 1;
if (this.length < num.length) return -1;
var res = 0;
for (var i = this.length - 1; i >= 0; i--) {
var a = this.words[i] | 0;
var b = num.words[i] | 0;
if (a === b) continue;
if (a < b) {
res = -1;
} else if (a > b) {
res = 1;
}
break;
}
return res;
};
BN.prototype.gtn = function gtn (num) {
return this.cmpn(num) === 1;
};
BN.prototype.gt = function gt (num) {
return this.cmp(num) === 1;
};
BN.prototype.gten = function gten (num) {
return this.cmpn(num) >= 0;
};
BN.prototype.gte = function gte (num) {
return this.cmp(num) >= 0;
};
BN.prototype.ltn = function ltn (num) {
return this.cmpn(num) === -1;
};
BN.prototype.lt = function lt (num) {
return this.cmp(num) === -1;
};
BN.prototype.lten = function lten (num) {
return this.cmpn(num) <= 0;
};
BN.prototype.lte = function lte (num) {
return this.cmp(num) <= 0;
};
BN.prototype.eqn = function eqn (num) {
return this.cmpn(num) === 0;
};
BN.prototype.eq = function eq (num) {
return this.cmp(num) === 0;
};
//
// A reduce context, could be using montgomery or something better, depending
// on the `m` itself.
//
BN.red = function red (num) {
return new Red(num);
};
BN.prototype.toRed = function toRed (ctx) {
assert(!this.red, 'Already a number in reduction context');
assert(this.negative === 0, 'red works only with positives');
return ctx.convertTo(this)._forceRed(ctx);
};
BN.prototype.fromRed = function fromRed () {
assert(this.red, 'fromRed works only with numbers in reduction context');
return this.red.convertFrom(this);
};
BN.prototype._forceRed = function _forceRed (ctx) {
this.red = ctx;
return this;
};
BN.prototype.forceRed = function forceRed (ctx) {
assert(!this.red, 'Already a number in reduction context');
return this._forceRed(ctx);
};
BN.prototype.redAdd = function redAdd (num) {
assert(this.red, 'redAdd works only with red numbers');
return this.red.add(this, num);
};
BN.prototype.redIAdd = function redIAdd (num) {
assert(this.red, 'redIAdd works only with red numbers');
return this.red.iadd(this, num);
};
BN.prototype.redSub = function redSub (num) {
assert(this.red, 'redSub works only with red numbers');
return this.red.sub(this, num);
};
BN.prototype.redISub = function redISub (num) {
assert(this.red, 'redISub works only with red numbers');
return this.red.isub(this, num);
};
BN.prototype.redShl = function redShl (num) {
assert(this.red, 'redShl works only with red numbers');
return this.red.shl(this, num);
};
BN.prototype.redMul = function redMul (num) {
assert(this.red, 'redMul works only with red numbers');
this.red._verify2(this, num);
return this.red.mul(this, num);
};
BN.prototype.redIMul = function redIMul (num) {
assert(this.red, 'redMul works only with red numbers');
this.red._verify2(this, num);
return this.red.imul(this, num);
};
BN.prototype.redSqr = function redSqr () {
assert(this.red, 'redSqr works only with red numbers');
this.red._verify1(this);
return this.red.sqr(this);
};
BN.prototype.redISqr = function redISqr () {
assert(this.red, 'redISqr works only with red numbers');
this.red._verify1(this);
return this.red.isqr(this);
};
// Square root over p
BN.prototype.redSqrt = function redSqrt () {
assert(this.red, 'redSqrt works only with red numbers');
this.red._verify1(this);
return this.red.sqrt(this);
};
BN.prototype.redInvm = function redInvm () {
assert(this.red, 'redInvm works only with red numbers');
this.red._verify1(this);
return this.red.invm(this);
};
// Return negative clone of `this` % `red modulo`
BN.prototype.redNeg = function redNeg () {
assert(this.red, 'redNeg works only with red numbers');
this.red._verify1(this);
return this.red.neg(this);
};
BN.prototype.redPow = function redPow (num) {
assert(this.red && !num.red, 'redPow(normalNum)');
this.red._verify1(this);
return this.red.pow(this, num);
};
// Prime numbers with efficient reduction
var primes = {
k256: null,
p224: null,
p192: null,
p25519: null
};
// Pseudo-Mersenne prime
function MPrime (name, p) {
// P = 2 ^ N - K
this.name = name;
this.p = new BN(p, 16);
this.n = this.p.bitLength();
this.k = new BN(1).iushln(this.n).isub(this.p);
this.tmp = this._tmp();
}
MPrime.prototype._tmp = function _tmp () {
var tmp = new BN(null);
tmp.words = new Array(Math.ceil(this.n / 13));
return tmp;
};
MPrime.prototype.ireduce = function ireduce (num) {
// Assumes that `num` is less than `P^2`
// num = HI * (2 ^ N - K) + HI * K + LO = HI * K + LO (mod P)
var r = num;
var rlen;
do {
this.split(r, this.tmp);
r = this.imulK(r);
r = r.iadd(this.tmp);
rlen = r.bitLength();
} while (rlen > this.n);
var cmp = rlen < this.n ? -1 : r.ucmp(this.p);
if (cmp === 0) {
r.words[0] = 0;
r.length = 1;
} else if (cmp > 0) {
r.isub(this.p);
} else {
r.strip();
}
return r;
};
MPrime.prototype.split = function split (input, out) {
input.iushrn(this.n, 0, out);
};
MPrime.prototype.imulK = function imulK (num) {
return num.imul(this.k);
};
function K256 () {
MPrime.call(
this,
'k256',
'ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe fffffc2f');
}
inherits(K256, MPrime);
K256.prototype.split = function split (input, output) {
// 256 = 9 * 26 + 22
var mask = 0x3fffff;
var outLen = Math.min(input.length, 9);
for (var i = 0; i < outLen; i++) {
output.words[i] = input.words[i];
}
output.length = outLen;
if (input.length <= 9) {
input.words[0] = 0;
input.length = 1;
return;
}
// Shift by 9 limbs
var prev = input.words[9];
output.words[output.length++] = prev & mask;
for (i = 10; i < input.length; i++) {
var next = input.words[i] | 0;
input.words[i - 10] = ((next & mask) << 4) | (prev >>> 22);
prev = next;
}
prev >>>= 22;
input.words[i - 10] = prev;
if (prev === 0 && input.length > 10) {
input.length -= 10;
} else {
input.length -= 9;
}
};
K256.prototype.imulK = function imulK (num) {
// K = 0x1000003d1 = [ 0x40, 0x3d1 ]
num.words[num.length] = 0;
num.words[num.length + 1] = 0;
num.length += 2;
// bounded at: 0x40 * 0x3ffffff + 0x3d0 = 0x100000390
var lo = 0;
for (var i = 0; i < num.length; i++) {
var w = num.words[i] | 0;
lo += w * 0x3d1;
num.words[i] = lo & 0x3ffffff;
lo = w * 0x40 + ((lo / 0x4000000) | 0);
}
// Fast length reduction
if (num.words[num.length - 1] === 0) {
num.length--;
if (num.words[num.length - 1] === 0) {
num.length--;
}
}
return num;
};
function P224 () {
MPrime.call(
this,
'p224',
'ffffffff ffffffff ffffffff ffffffff 00000000 00000000 00000001');
}
inherits(P224, MPrime);
function P192 () {
MPrime.call(
this,
'p192',
'ffffffff ffffffff ffffffff fffffffe ffffffff ffffffff');
}
inherits(P192, MPrime);
function P25519 () {
// 2 ^ 255 - 19
MPrime.call(
this,
'25519',
'7fffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffed');
}
inherits(P25519, MPrime);
P25519.prototype.imulK = function imulK (num) {
// K = 0x13
var carry = 0;
for (var i = 0; i < num.length; i++) {
var hi = (num.words[i] | 0) * 0x13 + carry;
var lo = hi & 0x3ffffff;
hi >>>= 26;
num.words[i] = lo;
carry = hi;
}
if (carry !== 0) {
num.words[num.length++] = carry;
}
return num;
};
// Exported mostly for testing purposes, use plain name instead
BN._prime = function prime (name) {
// Cached version of prime
if (primes[name]) return primes[name];
var prime;
if (name === 'k256') {
prime = new K256();
} else if (name === 'p224') {
prime = new P224();
} else if (name === 'p192') {
prime = new P192();
} else if (name === 'p25519') {
prime = new P25519();
} else {
throw new Error('Unknown prime ' + name);
}
primes[name] = prime;
return prime;
};
//
// Base reduction engine
//
function Red (m) {
if (typeof m === 'string') {
var prime = BN._prime(m);
this.m = prime.p;
this.prime = prime;
} else {
assert(m.gtn(1), 'modulus must be greater than 1');
this.m = m;
this.prime = null;
}
}
Red.prototype._verify1 = function _verify1 (a) {
assert(a.negative === 0, 'red works only with positives');
assert(a.red, 'red works only with red numbers');
};
Red.prototype._verify2 = function _verify2 (a, b) {
assert((a.negative | b.negative) === 0, 'red works only with positives');
assert(a.red && a.red === b.red,
'red works only with red numbers');
};
Red.prototype.imod = function imod (a) {
if (this.prime) return this.prime.ireduce(a)._forceRed(this);
return a.umod(this.m)._forceRed(this);
};
Red.prototype.neg = function neg (a) {
if (a.isZero()) {
return a.clone();
}
return this.m.sub(a)._forceRed(this);
};
Red.prototype.add = function add (a, b) {
this._verify2(a, b);
var res = a.add(b);
if (res.cmp(this.m) >= 0) {
res.isub(this.m);
}
return res._forceRed(this);
};
Red.prototype.iadd = function iadd (a, b) {
this._verify2(a, b);
var res = a.iadd(b);
if (res.cmp(this.m) >= 0) {
res.isub(this.m);
}
return res;
};
Red.prototype.sub = function sub (a, b) {
this._verify2(a, b);
var res = a.sub(b);
if (res.cmpn(0) < 0) {
res.iadd(this.m);
}
return res._forceRed(this);
};
Red.prototype.isub = function isub (a, b) {
this._verify2(a, b);
var res = a.isub(b);
if (res.cmpn(0) < 0) {
res.iadd(this.m);
}
return res;
};
Red.prototype.shl = function shl (a, num) {
this._verify1(a);
return this.imod(a.ushln(num));
};
Red.prototype.imul = function imul (a, b) {
this._verify2(a, b);
return this.imod(a.imul(b));
};
Red.prototype.mul = function mul (a, b) {
this._verify2(a, b);
return this.imod(a.mul(b));
};
Red.prototype.isqr = function isqr (a) {
return this.imul(a, a.clone());
};
Red.prototype.sqr = function sqr (a) {
return this.mul(a, a);
};
Red.prototype.sqrt = function sqrt (a) {
if (a.isZero()) return a.clone();
var mod3 = this.m.andln(3);
assert(mod3 % 2 === 1);
// Fast case
if (mod3 === 3) {
var pow = this.m.add(new BN(1)).iushrn(2);
return this.pow(a, pow);
}
// Tonelli-Shanks algorithm (Totally unoptimized and slow)
//
// Find Q and S, that Q * 2 ^ S = (P - 1)
var q = this.m.subn(1);
var s = 0;
while (!q.isZero() && q.andln(1) === 0) {
s++;
q.iushrn(1);
}
assert(!q.isZero());
var one = new BN(1).toRed(this);
var nOne = one.redNeg();
// Find quadratic non-residue
// NOTE: Max is such because of generalized Riemann hypothesis.
var lpow = this.m.subn(1).iushrn(1);
var z = this.m.bitLength();
z = new BN(2 * z * z).toRed(this);
while (this.pow(z, lpow).cmp(nOne) !== 0) {
z.redIAdd(nOne);
}
var c = this.pow(z, q);
var r = this.pow(a, q.addn(1).iushrn(1));
var t = this.pow(a, q);
var m = s;
while (t.cmp(one) !== 0) {
var tmp = t;
for (var i = 0; tmp.cmp(one) !== 0; i++) {
tmp = tmp.redSqr();
}
assert(i < m);
var b = this.pow(c, new BN(1).iushln(m - i - 1));
r = r.redMul(b);
c = b.redSqr();
t = t.redMul(c);
m = i;
}
return r;
};
Red.prototype.invm = function invm (a) {
var inv = a._invmp(this.m);
if (inv.negative !== 0) {
inv.negative = 0;
return this.imod(inv).redNeg();
} else {
return this.imod(inv);
}
};
Red.prototype.pow = function pow (a, num) {
if (num.isZero()) return new BN(1).toRed(this);
if (num.cmpn(1) === 0) return a.clone();
var windowSize = 4;
var wnd = new Array(1 << windowSize);
wnd[0] = new BN(1).toRed(this);
wnd[1] = a;
for (var i = 2; i < wnd.length; i++) {
wnd[i] = this.mul(wnd[i - 1], a);
}
var res = wnd[0];
var current = 0;
var currentLen = 0;
var start = num.bitLength() % 26;
if (start === 0) {
start = 26;
}
for (i = num.length - 1; i >= 0; i--) {
var word = num.words[i];
for (var j = start - 1; j >= 0; j--) {
var bit = (word >> j) & 1;
if (res !== wnd[0]) {
res = this.sqr(res);
}
if (bit === 0 && current === 0) {
currentLen = 0;
continue;
}
current <<= 1;
current |= bit;
currentLen++;
if (currentLen !== windowSize && (i !== 0 || j !== 0)) continue;
res = this.mul(res, wnd[current]);
currentLen = 0;
current = 0;
}
start = 26;
}
return res;
};
Red.prototype.convertTo = function convertTo (num) {
var r = num.umod(this.m);
return r === num ? r.clone() : r;
};
Red.prototype.convertFrom = function convertFrom (num) {
var res = num.clone();
res.red = null;
return res;
};
//
// Montgomery method engine
//
BN.mont = function mont (num) {
return new Mont(num);
};
function Mont (m) {
Red.call(this, m);
this.shift = this.m.bitLength();
if (this.shift % 26 !== 0) {
this.shift += 26 - (this.shift % 26);
}
this.r = new BN(1).iushln(this.shift);
this.r2 = this.imod(this.r.sqr());
this.rinv = this.r._invmp(this.m);
this.minv = this.rinv.mul(this.r).isubn(1).div(this.m);
this.minv = this.minv.umod(this.r);
this.minv = this.r.sub(this.minv);
}
inherits(Mont, Red);
Mont.prototype.convertTo = function convertTo (num) {
return this.imod(num.ushln(this.shift));
};
Mont.prototype.convertFrom = function convertFrom (num) {
var r = this.imod(num.mul(this.rinv));
r.red = null;
return r;
};
Mont.prototype.imul = function imul (a, b) {
if (a.isZero() || b.isZero()) {
a.words[0] = 0;
a.length = 1;
return a;
}
var t = a.imul(b);
var c = t.maskn(this.shift).mul(this.minv).imaskn(this.shift).mul(this.m);
var u = t.isub(c).iushrn(this.shift);
var res = u;
if (u.cmp(this.m) >= 0) {
res = u.isub(this.m);
} else if (u.cmpn(0) < 0) {
res = u.iadd(this.m);
}
return res._forceRed(this);
};
Mont.prototype.mul = function mul (a, b) {
if (a.isZero() || b.isZero()) return new BN(0)._forceRed(this);
var t = a.mul(b);
var c = t.maskn(this.shift).mul(this.minv).imaskn(this.shift).mul(this.m);
var u = t.isub(c).iushrn(this.shift);
var res = u;
if (u.cmp(this.m) >= 0) {
res = u.isub(this.m);
} else if (u.cmpn(0) < 0) {
res = u.iadd(this.m);
}
return res._forceRed(this);
};
Mont.prototype.invm = function invm (a) {
// (AR)^-1 * R^2 = (A^-1 * R^-1) * R^2 = A^-1 * R
var res = this.imod(a._invmp(this.m).mul(this.r2));
return res._forceRed(this);
};
})(typeof module === 'undefined' || module, this);
},{"buffer":"buffer"}],18:[function(require,module,exports){
var r;
module.exports = function rand(len) {
if (!r)
r = new Rand(null);
return r.generate(len);
};
function Rand(rand) {
this.rand = rand;
}
module.exports.Rand = Rand;
Rand.prototype.generate = function generate(len) {
return this._rand(len);
};
// Emulate crypto API using randy
Rand.prototype._rand = function _rand(n) {
if (this.rand.getBytes)
return this.rand.getBytes(n);
var res = new Uint8Array(n);
for (var i = 0; i < res.length; i++)
res[i] = this.rand.getByte();
return res;
};
if (typeof self === 'object') {
if (self.crypto && self.crypto.getRandomValues) {
// Modern browsers
Rand.prototype._rand = function _rand(n) {
var arr = new Uint8Array(n);
self.crypto.getRandomValues(arr);
return arr;
};
} else if (self.msCrypto && self.msCrypto.getRandomValues) {
// IE
Rand.prototype._rand = function _rand(n) {
var arr = new Uint8Array(n);
self.msCrypto.getRandomValues(arr);
return arr;
};
// Safari's WebWorkers do not have `crypto`
} else if (typeof window === 'object') {
// Old junk
Rand.prototype._rand = function() {
throw new Error('Not implemented yet');
};
}
} else {
// Node.js or Web worker with no crypto support
try {
var crypto = require('crypto');
if (typeof crypto.randomBytes !== 'function')
throw new Error('Not supported');
Rand.prototype._rand = function _rand(n) {
return crypto.randomBytes(n);
};
} catch (e) {
}
}
},{"crypto":"crypto"}],19:[function(require,module,exports){
'use strict';
var elliptic = exports;
elliptic.utils = require('./elliptic/utils');
elliptic.rand = require('brorand');
elliptic.curve = require('./elliptic/curve');
elliptic.curves = require('./elliptic/curves');
// Protocols
elliptic.ec = require('./elliptic/ec');
elliptic.eddsa = require('./elliptic/eddsa');
},{"./elliptic/curve":22,"./elliptic/curves":25,"./elliptic/ec":26,"./elliptic/eddsa":29,"./elliptic/utils":33,"brorand":18}],20:[function(require,module,exports){
'use strict';
var BN = require('bn.js');
var elliptic = require('../../elliptic');
var utils = elliptic.utils;
var getNAF = utils.getNAF;
var getJSF = utils.getJSF;
var assert = utils.assert;
function BaseCurve(type, conf) {
this.type = type;
this.p = new BN(conf.p, 16);
// Use Montgomery, when there is no fast reduction for the prime
this.red = conf.prime ? BN.red(conf.prime) : BN.mont(this.p);
// Useful for many curves
this.zero = new BN(0).toRed(this.red);
this.one = new BN(1).toRed(this.red);
this.two = new BN(2).toRed(this.red);
// Curve configuration, optional
this.n = conf.n && new BN(conf.n, 16);
this.g = conf.g && this.pointFromJSON(conf.g, conf.gRed);
// Temporary arrays
this._wnafT1 = new Array(4);
this._wnafT2 = new Array(4);
this._wnafT3 = new Array(4);
this._wnafT4 = new Array(4);
// Generalized Greg Maxwell's trick
var adjustCount = this.n && this.p.div(this.n);
if (!adjustCount || adjustCount.cmpn(100) > 0) {
this.redN = null;
} else {
this._maxwellTrick = true;
this.redN = this.n.toRed(this.red);
}
}
module.exports = BaseCurve;
BaseCurve.prototype.point = function point() {
throw new Error('Not implemented');
};
BaseCurve.prototype.validate = function validate() {
throw new Error('Not implemented');
};
BaseCurve.prototype._fixedNafMul = function _fixedNafMul(p, k) {
assert(p.precomputed);
var doubles = p._getDoubles();
var naf = getNAF(k, 1);
var I = (1 << (doubles.step + 1)) - (doubles.step % 2 === 0 ? 2 : 1);
I /= 3;
// Translate into more windowed form
var repr = [];
for (var j = 0; j < naf.length; j += doubles.step) {
var nafW = 0;
for (var k = j + doubles.step - 1; k >= j; k--)
nafW = (nafW << 1) + naf[k];
repr.push(nafW);
}
var a = this.jpoint(null, null, null);
var b = this.jpoint(null, null, null);
for (var i = I; i > 0; i--) {
for (var j = 0; j < repr.length; j++) {
var nafW = repr[j];
if (nafW === i)
b = b.mixedAdd(doubles.points[j]);
else if (nafW === -i)
b = b.mixedAdd(doubles.points[j].neg());
}
a = a.add(b);
}
return a.toP();
};
BaseCurve.prototype._wnafMul = function _wnafMul(p, k) {
var w = 4;
// Precompute window
var nafPoints = p._getNAFPoints(w);
w = nafPoints.wnd;
var wnd = nafPoints.points;
// Get NAF form
var naf = getNAF(k, w);
// Add `this`*(N+1) for every w-NAF index
var acc = this.jpoint(null, null, null);
for (var i = naf.length - 1; i >= 0; i--) {
// Count zeroes
for (var k = 0; i >= 0 && naf[i] === 0; i--)
k++;
if (i >= 0)
k++;
acc = acc.dblp(k);
if (i < 0)
break;
var z = naf[i];
assert(z !== 0);
if (p.type === 'affine') {
// J +- P
if (z > 0)
acc = acc.mixedAdd(wnd[(z - 1) >> 1]);
else
acc = acc.mixedAdd(wnd[(-z - 1) >> 1].neg());
} else {
// J +- J
if (z > 0)
acc = acc.add(wnd[(z - 1) >> 1]);
else
acc = acc.add(wnd[(-z - 1) >> 1].neg());
}
}
return p.type === 'affine' ? acc.toP() : acc;
};
BaseCurve.prototype._wnafMulAdd = function _wnafMulAdd(defW,
points,
coeffs,
len,
jacobianResult) {
var wndWidth = this._wnafT1;
var wnd = this._wnafT2;
var naf = this._wnafT3;
// Fill all arrays
var max = 0;
for (var i = 0; i < len; i++) {
var p = points[i];
var nafPoints = p._getNAFPoints(defW);
wndWidth[i] = nafPoints.wnd;
wnd[i] = nafPoints.points;
}
// Comb small window NAFs
for (var i = len - 1; i >= 1; i -= 2) {
var a = i - 1;
var b = i;
if (wndWidth[a] !== 1 || wndWidth[b] !== 1) {
naf[a] = getNAF(coeffs[a], wndWidth[a]);
naf[b] = getNAF(coeffs[b], wndWidth[b]);
max = Math.max(naf[a].length, max);
max = Math.max(naf[b].length, max);
continue;
}
var comb = [
points[a], /* 1 */
null, /* 3 */
null, /* 5 */
points[b] /* 7 */
];
// Try to avoid Projective points, if possible
if (points[a].y.cmp(points[b].y) === 0) {
comb[1] = points[a].add(points[b]);
comb[2] = points[a].toJ().mixedAdd(points[b].neg());
} else if (points[a].y.cmp(points[b].y.redNeg()) === 0) {
comb[1] = points[a].toJ().mixedAdd(points[b]);
comb[2] = points[a].add(points[b].neg());
} else {
comb[1] = points[a].toJ().mixedAdd(points[b]);
comb[2] = points[a].toJ().mixedAdd(points[b].neg());
}
var index = [
-3, /* -1 -1 */
-1, /* -1 0 */
-5, /* -1 1 */
-7, /* 0 -1 */
0, /* 0 0 */
7, /* 0 1 */
5, /* 1 -1 */
1, /* 1 0 */
3 /* 1 1 */
];
var jsf = getJSF(coeffs[a], coeffs[b]);
max = Math.max(jsf[0].length, max);
naf[a] = new Array(max);
naf[b] = new Array(max);
for (var j = 0; j < max; j++) {
var ja = jsf[0][j] | 0;
var jb = jsf[1][j] | 0;
naf[a][j] = index[(ja + 1) * 3 + (jb + 1)];
naf[b][j] = 0;
wnd[a] = comb;
}
}
var acc = this.jpoint(null, null, null);
var tmp = this._wnafT4;
for (var i = max; i >= 0; i--) {
var k = 0;
while (i >= 0) {
var zero = true;
for (var j = 0; j < len; j++) {
tmp[j] = naf[j][i] | 0;
if (tmp[j] !== 0)
zero = false;
}
if (!zero)
break;
k++;
i--;
}
if (i >= 0)
k++;
acc = acc.dblp(k);
if (i < 0)
break;
for (var j = 0; j < len; j++) {
var z = tmp[j];
var p;
if (z === 0)
continue;
else if (z > 0)
p = wnd[j][(z - 1) >> 1];
else if (z < 0)
p = wnd[j][(-z - 1) >> 1].neg();
if (p.type === 'affine')
acc = acc.mixedAdd(p);
else
acc = acc.add(p);
}
}
// Zeroify references
for (var i = 0; i < len; i++)
wnd[i] = null;
if (jacobianResult)
return acc;
else
return acc.toP();
};
function BasePoint(curve, type) {
this.curve = curve;
this.type = type;
this.precomputed = null;
}
BaseCurve.BasePoint = BasePoint;
BasePoint.prototype.eq = function eq(/*other*/) {
throw new Error('Not implemented');
};
BasePoint.prototype.validate = function validate() {
return this.curve.validate(this);
};
BaseCurve.prototype.decodePoint = function decodePoint(bytes, enc) {
bytes = utils.toArray(bytes, enc);
var len = this.p.byteLength();
// uncompressed, hybrid-odd, hybrid-even
if ((bytes[0] === 0x04 || bytes[0] === 0x06 || bytes[0] === 0x07) &&
bytes.length - 1 === 2 * len) {
if (bytes[0] === 0x06)
assert(bytes[bytes.length - 1] % 2 === 0);
else if (bytes[0] === 0x07)
assert(bytes[bytes.length - 1] % 2 === 1);
var res = this.point(bytes.slice(1, 1 + len),
bytes.slice(1 + len, 1 + 2 * len));
return res;
} else if ((bytes[0] === 0x02 || bytes[0] === 0x03) &&
bytes.length - 1 === len) {
return this.pointFromX(bytes.slice(1, 1 + len), bytes[0] === 0x03);
}
throw new Error('Unknown point format');
};
BasePoint.prototype.encodeCompressed = function encodeCompressed(enc) {
return this.encode(enc, true);
};
BasePoint.prototype._encode = function _encode(compact) {
var len = this.curve.p.byteLength();
var x = this.getX().toArray('be', len);
if (compact)
return [ this.getY().isEven() ? 0x02 : 0x03 ].concat(x);
return [ 0x04 ].concat(x, this.getY().toArray('be', len)) ;
};
BasePoint.prototype.encode = function encode(enc, compact) {
return utils.encode(this._encode(compact), enc);
};
BasePoint.prototype.precompute = function precompute(power) {
if (this.precomputed)
return this;
var precomputed = {
doubles: null,
naf: null,
beta: null
};
precomputed.naf = this._getNAFPoints(8);
precomputed.doubles = this._getDoubles(4, power);
precomputed.beta = this._getBeta();
this.precomputed = precomputed;
return this;
};
BasePoint.prototype._hasDoubles = function _hasDoubles(k) {
if (!this.precomputed)
return false;
var doubles = this.precomputed.doubles;
if (!doubles)
return false;
return doubles.points.length >= Math.ceil((k.bitLength() + 1) / doubles.step);
};
BasePoint.prototype._getDoubles = function _getDoubles(step, power) {
if (this.precomputed && this.precomputed.doubles)
return this.precomputed.doubles;
var doubles = [ this ];
var acc = this;
for (var i = 0; i < power; i += step) {
for (var j = 0; j < step; j++)
acc = acc.dbl();
doubles.push(acc);
}
return {
step: step,
points: doubles
};
};
BasePoint.prototype._getNAFPoints = function _getNAFPoints(wnd) {
if (this.precomputed && this.precomputed.naf)
return this.precomputed.naf;
var res = [ this ];
var max = (1 << wnd) - 1;
var dbl = max === 1 ? null : this.dbl();
for (var i = 1; i < max; i++)
res[i] = res[i - 1].add(dbl);
return {
wnd: wnd,
points: res
};
};
BasePoint.prototype._getBeta = function _getBeta() {
return null;
};
BasePoint.prototype.dblp = function dblp(k) {
var r = this;
for (var i = 0; i < k; i++)
r = r.dbl();
return r;
};
},{"../../elliptic":19,"bn.js":17}],21:[function(require,module,exports){
'use strict';
var curve = require('../curve');
var elliptic = require('../../elliptic');
var BN = require('bn.js');
var inherits = require('inherits');
var Base = curve.base;
var assert = elliptic.utils.assert;
function EdwardsCurve(conf) {
// NOTE: Important as we are creating point in Base.call()
this.twisted = (conf.a | 0) !== 1;
this.mOneA = this.twisted && (conf.a | 0) === -1;
this.extended = this.mOneA;
Base.call(this, 'edwards', conf);
this.a = new BN(conf.a, 16).umod(this.red.m);
this.a = this.a.toRed(this.red);
this.c = new BN(conf.c, 16).toRed(this.red);
this.c2 = this.c.redSqr();
this.d = new BN(conf.d, 16).toRed(this.red);
this.dd = this.d.redAdd(this.d);
assert(!this.twisted || this.c.fromRed().cmpn(1) === 0);
this.oneC = (conf.c | 0) === 1;
}
inherits(EdwardsCurve, Base);
module.exports = EdwardsCurve;
EdwardsCurve.prototype._mulA = function _mulA(num) {
if (this.mOneA)
return num.redNeg();
else
return this.a.redMul(num);
};
EdwardsCurve.prototype._mulC = function _mulC(num) {
if (this.oneC)
return num;
else
return this.c.redMul(num);
};
// Just for compatibility with Short curve
EdwardsCurve.prototype.jpoint = function jpoint(x, y, z, t) {
return this.point(x, y, z, t);
};
EdwardsCurve.prototype.pointFromX = function pointFromX(x, odd) {
x = new BN(x, 16);
if (!x.red)
x = x.toRed(this.red);
var x2 = x.redSqr();
var rhs = this.c2.redSub(this.a.redMul(x2));
var lhs = this.one.redSub(this.c2.redMul(this.d).redMul(x2));
var y2 = rhs.redMul(lhs.redInvm());
var y = y2.redSqrt();
if (y.redSqr().redSub(y2).cmp(this.zero) !== 0)
throw new Error('invalid point');
var isOdd = y.fromRed().isOdd();
if (odd && !isOdd || !odd && isOdd)
y = y.redNeg();
return this.point(x, y);
};
EdwardsCurve.prototype.pointFromY = function pointFromY(y, odd) {
y = new BN(y, 16);
if (!y.red)
y = y.toRed(this.red);
// x^2 = (y^2 - c^2) / (c^2 d y^2 - a)
var y2 = y.redSqr();
var lhs = y2.redSub(this.c2);
var rhs = y2.redMul(this.d).redMul(this.c2).redSub(this.a);
var x2 = lhs.redMul(rhs.redInvm());
if (x2.cmp(this.zero) === 0) {
if (odd)
throw new Error('invalid point');
else
return this.point(this.zero, y);
}
var x = x2.redSqrt();
if (x.redSqr().redSub(x2).cmp(this.zero) !== 0)
throw new Error('invalid point');
if (x.fromRed().isOdd() !== odd)
x = x.redNeg();
return this.point(x, y);
};
EdwardsCurve.prototype.validate = function validate(point) {
if (point.isInfinity())
return true;
// Curve: A * X^2 + Y^2 = C^2 * (1 + D * X^2 * Y^2)
point.normalize();
var x2 = point.x.redSqr();
var y2 = point.y.redSqr();
var lhs = x2.redMul(this.a).redAdd(y2);
var rhs = this.c2.redMul(this.one.redAdd(this.d.redMul(x2).redMul(y2)));
return lhs.cmp(rhs) === 0;
};
function Point(curve, x, y, z, t) {
Base.BasePoint.call(this, curve, 'projective');
if (x === null && y === null && z === null) {
this.x = this.curve.zero;
this.y = this.curve.one;
this.z = this.curve.one;
this.t = this.curve.zero;
this.zOne = true;
} else {
this.x = new BN(x, 16);
this.y = new BN(y, 16);
this.z = z ? new BN(z, 16) : this.curve.one;
this.t = t && new BN(t, 16);
if (!this.x.red)
this.x = this.x.toRed(this.curve.red);
if (!this.y.red)
this.y = this.y.toRed(this.curve.red);
if (!this.z.red)
this.z = this.z.toRed(this.curve.red);
if (this.t && !this.t.red)
this.t = this.t.toRed(this.curve.red);
this.zOne = this.z === this.curve.one;
// Use extended coordinates
if (this.curve.extended && !this.t) {
this.t = this.x.redMul(this.y);
if (!this.zOne)
this.t = this.t.redMul(this.z.redInvm());
}
}
}
inherits(Point, Base.BasePoint);
EdwardsCurve.prototype.pointFromJSON = function pointFromJSON(obj) {
return Point.fromJSON(this, obj);
};
EdwardsCurve.prototype.point = function point(x, y, z, t) {
return new Point(this, x, y, z, t);
};
Point.fromJSON = function fromJSON(curve, obj) {
return new Point(curve, obj[0], obj[1], obj[2]);
};
Point.prototype.inspect = function inspect() {
if (this.isInfinity())
return '<EC Point Infinity>';
return '<EC Point x: ' + this.x.fromRed().toString(16, 2) +
' y: ' + this.y.fromRed().toString(16, 2) +
' z: ' + this.z.fromRed().toString(16, 2) + '>';
};
Point.prototype.isInfinity = function isInfinity() {
// XXX This code assumes that zero is always zero in red
return this.x.cmpn(0) === 0 &&
(this.y.cmp(this.z) === 0 ||
(this.zOne && this.y.cmp(this.curve.c) === 0));
};
Point.prototype._extDbl = function _extDbl() {
// hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
// #doubling-dbl-2008-hwcd
// 4M + 4S
// A = X1^2
var a = this.x.redSqr();
// B = Y1^2
var b = this.y.redSqr();
// C = 2 * Z1^2
var c = this.z.redSqr();
c = c.redIAdd(c);
// D = a * A
var d = this.curve._mulA(a);
// E = (X1 + Y1)^2 - A - B
var e = this.x.redAdd(this.y).redSqr().redISub(a).redISub(b);
// G = D + B
var g = d.redAdd(b);
// F = G - C
var f = g.redSub(c);
// H = D - B
var h = d.redSub(b);
// X3 = E * F
var nx = e.redMul(f);
// Y3 = G * H
var ny = g.redMul(h);
// T3 = E * H
var nt = e.redMul(h);
// Z3 = F * G
var nz = f.redMul(g);
return this.curve.point(nx, ny, nz, nt);
};
Point.prototype._projDbl = function _projDbl() {
// hyperelliptic.org/EFD/g1p/auto-twisted-projective.html
// #doubling-dbl-2008-bbjlp
// #doubling-dbl-2007-bl
// and others
// Generally 3M + 4S or 2M + 4S
// B = (X1 + Y1)^2
var b = this.x.redAdd(this.y).redSqr();
// C = X1^2
var c = this.x.redSqr();
// D = Y1^2
var d = this.y.redSqr();
var nx;
var ny;
var nz;
if (this.curve.twisted) {
// E = a * C
var e = this.curve._mulA(c);
// F = E + D
var f = e.redAdd(d);
if (this.zOne) {
// X3 = (B - C - D) * (F - 2)
nx = b.redSub(c).redSub(d).redMul(f.redSub(this.curve.two));
// Y3 = F * (E - D)
ny = f.redMul(e.redSub(d));
// Z3 = F^2 - 2 * F
nz = f.redSqr().redSub(f).redSub(f);
} else {
// H = Z1^2
var h = this.z.redSqr();
// J = F - 2 * H
var j = f.redSub(h).redISub(h);
// X3 = (B-C-D)*J
nx = b.redSub(c).redISub(d).redMul(j);
// Y3 = F * (E - D)
ny = f.redMul(e.redSub(d));
// Z3 = F * J
nz = f.redMul(j);
}
} else {
// E = C + D
var e = c.redAdd(d);
// H = (c * Z1)^2
var h = this.curve._mulC(this.z).redSqr();
// J = E - 2 * H
var j = e.redSub(h).redSub(h);
// X3 = c * (B - E) * J
nx = this.curve._mulC(b.redISub(e)).redMul(j);
// Y3 = c * E * (C - D)
ny = this.curve._mulC(e).redMul(c.redISub(d));
// Z3 = E * J
nz = e.redMul(j);
}
return this.curve.point(nx, ny, nz);
};
Point.prototype.dbl = function dbl() {
if (this.isInfinity())
return this;
// Double in extended coordinates
if (this.curve.extended)
return this._extDbl();
else
return this._projDbl();
};
Point.prototype._extAdd = function _extAdd(p) {
// hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
// #addition-add-2008-hwcd-3
// 8M
// A = (Y1 - X1) * (Y2 - X2)
var a = this.y.redSub(this.x).redMul(p.y.redSub(p.x));
// B = (Y1 + X1) * (Y2 + X2)
var b = this.y.redAdd(this.x).redMul(p.y.redAdd(p.x));
// C = T1 * k * T2
var c = this.t.redMul(this.curve.dd).redMul(p.t);
// D = Z1 * 2 * Z2
var d = this.z.redMul(p.z.redAdd(p.z));
// E = B - A
var e = b.redSub(a);
// F = D - C
var f = d.redSub(c);
// G = D + C
var g = d.redAdd(c);
// H = B + A
var h = b.redAdd(a);
// X3 = E * F
var nx = e.redMul(f);
// Y3 = G * H
var ny = g.redMul(h);
// T3 = E * H
var nt = e.redMul(h);
// Z3 = F * G
var nz = f.redMul(g);
return this.curve.point(nx, ny, nz, nt);
};
Point.prototype._projAdd = function _projAdd(p) {
// hyperelliptic.org/EFD/g1p/auto-twisted-projective.html
// #addition-add-2008-bbjlp
// #addition-add-2007-bl
// 10M + 1S
// A = Z1 * Z2
var a = this.z.redMul(p.z);
// B = A^2
var b = a.redSqr();
// C = X1 * X2
var c = this.x.redMul(p.x);
// D = Y1 * Y2
var d = this.y.redMul(p.y);
// E = d * C * D
var e = this.curve.d.redMul(c).redMul(d);
// F = B - E
var f = b.redSub(e);
// G = B + E
var g = b.redAdd(e);
// X3 = A * F * ((X1 + Y1) * (X2 + Y2) - C - D)
var tmp = this.x.redAdd(this.y).redMul(p.x.redAdd(p.y)).redISub(c).redISub(d);
var nx = a.redMul(f).redMul(tmp);
var ny;
var nz;
if (this.curve.twisted) {
// Y3 = A * G * (D - a * C)
ny = a.redMul(g).redMul(d.redSub(this.curve._mulA(c)));
// Z3 = F * G
nz = f.redMul(g);
} else {
// Y3 = A * G * (D - C)
ny = a.redMul(g).redMul(d.redSub(c));
// Z3 = c * F * G
nz = this.curve._mulC(f).redMul(g);
}
return this.curve.point(nx, ny, nz);
};
Point.prototype.add = function add(p) {
if (this.isInfinity())
return p;
if (p.isInfinity())
return this;
if (this.curve.extended)
return this._extAdd(p);
else
return this._projAdd(p);
};
Point.prototype.mul = function mul(k) {
if (this._hasDoubles(k))
return this.curve._fixedNafMul(this, k);
else
return this.curve._wnafMul(this, k);
};
Point.prototype.mulAdd = function mulAdd(k1, p, k2) {
return this.curve._wnafMulAdd(1, [ this, p ], [ k1, k2 ], 2, false);
};
Point.prototype.jmulAdd = function jmulAdd(k1, p, k2) {
return this.curve._wnafMulAdd(1, [ this, p ], [ k1, k2 ], 2, true);
};
Point.prototype.normalize = function normalize() {
if (this.zOne)
return this;
// Normalize coordinates
var zi = this.z.redInvm();
this.x = this.x.redMul(zi);
this.y = this.y.redMul(zi);
if (this.t)
this.t = this.t.redMul(zi);
this.z = this.curve.one;
this.zOne = true;
return this;
};
Point.prototype.neg = function neg() {
return this.curve.point(this.x.redNeg(),
this.y,
this.z,
this.t && this.t.redNeg());
};
Point.prototype.getX = function getX() {
this.normalize();
return this.x.fromRed();
};
Point.prototype.getY = function getY() {
this.normalize();
return this.y.fromRed();
};
Point.prototype.eq = function eq(other) {
return this === other ||
this.getX().cmp(other.getX()) === 0 &&
this.getY().cmp(other.getY()) === 0;
};
Point.prototype.eqXToP = function eqXToP(x) {
var rx = x.toRed(this.curve.red).redMul(this.z);
if (this.x.cmp(rx) === 0)
return true;
var xc = x.clone();
var t = this.curve.redN.redMul(this.z);
for (;;) {
xc.iadd(this.curve.n);
if (xc.cmp(this.curve.p) >= 0)
return false;
rx.redIAdd(t);
if (this.x.cmp(rx) === 0)
return true;
}
};
// Compatibility with BaseCurve
Point.prototype.toP = Point.prototype.normalize;
Point.prototype.mixedAdd = Point.prototype.add;
},{"../../elliptic":19,"../curve":22,"bn.js":17,"inherits":48}],22:[function(require,module,exports){
'use strict';
var curve = exports;
curve.base = require('./base');
curve.short = require('./short');
curve.mont = require('./mont');
curve.edwards = require('./edwards');
},{"./base":20,"./edwards":21,"./mont":23,"./short":24}],23:[function(require,module,exports){
'use strict';
var curve = require('../curve');
var BN = require('bn.js');
var inherits = require('inherits');
var Base = curve.base;
var elliptic = require('../../elliptic');
var utils = elliptic.utils;
function MontCurve(conf) {
Base.call(this, 'mont', conf);
this.a = new BN(conf.a, 16).toRed(this.red);
this.b = new BN(conf.b, 16).toRed(this.red);
this.i4 = new BN(4).toRed(this.red).redInvm();
this.two = new BN(2).toRed(this.red);
// Note: this implementation is according to the original paper
// by P. Montgomery, NOT the one by D. J. Bernstein.
this.a24 = this.i4.redMul(this.a.redAdd(this.two));
}
inherits(MontCurve, Base);
module.exports = MontCurve;
MontCurve.prototype.validate = function validate(point) {
var x = point.normalize().x;
var x2 = x.redSqr();
var rhs = x2.redMul(x).redAdd(x2.redMul(this.a)).redAdd(x);
var y = rhs.redSqrt();
return y.redSqr().cmp(rhs) === 0;
};
function Point(curve, x, z) {
Base.BasePoint.call(this, curve, 'projective');
if (x === null && z === null) {
this.x = this.curve.one;
this.z = this.curve.zero;
} else {
this.x = new BN(x, 16);
this.z = new BN(z, 16);
if (!this.x.red)
this.x = this.x.toRed(this.curve.red);
if (!this.z.red)
this.z = this.z.toRed(this.curve.red);
}
}
inherits(Point, Base.BasePoint);
MontCurve.prototype.decodePoint = function decodePoint(bytes, enc) {
var bytes = utils.toArray(bytes, enc);
// TODO Curve448
// Montgomery curve points must be represented in the compressed format
// https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-02#appendix-B
if (bytes.length === 33 && bytes[0] === 0x40)
bytes = bytes.slice(1, 33).reverse(); // point must be little-endian
if (bytes.length !== 32)
throw new Error('Unknown point compression format');
return this.point(bytes, 1);
};
MontCurve.prototype.point = function point(x, z) {
return new Point(this, x, z);
};
MontCurve.prototype.pointFromJSON = function pointFromJSON(obj) {
return Point.fromJSON(this, obj);
};
Point.prototype.precompute = function precompute() {
// No-op
};
Point.prototype._encode = function _encode(compact) {
var len = this.curve.p.byteLength();
// Note: the output should always be little-endian
// https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-02#appendix-B
if (compact) {
return [ 0x40 ].concat(this.getX().toArray('le', len));
} else {
return this.getX().toArray('be', len);
}
};
Point.fromJSON = function fromJSON(curve, obj) {
return new Point(curve, obj[0], obj[1] || curve.one);
};
Point.prototype.inspect = function inspect() {
if (this.isInfinity())
return '<EC Point Infinity>';
return '<EC Point x: ' + this.x.fromRed().toString(16, 2) +
' z: ' + this.z.fromRed().toString(16, 2) + '>';
};
Point.prototype.isInfinity = function isInfinity() {
// XXX This code assumes that zero is always zero in red
return this.z.cmpn(0) === 0;
};
Point.prototype.dbl = function dbl() {
// http://hyperelliptic.org/EFD/g1p/auto-montgom-xz.html#doubling-dbl-1987-m-3
// 2M + 2S + 4A
// A = X1 + Z1
var a = this.x.redAdd(this.z);
// AA = A^2
var aa = a.redSqr();
// B = X1 - Z1
var b = this.x.redSub(this.z);
// BB = B^2
var bb = b.redSqr();
// C = AA - BB
var c = aa.redSub(bb);
// X3 = AA * BB
var nx = aa.redMul(bb);
// Z3 = C * (BB + A24 * C)
var nz = c.redMul(bb.redAdd(this.curve.a24.redMul(c)));
return this.curve.point(nx, nz);
};
Point.prototype.add = function add() {
throw new Error('Not supported on Montgomery curve');
};
Point.prototype.diffAdd = function diffAdd(p, diff) {
// http://hyperelliptic.org/EFD/g1p/auto-montgom-xz.html#diffadd-dadd-1987-m-3
// 4M + 2S + 6A
// A = X2 + Z2
var a = this.x.redAdd(this.z);
// B = X2 - Z2
var b = this.x.redSub(this.z);
// C = X3 + Z3
var c = p.x.redAdd(p.z);
// D = X3 - Z3
var d = p.x.redSub(p.z);
// DA = D * A
var da = d.redMul(a);
// CB = C * B
var cb = c.redMul(b);
// X5 = Z1 * (DA + CB)^2
var nx = diff.z.redMul(da.redAdd(cb).redSqr());
// Z5 = X1 * (DA - CB)^2
var nz = diff.x.redMul(da.redISub(cb).redSqr());
return this.curve.point(nx, nz);
};
Point.prototype.mul = function mul(k) {
k = new BN(k, 16);
var t = k.clone();
var a = this; // (N / 2) * Q + Q
var b = this.curve.point(null, null); // (N / 2) * Q
var c = this; // Q
for (var bits = []; t.cmpn(0) !== 0; t.iushrn(1))
bits.push(t.andln(1));
for (var i = bits.length - 1; i >= 0; i--) {
if (bits[i] === 0) {
// N * Q + Q = ((N / 2) * Q + Q)) + (N / 2) * Q
a = a.diffAdd(b, c);
// N * Q = 2 * ((N / 2) * Q + Q))
b = b.dbl();
} else {
// N * Q = ((N / 2) * Q + Q) + ((N / 2) * Q)
b = a.diffAdd(b, c);
// N * Q + Q = 2 * ((N / 2) * Q + Q)
a = a.dbl();
}
}
return b;
};
Point.prototype.mulAdd = function mulAdd() {
throw new Error('Not supported on Montgomery curve');
};
Point.prototype.jumlAdd = function jumlAdd() {
throw new Error('Not supported on Montgomery curve');
};
Point.prototype.eq = function eq(other) {
return this.getX().cmp(other.getX()) === 0;
};
Point.prototype.normalize = function normalize() {
this.x = this.x.redMul(this.z.redInvm());
this.z = this.curve.one;
return this;
};
Point.prototype.getX = function getX() {
// Normalize coordinates
this.normalize();
return this.x.fromRed();
};
},{"../../elliptic":19,"../curve":22,"bn.js":17,"inherits":48}],24:[function(require,module,exports){
'use strict';
var curve = require('../curve');
var elliptic = require('../../elliptic');
var BN = require('bn.js');
var inherits = require('inherits');
var Base = curve.base;
var assert = elliptic.utils.assert;
function ShortCurve(conf) {
Base.call(this, 'short', conf);
this.a = new BN(conf.a, 16).toRed(this.red);
this.b = new BN(conf.b, 16).toRed(this.red);
this.tinv = this.two.redInvm();
this.zeroA = this.a.fromRed().cmpn(0) === 0;
this.threeA = this.a.fromRed().sub(this.p).cmpn(-3) === 0;
// If the curve is endomorphic, precalculate beta and lambda
this.endo = this._getEndomorphism(conf);
this._endoWnafT1 = new Array(4);
this._endoWnafT2 = new Array(4);
}
inherits(ShortCurve, Base);
module.exports = ShortCurve;
ShortCurve.prototype._getEndomorphism = function _getEndomorphism(conf) {
// No efficient endomorphism
if (!this.zeroA || !this.g || !this.n || this.p.modn(3) !== 1)
return;
// Compute beta and lambda, that lambda * P = (beta * Px; Py)
var beta;
var lambda;
if (conf.beta) {
beta = new BN(conf.beta, 16).toRed(this.red);
} else {
var betas = this._getEndoRoots(this.p);
// Choose the smallest beta
beta = betas[0].cmp(betas[1]) < 0 ? betas[0] : betas[1];
beta = beta.toRed(this.red);
}
if (conf.lambda) {
lambda = new BN(conf.lambda, 16);
} else {
// Choose the lambda that is matching selected beta
var lambdas = this._getEndoRoots(this.n);
if (this.g.mul(lambdas[0]).x.cmp(this.g.x.redMul(beta)) === 0) {
lambda = lambdas[0];
} else {
lambda = lambdas[1];
assert(this.g.mul(lambda).x.cmp(this.g.x.redMul(beta)) === 0);
}
}
// Get basis vectors, used for balanced length-two representation
var basis;
if (conf.basis) {
basis = conf.basis.map(function(vec) {
return {
a: new BN(vec.a, 16),
b: new BN(vec.b, 16)
};
});
} else {
basis = this._getEndoBasis(lambda);
}
return {
beta: beta,
lambda: lambda,
basis: basis
};
};
ShortCurve.prototype._getEndoRoots = function _getEndoRoots(num) {
// Find roots of for x^2 + x + 1 in F
// Root = (-1 +- Sqrt(-3)) / 2
//
var red = num === this.p ? this.red : BN.mont(num);
var tinv = new BN(2).toRed(red).redInvm();
var ntinv = tinv.redNeg();
var s = new BN(3).toRed(red).redNeg().redSqrt().redMul(tinv);
var l1 = ntinv.redAdd(s).fromRed();
var l2 = ntinv.redSub(s).fromRed();
return [ l1, l2 ];
};
ShortCurve.prototype._getEndoBasis = function _getEndoBasis(lambda) {
// aprxSqrt >= sqrt(this.n)
var aprxSqrt = this.n.ushrn(Math.floor(this.n.bitLength() / 2));
// 3.74
// Run EGCD, until r(L + 1) < aprxSqrt
var u = lambda;
var v = this.n.clone();
var x1 = new BN(1);
var y1 = new BN(0);
var x2 = new BN(0);
var y2 = new BN(1);
// NOTE: all vectors are roots of: a + b * lambda = 0 (mod n)
var a0;
var b0;
// First vector
var a1;
var b1;
// Second vector
var a2;
var b2;
var prevR;
var i = 0;
var r;
var x;
while (u.cmpn(0) !== 0) {
var q = v.div(u);
r = v.sub(q.mul(u));
x = x2.sub(q.mul(x1));
var y = y2.sub(q.mul(y1));
if (!a1 && r.cmp(aprxSqrt) < 0) {
a0 = prevR.neg();
b0 = x1;
a1 = r.neg();
b1 = x;
} else if (a1 && ++i === 2) {
break;
}
prevR = r;
v = u;
u = r;
x2 = x1;
x1 = x;
y2 = y1;
y1 = y;
}
a2 = r.neg();
b2 = x;
var len1 = a1.sqr().add(b1.sqr());
var len2 = a2.sqr().add(b2.sqr());
if (len2.cmp(len1) >= 0) {
a2 = a0;
b2 = b0;
}
// Normalize signs
if (a1.negative) {
a1 = a1.neg();
b1 = b1.neg();
}
if (a2.negative) {
a2 = a2.neg();
b2 = b2.neg();
}
return [
{ a: a1, b: b1 },
{ a: a2, b: b2 }
];
};
ShortCurve.prototype._endoSplit = function _endoSplit(k) {
var basis = this.endo.basis;
var v1 = basis[0];
var v2 = basis[1];
var c1 = v2.b.mul(k).divRound(this.n);
var c2 = v1.b.neg().mul(k).divRound(this.n);
var p1 = c1.mul(v1.a);
var p2 = c2.mul(v2.a);
var q1 = c1.mul(v1.b);
var q2 = c2.mul(v2.b);
// Calculate answer
var k1 = k.sub(p1).sub(p2);
var k2 = q1.add(q2).neg();
return { k1: k1, k2: k2 };
};
ShortCurve.prototype.pointFromX = function pointFromX(x, odd) {
x = new BN(x, 16);
if (!x.red)
x = x.toRed(this.red);
var y2 = x.redSqr().redMul(x).redIAdd(x.redMul(this.a)).redIAdd(this.b);
var y = y2.redSqrt();
if (y.redSqr().redSub(y2).cmp(this.zero) !== 0)
throw new Error('invalid point');
// XXX Is there any way to tell if the number is odd without converting it
// to non-red form?
var isOdd = y.fromRed().isOdd();
if (odd && !isOdd || !odd && isOdd)
y = y.redNeg();
return this.point(x, y);
};
ShortCurve.prototype.validate = function validate(point) {
if (point.inf)
return true;
var x = point.x;
var y = point.y;
var ax = this.a.redMul(x);
var rhs = x.redSqr().redMul(x).redIAdd(ax).redIAdd(this.b);
return y.redSqr().redISub(rhs).cmpn(0) === 0;
};
ShortCurve.prototype._endoWnafMulAdd =
function _endoWnafMulAdd(points, coeffs, jacobianResult) {
var npoints = this._endoWnafT1;
var ncoeffs = this._endoWnafT2;
for (var i = 0; i < points.length; i++) {
var split = this._endoSplit(coeffs[i]);
var p = points[i];
var beta = p._getBeta();
if (split.k1.negative) {
split.k1.ineg();
p = p.neg(true);
}
if (split.k2.negative) {
split.k2.ineg();
beta = beta.neg(true);
}
npoints[i * 2] = p;
npoints[i * 2 + 1] = beta;
ncoeffs[i * 2] = split.k1;
ncoeffs[i * 2 + 1] = split.k2;
}
var res = this._wnafMulAdd(1, npoints, ncoeffs, i * 2, jacobianResult);
// Clean-up references to points and coefficients
for (var j = 0; j < i * 2; j++) {
npoints[j] = null;
ncoeffs[j] = null;
}
return res;
};
function Point(curve, x, y, isRed) {
Base.BasePoint.call(this, curve, 'affine');
if (x === null && y === null) {
this.x = null;
this.y = null;
this.inf = true;
} else {
this.x = new BN(x, 16);
this.y = new BN(y, 16);
// Force redgomery representation when loading from JSON
if (isRed) {
this.x.forceRed(this.curve.red);
this.y.forceRed(this.curve.red);
}
if (!this.x.red)
this.x = this.x.toRed(this.curve.red);
if (!this.y.red)
this.y = this.y.toRed(this.curve.red);
this.inf = false;
}
}
inherits(Point, Base.BasePoint);
ShortCurve.prototype.point = function point(x, y, isRed) {
return new Point(this, x, y, isRed);
};
ShortCurve.prototype.pointFromJSON = function pointFromJSON(obj, red) {
return Point.fromJSON(this, obj, red);
};
Point.prototype._getBeta = function _getBeta() {
if (!this.curve.endo)
return;
var pre = this.precomputed;
if (pre && pre.beta)
return pre.beta;
var beta = this.curve.point(this.x.redMul(this.curve.endo.beta), this.y);
if (pre) {
var curve = this.curve;
var endoMul = function(p) {
return curve.point(p.x.redMul(curve.endo.beta), p.y);
};
pre.beta = beta;
beta.precomputed = {
beta: null,
naf: pre.naf && {
wnd: pre.naf.wnd,
points: pre.naf.points.map(endoMul)
},
doubles: pre.doubles && {
step: pre.doubles.step,
points: pre.doubles.points.map(endoMul)
}
};
}
return beta;
};
Point.prototype.toJSON = function toJSON() {
if (!this.precomputed)
return [ this.x, this.y ];
return [ this.x, this.y, this.precomputed && {
doubles: this.precomputed.doubles && {
step: this.precomputed.doubles.step,
points: this.precomputed.doubles.points.slice(1)
},
naf: this.precomputed.naf && {
wnd: this.precomputed.naf.wnd,
points: this.precomputed.naf.points.slice(1)
}
} ];
};
Point.fromJSON = function fromJSON(curve, obj, red) {
if (typeof obj === 'string')
obj = JSON.parse(obj);
var res = curve.point(obj[0], obj[1], red);
if (!obj[2])
return res;
function obj2point(obj) {
return curve.point(obj[0], obj[1], red);
}
var pre = obj[2];
res.precomputed = {
beta: null,
doubles: pre.doubles && {
step: pre.doubles.step,
points: [ res ].concat(pre.doubles.points.map(obj2point))
},
naf: pre.naf && {
wnd: pre.naf.wnd,
points: [ res ].concat(pre.naf.points.map(obj2point))
}
};
return res;
};
Point.prototype.inspect = function inspect() {
if (this.isInfinity())
return '<EC Point Infinity>';
return '<EC Point x: ' + this.x.fromRed().toString(16, 2) +
' y: ' + this.y.fromRed().toString(16, 2) + '>';
};
Point.prototype.isInfinity = function isInfinity() {
return this.inf;
};
Point.prototype.add = function add(p) {
// O + P = P
if (this.inf)
return p;
// P + O = P
if (p.inf)
return this;
// P + P = 2P
if (this.eq(p))
return this.dbl();
// P + (-P) = O
if (this.neg().eq(p))
return this.curve.point(null, null);
// P + Q = O
if (this.x.cmp(p.x) === 0)
return this.curve.point(null, null);
var c = this.y.redSub(p.y);
if (c.cmpn(0) !== 0)
c = c.redMul(this.x.redSub(p.x).redInvm());
var nx = c.redSqr().redISub(this.x).redISub(p.x);
var ny = c.redMul(this.x.redSub(nx)).redISub(this.y);
return this.curve.point(nx, ny);
};
Point.prototype.dbl = function dbl() {
if (this.inf)
return this;
// 2P = O
var ys1 = this.y.redAdd(this.y);
if (ys1.cmpn(0) === 0)
return this.curve.point(null, null);
var a = this.curve.a;
var x2 = this.x.redSqr();
var dyinv = ys1.redInvm();
var c = x2.redAdd(x2).redIAdd(x2).redIAdd(a).redMul(dyinv);
var nx = c.redSqr().redISub(this.x.redAdd(this.x));
var ny = c.redMul(this.x.redSub(nx)).redISub(this.y);
return this.curve.point(nx, ny);
};
Point.prototype.getX = function getX() {
return this.x.fromRed();
};
Point.prototype.getY = function getY() {
return this.y.fromRed();
};
Point.prototype.mul = function mul(k) {
k = new BN(k, 16);
if (this._hasDoubles(k))
return this.curve._fixedNafMul(this, k);
else if (this.curve.endo)
return this.curve._endoWnafMulAdd([ this ], [ k ]);
else
return this.curve._wnafMul(this, k);
};
Point.prototype.mulAdd = function mulAdd(k1, p2, k2) {
var points = [ this, p2 ];
var coeffs = [ k1, k2 ];
if (this.curve.endo)
return this.curve._endoWnafMulAdd(points, coeffs);
else
return this.curve._wnafMulAdd(1, points, coeffs, 2);
};
Point.prototype.jmulAdd = function jmulAdd(k1, p2, k2) {
var points = [ this, p2 ];
var coeffs = [ k1, k2 ];
if (this.curve.endo)
return this.curve._endoWnafMulAdd(points, coeffs, true);
else
return this.curve._wnafMulAdd(1, points, coeffs, 2, true);
};
Point.prototype.eq = function eq(p) {
return this === p ||
this.inf === p.inf &&
(this.inf || this.x.cmp(p.x) === 0 && this.y.cmp(p.y) === 0);
};
Point.prototype.neg = function neg(_precompute) {
if (this.inf)
return this;
var res = this.curve.point(this.x, this.y.redNeg());
if (_precompute && this.precomputed) {
var pre = this.precomputed;
var negate = function(p) {
return p.neg();
};
res.precomputed = {
naf: pre.naf && {
wnd: pre.naf.wnd,
points: pre.naf.points.map(negate)
},
doubles: pre.doubles && {
step: pre.doubles.step,
points: pre.doubles.points.map(negate)
}
};
}
return res;
};
Point.prototype.toJ = function toJ() {
if (this.inf)
return this.curve.jpoint(null, null, null);
var res = this.curve.jpoint(this.x, this.y, this.curve.one);
return res;
};
function JPoint(curve, x, y, z) {
Base.BasePoint.call(this, curve, 'jacobian');
if (x === null && y === null && z === null) {
this.x = this.curve.one;
this.y = this.curve.one;
this.z = new BN(0);
} else {
this.x = new BN(x, 16);
this.y = new BN(y, 16);
this.z = new BN(z, 16);
}
if (!this.x.red)
this.x = this.x.toRed(this.curve.red);
if (!this.y.red)
this.y = this.y.toRed(this.curve.red);
if (!this.z.red)
this.z = this.z.toRed(this.curve.red);
this.zOne = this.z === this.curve.one;
}
inherits(JPoint, Base.BasePoint);
ShortCurve.prototype.jpoint = function jpoint(x, y, z) {
return new JPoint(this, x, y, z);
};
JPoint.prototype.toP = function toP() {
if (this.isInfinity())
return this.curve.point(null, null);
var zinv = this.z.redInvm();
var zinv2 = zinv.redSqr();
var ax = this.x.redMul(zinv2);
var ay = this.y.redMul(zinv2).redMul(zinv);
return this.curve.point(ax, ay);
};
JPoint.prototype.neg = function neg() {
return this.curve.jpoint(this.x, this.y.redNeg(), this.z);
};
JPoint.prototype.add = function add(p) {
// O + P = P
if (this.isInfinity())
return p;
// P + O = P
if (p.isInfinity())
return this;
// 12M + 4S + 7A
var pz2 = p.z.redSqr();
var z2 = this.z.redSqr();
var u1 = this.x.redMul(pz2);
var u2 = p.x.redMul(z2);
var s1 = this.y.redMul(pz2.redMul(p.z));
var s2 = p.y.redMul(z2.redMul(this.z));
var h = u1.redSub(u2);
var r = s1.redSub(s2);
if (h.cmpn(0) === 0) {
if (r.cmpn(0) !== 0)
return this.curve.jpoint(null, null, null);
else
return this.dbl();
}
var h2 = h.redSqr();
var h3 = h2.redMul(h);
var v = u1.redMul(h2);
var nx = r.redSqr().redIAdd(h3).redISub(v).redISub(v);
var ny = r.redMul(v.redISub(nx)).redISub(s1.redMul(h3));
var nz = this.z.redMul(p.z).redMul(h);
return this.curve.jpoint(nx, ny, nz);
};
JPoint.prototype.mixedAdd = function mixedAdd(p) {
// O + P = P
if (this.isInfinity())
return p.toJ();
// P + O = P
if (p.isInfinity())
return this;
// 8M + 3S + 7A
var z2 = this.z.redSqr();
var u1 = this.x;
var u2 = p.x.redMul(z2);
var s1 = this.y;
var s2 = p.y.redMul(z2).redMul(this.z);
var h = u1.redSub(u2);
var r = s1.redSub(s2);
if (h.cmpn(0) === 0) {
if (r.cmpn(0) !== 0)
return this.curve.jpoint(null, null, null);
else
return this.dbl();
}
var h2 = h.redSqr();
var h3 = h2.redMul(h);
var v = u1.redMul(h2);
var nx = r.redSqr().redIAdd(h3).redISub(v).redISub(v);
var ny = r.redMul(v.redISub(nx)).redISub(s1.redMul(h3));
var nz = this.z.redMul(h);
return this.curve.jpoint(nx, ny, nz);
};
JPoint.prototype.dblp = function dblp(pow) {
if (pow === 0)
return this;
if (this.isInfinity())
return this;
if (!pow)
return this.dbl();
if (this.curve.zeroA || this.curve.threeA) {
var r = this;
for (var i = 0; i < pow; i++)
r = r.dbl();
return r;
}
// 1M + 2S + 1A + N * (4S + 5M + 8A)
// N = 1 => 6M + 6S + 9A
var a = this.curve.a;
var tinv = this.curve.tinv;
var jx = this.x;
var jy = this.y;
var jz = this.z;
var jz4 = jz.redSqr().redSqr();
// Reuse results
var jyd = jy.redAdd(jy);
for (var i = 0; i < pow; i++) {
var jx2 = jx.redSqr();
var jyd2 = jyd.redSqr();
var jyd4 = jyd2.redSqr();
var c = jx2.redAdd(jx2).redIAdd(jx2).redIAdd(a.redMul(jz4));
var t1 = jx.redMul(jyd2);
var nx = c.redSqr().redISub(t1.redAdd(t1));
var t2 = t1.redISub(nx);
var dny = c.redMul(t2);
dny = dny.redIAdd(dny).redISub(jyd4);
var nz = jyd.redMul(jz);
if (i + 1 < pow)
jz4 = jz4.redMul(jyd4);
jx = nx;
jz = nz;
jyd = dny;
}
return this.curve.jpoint(jx, jyd.redMul(tinv), jz);
};
JPoint.prototype.dbl = function dbl() {
if (this.isInfinity())
return this;
if (this.curve.zeroA)
return this._zeroDbl();
else if (this.curve.threeA)
return this._threeDbl();
else
return this._dbl();
};
JPoint.prototype._zeroDbl = function _zeroDbl() {
var nx;
var ny;
var nz;
// Z = 1
if (this.zOne) {
// hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html
// #doubling-mdbl-2007-bl
// 1M + 5S + 14A
// XX = X1^2
var xx = this.x.redSqr();
// YY = Y1^2
var yy = this.y.redSqr();
// YYYY = YY^2
var yyyy = yy.redSqr();
// S = 2 * ((X1 + YY)^2 - XX - YYYY)
var s = this.x.redAdd(yy).redSqr().redISub(xx).redISub(yyyy);
s = s.redIAdd(s);
// M = 3 * XX + a; a = 0
var m = xx.redAdd(xx).redIAdd(xx);
// T = M ^ 2 - 2*S
var t = m.redSqr().redISub(s).redISub(s);
// 8 * YYYY
var yyyy8 = yyyy.redIAdd(yyyy);
yyyy8 = yyyy8.redIAdd(yyyy8);
yyyy8 = yyyy8.redIAdd(yyyy8);
// X3 = T
nx = t;
// Y3 = M * (S - T) - 8 * YYYY
ny = m.redMul(s.redISub(t)).redISub(yyyy8);
// Z3 = 2*Y1
nz = this.y.redAdd(this.y);
} else {
// hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html
// #doubling-dbl-2009-l
// 2M + 5S + 13A
// A = X1^2
var a = this.x.redSqr();
// B = Y1^2
var b = this.y.redSqr();
// C = B^2
var c = b.redSqr();
// D = 2 * ((X1 + B)^2 - A - C)
var d = this.x.redAdd(b).redSqr().redISub(a).redISub(c);
d = d.redIAdd(d);
// E = 3 * A
var e = a.redAdd(a).redIAdd(a);
// F = E^2
var f = e.redSqr();
// 8 * C
var c8 = c.redIAdd(c);
c8 = c8.redIAdd(c8);
c8 = c8.redIAdd(c8);
// X3 = F - 2 * D
nx = f.redISub(d).redISub(d);
// Y3 = E * (D - X3) - 8 * C
ny = e.redMul(d.redISub(nx)).redISub(c8);
// Z3 = 2 * Y1 * Z1
nz = this.y.redMul(this.z);
nz = nz.redIAdd(nz);
}
return this.curve.jpoint(nx, ny, nz);
};
JPoint.prototype._threeDbl = function _threeDbl() {
var nx;
var ny;
var nz;
// Z = 1
if (this.zOne) {
// hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html
// #doubling-mdbl-2007-bl
// 1M + 5S + 15A
// XX = X1^2
var xx = this.x.redSqr();
// YY = Y1^2
var yy = this.y.redSqr();
// YYYY = YY^2
var yyyy = yy.redSqr();
// S = 2 * ((X1 + YY)^2 - XX - YYYY)
var s = this.x.redAdd(yy).redSqr().redISub(xx).redISub(yyyy);
s = s.redIAdd(s);
// M = 3 * XX + a
var m = xx.redAdd(xx).redIAdd(xx).redIAdd(this.curve.a);
// T = M^2 - 2 * S
var t = m.redSqr().redISub(s).redISub(s);
// X3 = T
nx = t;
// Y3 = M * (S - T) - 8 * YYYY
var yyyy8 = yyyy.redIAdd(yyyy);
yyyy8 = yyyy8.redIAdd(yyyy8);
yyyy8 = yyyy8.redIAdd(yyyy8);
ny = m.redMul(s.redISub(t)).redISub(yyyy8);
// Z3 = 2 * Y1
nz = this.y.redAdd(this.y);
} else {
// hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
// 3M + 5S
// delta = Z1^2
var delta = this.z.redSqr();
// gamma = Y1^2
var gamma = this.y.redSqr();
// beta = X1 * gamma
var beta = this.x.redMul(gamma);
// alpha = 3 * (X1 - delta) * (X1 + delta)
var alpha = this.x.redSub(delta).redMul(this.x.redAdd(delta));
alpha = alpha.redAdd(alpha).redIAdd(alpha);
// X3 = alpha^2 - 8 * beta
var beta4 = beta.redIAdd(beta);
beta4 = beta4.redIAdd(beta4);
var beta8 = beta4.redAdd(beta4);
nx = alpha.redSqr().redISub(beta8);
// Z3 = (Y1 + Z1)^2 - gamma - delta
nz = this.y.redAdd(this.z).redSqr().redISub(gamma).redISub(delta);
// Y3 = alpha * (4 * beta - X3) - 8 * gamma^2
var ggamma8 = gamma.redSqr();
ggamma8 = ggamma8.redIAdd(ggamma8);
ggamma8 = ggamma8.redIAdd(ggamma8);
ggamma8 = ggamma8.redIAdd(ggamma8);
ny = alpha.redMul(beta4.redISub(nx)).redISub(ggamma8);
}
return this.curve.jpoint(nx, ny, nz);
};
JPoint.prototype._dbl = function _dbl() {
var a = this.curve.a;
// 4M + 6S + 10A
var jx = this.x;
var jy = this.y;
var jz = this.z;
var jz4 = jz.redSqr().redSqr();
var jx2 = jx.redSqr();
var jy2 = jy.redSqr();
var c = jx2.redAdd(jx2).redIAdd(jx2).redIAdd(a.redMul(jz4));
var jxd4 = jx.redAdd(jx);
jxd4 = jxd4.redIAdd(jxd4);
var t1 = jxd4.redMul(jy2);
var nx = c.redSqr().redISub(t1.redAdd(t1));
var t2 = t1.redISub(nx);
var jyd8 = jy2.redSqr();
jyd8 = jyd8.redIAdd(jyd8);
jyd8 = jyd8.redIAdd(jyd8);
jyd8 = jyd8.redIAdd(jyd8);
var ny = c.redMul(t2).redISub(jyd8);
var nz = jy.redAdd(jy).redMul(jz);
return this.curve.jpoint(nx, ny, nz);
};
JPoint.prototype.trpl = function trpl() {
if (!this.curve.zeroA)
return this.dbl().add(this);
// hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#tripling-tpl-2007-bl
// 5M + 10S + ...
// XX = X1^2
var xx = this.x.redSqr();
// YY = Y1^2
var yy = this.y.redSqr();
// ZZ = Z1^2
var zz = this.z.redSqr();
// YYYY = YY^2
var yyyy = yy.redSqr();
// M = 3 * XX + a * ZZ2; a = 0
var m = xx.redAdd(xx).redIAdd(xx);
// MM = M^2
var mm = m.redSqr();
// E = 6 * ((X1 + YY)^2 - XX - YYYY) - MM
var e = this.x.redAdd(yy).redSqr().redISub(xx).redISub(yyyy);
e = e.redIAdd(e);
e = e.redAdd(e).redIAdd(e);
e = e.redISub(mm);
// EE = E^2
var ee = e.redSqr();
// T = 16*YYYY
var t = yyyy.redIAdd(yyyy);
t = t.redIAdd(t);
t = t.redIAdd(t);
t = t.redIAdd(t);
// U = (M + E)^2 - MM - EE - T
var u = m.redIAdd(e).redSqr().redISub(mm).redISub(ee).redISub(t);
// X3 = 4 * (X1 * EE - 4 * YY * U)
var yyu4 = yy.redMul(u);
yyu4 = yyu4.redIAdd(yyu4);
yyu4 = yyu4.redIAdd(yyu4);
var nx = this.x.redMul(ee).redISub(yyu4);
nx = nx.redIAdd(nx);
nx = nx.redIAdd(nx);
// Y3 = 8 * Y1 * (U * (T - U) - E * EE)
var ny = this.y.redMul(u.redMul(t.redISub(u)).redISub(e.redMul(ee)));
ny = ny.redIAdd(ny);
ny = ny.redIAdd(ny);
ny = ny.redIAdd(ny);
// Z3 = (Z1 + E)^2 - ZZ - EE
var nz = this.z.redAdd(e).redSqr().redISub(zz).redISub(ee);
return this.curve.jpoint(nx, ny, nz);
};
JPoint.prototype.mul = function mul(k, kbase) {
k = new BN(k, kbase);
return this.curve._wnafMul(this, k);
};
JPoint.prototype.eq = function eq(p) {
if (p.type === 'affine')
return this.eq(p.toJ());
if (this === p)
return true;
// x1 * z2^2 == x2 * z1^2
var z2 = this.z.redSqr();
var pz2 = p.z.redSqr();
if (this.x.redMul(pz2).redISub(p.x.redMul(z2)).cmpn(0) !== 0)
return false;
// y1 * z2^3 == y2 * z1^3
var z3 = z2.redMul(this.z);
var pz3 = pz2.redMul(p.z);
return this.y.redMul(pz3).redISub(p.y.redMul(z3)).cmpn(0) === 0;
};
JPoint.prototype.eqXToP = function eqXToP(x) {
var zs = this.z.redSqr();
var rx = x.toRed(this.curve.red).redMul(zs);
if (this.x.cmp(rx) === 0)
return true;
var xc = x.clone();
var t = this.curve.redN.redMul(zs);
for (;;) {
xc.iadd(this.curve.n);
if (xc.cmp(this.curve.p) >= 0)
return false;
rx.redIAdd(t);
if (this.x.cmp(rx) === 0)
return true;
}
};
JPoint.prototype.inspect = function inspect() {
if (this.isInfinity())
return '<EC JPoint Infinity>';
return '<EC JPoint x: ' + this.x.toString(16, 2) +
' y: ' + this.y.toString(16, 2) +
' z: ' + this.z.toString(16, 2) + '>';
};
JPoint.prototype.isInfinity = function isInfinity() {
// XXX This code assumes that zero is always zero in red
return this.z.cmpn(0) === 0;
};
},{"../../elliptic":19,"../curve":22,"bn.js":17,"inherits":48}],25:[function(require,module,exports){
'use strict';
var curves = exports;
var hash = require('hash.js');
var elliptic = require('../elliptic');
var assert = elliptic.utils.assert;
function PresetCurve(options) {
if (options.type === 'short')
this.curve = new elliptic.curve.short(options);
else if (options.type === 'edwards')
this.curve = new elliptic.curve.edwards(options);
else if (options.type === 'mont')
this.curve = new elliptic.curve.mont(options);
else throw new Error('Unknown curve type.');
this.g = this.curve.g;
this.n = this.curve.n;
this.hash = options.hash;
assert(this.g.validate(), 'Invalid curve');
assert(this.g.mul(this.n).isInfinity(), 'Invalid curve, n*G != O');
}
curves.PresetCurve = PresetCurve;
function defineCurve(name, options) {
Object.defineProperty(curves, name, {
configurable: true,
enumerable: true,
get: function() {
var curve = new PresetCurve(options);
Object.defineProperty(curves, name, {
configurable: true,
enumerable: true,
value: curve
});
return curve;
}
});
}
defineCurve('p192', {
type: 'short',
prime: 'p192',
p: 'ffffffff ffffffff ffffffff fffffffe ffffffff ffffffff',
a: 'ffffffff ffffffff ffffffff fffffffe ffffffff fffffffc',
b: '64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1',
n: 'ffffffff ffffffff ffffffff 99def836 146bc9b1 b4d22831',
hash: hash.sha256,
gRed: false,
g: [
'188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012',
'07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811'
]
});
defineCurve('p224', {
type: 'short',
prime: 'p224',
p: 'ffffffff ffffffff ffffffff ffffffff 00000000 00000000 00000001',
a: 'ffffffff ffffffff ffffffff fffffffe ffffffff ffffffff fffffffe',
b: 'b4050a85 0c04b3ab f5413256 5044b0b7 d7bfd8ba 270b3943 2355ffb4',
n: 'ffffffff ffffffff ffffffff ffff16a2 e0b8f03e 13dd2945 5c5c2a3d',
hash: hash.sha256,
gRed: false,
g: [
'b70e0cbd 6bb4bf7f 321390b9 4a03c1d3 56c21122 343280d6 115c1d21',
'bd376388 b5f723fb 4c22dfe6 cd4375a0 5a074764 44d58199 85007e34'
]
});
defineCurve('p256', {
type: 'short',
prime: null,
p: 'ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff',
a: 'ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff fffffffc',
b: '5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e 27d2604b',
n: 'ffffffff 00000000 ffffffff ffffffff bce6faad a7179e84 f3b9cac2 fc632551',
hash: hash.sha256,
gRed: false,
g: [
'6b17d1f2 e12c4247 f8bce6e5 63a440f2 77037d81 2deb33a0 f4a13945 d898c296',
'4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16 2bce3357 6b315ece cbb64068 37bf51f5'
]
});
defineCurve('p384', {
type: 'short',
prime: null,
p: 'ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ' +
'fffffffe ffffffff 00000000 00000000 ffffffff',
a: 'ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ' +
'fffffffe ffffffff 00000000 00000000 fffffffc',
b: 'b3312fa7 e23ee7e4 988e056b e3f82d19 181d9c6e fe814112 0314088f ' +
'5013875a c656398d 8a2ed19d 2a85c8ed d3ec2aef',
n: 'ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff c7634d81 ' +
'f4372ddf 581a0db2 48b0a77a ecec196a ccc52973',
hash: hash.sha384,
gRed: false,
g: [
'aa87ca22 be8b0537 8eb1c71e f320ad74 6e1d3b62 8ba79b98 59f741e0 82542a38 ' +
'5502f25d bf55296c 3a545e38 72760ab7',
'3617de4a 96262c6f 5d9e98bf 9292dc29 f8f41dbd 289a147c e9da3113 b5f0b8c0 ' +
'0a60b1ce 1d7e819d 7a431d7c 90ea0e5f'
]
});
defineCurve('p521', {
type: 'short',
prime: null,
p: '000001ff ffffffff ffffffff ffffffff ffffffff ffffffff ' +
'ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ' +
'ffffffff ffffffff ffffffff ffffffff ffffffff',
a: '000001ff ffffffff ffffffff ffffffff ffffffff ffffffff ' +
'ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ' +
'ffffffff ffffffff ffffffff ffffffff fffffffc',
b: '00000051 953eb961 8e1c9a1f 929a21a0 b68540ee a2da725b ' +
'99b315f3 b8b48991 8ef109e1 56193951 ec7e937b 1652c0bd ' +
'3bb1bf07 3573df88 3d2c34f1 ef451fd4 6b503f00',
n: '000001ff ffffffff ffffffff ffffffff ffffffff ffffffff ' +
'ffffffff ffffffff fffffffa 51868783 bf2f966b 7fcc0148 ' +
'f709a5d0 3bb5c9b8 899c47ae bb6fb71e 91386409',
hash: hash.sha512,
gRed: false,
g: [
'000000c6 858e06b7 0404e9cd 9e3ecb66 2395b442 9c648139 ' +
'053fb521 f828af60 6b4d3dba a14b5e77 efe75928 fe1dc127 ' +
'a2ffa8de 3348b3c1 856a429b f97e7e31 c2e5bd66',
'00000118 39296a78 9a3bc004 5c8a5fb4 2c7d1bd9 98f54449 ' +
'579b4468 17afbd17 273e662c 97ee7299 5ef42640 c550b901 ' +
'3fad0761 353c7086 a272c240 88be9476 9fd16650'
]
});
// https://tools.ietf.org/html/rfc7748#section-4.1
defineCurve('curve25519', {
type: 'mont',
prime: 'p25519',
p: '7fffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffed',
a: '76d06',
b: '1',
n: '1000000000000000 0000000000000000 14def9dea2f79cd6 5812631a5cf5d3ed',
cofactor: '8',
hash: hash.sha256,
gRed: false,
g: [
'9'
]
});
defineCurve('ed25519', {
type: 'edwards',
prime: 'p25519',
p: '7fffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffed',
a: '-1',
c: '1',
// -121665 * (121666^(-1)) (mod P)
d: '52036cee2b6ffe73 8cc740797779e898 00700a4d4141d8ab 75eb4dca135978a3',
n: '1000000000000000 0000000000000000 14def9dea2f79cd6 5812631a5cf5d3ed',
cofactor: '8',
hash: hash.sha256,
gRed: false,
g: [
'216936d3cd6e53fec0a4e231fdd6dc5c692cc7609525a7b2c9562d608f25d51a',
// 4/5
'6666666666666666666666666666666666666666666666666666666666666658'
]
});
// https://tools.ietf.org/html/rfc5639#section-3.4
defineCurve('brainpoolP256r1', {
type: 'short',
prime: null,
p: 'A9FB57DB A1EEA9BC 3E660A90 9D838D72 6E3BF623 D5262028 2013481D 1F6E5377',
a: '7D5A0975 FC2C3057 EEF67530 417AFFE7 FB8055C1 26DC5C6C E94A4B44 F330B5D9',
b: '26DC5C6C E94A4B44 F330B5D9 BBD77CBF 95841629 5CF7E1CE 6BCCDC18 FF8C07B6',
n: 'A9FB57DB A1EEA9BC 3E660A90 9D838D71 8C397AA3 B561A6F7 901E0E82 974856A7',
hash: hash.sha256, // or 384, or 512
gRed: false,
g: [
'8BD2AEB9CB7E57CB2C4B482FFC81B7AFB9DE27E1E3BD23C23A4453BD9ACE3262',
'547EF835C3DAC4FD97F8461A14611DC9C27745132DED8E545C1D54C72F046997'
]
});
// https://tools.ietf.org/html/rfc5639#section-3.6
defineCurve('brainpoolP384r1', {
type: 'short',
prime: null,
p: '8CB91E82 A3386D28 0F5D6F7E 50E641DF 152F7109 ED5456B4 12B1DA19 7FB71123' +
'ACD3A729 901D1A71 87470013 3107EC53',
a: '7BC382C6 3D8C150C 3C72080A CE05AFA0 C2BEA28E 4FB22787 139165EF BA91F90F' +
'8AA5814A 503AD4EB 04A8C7DD 22CE2826',
b: '04A8C7DD 22CE2826 8B39B554 16F0447C 2FB77DE1 07DCD2A6 2E880EA5 3EEB62D5' +
'7CB43902 95DBC994 3AB78696 FA504C11',
n: '8CB91E82 A3386D28 0F5D6F7E 50E641DF 152F7109 ED5456B3 1F166E6C AC0425A7' +
'CF3AB6AF 6B7FC310 3B883202 E9046565',
hash: hash.sha384, // or 512
gRed: false,
g: [
'1D1C64F068CF45FFA2A63A81B7C13F6B8847A3E77EF14FE3DB7FCAFE0CBD10' +
'E8E826E03436D646AAEF87B2E247D4AF1E',
'8ABE1D7520F9C2A45CB1EB8E95CFD55262B70B29FEEC5864E19C054FF99129' +
'280E4646217791811142820341263C5315'
]
});
// https://tools.ietf.org/html/rfc5639#section-3.7
defineCurve('brainpoolP512r1', {
type: 'short',
prime: null,
p: 'AADD9DB8 DBE9C48B 3FD4E6AE 33C9FC07 CB308DB3 B3C9D20E D6639CCA 70330871' +
'7D4D9B00 9BC66842 AECDA12A E6A380E6 2881FF2F 2D82C685 28AA6056 583A48F3',
a: '7830A331 8B603B89 E2327145 AC234CC5 94CBDD8D 3DF91610 A83441CA EA9863BC' +
'2DED5D5A A8253AA1 0A2EF1C9 8B9AC8B5 7F1117A7 2BF2C7B9 E7C1AC4D 77FC94CA',
b: '3DF91610 A83441CA EA9863BC 2DED5D5A A8253AA1 0A2EF1C9 8B9AC8B5 7F1117A7' +
'2BF2C7B9 E7C1AC4D 77FC94CA DC083E67 984050B7 5EBAE5DD 2809BD63 8016F723',
n: 'AADD9DB8 DBE9C48B 3FD4E6AE 33C9FC07 CB308DB3 B3C9D20E D6639CCA 70330870' +
'553E5C41 4CA92619 41866119 7FAC1047 1DB1D381 085DDADD B5879682 9CA90069',
hash: hash.sha512,
gRed: false,
g: [
'81AEE4BDD82ED9645A21322E9C4C6A9385ED9F70B5D916C1B43B62EEF4D009' +
'8EFF3B1F78E2D0D48D50D1687B93B97D5F7C6D5047406A5E688B352209BCB9F822',
'7DDE385D566332ECC0EABFA9CF7822FDF209F70024A57B1AA000C55B881F81' +
'11B2DCDE494A5F485E5BCA4BD88A2763AED1CA2B2FA8F0540678CD1E0F3AD80892'
]
});
// https://en.bitcoin.it/wiki/Secp256k1
var pre;
try {
pre = require('./precomputed/secp256k1');
} catch (e) {
pre = undefined;
}
defineCurve('secp256k1', {
type: 'short',
prime: 'k256',
p: 'ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe fffffc2f',
a: '0',
b: '7',
n: 'ffffffff ffffffff ffffffff fffffffe baaedce6 af48a03b bfd25e8c d0364141',
h: '1',
hash: hash.sha256,
// Precomputed endomorphism
beta: '7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee',
lambda: '5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72',
basis: [
{
a: '3086d221a7d46bcde86c90e49284eb15',
b: '-e4437ed6010e88286f547fa90abfe4c3'
},
{
a: '114ca50f7a8e2f3f657c1108d9d44cfd8',
b: '3086d221a7d46bcde86c90e49284eb15'
}
],
gRed: false,
g: [
'79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798',
'483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8',
pre
]
});
},{"../elliptic":19,"./precomputed/secp256k1":32,"hash.js":35}],26:[function(require,module,exports){
'use strict';
var BN = require('bn.js');
var HmacDRBG = require('hmac-drbg');
var elliptic = require('../../elliptic');
var utils = elliptic.utils;
var assert = utils.assert;
var KeyPair = require('./key');
var Signature = require('./signature');
function EC(options) {
if (!(this instanceof EC))
return new EC(options);
// Shortcut `elliptic.ec(curve-name)`
if (typeof options === 'string') {
assert(elliptic.curves.hasOwnProperty(options), 'Unknown curve ' + options);
options = elliptic.curves[options];
}
// Shortcut for `elliptic.ec(elliptic.curves.curveName)`
if (options instanceof elliptic.curves.PresetCurve)
options = { curve: options };
this.curve = options.curve.curve;
this.n = this.curve.n;
this.nh = this.n.ushrn(1);
this.g = this.curve.g;
// Point on curve
this.g = options.curve.g;
this.g.precompute(options.curve.n.bitLength() + 1);
// Hash function for DRBG
this.hash = options.hash || options.curve.hash;
}
module.exports = EC;
EC.prototype.keyPair = function keyPair(options) {
return new KeyPair(this, options);
};
EC.prototype.keyFromPrivate = function keyFromPrivate(priv, enc) {
return KeyPair.fromPrivate(this, priv, enc);
};
EC.prototype.keyFromPublic = function keyFromPublic(pub, enc) {
return KeyPair.fromPublic(this, pub, enc);
};
EC.prototype.genKeyPair = function genKeyPair(options) {
if (!options)
options = {};
// Instantiate Hmac_DRBG
var drbg = new HmacDRBG({
hash: this.hash,
pers: options.pers,
persEnc: options.persEnc || 'utf8',
entropy: options.entropy || elliptic.rand(this.hash.hmacStrength),
entropyEnc: options.entropy && options.entropyEnc || 'utf8',
nonce: this.n.toArray()
});
// Key generation for curve25519 is simpler
if (this.curve.type === 'mont') {
var priv = new BN(drbg.generate(32));
return this.keyFromPrivate(priv);
}
var bytes = this.n.byteLength();
var ns2 = this.n.sub(new BN(2));
do {
var priv = new BN(drbg.generate(bytes));
if (priv.cmp(ns2) > 0)
continue;
priv.iaddn(1);
return this.keyFromPrivate(priv);
} while (true);
};
EC.prototype._truncateToN = function truncateToN(msg, truncOnly) {
var delta = msg.byteLength() * 8 - this.n.bitLength();
if (delta > 0)
msg = msg.ushrn(delta);
if (!truncOnly && msg.cmp(this.n) >= 0)
return msg.sub(this.n);
else
return msg;
};
EC.prototype.sign = function sign(msg, key, enc, options) {
if (typeof enc === 'object') {
options = enc;
enc = null;
}
if (!options)
options = {};
key = this.keyFromPrivate(key, enc);
msg = this._truncateToN(new BN(msg, 16));
// Zero-extend key to provide enough entropy
var bytes = this.n.byteLength();
var bkey = key.getPrivate().toArray('be', bytes);
// Zero-extend nonce to have the same byte size as N
var nonce = msg.toArray('be', bytes);
// Instantiate Hmac_DRBG
var drbg = new HmacDRBG({
hash: this.hash,
entropy: bkey,
nonce: nonce,
pers: options.pers,
persEnc: options.persEnc || 'utf8'
});
// Number of bytes to generate
var ns1 = this.n.sub(new BN(1));
for (var iter = 0; true; iter++) {
var k = options.k ?
options.k(iter) :
new BN(drbg.generate(this.n.byteLength()));
k = this._truncateToN(k, true);
if (k.cmpn(1) <= 0 || k.cmp(ns1) >= 0)
continue;
var kp = this.g.mul(k);
if (kp.isInfinity())
continue;
var kpX = kp.getX();
var r = kpX.umod(this.n);
if (r.cmpn(0) === 0)
continue;
var s = k.invm(this.n).mul(r.mul(key.getPrivate()).iadd(msg));
s = s.umod(this.n);
if (s.cmpn(0) === 0)
continue;
var recoveryParam = (kp.getY().isOdd() ? 1 : 0) |
(kpX.cmp(r) !== 0 ? 2 : 0);
// Use complement of `s`, if it is > `n / 2`
if (options.canonical && s.cmp(this.nh) > 0) {
s = this.n.sub(s);
recoveryParam ^= 1;
}
return new Signature({ r: r, s: s, recoveryParam: recoveryParam });
}
};
EC.prototype.verify = function verify(msg, signature, key, enc) {
msg = this._truncateToN(new BN(msg, 16));
key = this.keyFromPublic(key, enc);
signature = new Signature(signature, 'hex');
// Perform primitive values validation
var r = signature.r;
var s = signature.s;
if (r.cmpn(1) < 0 || r.cmp(this.n) >= 0)
return false;
if (s.cmpn(1) < 0 || s.cmp(this.n) >= 0)
return false;
// Validate signature
var sinv = s.invm(this.n);
var u1 = sinv.mul(msg).umod(this.n);
var u2 = sinv.mul(r).umod(this.n);
if (!this.curve._maxwellTrick) {
var p = this.g.mulAdd(u1, key.getPublic(), u2);
if (p.isInfinity())
return false;
return p.getX().umod(this.n).cmp(r) === 0;
}
// NOTE: Greg Maxwell's trick, inspired by:
// https://git.io/vad3K
var p = this.g.jmulAdd(u1, key.getPublic(), u2);
if (p.isInfinity())
return false;
// Compare `p.x` of Jacobian point with `r`,
// this will do `p.x == r * p.z^2` instead of multiplying `p.x` by the
// inverse of `p.z^2`
return p.eqXToP(r);
};
EC.prototype.recoverPubKey = function(msg, signature, j, enc) {
assert((3 & j) === j, 'The recovery param is more than two bits');
signature = new Signature(signature, enc);
var n = this.n;
var e = new BN(msg);
var r = signature.r;
var s = signature.s;
// A set LSB signifies that the y-coordinate is odd
var isYOdd = j & 1;
var isSecondKey = j >> 1;
if (r.cmp(this.curve.p.umod(this.curve.n)) >= 0 && isSecondKey)
throw new Error('Unable to find sencond key candinate');
// 1.1. Let x = r + jn.
if (isSecondKey)
r = this.curve.pointFromX(r.add(this.curve.n), isYOdd);
else
r = this.curve.pointFromX(r, isYOdd);
var rInv = signature.r.invm(n);
var s1 = n.sub(e).mul(rInv).umod(n);
var s2 = s.mul(rInv).umod(n);
// 1.6.1 Compute Q = r^-1 (sR - eG)
// Q = r^-1 (sR + -eG)
return this.g.mulAdd(s1, r, s2);
};
EC.prototype.getKeyRecoveryParam = function(e, signature, Q, enc) {
signature = new Signature(signature, enc);
if (signature.recoveryParam !== null)
return signature.recoveryParam;
for (var i = 0; i < 4; i++) {
var Qprime;
try {
Qprime = this.recoverPubKey(e, signature, i);
} catch (e) {
continue;
}
if (Qprime.eq(Q))
return i;
}
throw new Error('Unable to find valid recovery factor');
};
},{"../../elliptic":19,"./key":27,"./signature":28,"bn.js":17,"hmac-drbg":47}],27:[function(require,module,exports){
'use strict';
var BN = require('bn.js');
var elliptic = require('../../elliptic');
var utils = elliptic.utils;
var assert = utils.assert;
function KeyPair(ec, options) {
this.ec = ec;
this.priv = null;
this.pub = null;
// KeyPair(ec, { priv: ..., pub: ... })
if (options.priv)
this._importPrivate(options.priv, options.privEnc);
if (options.pub)
this._importPublic(options.pub, options.pubEnc);
}
module.exports = KeyPair;
KeyPair.fromPublic = function fromPublic(ec, pub, enc) {
if (pub instanceof KeyPair)
return pub;
return new KeyPair(ec, {
pub: pub,
pubEnc: enc
});
};
KeyPair.fromPrivate = function fromPrivate(ec, priv, enc) {
if (priv instanceof KeyPair)
return priv;
return new KeyPair(ec, {
priv: priv,
privEnc: enc
});
};
// TODO: should not validate for X25519
KeyPair.prototype.validate = function validate() {
var pub = this.getPublic();
if (pub.isInfinity())
return { result: false, reason: 'Invalid public key' };
if (!pub.validate())
return { result: false, reason: 'Public key is not a point' };
if (!pub.mul(this.ec.curve.n).isInfinity())
return { result: false, reason: 'Public key * N != O' };
return { result: true, reason: null };
};
KeyPair.prototype.getPublic = function getPublic(enc, compact) {
if (!this.pub)
this.pub = this.ec.g.mul(this.priv);
if (!enc)
return this.pub;
return this.pub.encode(enc, compact);
};
KeyPair.prototype.getPrivate = function getPrivate(enc) {
if (enc === 'hex')
return this.priv.toString(16, 2);
else
return this.priv;
};
KeyPair.prototype._importPrivate = function _importPrivate(key, enc) {
this.priv = new BN(key, enc || 16);
// For Curve25519/Curve448 we have a specific procedure.
// TODO Curve448
if (this.ec.curve.type === 'mont') {
var one = this.ec.curve.one;
var mask = one.ushln(255 - 3).sub(one).ushln(3);
this.priv = this.priv.or(one.ushln(255 - 1));
this.priv = this.priv.and(mask);
} else
// Ensure that the priv won't be bigger than n, otherwise we may fail
// in fixed multiplication method
this.priv = this.priv.umod(this.ec.curve.n);
};
KeyPair.prototype._importPublic = function _importPublic(key, enc) {
if (key.x || key.y) {
// Montgomery points only have an `x` coordinate.
// Weierstrass/Edwards points on the other hand have both `x` and
// `y` coordinates.
if (this.ec.curve.type === 'mont') {
assert(key.x, 'Need x coordinate');
} else if (this.ec.curve.type === 'short' ||
this.ec.curve.type === 'edwards') {
assert(key.x && key.y, 'Need both x and y coordinate');
}
this.pub = this.ec.curve.point(key.x, key.y);
return;
}
this.pub = this.ec.curve.decodePoint(key, enc);
};
// ECDH
KeyPair.prototype.derive = function derive(pub) {
return pub.mul(this.priv).getX();
};
// ECDSA
KeyPair.prototype.sign = function sign(msg, enc, options) {
return this.ec.sign(msg, this, enc, options);
};
KeyPair.prototype.verify = function verify(msg, signature) {
return this.ec.verify(msg, signature, this);
};
KeyPair.prototype.inspect = function inspect() {
return '<Key priv: ' + (this.priv && this.priv.toString(16, 2)) +
' pub: ' + (this.pub && this.pub.inspect()) + ' >';
};
},{"../../elliptic":19,"bn.js":17}],28:[function(require,module,exports){
'use strict';
var BN = require('bn.js');
var elliptic = require('../../elliptic');
var utils = elliptic.utils;
var assert = utils.assert;
function Signature(options, enc) {
if (options instanceof Signature)
return options;
if (this._importDER(options, enc))
return;
assert(options.r && options.s, 'Signature without r or s');
this.r = new BN(options.r, 16);
this.s = new BN(options.s, 16);
if (options.recoveryParam === undefined)
this.recoveryParam = null;
else
this.recoveryParam = options.recoveryParam;
}
module.exports = Signature;
function Position() {
this.place = 0;
}
function getLength(buf, p) {
var initial = buf[p.place++];
if (!(initial & 0x80)) {
return initial;
}
var octetLen = initial & 0xf;
var val = 0;
for (var i = 0, off = p.place; i < octetLen; i++, off++) {
val <<= 8;
val |= buf[off];
}
p.place = off;
return val;
}
function rmPadding(buf) {
var i = 0;
var len = buf.length - 1;
while (!buf[i] && !(buf[i + 1] & 0x80) && i < len) {
i++;
}
if (i === 0) {
return buf;
}
return buf.slice(i);
}
Signature.prototype._importDER = function _importDER(data, enc) {
data = utils.toArray(data, enc);
var p = new Position();
if (data[p.place++] !== 0x30) {
return false;
}
var len = getLength(data, p);
if ((len + p.place) !== data.length) {
return false;
}
if (data[p.place++] !== 0x02) {
return false;
}
var rlen = getLength(data, p);
var r = data.slice(p.place, rlen + p.place);
p.place += rlen;
if (data[p.place++] !== 0x02) {
return false;
}
var slen = getLength(data, p);
if (data.length !== slen + p.place) {
return false;
}
var s = data.slice(p.place, slen + p.place);
if (r[0] === 0 && (r[1] & 0x80)) {
r = r.slice(1);
}
if (s[0] === 0 && (s[1] & 0x80)) {
s = s.slice(1);
}
this.r = new BN(r);
this.s = new BN(s);
this.recoveryParam = null;
return true;
};
function constructLength(arr, len) {
if (len < 0x80) {
arr.push(len);
return;
}
var octets = 1 + (Math.log(len) / Math.LN2 >>> 3);
arr.push(octets | 0x80);
while (--octets) {
arr.push((len >>> (octets << 3)) & 0xff);
}
arr.push(len);
}
Signature.prototype.toDER = function toDER(enc) {
var r = this.r.toArray();
var s = this.s.toArray();
// Pad values
if (r[0] & 0x80)
r = [ 0 ].concat(r);
// Pad values
if (s[0] & 0x80)
s = [ 0 ].concat(s);
r = rmPadding(r);
s = rmPadding(s);
while (!s[0] && !(s[1] & 0x80)) {
s = s.slice(1);
}
var arr = [ 0x02 ];
constructLength(arr, r.length);
arr = arr.concat(r);
arr.push(0x02);
constructLength(arr, s.length);
var backHalf = arr.concat(s);
var res = [ 0x30 ];
constructLength(res, backHalf.length);
res = res.concat(backHalf);
return utils.encode(res, enc);
};
},{"../../elliptic":19,"bn.js":17}],29:[function(require,module,exports){
'use strict';
var hash = require('hash.js');
var HmacDRBG = require('hmac-drbg');
var elliptic = require('../../elliptic');
var utils = elliptic.utils;
var assert = utils.assert;
var parseBytes = utils.parseBytes;
var KeyPair = require('./key');
var Signature = require('./signature');
function EDDSA(curve) {
assert(curve === 'ed25519', 'only tested with ed25519 so far');
if (!(this instanceof EDDSA))
return new EDDSA(curve);
var curve = elliptic.curves[curve].curve;
this.curve = curve;
this.g = curve.g;
this.g.precompute(curve.n.bitLength() + 1);
this.pointClass = curve.point().constructor;
this.encodingLength = Math.ceil(curve.n.bitLength() / 8);
this.hash = hash.sha512;
}
module.exports = EDDSA;
/**
* @param {Array|String} message - message bytes
* @param {Array|String|KeyPair} secret - secret bytes or a keypair
* @returns {Signature} - signature
*/
EDDSA.prototype.sign = function sign(message, secret) {
message = parseBytes(message);
var key = this.keyFromSecret(secret);
var r = this.hashInt(key.messagePrefix(), message);
var R = this.g.mul(r);
var Rencoded = this.encodePoint(R);
var s_ = this.hashInt(Rencoded, key.pubBytes(), message)
.mul(key.priv());
var S = r.add(s_).umod(this.curve.n);
return this.makeSignature({ R: R, S: S, Rencoded: Rencoded });
};
/**
* @param {Array} message - message bytes
* @param {Array|String|Signature} sig - sig bytes
* @param {Array|String|Point|KeyPair} pub - public key
* @returns {Boolean} - true if public key matches sig of message
*/
EDDSA.prototype.verify = function verify(message, sig, pub) {
message = parseBytes(message);
sig = this.makeSignature(sig);
var key = this.keyFromPublic(pub);
var h = this.hashInt(sig.Rencoded(), key.pubBytes(), message);
var SG = this.g.mul(sig.S());
var RplusAh = sig.R().add(key.pub().mul(h));
return RplusAh.eq(SG);
};
EDDSA.prototype.hashInt = function hashInt() {
var hash = this.hash();
for (var i = 0; i < arguments.length; i++)
hash.update(arguments[i]);
return utils.intFromLE(hash.digest()).umod(this.curve.n);
};
EDDSA.prototype.keyPair = function keyPair(options) {
return new KeyPair(this, options);
};
EDDSA.prototype.keyFromPublic = function keyFromPublic(pub) {
return KeyPair.fromPublic(this, pub);
};
EDDSA.prototype.keyFromSecret = function keyFromSecret(secret) {
return KeyPair.fromSecret(this, secret);
};
EDDSA.prototype.genKeyPair = function genKeyPair(options) {
if (!options)
options = {};
// Instantiate Hmac_DRBG
var drbg = new HmacDRBG({
hash: this.hash,
pers: options.pers,
persEnc: options.persEnc || 'utf8',
entropy: options.entropy || elliptic.rand(this.hash.hmacStrength),
entropyEnc: options.entropy && options.entropyEnc || 'utf8',
nonce: this.curve.n.toArray()
});
return this.keyFromSecret(drbg.generate(32));
};
EDDSA.prototype.makeSignature = function makeSignature(sig) {
if (sig instanceof Signature)
return sig;
return new Signature(this, sig);
};
/**
* * https://tools.ietf.org/html/draft-josefsson-eddsa-ed25519-03#section-5.2
*
* EDDSA defines methods for encoding and decoding points and integers. These are
* helper convenience methods, that pass along to utility functions implied
* parameters.
*
*/
EDDSA.prototype.encodePoint = function encodePoint(point) {
var enc = point.getY().toArray('le', this.encodingLength);
enc[this.encodingLength - 1] |= point.getX().isOdd() ? 0x80 : 0;
return enc;
};
EDDSA.prototype.decodePoint = function decodePoint(bytes) {
bytes = utils.parseBytes(bytes);
var lastIx = bytes.length - 1;
var normed = bytes.slice(0, lastIx).concat(bytes[lastIx] & ~0x80);
var xIsOdd = (bytes[lastIx] & 0x80) !== 0;
var y = utils.intFromLE(normed);
return this.curve.pointFromY(y, xIsOdd);
};
EDDSA.prototype.encodeInt = function encodeInt(num) {
return num.toArray('le', this.encodingLength);
};
EDDSA.prototype.decodeInt = function decodeInt(bytes) {
return utils.intFromLE(bytes);
};
EDDSA.prototype.isPoint = function isPoint(val) {
return val instanceof this.pointClass;
};
},{"../../elliptic":19,"./key":30,"./signature":31,"hash.js":35,"hmac-drbg":47}],30:[function(require,module,exports){
'use strict';
var elliptic = require('../../elliptic');
var utils = elliptic.utils;
var assert = utils.assert;
var parseBytes = utils.parseBytes;
var cachedProperty = utils.cachedProperty;
/**
* @param {EDDSA} eddsa - instance
* @param {Object} params - public/private key parameters
*
* @param {Array<Byte>} [params.secret] - secret seed bytes
* @param {Point} [params.pub] - public key point (aka `A` in eddsa terms)
* @param {Array<Byte>} [params.pub] - public key point encoded as bytes
*
*/
function KeyPair(eddsa, params) {
this.eddsa = eddsa;
if (params.hasOwnProperty('secret'))
this._secret = parseBytes(params.secret);
if (eddsa.isPoint(params.pub))
this._pub = params.pub;
else {
this._pubBytes = parseBytes(params.pub);
if (this._pubBytes && this._pubBytes.length === 33 &&
this._pubBytes[0] === 0x40)
this._pubBytes = this._pubBytes.slice(1, 33);
if (this._pubBytes && this._pubBytes.length !== 32)
throw new Error('Unknown point compression format');
}
}
KeyPair.fromPublic = function fromPublic(eddsa, pub) {
if (pub instanceof KeyPair)
return pub;
return new KeyPair(eddsa, { pub: pub });
};
KeyPair.fromSecret = function fromSecret(eddsa, secret) {
if (secret instanceof KeyPair)
return secret;
return new KeyPair(eddsa, { secret: secret });
};
KeyPair.prototype.secret = function secret() {
return this._secret;
};
cachedProperty(KeyPair, 'pubBytes', function pubBytes() {
return this.eddsa.encodePoint(this.pub());
});
cachedProperty(KeyPair, 'pub', function pub() {
if (this._pubBytes)
return this.eddsa.decodePoint(this._pubBytes);
return this.eddsa.g.mul(this.priv());
});
cachedProperty(KeyPair, 'privBytes', function privBytes() {
var eddsa = this.eddsa;
var hash = this.hash();
var lastIx = eddsa.encodingLength - 1;
// https://tools.ietf.org/html/rfc8032#section-5.1.5
var a = hash.slice(0, eddsa.encodingLength);
a[0] &= 248;
a[lastIx] &= 127;
a[lastIx] |= 64;
return a;
});
cachedProperty(KeyPair, 'priv', function priv() {
return this.eddsa.decodeInt(this.privBytes());
});
cachedProperty(KeyPair, 'hash', function hash() {
return this.eddsa.hash().update(this.secret()).digest();
});
cachedProperty(KeyPair, 'messagePrefix', function messagePrefix() {
return this.hash().slice(this.eddsa.encodingLength);
});
KeyPair.prototype.sign = function sign(message) {
assert(this._secret, 'KeyPair can only verify');
return this.eddsa.sign(message, this);
};
KeyPair.prototype.verify = function verify(message, sig) {
return this.eddsa.verify(message, sig, this);
};
KeyPair.prototype.getSecret = function getSecret(enc) {
assert(this._secret, 'KeyPair is public only');
return utils.encode(this.secret(), enc);
};
KeyPair.prototype.getPublic = function getPublic(enc, compact) {
return utils.encode((compact ? [ 0x40 ] : []).concat(this.pubBytes()), enc);
};
module.exports = KeyPair;
},{"../../elliptic":19}],31:[function(require,module,exports){
'use strict';
var BN = require('bn.js');
var elliptic = require('../../elliptic');
var utils = elliptic.utils;
var assert = utils.assert;
var cachedProperty = utils.cachedProperty;
var parseBytes = utils.parseBytes;
/**
* @param {EDDSA} eddsa - eddsa instance
* @param {Array<Bytes>|Object} sig -
* @param {Array<Bytes>|Point} [sig.R] - R point as Point or bytes
* @param {Array<Bytes>|bn} [sig.S] - S scalar as bn or bytes
* @param {Array<Bytes>} [sig.Rencoded] - R point encoded
* @param {Array<Bytes>} [sig.Sencoded] - S scalar encoded
*/
function Signature(eddsa, sig) {
this.eddsa = eddsa;
if (typeof sig !== 'object')
sig = parseBytes(sig);
if (Array.isArray(sig)) {
sig = {
R: sig.slice(0, eddsa.encodingLength),
S: sig.slice(eddsa.encodingLength)
};
}
assert(sig.R && sig.S, 'Signature without R or S');
if (eddsa.isPoint(sig.R))
this._R = sig.R;
if (sig.S instanceof BN)
this._S = sig.S;
this._Rencoded = Array.isArray(sig.R) ? sig.R : sig.Rencoded;
this._Sencoded = Array.isArray(sig.S) ? sig.S : sig.Sencoded;
}
cachedProperty(Signature, 'S', function S() {
return this.eddsa.decodeInt(this.Sencoded());
});
cachedProperty(Signature, 'R', function R() {
return this.eddsa.decodePoint(this.Rencoded());
});
cachedProperty(Signature, 'Rencoded', function Rencoded() {
return this.eddsa.encodePoint(this.R());
});
cachedProperty(Signature, 'Sencoded', function Sencoded() {
return this.eddsa.encodeInt(this.S());
});
Signature.prototype.toBytes = function toBytes() {
return this.Rencoded().concat(this.Sencoded());
};
Signature.prototype.toHex = function toHex() {
return utils.encode(this.toBytes(), 'hex').toUpperCase();
};
module.exports = Signature;
},{"../../elliptic":19,"bn.js":17}],32:[function(require,module,exports){
module.exports = {
doubles: {
step: 4,
points: [
[
'e60fce93b59e9ec53011aabc21c23e97b2a31369b87a5ae9c44ee89e2a6dec0a',
'f7e3507399e595929db99f34f57937101296891e44d23f0be1f32cce69616821'
],
[
'8282263212c609d9ea2a6e3e172de238d8c39cabd5ac1ca10646e23fd5f51508',
'11f8a8098557dfe45e8256e830b60ace62d613ac2f7b17bed31b6eaff6e26caf'
],
[
'175e159f728b865a72f99cc6c6fc846de0b93833fd2222ed73fce5b551e5b739',
'd3506e0d9e3c79eba4ef97a51ff71f5eacb5955add24345c6efa6ffee9fed695'
],
[
'363d90d447b00c9c99ceac05b6262ee053441c7e55552ffe526bad8f83ff4640',
'4e273adfc732221953b445397f3363145b9a89008199ecb62003c7f3bee9de9'
],
[
'8b4b5f165df3c2be8c6244b5b745638843e4a781a15bcd1b69f79a55dffdf80c',
'4aad0a6f68d308b4b3fbd7813ab0da04f9e336546162ee56b3eff0c65fd4fd36'
],
[
'723cbaa6e5db996d6bf771c00bd548c7b700dbffa6c0e77bcb6115925232fcda',
'96e867b5595cc498a921137488824d6e2660a0653779494801dc069d9eb39f5f'
],
[
'eebfa4d493bebf98ba5feec812c2d3b50947961237a919839a533eca0e7dd7fa',
'5d9a8ca3970ef0f269ee7edaf178089d9ae4cdc3a711f712ddfd4fdae1de8999'
],
[
'100f44da696e71672791d0a09b7bde459f1215a29b3c03bfefd7835b39a48db0',
'cdd9e13192a00b772ec8f3300c090666b7ff4a18ff5195ac0fbd5cd62bc65a09'
],
[
'e1031be262c7ed1b1dc9227a4a04c017a77f8d4464f3b3852c8acde6e534fd2d',
'9d7061928940405e6bb6a4176597535af292dd419e1ced79a44f18f29456a00d'
],
[
'feea6cae46d55b530ac2839f143bd7ec5cf8b266a41d6af52d5e688d9094696d',
'e57c6b6c97dce1bab06e4e12bf3ecd5c981c8957cc41442d3155debf18090088'
],
[
'da67a91d91049cdcb367be4be6ffca3cfeed657d808583de33fa978bc1ec6cb1',
'9bacaa35481642bc41f463f7ec9780e5dec7adc508f740a17e9ea8e27a68be1d'
],
[
'53904faa0b334cdda6e000935ef22151ec08d0f7bb11069f57545ccc1a37b7c0',
'5bc087d0bc80106d88c9eccac20d3c1c13999981e14434699dcb096b022771c8'
],
[
'8e7bcd0bd35983a7719cca7764ca906779b53a043a9b8bcaeff959f43ad86047',
'10b7770b2a3da4b3940310420ca9514579e88e2e47fd68b3ea10047e8460372a'
],
[
'385eed34c1cdff21e6d0818689b81bde71a7f4f18397e6690a841e1599c43862',
'283bebc3e8ea23f56701de19e9ebf4576b304eec2086dc8cc0458fe5542e5453'
],
[
'6f9d9b803ecf191637c73a4413dfa180fddf84a5947fbc9c606ed86c3fac3a7',
'7c80c68e603059ba69b8e2a30e45c4d47ea4dd2f5c281002d86890603a842160'
],
[
'3322d401243c4e2582a2147c104d6ecbf774d163db0f5e5313b7e0e742d0e6bd',
'56e70797e9664ef5bfb019bc4ddaf9b72805f63ea2873af624f3a2e96c28b2a0'
],
[
'85672c7d2de0b7da2bd1770d89665868741b3f9af7643397721d74d28134ab83',
'7c481b9b5b43b2eb6374049bfa62c2e5e77f17fcc5298f44c8e3094f790313a6'
],
[
'948bf809b1988a46b06c9f1919413b10f9226c60f668832ffd959af60c82a0a',
'53a562856dcb6646dc6b74c5d1c3418c6d4dff08c97cd2bed4cb7f88d8c8e589'
],
[
'6260ce7f461801c34f067ce0f02873a8f1b0e44dfc69752accecd819f38fd8e8',
'bc2da82b6fa5b571a7f09049776a1ef7ecd292238051c198c1a84e95b2b4ae17'
],
[
'e5037de0afc1d8d43d8348414bbf4103043ec8f575bfdc432953cc8d2037fa2d',
'4571534baa94d3b5f9f98d09fb990bddbd5f5b03ec481f10e0e5dc841d755bda'
],
[
'e06372b0f4a207adf5ea905e8f1771b4e7e8dbd1c6a6c5b725866a0ae4fce725',
'7a908974bce18cfe12a27bb2ad5a488cd7484a7787104870b27034f94eee31dd'
],
[
'213c7a715cd5d45358d0bbf9dc0ce02204b10bdde2a3f58540ad6908d0559754',
'4b6dad0b5ae462507013ad06245ba190bb4850f5f36a7eeddff2c27534b458f2'
],
[
'4e7c272a7af4b34e8dbb9352a5419a87e2838c70adc62cddf0cc3a3b08fbd53c',
'17749c766c9d0b18e16fd09f6def681b530b9614bff7dd33e0b3941817dcaae6'
],
[
'fea74e3dbe778b1b10f238ad61686aa5c76e3db2be43057632427e2840fb27b6',
'6e0568db9b0b13297cf674deccb6af93126b596b973f7b77701d3db7f23cb96f'
],
[
'76e64113f677cf0e10a2570d599968d31544e179b760432952c02a4417bdde39',
'c90ddf8dee4e95cf577066d70681f0d35e2a33d2b56d2032b4b1752d1901ac01'
],
[
'c738c56b03b2abe1e8281baa743f8f9a8f7cc643df26cbee3ab150242bcbb891',
'893fb578951ad2537f718f2eacbfbbbb82314eef7880cfe917e735d9699a84c3'
],
[
'd895626548b65b81e264c7637c972877d1d72e5f3a925014372e9f6588f6c14b',
'febfaa38f2bc7eae728ec60818c340eb03428d632bb067e179363ed75d7d991f'
],
[
'b8da94032a957518eb0f6433571e8761ceffc73693e84edd49150a564f676e03',
'2804dfa44805a1e4d7c99cc9762808b092cc584d95ff3b511488e4e74efdf6e7'
],
[
'e80fea14441fb33a7d8adab9475d7fab2019effb5156a792f1a11778e3c0df5d',
'eed1de7f638e00771e89768ca3ca94472d155e80af322ea9fcb4291b6ac9ec78'
],
[
'a301697bdfcd704313ba48e51d567543f2a182031efd6915ddc07bbcc4e16070',
'7370f91cfb67e4f5081809fa25d40f9b1735dbf7c0a11a130c0d1a041e177ea1'
],
[
'90ad85b389d6b936463f9d0512678de208cc330b11307fffab7ac63e3fb04ed4',
'e507a3620a38261affdcbd9427222b839aefabe1582894d991d4d48cb6ef150'
],
[
'8f68b9d2f63b5f339239c1ad981f162ee88c5678723ea3351b7b444c9ec4c0da',
'662a9f2dba063986de1d90c2b6be215dbbea2cfe95510bfdf23cbf79501fff82'
],
[
'e4f3fb0176af85d65ff99ff9198c36091f48e86503681e3e6686fd5053231e11',
'1e63633ad0ef4f1c1661a6d0ea02b7286cc7e74ec951d1c9822c38576feb73bc'
],
[
'8c00fa9b18ebf331eb961537a45a4266c7034f2f0d4e1d0716fb6eae20eae29e',
'efa47267fea521a1a9dc343a3736c974c2fadafa81e36c54e7d2a4c66702414b'
],
[
'e7a26ce69dd4829f3e10cec0a9e98ed3143d084f308b92c0997fddfc60cb3e41',
'2a758e300fa7984b471b006a1aafbb18d0a6b2c0420e83e20e8a9421cf2cfd51'
],
[
'b6459e0ee3662ec8d23540c223bcbdc571cbcb967d79424f3cf29eb3de6b80ef',
'67c876d06f3e06de1dadf16e5661db3c4b3ae6d48e35b2ff30bf0b61a71ba45'
],
[
'd68a80c8280bb840793234aa118f06231d6f1fc67e73c5a5deda0f5b496943e8',
'db8ba9fff4b586d00c4b1f9177b0e28b5b0e7b8f7845295a294c84266b133120'
],
[
'324aed7df65c804252dc0270907a30b09612aeb973449cea4095980fc28d3d5d',
'648a365774b61f2ff130c0c35aec1f4f19213b0c7e332843967224af96ab7c84'
],
[
'4df9c14919cde61f6d51dfdbe5fee5dceec4143ba8d1ca888e8bd373fd054c96',
'35ec51092d8728050974c23a1d85d4b5d506cdc288490192ebac06cad10d5d'
],
[
'9c3919a84a474870faed8a9c1cc66021523489054d7f0308cbfc99c8ac1f98cd',
'ddb84f0f4a4ddd57584f044bf260e641905326f76c64c8e6be7e5e03d4fc599d'
],
[
'6057170b1dd12fdf8de05f281d8e06bb91e1493a8b91d4cc5a21382120a959e5',
'9a1af0b26a6a4807add9a2daf71df262465152bc3ee24c65e899be932385a2a8'
],
[
'a576df8e23a08411421439a4518da31880cef0fba7d4df12b1a6973eecb94266',
'40a6bf20e76640b2c92b97afe58cd82c432e10a7f514d9f3ee8be11ae1b28ec8'
],
[
'7778a78c28dec3e30a05fe9629de8c38bb30d1f5cf9a3a208f763889be58ad71',
'34626d9ab5a5b22ff7098e12f2ff580087b38411ff24ac563b513fc1fd9f43ac'
],
[
'928955ee637a84463729fd30e7afd2ed5f96274e5ad7e5cb09eda9c06d903ac',
'c25621003d3f42a827b78a13093a95eeac3d26efa8a8d83fc5180e935bcd091f'
],
[
'85d0fef3ec6db109399064f3a0e3b2855645b4a907ad354527aae75163d82751',
'1f03648413a38c0be29d496e582cf5663e8751e96877331582c237a24eb1f962'
],
[
'ff2b0dce97eece97c1c9b6041798b85dfdfb6d8882da20308f5404824526087e',
'493d13fef524ba188af4c4dc54d07936c7b7ed6fb90e2ceb2c951e01f0c29907'
],
[
'827fbbe4b1e880ea9ed2b2e6301b212b57f1ee148cd6dd28780e5e2cf856e241',
'c60f9c923c727b0b71bef2c67d1d12687ff7a63186903166d605b68baec293ec'
],
[
'eaa649f21f51bdbae7be4ae34ce6e5217a58fdce7f47f9aa7f3b58fa2120e2b3',
'be3279ed5bbbb03ac69a80f89879aa5a01a6b965f13f7e59d47a5305ba5ad93d'
],
[
'e4a42d43c5cf169d9391df6decf42ee541b6d8f0c9a137401e23632dda34d24f',
'4d9f92e716d1c73526fc99ccfb8ad34ce886eedfa8d8e4f13a7f7131deba9414'
],
[
'1ec80fef360cbdd954160fadab352b6b92b53576a88fea4947173b9d4300bf19',
'aeefe93756b5340d2f3a4958a7abbf5e0146e77f6295a07b671cdc1cc107cefd'
],
[
'146a778c04670c2f91b00af4680dfa8bce3490717d58ba889ddb5928366642be',
'b318e0ec3354028add669827f9d4b2870aaa971d2f7e5ed1d0b297483d83efd0'
],
[
'fa50c0f61d22e5f07e3acebb1aa07b128d0012209a28b9776d76a8793180eef9',
'6b84c6922397eba9b72cd2872281a68a5e683293a57a213b38cd8d7d3f4f2811'
],
[
'da1d61d0ca721a11b1a5bf6b7d88e8421a288ab5d5bba5220e53d32b5f067ec2',
'8157f55a7c99306c79c0766161c91e2966a73899d279b48a655fba0f1ad836f1'
],
[
'a8e282ff0c9706907215ff98e8fd416615311de0446f1e062a73b0610d064e13',
'7f97355b8db81c09abfb7f3c5b2515888b679a3e50dd6bd6cef7c73111f4cc0c'
],
[
'174a53b9c9a285872d39e56e6913cab15d59b1fa512508c022f382de8319497c',
'ccc9dc37abfc9c1657b4155f2c47f9e6646b3a1d8cb9854383da13ac079afa73'
],
[
'959396981943785c3d3e57edf5018cdbe039e730e4918b3d884fdff09475b7ba',
'2e7e552888c331dd8ba0386a4b9cd6849c653f64c8709385e9b8abf87524f2fd'
],
[
'd2a63a50ae401e56d645a1153b109a8fcca0a43d561fba2dbb51340c9d82b151',
'e82d86fb6443fcb7565aee58b2948220a70f750af484ca52d4142174dcf89405'
],
[
'64587e2335471eb890ee7896d7cfdc866bacbdbd3839317b3436f9b45617e073',
'd99fcdd5bf6902e2ae96dd6447c299a185b90a39133aeab358299e5e9faf6589'
],
[
'8481bde0e4e4d885b3a546d3e549de042f0aa6cea250e7fd358d6c86dd45e458',
'38ee7b8cba5404dd84a25bf39cecb2ca900a79c42b262e556d64b1b59779057e'
],
[
'13464a57a78102aa62b6979ae817f4637ffcfed3c4b1ce30bcd6303f6caf666b',
'69be159004614580ef7e433453ccb0ca48f300a81d0942e13f495a907f6ecc27'
],
[
'bc4a9df5b713fe2e9aef430bcc1dc97a0cd9ccede2f28588cada3a0d2d83f366',
'd3a81ca6e785c06383937adf4b798caa6e8a9fbfa547b16d758d666581f33c1'
],
[
'8c28a97bf8298bc0d23d8c749452a32e694b65e30a9472a3954ab30fe5324caa',
'40a30463a3305193378fedf31f7cc0eb7ae784f0451cb9459e71dc73cbef9482'
],
[
'8ea9666139527a8c1dd94ce4f071fd23c8b350c5a4bb33748c4ba111faccae0',
'620efabbc8ee2782e24e7c0cfb95c5d735b783be9cf0f8e955af34a30e62b945'
],
[
'dd3625faef5ba06074669716bbd3788d89bdde815959968092f76cc4eb9a9787',
'7a188fa3520e30d461da2501045731ca941461982883395937f68d00c644a573'
],
[
'f710d79d9eb962297e4f6232b40e8f7feb2bc63814614d692c12de752408221e',
'ea98e67232d3b3295d3b535532115ccac8612c721851617526ae47a9c77bfc82'
]
]
},
naf: {
wnd: 7,
points: [
[
'f9308a019258c31049344f85f89d5229b531c845836f99b08601f113bce036f9',
'388f7b0f632de8140fe337e62a37f3566500a99934c2231b6cb9fd7584b8e672'
],
[
'2f8bde4d1a07209355b4a7250a5c5128e88b84bddc619ab7cba8d569b240efe4',
'd8ac222636e5e3d6d4dba9dda6c9c426f788271bab0d6840dca87d3aa6ac62d6'
],
[
'5cbdf0646e5db4eaa398f365f2ea7a0e3d419b7e0330e39ce92bddedcac4f9bc',
'6aebca40ba255960a3178d6d861a54dba813d0b813fde7b5a5082628087264da'
],
[
'acd484e2f0c7f65309ad178a9f559abde09796974c57e714c35f110dfc27ccbe',
'cc338921b0a7d9fd64380971763b61e9add888a4375f8e0f05cc262ac64f9c37'
],
[
'774ae7f858a9411e5ef4246b70c65aac5649980be5c17891bbec17895da008cb',
'd984a032eb6b5e190243dd56d7b7b365372db1e2dff9d6a8301d74c9c953c61b'
],
[
'f28773c2d975288bc7d1d205c3748651b075fbc6610e58cddeeddf8f19405aa8',
'ab0902e8d880a89758212eb65cdaf473a1a06da521fa91f29b5cb52db03ed81'
],
[
'd7924d4f7d43ea965a465ae3095ff41131e5946f3c85f79e44adbcf8e27e080e',
'581e2872a86c72a683842ec228cc6defea40af2bd896d3a5c504dc9ff6a26b58'
],
[
'defdea4cdb677750a420fee807eacf21eb9898ae79b9768766e4faa04a2d4a34',
'4211ab0694635168e997b0ead2a93daeced1f4a04a95c0f6cfb199f69e56eb77'
],
[
'2b4ea0a797a443d293ef5cff444f4979f06acfebd7e86d277475656138385b6c',
'85e89bc037945d93b343083b5a1c86131a01f60c50269763b570c854e5c09b7a'
],
[
'352bbf4a4cdd12564f93fa332ce333301d9ad40271f8107181340aef25be59d5',
'321eb4075348f534d59c18259dda3e1f4a1b3b2e71b1039c67bd3d8bcf81998c'
],
[
'2fa2104d6b38d11b0230010559879124e42ab8dfeff5ff29dc9cdadd4ecacc3f',
'2de1068295dd865b64569335bd5dd80181d70ecfc882648423ba76b532b7d67'
],
[
'9248279b09b4d68dab21a9b066edda83263c3d84e09572e269ca0cd7f5453714',
'73016f7bf234aade5d1aa71bdea2b1ff3fc0de2a887912ffe54a32ce97cb3402'
],
[
'daed4f2be3a8bf278e70132fb0beb7522f570e144bf615c07e996d443dee8729',
'a69dce4a7d6c98e8d4a1aca87ef8d7003f83c230f3afa726ab40e52290be1c55'
],
[
'c44d12c7065d812e8acf28d7cbb19f9011ecd9e9fdf281b0e6a3b5e87d22e7db',
'2119a460ce326cdc76c45926c982fdac0e106e861edf61c5a039063f0e0e6482'
],
[
'6a245bf6dc698504c89a20cfded60853152b695336c28063b61c65cbd269e6b4',
'e022cf42c2bd4a708b3f5126f16a24ad8b33ba48d0423b6efd5e6348100d8a82'
],
[
'1697ffa6fd9de627c077e3d2fe541084ce13300b0bec1146f95ae57f0d0bd6a5',
'b9c398f186806f5d27561506e4557433a2cf15009e498ae7adee9d63d01b2396'
],
[
'605bdb019981718b986d0f07e834cb0d9deb8360ffb7f61df982345ef27a7479',
'2972d2de4f8d20681a78d93ec96fe23c26bfae84fb14db43b01e1e9056b8c49'
],
[
'62d14dab4150bf497402fdc45a215e10dcb01c354959b10cfe31c7e9d87ff33d',
'80fc06bd8cc5b01098088a1950eed0db01aa132967ab472235f5642483b25eaf'
],
[
'80c60ad0040f27dade5b4b06c408e56b2c50e9f56b9b8b425e555c2f86308b6f',
'1c38303f1cc5c30f26e66bad7fe72f70a65eed4cbe7024eb1aa01f56430bd57a'
],
[
'7a9375ad6167ad54aa74c6348cc54d344cc5dc9487d847049d5eabb0fa03c8fb',
'd0e3fa9eca8726909559e0d79269046bdc59ea10c70ce2b02d499ec224dc7f7'
],
[
'd528ecd9b696b54c907a9ed045447a79bb408ec39b68df504bb51f459bc3ffc9',
'eecf41253136e5f99966f21881fd656ebc4345405c520dbc063465b521409933'
],
[
'49370a4b5f43412ea25f514e8ecdad05266115e4a7ecb1387231808f8b45963',
'758f3f41afd6ed428b3081b0512fd62a54c3f3afbb5b6764b653052a12949c9a'
],
[
'77f230936ee88cbbd73df930d64702ef881d811e0e1498e2f1c13eb1fc345d74',
'958ef42a7886b6400a08266e9ba1b37896c95330d97077cbbe8eb3c7671c60d6'
],
[
'f2dac991cc4ce4b9ea44887e5c7c0bce58c80074ab9d4dbaeb28531b7739f530',
'e0dedc9b3b2f8dad4da1f32dec2531df9eb5fbeb0598e4fd1a117dba703a3c37'
],
[
'463b3d9f662621fb1b4be8fbbe2520125a216cdfc9dae3debcba4850c690d45b',
'5ed430d78c296c3543114306dd8622d7c622e27c970a1de31cb377b01af7307e'
],
[
'f16f804244e46e2a09232d4aff3b59976b98fac14328a2d1a32496b49998f247',
'cedabd9b82203f7e13d206fcdf4e33d92a6c53c26e5cce26d6579962c4e31df6'
],
[
'caf754272dc84563b0352b7a14311af55d245315ace27c65369e15f7151d41d1',
'cb474660ef35f5f2a41b643fa5e460575f4fa9b7962232a5c32f908318a04476'
],
[
'2600ca4b282cb986f85d0f1709979d8b44a09c07cb86d7c124497bc86f082120',
'4119b88753c15bd6a693b03fcddbb45d5ac6be74ab5f0ef44b0be9475a7e4b40'
],
[
'7635ca72d7e8432c338ec53cd12220bc01c48685e24f7dc8c602a7746998e435',
'91b649609489d613d1d5e590f78e6d74ecfc061d57048bad9e76f302c5b9c61'
],
[
'754e3239f325570cdbbf4a87deee8a66b7f2b33479d468fbc1a50743bf56cc18',
'673fb86e5bda30fb3cd0ed304ea49a023ee33d0197a695d0c5d98093c536683'
],
[
'e3e6bd1071a1e96aff57859c82d570f0330800661d1c952f9fe2694691d9b9e8',
'59c9e0bba394e76f40c0aa58379a3cb6a5a2283993e90c4167002af4920e37f5'
],
[
'186b483d056a033826ae73d88f732985c4ccb1f32ba35f4b4cc47fdcf04aa6eb',
'3b952d32c67cf77e2e17446e204180ab21fb8090895138b4a4a797f86e80888b'
],
[
'df9d70a6b9876ce544c98561f4be4f725442e6d2b737d9c91a8321724ce0963f',
'55eb2dafd84d6ccd5f862b785dc39d4ab157222720ef9da217b8c45cf2ba2417'
],
[
'5edd5cc23c51e87a497ca815d5dce0f8ab52554f849ed8995de64c5f34ce7143',
'efae9c8dbc14130661e8cec030c89ad0c13c66c0d17a2905cdc706ab7399a868'
],
[
'290798c2b6476830da12fe02287e9e777aa3fba1c355b17a722d362f84614fba',
'e38da76dcd440621988d00bcf79af25d5b29c094db2a23146d003afd41943e7a'
],
[
'af3c423a95d9f5b3054754efa150ac39cd29552fe360257362dfdecef4053b45',
'f98a3fd831eb2b749a93b0e6f35cfb40c8cd5aa667a15581bc2feded498fd9c6'
],
[
'766dbb24d134e745cccaa28c99bf274906bb66b26dcf98df8d2fed50d884249a',
'744b1152eacbe5e38dcc887980da38b897584a65fa06cedd2c924f97cbac5996'
],
[
'59dbf46f8c94759ba21277c33784f41645f7b44f6c596a58ce92e666191abe3e',
'c534ad44175fbc300f4ea6ce648309a042ce739a7919798cd85e216c4a307f6e'
],
[
'f13ada95103c4537305e691e74e9a4a8dd647e711a95e73cb62dc6018cfd87b8',
'e13817b44ee14de663bf4bc808341f326949e21a6a75c2570778419bdaf5733d'
],
[
'7754b4fa0e8aced06d4167a2c59cca4cda1869c06ebadfb6488550015a88522c',
'30e93e864e669d82224b967c3020b8fa8d1e4e350b6cbcc537a48b57841163a2'
],
[
'948dcadf5990e048aa3874d46abef9d701858f95de8041d2a6828c99e2262519',
'e491a42537f6e597d5d28a3224b1bc25df9154efbd2ef1d2cbba2cae5347d57e'
],
[
'7962414450c76c1689c7b48f8202ec37fb224cf5ac0bfa1570328a8a3d7c77ab',
'100b610ec4ffb4760d5c1fc133ef6f6b12507a051f04ac5760afa5b29db83437'
],
[
'3514087834964b54b15b160644d915485a16977225b8847bb0dd085137ec47ca',
'ef0afbb2056205448e1652c48e8127fc6039e77c15c2378b7e7d15a0de293311'
],
[
'd3cc30ad6b483e4bc79ce2c9dd8bc54993e947eb8df787b442943d3f7b527eaf',
'8b378a22d827278d89c5e9be8f9508ae3c2ad46290358630afb34db04eede0a4'
],
[
'1624d84780732860ce1c78fcbfefe08b2b29823db913f6493975ba0ff4847610',
'68651cf9b6da903e0914448c6cd9d4ca896878f5282be4c8cc06e2a404078575'
],
[
'733ce80da955a8a26902c95633e62a985192474b5af207da6df7b4fd5fc61cd4',
'f5435a2bd2badf7d485a4d8b8db9fcce3e1ef8e0201e4578c54673bc1dc5ea1d'
],
[
'15d9441254945064cf1a1c33bbd3b49f8966c5092171e699ef258dfab81c045c',
'd56eb30b69463e7234f5137b73b84177434800bacebfc685fc37bbe9efe4070d'
],
[
'a1d0fcf2ec9de675b612136e5ce70d271c21417c9d2b8aaaac138599d0717940',
'edd77f50bcb5a3cab2e90737309667f2641462a54070f3d519212d39c197a629'
],
[
'e22fbe15c0af8ccc5780c0735f84dbe9a790badee8245c06c7ca37331cb36980',
'a855babad5cd60c88b430a69f53a1a7a38289154964799be43d06d77d31da06'
],
[
'311091dd9860e8e20ee13473c1155f5f69635e394704eaa74009452246cfa9b3',
'66db656f87d1f04fffd1f04788c06830871ec5a64feee685bd80f0b1286d8374'
],
[
'34c1fd04d301be89b31c0442d3e6ac24883928b45a9340781867d4232ec2dbdf',
'9414685e97b1b5954bd46f730174136d57f1ceeb487443dc5321857ba73abee'
],
[
'f219ea5d6b54701c1c14de5b557eb42a8d13f3abbcd08affcc2a5e6b049b8d63',
'4cb95957e83d40b0f73af4544cccf6b1f4b08d3c07b27fb8d8c2962a400766d1'
],
[
'd7b8740f74a8fbaab1f683db8f45de26543a5490bca627087236912469a0b448',
'fa77968128d9c92ee1010f337ad4717eff15db5ed3c049b3411e0315eaa4593b'
],
[
'32d31c222f8f6f0ef86f7c98d3a3335ead5bcd32abdd94289fe4d3091aa824bf',
'5f3032f5892156e39ccd3d7915b9e1da2e6dac9e6f26e961118d14b8462e1661'
],
[
'7461f371914ab32671045a155d9831ea8793d77cd59592c4340f86cbc18347b5',
'8ec0ba238b96bec0cbdddcae0aa442542eee1ff50c986ea6b39847b3cc092ff6'
],
[
'ee079adb1df1860074356a25aa38206a6d716b2c3e67453d287698bad7b2b2d6',
'8dc2412aafe3be5c4c5f37e0ecc5f9f6a446989af04c4e25ebaac479ec1c8c1e'
],
[
'16ec93e447ec83f0467b18302ee620f7e65de331874c9dc72bfd8616ba9da6b5',
'5e4631150e62fb40d0e8c2a7ca5804a39d58186a50e497139626778e25b0674d'
],
[
'eaa5f980c245f6f038978290afa70b6bd8855897f98b6aa485b96065d537bd99',
'f65f5d3e292c2e0819a528391c994624d784869d7e6ea67fb18041024edc07dc'
],
[
'78c9407544ac132692ee1910a02439958ae04877151342ea96c4b6b35a49f51',
'f3e0319169eb9b85d5404795539a5e68fa1fbd583c064d2462b675f194a3ddb4'
],
[
'494f4be219a1a77016dcd838431aea0001cdc8ae7a6fc688726578d9702857a5',
'42242a969283a5f339ba7f075e36ba2af925ce30d767ed6e55f4b031880d562c'
],
[
'a598a8030da6d86c6bc7f2f5144ea549d28211ea58faa70ebf4c1e665c1fe9b5',
'204b5d6f84822c307e4b4a7140737aec23fc63b65b35f86a10026dbd2d864e6b'
],
[
'c41916365abb2b5d09192f5f2dbeafec208f020f12570a184dbadc3e58595997',
'4f14351d0087efa49d245b328984989d5caf9450f34bfc0ed16e96b58fa9913'
],
[
'841d6063a586fa475a724604da03bc5b92a2e0d2e0a36acfe4c73a5514742881',
'73867f59c0659e81904f9a1c7543698e62562d6744c169ce7a36de01a8d6154'
],
[
'5e95bb399a6971d376026947f89bde2f282b33810928be4ded112ac4d70e20d5',
'39f23f366809085beebfc71181313775a99c9aed7d8ba38b161384c746012865'
],
[
'36e4641a53948fd476c39f8a99fd974e5ec07564b5315d8bf99471bca0ef2f66',
'd2424b1b1abe4eb8164227b085c9aa9456ea13493fd563e06fd51cf5694c78fc'
],
[
'336581ea7bfbbb290c191a2f507a41cf5643842170e914faeab27c2c579f726',
'ead12168595fe1be99252129b6e56b3391f7ab1410cd1e0ef3dcdcabd2fda224'
],
[
'8ab89816dadfd6b6a1f2634fcf00ec8403781025ed6890c4849742706bd43ede',
'6fdcef09f2f6d0a044e654aef624136f503d459c3e89845858a47a9129cdd24e'
],
[
'1e33f1a746c9c5778133344d9299fcaa20b0938e8acff2544bb40284b8c5fb94',
'60660257dd11b3aa9c8ed618d24edff2306d320f1d03010e33a7d2057f3b3b6'
],
[
'85b7c1dcb3cec1b7ee7f30ded79dd20a0ed1f4cc18cbcfcfa410361fd8f08f31',
'3d98a9cdd026dd43f39048f25a8847f4fcafad1895d7a633c6fed3c35e999511'
],
[
'29df9fbd8d9e46509275f4b125d6d45d7fbe9a3b878a7af872a2800661ac5f51',
'b4c4fe99c775a606e2d8862179139ffda61dc861c019e55cd2876eb2a27d84b'
],
[
'a0b1cae06b0a847a3fea6e671aaf8adfdfe58ca2f768105c8082b2e449fce252',
'ae434102edde0958ec4b19d917a6a28e6b72da1834aff0e650f049503a296cf2'
],
[
'4e8ceafb9b3e9a136dc7ff67e840295b499dfb3b2133e4ba113f2e4c0e121e5',
'cf2174118c8b6d7a4b48f6d534ce5c79422c086a63460502b827ce62a326683c'
],
[
'd24a44e047e19b6f5afb81c7ca2f69080a5076689a010919f42725c2b789a33b',
'6fb8d5591b466f8fc63db50f1c0f1c69013f996887b8244d2cdec417afea8fa3'
],
[
'ea01606a7a6c9cdd249fdfcfacb99584001edd28abbab77b5104e98e8e3b35d4',
'322af4908c7312b0cfbfe369f7a7b3cdb7d4494bc2823700cfd652188a3ea98d'
],
[
'af8addbf2b661c8a6c6328655eb96651252007d8c5ea31be4ad196de8ce2131f',
'6749e67c029b85f52a034eafd096836b2520818680e26ac8f3dfbcdb71749700'
],
[
'e3ae1974566ca06cc516d47e0fb165a674a3dabcfca15e722f0e3450f45889',
'2aeabe7e4531510116217f07bf4d07300de97e4874f81f533420a72eeb0bd6a4'
],
[
'591ee355313d99721cf6993ffed1e3e301993ff3ed258802075ea8ced397e246',
'b0ea558a113c30bea60fc4775460c7901ff0b053d25ca2bdeee98f1a4be5d196'
],
[
'11396d55fda54c49f19aa97318d8da61fa8584e47b084945077cf03255b52984',
'998c74a8cd45ac01289d5833a7beb4744ff536b01b257be4c5767bea93ea57a4'
],
[
'3c5d2a1ba39c5a1790000738c9e0c40b8dcdfd5468754b6405540157e017aa7a',
'b2284279995a34e2f9d4de7396fc18b80f9b8b9fdd270f6661f79ca4c81bd257'
],
[
'cc8704b8a60a0defa3a99a7299f2e9c3fbc395afb04ac078425ef8a1793cc030',
'bdd46039feed17881d1e0862db347f8cf395b74fc4bcdc4e940b74e3ac1f1b13'
],
[
'c533e4f7ea8555aacd9777ac5cad29b97dd4defccc53ee7ea204119b2889b197',
'6f0a256bc5efdf429a2fb6242f1a43a2d9b925bb4a4b3a26bb8e0f45eb596096'
],
[
'c14f8f2ccb27d6f109f6d08d03cc96a69ba8c34eec07bbcf566d48e33da6593',
'c359d6923bb398f7fd4473e16fe1c28475b740dd098075e6c0e8649113dc3a38'
],
[
'a6cbc3046bc6a450bac24789fa17115a4c9739ed75f8f21ce441f72e0b90e6ef',
'21ae7f4680e889bb130619e2c0f95a360ceb573c70603139862afd617fa9b9f'
],
[
'347d6d9a02c48927ebfb86c1359b1caf130a3c0267d11ce6344b39f99d43cc38',
'60ea7f61a353524d1c987f6ecec92f086d565ab687870cb12689ff1e31c74448'
],
[
'da6545d2181db8d983f7dcb375ef5866d47c67b1bf31c8cf855ef7437b72656a',
'49b96715ab6878a79e78f07ce5680c5d6673051b4935bd897fea824b77dc208a'
],
[
'c40747cc9d012cb1a13b8148309c6de7ec25d6945d657146b9d5994b8feb1111',
'5ca560753be2a12fc6de6caf2cb489565db936156b9514e1bb5e83037e0fa2d4'
],
[
'4e42c8ec82c99798ccf3a610be870e78338c7f713348bd34c8203ef4037f3502',
'7571d74ee5e0fb92a7a8b33a07783341a5492144cc54bcc40a94473693606437'
],
[
'3775ab7089bc6af823aba2e1af70b236d251cadb0c86743287522a1b3b0dedea',
'be52d107bcfa09d8bcb9736a828cfa7fac8db17bf7a76a2c42ad961409018cf7'
],
[
'cee31cbf7e34ec379d94fb814d3d775ad954595d1314ba8846959e3e82f74e26',
'8fd64a14c06b589c26b947ae2bcf6bfa0149ef0be14ed4d80f448a01c43b1c6d'
],
[
'b4f9eaea09b6917619f6ea6a4eb5464efddb58fd45b1ebefcdc1a01d08b47986',
'39e5c9925b5a54b07433a4f18c61726f8bb131c012ca542eb24a8ac07200682a'
],
[
'd4263dfc3d2df923a0179a48966d30ce84e2515afc3dccc1b77907792ebcc60e',
'62dfaf07a0f78feb30e30d6295853ce189e127760ad6cf7fae164e122a208d54'
],
[
'48457524820fa65a4f8d35eb6930857c0032acc0a4a2de422233eeda897612c4',
'25a748ab367979d98733c38a1fa1c2e7dc6cc07db2d60a9ae7a76aaa49bd0f77'
],
[
'dfeeef1881101f2cb11644f3a2afdfc2045e19919152923f367a1767c11cceda',
'ecfb7056cf1de042f9420bab396793c0c390bde74b4bbdff16a83ae09a9a7517'
],
[
'6d7ef6b17543f8373c573f44e1f389835d89bcbc6062ced36c82df83b8fae859',
'cd450ec335438986dfefa10c57fea9bcc521a0959b2d80bbf74b190dca712d10'
],
[
'e75605d59102a5a2684500d3b991f2e3f3c88b93225547035af25af66e04541f',
'f5c54754a8f71ee540b9b48728473e314f729ac5308b06938360990e2bfad125'
],
[
'eb98660f4c4dfaa06a2be453d5020bc99a0c2e60abe388457dd43fefb1ed620c',
'6cb9a8876d9cb8520609af3add26cd20a0a7cd8a9411131ce85f44100099223e'
],
[
'13e87b027d8514d35939f2e6892b19922154596941888336dc3563e3b8dba942',
'fef5a3c68059a6dec5d624114bf1e91aac2b9da568d6abeb2570d55646b8adf1'
],
[
'ee163026e9fd6fe017c38f06a5be6fc125424b371ce2708e7bf4491691e5764a',
'1acb250f255dd61c43d94ccc670d0f58f49ae3fa15b96623e5430da0ad6c62b2'
],
[
'b268f5ef9ad51e4d78de3a750c2dc89b1e626d43505867999932e5db33af3d80',
'5f310d4b3c99b9ebb19f77d41c1dee018cf0d34fd4191614003e945a1216e423'
],
[
'ff07f3118a9df035e9fad85eb6c7bfe42b02f01ca99ceea3bf7ffdba93c4750d',
'438136d603e858a3a5c440c38eccbaddc1d2942114e2eddd4740d098ced1f0d8'
],
[
'8d8b9855c7c052a34146fd20ffb658bea4b9f69e0d825ebec16e8c3ce2b526a1',
'cdb559eedc2d79f926baf44fb84ea4d44bcf50fee51d7ceb30e2e7f463036758'
],
[
'52db0b5384dfbf05bfa9d472d7ae26dfe4b851ceca91b1eba54263180da32b63',
'c3b997d050ee5d423ebaf66a6db9f57b3180c902875679de924b69d84a7b375'
],
[
'e62f9490d3d51da6395efd24e80919cc7d0f29c3f3fa48c6fff543becbd43352',
'6d89ad7ba4876b0b22c2ca280c682862f342c8591f1daf5170e07bfd9ccafa7d'
],
[
'7f30ea2476b399b4957509c88f77d0191afa2ff5cb7b14fd6d8e7d65aaab1193',
'ca5ef7d4b231c94c3b15389a5f6311e9daff7bb67b103e9880ef4bff637acaec'
],
[
'5098ff1e1d9f14fb46a210fada6c903fef0fb7b4a1dd1d9ac60a0361800b7a00',
'9731141d81fc8f8084d37c6e7542006b3ee1b40d60dfe5362a5b132fd17ddc0'
],
[
'32b78c7de9ee512a72895be6b9cbefa6e2f3c4ccce445c96b9f2c81e2778ad58',
'ee1849f513df71e32efc3896ee28260c73bb80547ae2275ba497237794c8753c'
],
[
'e2cb74fddc8e9fbcd076eef2a7c72b0ce37d50f08269dfc074b581550547a4f7',
'd3aa2ed71c9dd2247a62df062736eb0baddea9e36122d2be8641abcb005cc4a4'
],
[
'8438447566d4d7bedadc299496ab357426009a35f235cb141be0d99cd10ae3a8',
'c4e1020916980a4da5d01ac5e6ad330734ef0d7906631c4f2390426b2edd791f'
],
[
'4162d488b89402039b584c6fc6c308870587d9c46f660b878ab65c82c711d67e',
'67163e903236289f776f22c25fb8a3afc1732f2b84b4e95dbda47ae5a0852649'
],
[
'3fad3fa84caf0f34f0f89bfd2dcf54fc175d767aec3e50684f3ba4a4bf5f683d',
'cd1bc7cb6cc407bb2f0ca647c718a730cf71872e7d0d2a53fa20efcdfe61826'
],
[
'674f2600a3007a00568c1a7ce05d0816c1fb84bf1370798f1c69532faeb1a86b',
'299d21f9413f33b3edf43b257004580b70db57da0b182259e09eecc69e0d38a5'
],
[
'd32f4da54ade74abb81b815ad1fb3b263d82d6c692714bcff87d29bd5ee9f08f',
'f9429e738b8e53b968e99016c059707782e14f4535359d582fc416910b3eea87'
],
[
'30e4e670435385556e593657135845d36fbb6931f72b08cb1ed954f1e3ce3ff6',
'462f9bce619898638499350113bbc9b10a878d35da70740dc695a559eb88db7b'
],
[
'be2062003c51cc3004682904330e4dee7f3dcd10b01e580bf1971b04d4cad297',
'62188bc49d61e5428573d48a74e1c655b1c61090905682a0d5558ed72dccb9bc'
],
[
'93144423ace3451ed29e0fb9ac2af211cb6e84a601df5993c419859fff5df04a',
'7c10dfb164c3425f5c71a3f9d7992038f1065224f72bb9d1d902a6d13037b47c'
],
[
'b015f8044f5fcbdcf21ca26d6c34fb8197829205c7b7d2a7cb66418c157b112c',
'ab8c1e086d04e813744a655b2df8d5f83b3cdc6faa3088c1d3aea1454e3a1d5f'
],
[
'd5e9e1da649d97d89e4868117a465a3a4f8a18de57a140d36b3f2af341a21b52',
'4cb04437f391ed73111a13cc1d4dd0db1693465c2240480d8955e8592f27447a'
],
[
'd3ae41047dd7ca065dbf8ed77b992439983005cd72e16d6f996a5316d36966bb',
'bd1aeb21ad22ebb22a10f0303417c6d964f8cdd7df0aca614b10dc14d125ac46'
],
[
'463e2763d885f958fc66cdd22800f0a487197d0a82e377b49f80af87c897b065',
'bfefacdb0e5d0fd7df3a311a94de062b26b80c61fbc97508b79992671ef7ca7f'
],
[
'7985fdfd127c0567c6f53ec1bb63ec3158e597c40bfe747c83cddfc910641917',
'603c12daf3d9862ef2b25fe1de289aed24ed291e0ec6708703a5bd567f32ed03'
],
[
'74a1ad6b5f76e39db2dd249410eac7f99e74c59cb83d2d0ed5ff1543da7703e9',
'cc6157ef18c9c63cd6193d83631bbea0093e0968942e8c33d5737fd790e0db08'
],
[
'30682a50703375f602d416664ba19b7fc9bab42c72747463a71d0896b22f6da3',
'553e04f6b018b4fa6c8f39e7f311d3176290d0e0f19ca73f17714d9977a22ff8'
],
[
'9e2158f0d7c0d5f26c3791efefa79597654e7a2b2464f52b1ee6c1347769ef57',
'712fcdd1b9053f09003a3481fa7762e9ffd7c8ef35a38509e2fbf2629008373'
],
[
'176e26989a43c9cfeba4029c202538c28172e566e3c4fce7322857f3be327d66',
'ed8cc9d04b29eb877d270b4878dc43c19aefd31f4eee09ee7b47834c1fa4b1c3'
],
[
'75d46efea3771e6e68abb89a13ad747ecf1892393dfc4f1b7004788c50374da8',
'9852390a99507679fd0b86fd2b39a868d7efc22151346e1a3ca4726586a6bed8'
],
[
'809a20c67d64900ffb698c4c825f6d5f2310fb0451c869345b7319f645605721',
'9e994980d9917e22b76b061927fa04143d096ccc54963e6a5ebfa5f3f8e286c1'
],
[
'1b38903a43f7f114ed4500b4eac7083fdefece1cf29c63528d563446f972c180',
'4036edc931a60ae889353f77fd53de4a2708b26b6f5da72ad3394119daf408f9'
]
]
}
};
},{}],33:[function(require,module,exports){
'use strict';
var utils = exports;
var BN = require('bn.js');
var minAssert = require('minimalistic-assert');
var minUtils = require('minimalistic-crypto-utils');
utils.assert = minAssert;
utils.toArray = minUtils.toArray;
utils.zero2 = minUtils.zero2;
utils.toHex = minUtils.toHex;
utils.encode = minUtils.encode;
// Represent num in a w-NAF form
function getNAF(num, w) {
var naf = [];
var ws = 1 << (w + 1);
var k = num.clone();
while (k.cmpn(1) >= 0) {
var z;
if (k.isOdd()) {
var mod = k.andln(ws - 1);
if (mod > (ws >> 1) - 1)
z = (ws >> 1) - mod;
else
z = mod;
k.isubn(z);
} else {
z = 0;
}
naf.push(z);
// Optimization, shift by word if possible
var shift = (k.cmpn(0) !== 0 && k.andln(ws - 1) === 0) ? (w + 1) : 1;
for (var i = 1; i < shift; i++)
naf.push(0);
k.iushrn(shift);
}
return naf;
}
utils.getNAF = getNAF;
// Represent k1, k2 in a Joint Sparse Form
function getJSF(k1, k2) {
var jsf = [
[],
[]
];
k1 = k1.clone();
k2 = k2.clone();
var d1 = 0;
var d2 = 0;
while (k1.cmpn(-d1) > 0 || k2.cmpn(-d2) > 0) {
// First phase
var m14 = (k1.andln(3) + d1) & 3;
var m24 = (k2.andln(3) + d2) & 3;
if (m14 === 3)
m14 = -1;
if (m24 === 3)
m24 = -1;
var u1;
if ((m14 & 1) === 0) {
u1 = 0;
} else {
var m8 = (k1.andln(7) + d1) & 7;
if ((m8 === 3 || m8 === 5) && m24 === 2)
u1 = -m14;
else
u1 = m14;
}
jsf[0].push(u1);
var u2;
if ((m24 & 1) === 0) {
u2 = 0;
} else {
var m8 = (k2.andln(7) + d2) & 7;
if ((m8 === 3 || m8 === 5) && m14 === 2)
u2 = -m24;
else
u2 = m24;
}
jsf[1].push(u2);
// Second phase
if (2 * d1 === u1 + 1)
d1 = 1 - d1;
if (2 * d2 === u2 + 1)
d2 = 1 - d2;
k1.iushrn(1);
k2.iushrn(1);
}
return jsf;
}
utils.getJSF = getJSF;
function cachedProperty(obj, name, computer) {
var key = '_' + name;
obj.prototype[name] = function cachedProperty() {
return this[key] !== undefined ? this[key] :
this[key] = computer.call(this);
};
}
utils.cachedProperty = cachedProperty;
function parseBytes(bytes) {
return typeof bytes === 'string' ? utils.toArray(bytes, 'hex') :
bytes;
}
utils.parseBytes = parseBytes;
function intFromLE(bytes) {
return new BN(bytes, 'hex', 'le');
}
utils.intFromLE = intFromLE;
},{"bn.js":17,"minimalistic-assert":49,"minimalistic-crypto-utils":50}],34:[function(require,module,exports){
// email-addresses.js - RFC 5322 email address parser
// v 3.0.1
//
// http://tools.ietf.org/html/rfc5322
//
// This library does not validate email addresses.
// emailAddresses attempts to parse addresses using the (fairly liberal)
// grammar specified in RFC 5322.
//
// email-addresses returns {
// ast: <an abstract syntax tree based on rfc5322>,
// addresses: [{
// node: <node in ast for this address>,
// name: <display-name>,
// address: <addr-spec>,
// local: <local-part>,
// domain: <domain>
// }, ...]
// }
//
// emailAddresses.parseOneAddress and emailAddresses.parseAddressList
// work as you might expect. Try it out.
//
// Many thanks to Dominic Sayers and his documentation on the is_email function,
// http://code.google.com/p/isemail/ , which helped greatly in writing this parser.
(function (global) {
"use strict";
function parse5322(opts) {
// tokenizing functions
function inStr() { return pos < len; }
function curTok() { return parseString[pos]; }
function getPos() { return pos; }
function setPos(i) { pos = i; }
function nextTok() { pos += 1; }
function initialize() {
pos = 0;
len = parseString.length;
}
// parser helper functions
function o(name, value) {
return {
name: name,
tokens: value || "",
semantic: value || "",
children: []
};
}
function wrap(name, ast) {
var n;
if (ast === null) { return null; }
n = o(name);
n.tokens = ast.tokens;
n.semantic = ast.semantic;
n.children.push(ast);
return n;
}
function add(parent, child) {
if (child !== null) {
parent.tokens += child.tokens;
parent.semantic += child.semantic;
}
parent.children.push(child);
return parent;
}
function compareToken(fxnCompare) {
var tok;
if (!inStr()) { return null; }
tok = curTok();
if (fxnCompare(tok)) {
nextTok();
return o('token', tok);
}
return null;
}
function literal(lit) {
return function literalFunc() {
return wrap('literal', compareToken(function (tok) {
return tok === lit;
}));
};
}
function and() {
var args = arguments;
return function andFunc() {
var i, s, result, start;
start = getPos();
s = o('and');
for (i = 0; i < args.length; i += 1) {
result = args[i]();
if (result === null) {
setPos(start);
return null;
}
add(s, result);
}
return s;
};
}
function or() {
var args = arguments;
return function orFunc() {
var i, result, start;
start = getPos();
for (i = 0; i < args.length; i += 1) {
result = args[i]();
if (result !== null) {
return result;
}
setPos(start);
}
return null;
};
}
function opt(prod) {
return function optFunc() {
var result, start;
start = getPos();
result = prod();
if (result !== null) {
return result;
}
else {
setPos(start);
return o('opt');
}
};
}
function invis(prod) {
return function invisFunc() {
var result = prod();
if (result !== null) {
result.semantic = "";
}
return result;
};
}
function colwsp(prod) {
return function collapseSemanticWhitespace() {
var result = prod();
if (result !== null && result.semantic.length > 0) {
result.semantic = " ";
}
return result;
};
}
function star(prod, minimum) {
return function starFunc() {
var s, result, count, start, min;
start = getPos();
s = o('star');
count = 0;
min = minimum === undefined ? 0 : minimum;
while ((result = prod()) !== null) {
count = count + 1;
add(s, result);
}
if (count >= min) {
return s;
}
else {
setPos(start);
return null;
}
};
}
// One expects names to get normalized like this:
// " First Last " -> "First Last"
// "First Last" -> "First Last"
// "First Last" -> "First Last"
function collapseWhitespace(s) {
return s.replace(/([ \t]|\r\n)+/g, ' ').replace(/^\s*/, '').replace(/\s*$/, '');
}
// UTF-8 pseudo-production (RFC 6532)
// RFC 6532 extends RFC 5322 productions to include UTF-8
// using the following productions:
// UTF8-non-ascii = UTF8-2 / UTF8-3 / UTF8-4
// UTF8-2 = <Defined in Section 4 of RFC3629>
// UTF8-3 = <Defined in Section 4 of RFC3629>
// UTF8-4 = <Defined in Section 4 of RFC3629>
//
// For reference, the extended RFC 5322 productions are:
// VCHAR =/ UTF8-non-ascii
// ctext =/ UTF8-non-ascii
// atext =/ UTF8-non-ascii
// qtext =/ UTF8-non-ascii
// dtext =/ UTF8-non-ascii
function isUTF8NonAscii(tok) {
// In JavaScript, we just deal directly with Unicode code points,
// so we aren't checking individual bytes for UTF-8 encoding.
// Just check that the character is non-ascii.
return tok.charCodeAt(0) >= 128;
}
// common productions (RFC 5234)
// http://tools.ietf.org/html/rfc5234
// B.1. Core Rules
// CR = %x0D
// ; carriage return
function cr() { return wrap('cr', literal('\r')()); }
// CRLF = CR LF
// ; Internet standard newline
function crlf() { return wrap('crlf', and(cr, lf)()); }
// DQUOTE = %x22
// ; " (Double Quote)
function dquote() { return wrap('dquote', literal('"')()); }
// HTAB = %x09
// ; horizontal tab
function htab() { return wrap('htab', literal('\t')()); }
// LF = %x0A
// ; linefeed
function lf() { return wrap('lf', literal('\n')()); }
// SP = %x20
function sp() { return wrap('sp', literal(' ')()); }
// VCHAR = %x21-7E
// ; visible (printing) characters
function vchar() {
return wrap('vchar', compareToken(function vcharFunc(tok) {
var code = tok.charCodeAt(0);
var accept = (0x21 <= code && code <= 0x7E);
if (opts.rfc6532) {
accept = accept || isUTF8NonAscii(tok);
}
return accept;
}));
}
// WSP = SP / HTAB
// ; white space
function wsp() { return wrap('wsp', or(sp, htab)()); }
// email productions (RFC 5322)
// http://tools.ietf.org/html/rfc5322
// 3.2.1. Quoted characters
// quoted-pair = ("\" (VCHAR / WSP)) / obs-qp
function quotedPair() {
var qp = wrap('quoted-pair',
or(
and(literal('\\'), or(vchar, wsp)),
obsQP
)());
if (qp === null) { return null; }
// a quoted pair will be two characters, and the "\" character
// should be semantically "invisible" (RFC 5322 3.2.1)
qp.semantic = qp.semantic[1];
return qp;
}
// 3.2.2. Folding White Space and Comments
// FWS = ([*WSP CRLF] 1*WSP) / obs-FWS
function fws() {
return wrap('fws', or(
obsFws,
and(
opt(and(
star(wsp),
invis(crlf)
)),
star(wsp, 1)
)
)());
}
// ctext = %d33-39 / ; Printable US-ASCII
// %d42-91 / ; characters not including
// %d93-126 / ; "(", ")", or "\"
// obs-ctext
function ctext() {
return wrap('ctext', or(
function ctextFunc1() {
return compareToken(function ctextFunc2(tok) {
var code = tok.charCodeAt(0);
var accept =
(33 <= code && code <= 39) ||
(42 <= code && code <= 91) ||
(93 <= code && code <= 126);
if (opts.rfc6532) {
accept = accept || isUTF8NonAscii(tok);
}
return accept;
});
},
obsCtext
)());
}
// ccontent = ctext / quoted-pair / comment
function ccontent() {
return wrap('ccontent', or(ctext, quotedPair, comment)());
}
// comment = "(" *([FWS] ccontent) [FWS] ")"
function comment() {
return wrap('comment', and(
literal('('),
star(and(opt(fws), ccontent)),
opt(fws),
literal(')')
)());
}
// CFWS = (1*([FWS] comment) [FWS]) / FWS
function cfws() {
return wrap('cfws', or(
and(
star(
and(opt(fws), comment),
1
),
opt(fws)
),
fws
)());
}
// 3.2.3. Atom
//atext = ALPHA / DIGIT / ; Printable US-ASCII
// "!" / "#" / ; characters not including
// "$" / "%" / ; specials. Used for atoms.
// "&" / "'" /
// "*" / "+" /
// "-" / "/" /
// "=" / "?" /
// "^" / "_" /
// "`" / "{" /
// "|" / "}" /
// "~"
function atext() {
return wrap('atext', compareToken(function atextFunc(tok) {
var accept =
('a' <= tok && tok <= 'z') ||
('A' <= tok && tok <= 'Z') ||
('0' <= tok && tok <= '9') ||
(['!', '#', '$', '%', '&', '\'', '*', '+', '-', '/',
'=', '?', '^', '_', '`', '{', '|', '}', '~'].indexOf(tok) >= 0);
if (opts.rfc6532) {
accept = accept || isUTF8NonAscii(tok);
}
return accept;
}));
}
// atom = [CFWS] 1*atext [CFWS]
function atom() {
return wrap('atom', and(colwsp(opt(cfws)), star(atext, 1), colwsp(opt(cfws)))());
}
// dot-atom-text = 1*atext *("." 1*atext)
function dotAtomText() {
var s, maybeText;
s = wrap('dot-atom-text', star(atext, 1)());
if (s === null) { return s; }
maybeText = star(and(literal('.'), star(atext, 1)))();
if (maybeText !== null) {
add(s, maybeText);
}
return s;
}
// dot-atom = [CFWS] dot-atom-text [CFWS]
function dotAtom() {
return wrap('dot-atom', and(invis(opt(cfws)), dotAtomText, invis(opt(cfws)))());
}
// 3.2.4. Quoted Strings
// qtext = %d33 / ; Printable US-ASCII
// %d35-91 / ; characters not including
// %d93-126 / ; "\" or the quote character
// obs-qtext
function qtext() {
return wrap('qtext', or(
function qtextFunc1() {
return compareToken(function qtextFunc2(tok) {
var code = tok.charCodeAt(0);
var accept =
(33 === code) ||
(35 <= code && code <= 91) ||
(93 <= code && code <= 126);
if (opts.rfc6532) {
accept = accept || isUTF8NonAscii(tok);
}
return accept;
});
},
obsQtext
)());
}
// qcontent = qtext / quoted-pair
function qcontent() {
return wrap('qcontent', or(qtext, quotedPair)());
}
// quoted-string = [CFWS]
// DQUOTE *([FWS] qcontent) [FWS] DQUOTE
// [CFWS]
function quotedString() {
return wrap('quoted-string', and(
invis(opt(cfws)),
invis(dquote), star(and(opt(colwsp(fws)), qcontent)), opt(invis(fws)), invis(dquote),
invis(opt(cfws))
)());
}
// 3.2.5 Miscellaneous Tokens
// word = atom / quoted-string
function word() {
return wrap('word', or(atom, quotedString)());
}
// phrase = 1*word / obs-phrase
function phrase() {
return wrap('phrase', or(obsPhrase, star(word, 1))());
}
// 3.4. Address Specification
// address = mailbox / group
function address() {
return wrap('address', or(mailbox, group)());
}
// mailbox = name-addr / addr-spec
function mailbox() {
return wrap('mailbox', or(nameAddr, addrSpec)());
}
// name-addr = [display-name] angle-addr
function nameAddr() {
return wrap('name-addr', and(opt(displayName), angleAddr)());
}
// angle-addr = [CFWS] "<" addr-spec ">" [CFWS] /
// obs-angle-addr
function angleAddr() {
return wrap('angle-addr', or(
and(
invis(opt(cfws)),
literal('<'),
addrSpec,
literal('>'),
invis(opt(cfws))
),
obsAngleAddr
)());
}
// group = display-name ":" [group-list] ";" [CFWS]
function group() {
return wrap('group', and(
displayName,
literal(':'),
opt(groupList),
literal(';'),
invis(opt(cfws))
)());
}
// display-name = phrase
function displayName() {
return wrap('display-name', function phraseFixedSemantic() {
var result = phrase();
if (result !== null) {
result.semantic = collapseWhitespace(result.semantic);
}
return result;
}());
}
// mailbox-list = (mailbox *("," mailbox)) / obs-mbox-list
function mailboxList() {
return wrap('mailbox-list', or(
and(
mailbox,
star(and(literal(','), mailbox))
),
obsMboxList
)());
}
// address-list = (address *("," address)) / obs-addr-list
function addressList() {
return wrap('address-list', or(
and(
address,
star(and(literal(','), address))
),
obsAddrList
)());
}
// group-list = mailbox-list / CFWS / obs-group-list
function groupList() {
return wrap('group-list', or(
mailboxList,
invis(cfws),
obsGroupList
)());
}
// 3.4.1 Addr-Spec Specification
// local-part = dot-atom / quoted-string / obs-local-part
function localPart() {
// note: quoted-string, dotAtom are proper subsets of obs-local-part
// so we really just have to look for obsLocalPart, if we don't care about the exact parse tree
return wrap('local-part', or(obsLocalPart, dotAtom, quotedString)());
}
// dtext = %d33-90 / ; Printable US-ASCII
// %d94-126 / ; characters not including
// obs-dtext ; "[", "]", or "\"
function dtext() {
return wrap('dtext', or(
function dtextFunc1() {
return compareToken(function dtextFunc2(tok) {
var code = tok.charCodeAt(0);
var accept =
(33 <= code && code <= 90) ||
(94 <= code && code <= 126);
if (opts.rfc6532) {
accept = accept || isUTF8NonAscii(tok);
}
return accept;
});
},
obsDtext
)()
);
}
// domain-literal = [CFWS] "[" *([FWS] dtext) [FWS] "]" [CFWS]
function domainLiteral() {
return wrap('domain-literal', and(
invis(opt(cfws)),
literal('['),
star(and(opt(fws), dtext)),
opt(fws),
literal(']'),
invis(opt(cfws))
)());
}
// domain = dot-atom / domain-literal / obs-domain
function domain() {
return wrap('domain', function domainCheckTLD() {
var result = or(obsDomain, dotAtom, domainLiteral)();
if (opts.rejectTLD) {
if (result.semantic.indexOf('.') < 0) {
return null;
}
}
// strip all whitespace from domains
if (result) {
result.semantic = result.semantic.replace(/\s+/g, '');
}
return result;
}());
}
// addr-spec = local-part "@" domain
function addrSpec() {
return wrap('addr-spec', and(
localPart, literal('@'), domain
)());
}
// 3.6.2 Originator Fields
// Below we only parse the field body, not the name of the field
// like "From:", "Sender:", or "Reply-To:". Other libraries that
// parse email headers can parse those and defer to these productions
// for the "RFC 5322" part.
// RFC 6854 2.1. Replacement of RFC 5322, Section 3.6.2. Originator Fields
// from = "From:" (mailbox-list / address-list) CRLF
function fromSpec() {
return wrap('from', or(
mailboxList,
addressList
)());
}
// RFC 6854 2.1. Replacement of RFC 5322, Section 3.6.2. Originator Fields
// sender = "Sender:" (mailbox / address) CRLF
function senderSpec() {
return wrap('sender', or(
mailbox,
address
)());
}
// RFC 6854 2.1. Replacement of RFC 5322, Section 3.6.2. Originator Fields
// reply-to = "Reply-To:" address-list CRLF
function replyToSpec() {
return wrap('reply-to', addressList());
}
// 4.1. Miscellaneous Obsolete Tokens
// obs-NO-WS-CTL = %d1-8 / ; US-ASCII control
// %d11 / ; characters that do not
// %d12 / ; include the carriage
// %d14-31 / ; return, line feed, and
// %d127 ; white space characters
function obsNoWsCtl() {
return opts.strict ? null : wrap('obs-NO-WS-CTL', compareToken(function (tok) {
var code = tok.charCodeAt(0);
return ((1 <= code && code <= 8) ||
(11 === code || 12 === code) ||
(14 <= code && code <= 31) ||
(127 === code));
}));
}
// obs-ctext = obs-NO-WS-CTL
function obsCtext() { return opts.strict ? null : wrap('obs-ctext', obsNoWsCtl()); }
// obs-qtext = obs-NO-WS-CTL
function obsQtext() { return opts.strict ? null : wrap('obs-qtext', obsNoWsCtl()); }
// obs-qp = "\" (%d0 / obs-NO-WS-CTL / LF / CR)
function obsQP() {
return opts.strict ? null : wrap('obs-qp', and(
literal('\\'),
or(literal('\0'), obsNoWsCtl, lf, cr)
)());
}
// obs-phrase = word *(word / "." / CFWS)
function obsPhrase() {
return opts.strict ? null : wrap('obs-phrase', and(
word,
star(or(word, literal('.'), colwsp(cfws)))
)());
}
// 4.2. Obsolete Folding White Space
// NOTE: read the errata http://www.rfc-editor.org/errata_search.php?rfc=5322&eid=1908
// obs-FWS = 1*([CRLF] WSP)
function obsFws() {
return opts.strict ? null : wrap('obs-FWS', star(
and(invis(opt(crlf)), wsp),
1
)());
}
// 4.4. Obsolete Addressing
// obs-angle-addr = [CFWS] "<" obs-route addr-spec ">" [CFWS]
function obsAngleAddr() {
return opts.strict ? null : wrap('obs-angle-addr', and(
invis(opt(cfws)),
literal('<'),
obsRoute,
addrSpec,
literal('>'),
invis(opt(cfws))
)());
}
// obs-route = obs-domain-list ":"
function obsRoute() {
return opts.strict ? null : wrap('obs-route', and(
obsDomainList,
literal(':')
)());
}
// obs-domain-list = *(CFWS / ",") "@" domain
// *("," [CFWS] ["@" domain])
function obsDomainList() {
return opts.strict ? null : wrap('obs-domain-list', and(
star(or(invis(cfws), literal(','))),
literal('@'),
domain,
star(and(
literal(','),
invis(opt(cfws)),
opt(and(literal('@'), domain))
))
)());
}
// obs-mbox-list = *([CFWS] ",") mailbox *("," [mailbox / CFWS])
function obsMboxList() {
return opts.strict ? null : wrap('obs-mbox-list', and(
star(and(
invis(opt(cfws)),
literal(',')
)),
mailbox,
star(and(
literal(','),
opt(and(
mailbox,
invis(cfws)
))
))
)());
}
// obs-addr-list = *([CFWS] ",") address *("," [address / CFWS])
function obsAddrList() {
return opts.strict ? null : wrap('obs-addr-list', and(
star(and(
invis(opt(cfws)),
literal(',')
)),
address,
star(and(
literal(','),
opt(and(
address,
invis(cfws)
))
))
)());
}
// obs-group-list = 1*([CFWS] ",") [CFWS]
function obsGroupList() {
return opts.strict ? null : wrap('obs-group-list', and(
star(and(
invis(opt(cfws)),
literal(',')
), 1),
invis(opt(cfws))
)());
}
// obs-local-part = word *("." word)
function obsLocalPart() {
return opts.strict ? null : wrap('obs-local-part', and(word, star(and(literal('.'), word)))());
}
// obs-domain = atom *("." atom)
function obsDomain() {
return opts.strict ? null : wrap('obs-domain', and(atom, star(and(literal('.'), atom)))());
}
// obs-dtext = obs-NO-WS-CTL / quoted-pair
function obsDtext() {
return opts.strict ? null : wrap('obs-dtext', or(obsNoWsCtl, quotedPair)());
}
/////////////////////////////////////////////////////
// ast analysis
function findNode(name, root) {
var i, stack, node;
if (root === null || root === undefined) { return null; }
stack = [root];
while (stack.length > 0) {
node = stack.pop();
if (node.name === name) {
return node;
}
for (i = node.children.length - 1; i >= 0; i -= 1) {
stack.push(node.children[i]);
}
}
return null;
}
function findAllNodes(name, root) {
var i, stack, node, result;
if (root === null || root === undefined) { return null; }
stack = [root];
result = [];
while (stack.length > 0) {
node = stack.pop();
if (node.name === name) {
result.push(node);
}
for (i = node.children.length - 1; i >= 0; i -= 1) {
stack.push(node.children[i]);
}
}
return result;
}
function findAllNodesNoChildren(names, root) {
var i, stack, node, result, namesLookup;
if (root === null || root === undefined) { return null; }
stack = [root];
result = [];
namesLookup = {};
for (i = 0; i < names.length; i += 1) {
namesLookup[names[i]] = true;
}
while (stack.length > 0) {
node = stack.pop();
if (node.name in namesLookup) {
result.push(node);
// don't look at children (hence findAllNodesNoChildren)
} else {
for (i = node.children.length - 1; i >= 0; i -= 1) {
stack.push(node.children[i]);
}
}
}
return result;
}
function giveResult(ast) {
var addresses, groupsAndMailboxes, i, groupOrMailbox, result;
if (ast === null) {
return null;
}
addresses = [];
// An address is a 'group' (i.e. a list of mailboxes) or a 'mailbox'.
groupsAndMailboxes = findAllNodesNoChildren(['group', 'mailbox'], ast);
for (i = 0; i < groupsAndMailboxes.length; i += 1) {
groupOrMailbox = groupsAndMailboxes[i];
if (groupOrMailbox.name === 'group') {
addresses.push(giveResultGroup(groupOrMailbox));
} else if (groupOrMailbox.name === 'mailbox') {
addresses.push(giveResultMailbox(groupOrMailbox));
}
}
result = {
ast: ast,
addresses: addresses,
};
if (opts.simple) {
result = simplifyResult(result);
}
if (opts.oneResult) {
return oneResult(result);
}
if (opts.simple) {
return result && result.addresses;
} else {
return result;
}
}
function giveResultGroup(group) {
var i;
var groupName = findNode('display-name', group);
var groupResultMailboxes = [];
var mailboxes = findAllNodesNoChildren(['mailbox'], group);
for (i = 0; i < mailboxes.length; i += 1) {
groupResultMailboxes.push(giveResultMailbox(mailboxes[i]));
}
return {
node: group,
parts: {
name: groupName,
},
type: group.name, // 'group'
name: grabSemantic(groupName),
addresses: groupResultMailboxes,
};
}
function giveResultMailbox(mailbox) {
var name = findNode('display-name', mailbox);
var aspec = findNode('addr-spec', mailbox);
var comments = findAllNodes('cfws', mailbox);
var local = findNode('local-part', aspec);
var domain = findNode('domain', aspec);
return {
node: mailbox,
parts: {
name: name,
address: aspec,
local: local,
domain: domain,
comments: comments
},
type: mailbox.name, // 'mailbox'
name: grabSemantic(name),
address: grabSemantic(aspec),
local: grabSemantic(local),
domain: grabSemantic(domain),
groupName: grabSemantic(mailbox.groupName),
};
}
function grabSemantic(n) {
return n !== null && n !== undefined ? n.semantic : null;
}
function simplifyResult(result) {
var i;
if (result && result.addresses) {
for (i = 0; i < result.addresses.length; i += 1) {
delete result.addresses[i].node;
}
}
return result;
}
function oneResult(result) {
if (!result) { return null; }
if (!opts.partial && result.addresses.length > 1) { return null; }
return result.addresses && result.addresses[0];
}
/////////////////////////////////////////////////////
var parseString, pos, len, parsed, startProduction;
opts = handleOpts(opts, {});
if (opts === null) { return null; }
parseString = opts.input;
startProduction = {
'address': address,
'address-list': addressList,
'angle-addr': angleAddr,
'from': fromSpec,
'group': group,
'mailbox': mailbox,
'mailbox-list': mailboxList,
'reply-to': replyToSpec,
'sender': senderSpec,
}[opts.startAt] || addressList;
if (!opts.strict) {
initialize();
opts.strict = true;
parsed = startProduction(parseString);
if (opts.partial || !inStr()) {
return giveResult(parsed);
}
opts.strict = false;
}
initialize();
parsed = startProduction(parseString);
if (!opts.partial && inStr()) { return null; }
return giveResult(parsed);
}
function parseOneAddressSimple(opts) {
return parse5322(handleOpts(opts, {
oneResult: true,
rfc6532: true,
simple: true,
startAt: 'address-list',
}));
}
function parseAddressListSimple(opts) {
return parse5322(handleOpts(opts, {
rfc6532: true,
simple: true,
startAt: 'address-list',
}));
}
function parseFromSimple(opts) {
return parse5322(handleOpts(opts, {
rfc6532: true,
simple: true,
startAt: 'from',
}));
}
function parseSenderSimple(opts) {
return parse5322(handleOpts(opts, {
oneResult: true,
rfc6532: true,
simple: true,
startAt: 'sender',
}));
}
function parseReplyToSimple(opts) {
return parse5322(handleOpts(opts, {
rfc6532: true,
simple: true,
startAt: 'reply-to',
}));
}
function handleOpts(opts, defs) {
function isString(str) {
return Object.prototype.toString.call(str) === '[object String]';
}
function isObject(o) {
return o === Object(o);
}
function isNullUndef(o) {
return o === null || o === undefined;
}
var defaults, o;
if (isString(opts)) {
opts = { input: opts };
} else if (!isObject(opts)) {
return null;
}
if (!isString(opts.input)) { return null; }
if (!defs) { return null; }
defaults = {
oneResult: false,
partial: false,
rejectTLD: false,
rfc6532: false,
simple: false,
startAt: 'address-list',
strict: false,
};
for (o in defaults) {
if (isNullUndef(opts[o])) {
opts[o] = !isNullUndef(defs[o]) ? defs[o] : defaults[o];
}
}
return opts;
}
parse5322.parseOneAddress = parseOneAddressSimple;
parse5322.parseAddressList = parseAddressListSimple;
parse5322.parseFrom = parseFromSimple;
parse5322.parseSender = parseSenderSimple;
parse5322.parseReplyTo = parseReplyToSimple;
if (typeof module !== 'undefined' && typeof module.exports !== 'undefined') {
module.exports = parse5322;
} else {
global.emailAddresses = parse5322;
}
}(this));
},{}],35:[function(require,module,exports){
var hash = exports;
hash.utils = require('./hash/utils');
hash.common = require('./hash/common');
hash.sha = require('./hash/sha');
hash.ripemd = require('./hash/ripemd');
hash.hmac = require('./hash/hmac');
// Proxy hash functions to the main object
hash.sha1 = hash.sha.sha1;
hash.sha256 = hash.sha.sha256;
hash.sha224 = hash.sha.sha224;
hash.sha384 = hash.sha.sha384;
hash.sha512 = hash.sha.sha512;
hash.ripemd160 = hash.ripemd.ripemd160;
},{"./hash/common":36,"./hash/hmac":37,"./hash/ripemd":38,"./hash/sha":39,"./hash/utils":46}],36:[function(require,module,exports){
'use strict';
var utils = require('./utils');
var assert = require('minimalistic-assert');
function BlockHash() {
this.pending = null;
this.pendingTotal = 0;
this.blockSize = this.constructor.blockSize;
this.outSize = this.constructor.outSize;
this.hmacStrength = this.constructor.hmacStrength;
this.padLength = this.constructor.padLength / 8;
this.endian = 'big';
this._delta8 = this.blockSize / 8;
this._delta32 = this.blockSize / 32;
}
exports.BlockHash = BlockHash;
BlockHash.prototype.update = function update(msg, enc) {
// Convert message to array, pad it, and join into 32bit blocks
msg = utils.toArray(msg, enc);
if (!this.pending)
this.pending = msg;
else
this.pending = this.pending.concat(msg);
this.pendingTotal += msg.length;
// Enough data, try updating
if (this.pending.length >= this._delta8) {
msg = this.pending;
// Process pending data in blocks
var r = msg.length % this._delta8;
this.pending = msg.slice(msg.length - r, msg.length);
if (this.pending.length === 0)
this.pending = null;
msg = utils.join32(msg, 0, msg.length - r, this.endian);
for (var i = 0; i < msg.length; i += this._delta32)
this._update(msg, i, i + this._delta32);
}
return this;
};
BlockHash.prototype.digest = function digest(enc) {
this.update(this._pad());
assert(this.pending === null);
return this._digest(enc);
};
BlockHash.prototype._pad = function pad() {
var len = this.pendingTotal;
var bytes = this._delta8;
var k = bytes - ((len + this.padLength) % bytes);
var res = new Array(k + this.padLength);
res[0] = 0x80;
for (var i = 1; i < k; i++)
res[i] = 0;
// Append length
len <<= 3;
if (this.endian === 'big') {
for (var t = 8; t < this.padLength; t++)
res[i++] = 0;
res[i++] = 0;
res[i++] = 0;
res[i++] = 0;
res[i++] = 0;
res[i++] = (len >>> 24) & 0xff;
res[i++] = (len >>> 16) & 0xff;
res[i++] = (len >>> 8) & 0xff;
res[i++] = len & 0xff;
} else {
res[i++] = len & 0xff;
res[i++] = (len >>> 8) & 0xff;
res[i++] = (len >>> 16) & 0xff;
res[i++] = (len >>> 24) & 0xff;
res[i++] = 0;
res[i++] = 0;
res[i++] = 0;
res[i++] = 0;
for (t = 8; t < this.padLength; t++)
res[i++] = 0;
}
return res;
};
},{"./utils":46,"minimalistic-assert":49}],37:[function(require,module,exports){
'use strict';
var utils = require('./utils');
var assert = require('minimalistic-assert');
function Hmac(hash, key, enc) {
if (!(this instanceof Hmac))
return new Hmac(hash, key, enc);
this.Hash = hash;
this.blockSize = hash.blockSize / 8;
this.outSize = hash.outSize / 8;
this.inner = null;
this.outer = null;
this._init(utils.toArray(key, enc));
}
module.exports = Hmac;
Hmac.prototype._init = function init(key) {
// Shorten key, if needed
if (key.length > this.blockSize)
key = new this.Hash().update(key).digest();
assert(key.length <= this.blockSize);
// Add padding to key
for (var i = key.length; i < this.blockSize; i++)
key.push(0);
for (i = 0; i < key.length; i++)
key[i] ^= 0x36;
this.inner = new this.Hash().update(key);
// 0x36 ^ 0x5c = 0x6a
for (i = 0; i < key.length; i++)
key[i] ^= 0x6a;
this.outer = new this.Hash().update(key);
};
Hmac.prototype.update = function update(msg, enc) {
this.inner.update(msg, enc);
return this;
};
Hmac.prototype.digest = function digest(enc) {
this.outer.update(this.inner.digest());
return this.outer.digest(enc);
};
},{"./utils":46,"minimalistic-assert":49}],38:[function(require,module,exports){
'use strict';
var utils = require('./utils');
var common = require('./common');
var rotl32 = utils.rotl32;
var sum32 = utils.sum32;
var sum32_3 = utils.sum32_3;
var sum32_4 = utils.sum32_4;
var BlockHash = common.BlockHash;
function RIPEMD160() {
if (!(this instanceof RIPEMD160))
return new RIPEMD160();
BlockHash.call(this);
this.h = [ 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0 ];
this.endian = 'little';
}
utils.inherits(RIPEMD160, BlockHash);
exports.ripemd160 = RIPEMD160;
RIPEMD160.blockSize = 512;
RIPEMD160.outSize = 160;
RIPEMD160.hmacStrength = 192;
RIPEMD160.padLength = 64;
RIPEMD160.prototype._update = function update(msg, start) {
var A = this.h[0];
var B = this.h[1];
var C = this.h[2];
var D = this.h[3];
var E = this.h[4];
var Ah = A;
var Bh = B;
var Ch = C;
var Dh = D;
var Eh = E;
for (var j = 0; j < 80; j++) {
var T = sum32(
rotl32(
sum32_4(A, f(j, B, C, D), msg[r[j] + start], K(j)),
s[j]),
E);
A = E;
E = D;
D = rotl32(C, 10);
C = B;
B = T;
T = sum32(
rotl32(
sum32_4(Ah, f(79 - j, Bh, Ch, Dh), msg[rh[j] + start], Kh(j)),
sh[j]),
Eh);
Ah = Eh;
Eh = Dh;
Dh = rotl32(Ch, 10);
Ch = Bh;
Bh = T;
}
T = sum32_3(this.h[1], C, Dh);
this.h[1] = sum32_3(this.h[2], D, Eh);
this.h[2] = sum32_3(this.h[3], E, Ah);
this.h[3] = sum32_3(this.h[4], A, Bh);
this.h[4] = sum32_3(this.h[0], B, Ch);
this.h[0] = T;
};
RIPEMD160.prototype._digest = function digest(enc) {
if (enc === 'hex')
return utils.toHex32(this.h, 'little');
else
return utils.split32(this.h, 'little');
};
function f(j, x, y, z) {
if (j <= 15)
return x ^ y ^ z;
else if (j <= 31)
return (x & y) | ((~x) & z);
else if (j <= 47)
return (x | (~y)) ^ z;
else if (j <= 63)
return (x & z) | (y & (~z));
else
return x ^ (y | (~z));
}
function K(j) {
if (j <= 15)
return 0x00000000;
else if (j <= 31)
return 0x5a827999;
else if (j <= 47)
return 0x6ed9eba1;
else if (j <= 63)
return 0x8f1bbcdc;
else
return 0xa953fd4e;
}
function Kh(j) {
if (j <= 15)
return 0x50a28be6;
else if (j <= 31)
return 0x5c4dd124;
else if (j <= 47)
return 0x6d703ef3;
else if (j <= 63)
return 0x7a6d76e9;
else
return 0x00000000;
}
var r = [
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8,
3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12,
1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2,
4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13
];
var rh = [
5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12,
6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2,
15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13,
8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14,
12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11
];
var s = [
11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8,
7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12,
11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5,
11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12,
9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6
];
var sh = [
8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6,
9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11,
9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5,
15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8,
8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11
];
},{"./common":36,"./utils":46}],39:[function(require,module,exports){
'use strict';
exports.sha1 = require('./sha/1');
exports.sha224 = require('./sha/224');
exports.sha256 = require('./sha/256');
exports.sha384 = require('./sha/384');
exports.sha512 = require('./sha/512');
},{"./sha/1":40,"./sha/224":41,"./sha/256":42,"./sha/384":43,"./sha/512":44}],40:[function(require,module,exports){
'use strict';
var utils = require('../utils');
var common = require('../common');
var shaCommon = require('./common');
var rotl32 = utils.rotl32;
var sum32 = utils.sum32;
var sum32_5 = utils.sum32_5;
var ft_1 = shaCommon.ft_1;
var BlockHash = common.BlockHash;
var sha1_K = [
0x5A827999, 0x6ED9EBA1,
0x8F1BBCDC, 0xCA62C1D6
];
function SHA1() {
if (!(this instanceof SHA1))
return new SHA1();
BlockHash.call(this);
this.h = [
0x67452301, 0xefcdab89, 0x98badcfe,
0x10325476, 0xc3d2e1f0 ];
this.W = new Array(80);
}
utils.inherits(SHA1, BlockHash);
module.exports = SHA1;
SHA1.blockSize = 512;
SHA1.outSize = 160;
SHA1.hmacStrength = 80;
SHA1.padLength = 64;
SHA1.prototype._update = function _update(msg, start) {
var W = this.W;
for (var i = 0; i < 16; i++)
W[i] = msg[start + i];
for(; i < W.length; i++)
W[i] = rotl32(W[i - 3] ^ W[i - 8] ^ W[i - 14] ^ W[i - 16], 1);
var a = this.h[0];
var b = this.h[1];
var c = this.h[2];
var d = this.h[3];
var e = this.h[4];
for (i = 0; i < W.length; i++) {
var s = ~~(i / 20);
var t = sum32_5(rotl32(a, 5), ft_1(s, b, c, d), e, W[i], sha1_K[s]);
e = d;
d = c;
c = rotl32(b, 30);
b = a;
a = t;
}
this.h[0] = sum32(this.h[0], a);
this.h[1] = sum32(this.h[1], b);
this.h[2] = sum32(this.h[2], c);
this.h[3] = sum32(this.h[3], d);
this.h[4] = sum32(this.h[4], e);
};
SHA1.prototype._digest = function digest(enc) {
if (enc === 'hex')
return utils.toHex32(this.h, 'big');
else
return utils.split32(this.h, 'big');
};
},{"../common":36,"../utils":46,"./common":45}],41:[function(require,module,exports){
'use strict';
var utils = require('../utils');
var SHA256 = require('./256');
function SHA224() {
if (!(this instanceof SHA224))
return new SHA224();
SHA256.call(this);
this.h = [
0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939,
0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4 ];
}
utils.inherits(SHA224, SHA256);
module.exports = SHA224;
SHA224.blockSize = 512;
SHA224.outSize = 224;
SHA224.hmacStrength = 192;
SHA224.padLength = 64;
SHA224.prototype._digest = function digest(enc) {
// Just truncate output
if (enc === 'hex')
return utils.toHex32(this.h.slice(0, 7), 'big');
else
return utils.split32(this.h.slice(0, 7), 'big');
};
},{"../utils":46,"./256":42}],42:[function(require,module,exports){
'use strict';
var utils = require('../utils');
var common = require('../common');
var shaCommon = require('./common');
var assert = require('minimalistic-assert');
var sum32 = utils.sum32;
var sum32_4 = utils.sum32_4;
var sum32_5 = utils.sum32_5;
var ch32 = shaCommon.ch32;
var maj32 = shaCommon.maj32;
var s0_256 = shaCommon.s0_256;
var s1_256 = shaCommon.s1_256;
var g0_256 = shaCommon.g0_256;
var g1_256 = shaCommon.g1_256;
var BlockHash = common.BlockHash;
var sha256_K = [
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
];
function SHA256() {
if (!(this instanceof SHA256))
return new SHA256();
BlockHash.call(this);
this.h = [
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
];
this.k = sha256_K;
this.W = new Array(64);
}
utils.inherits(SHA256, BlockHash);
module.exports = SHA256;
SHA256.blockSize = 512;
SHA256.outSize = 256;
SHA256.hmacStrength = 192;
SHA256.padLength = 64;
SHA256.prototype._update = function _update(msg, start) {
var W = this.W;
for (var i = 0; i < 16; i++)
W[i] = msg[start + i];
for (; i < W.length; i++)
W[i] = sum32_4(g1_256(W[i - 2]), W[i - 7], g0_256(W[i - 15]), W[i - 16]);
var a = this.h[0];
var b = this.h[1];
var c = this.h[2];
var d = this.h[3];
var e = this.h[4];
var f = this.h[5];
var g = this.h[6];
var h = this.h[7];
assert(this.k.length === W.length);
for (i = 0; i < W.length; i++) {
var T1 = sum32_5(h, s1_256(e), ch32(e, f, g), this.k[i], W[i]);
var T2 = sum32(s0_256(a), maj32(a, b, c));
h = g;
g = f;
f = e;
e = sum32(d, T1);
d = c;
c = b;
b = a;
a = sum32(T1, T2);
}
this.h[0] = sum32(this.h[0], a);
this.h[1] = sum32(this.h[1], b);
this.h[2] = sum32(this.h[2], c);
this.h[3] = sum32(this.h[3], d);
this.h[4] = sum32(this.h[4], e);
this.h[5] = sum32(this.h[5], f);
this.h[6] = sum32(this.h[6], g);
this.h[7] = sum32(this.h[7], h);
};
SHA256.prototype._digest = function digest(enc) {
if (enc === 'hex')
return utils.toHex32(this.h, 'big');
else
return utils.split32(this.h, 'big');
};
},{"../common":36,"../utils":46,"./common":45,"minimalistic-assert":49}],43:[function(require,module,exports){
'use strict';
var utils = require('../utils');
var SHA512 = require('./512');
function SHA384() {
if (!(this instanceof SHA384))
return new SHA384();
SHA512.call(this);
this.h = [
0xcbbb9d5d, 0xc1059ed8,
0x629a292a, 0x367cd507,
0x9159015a, 0x3070dd17,
0x152fecd8, 0xf70e5939,
0x67332667, 0xffc00b31,
0x8eb44a87, 0x68581511,
0xdb0c2e0d, 0x64f98fa7,
0x47b5481d, 0xbefa4fa4 ];
}
utils.inherits(SHA384, SHA512);
module.exports = SHA384;
SHA384.blockSize = 1024;
SHA384.outSize = 384;
SHA384.hmacStrength = 192;
SHA384.padLength = 128;
SHA384.prototype._digest = function digest(enc) {
if (enc === 'hex')
return utils.toHex32(this.h.slice(0, 12), 'big');
else
return utils.split32(this.h.slice(0, 12), 'big');
};
},{"../utils":46,"./512":44}],44:[function(require,module,exports){
'use strict';
var utils = require('../utils');
var common = require('../common');
var assert = require('minimalistic-assert');
var rotr64_hi = utils.rotr64_hi;
var rotr64_lo = utils.rotr64_lo;
var shr64_hi = utils.shr64_hi;
var shr64_lo = utils.shr64_lo;
var sum64 = utils.sum64;
var sum64_hi = utils.sum64_hi;
var sum64_lo = utils.sum64_lo;
var sum64_4_hi = utils.sum64_4_hi;
var sum64_4_lo = utils.sum64_4_lo;
var sum64_5_hi = utils.sum64_5_hi;
var sum64_5_lo = utils.sum64_5_lo;
var BlockHash = common.BlockHash;
var sha512_K = [
0x428a2f98, 0xd728ae22, 0x71374491, 0x23ef65cd,
0xb5c0fbcf, 0xec4d3b2f, 0xe9b5dba5, 0x8189dbbc,
0x3956c25b, 0xf348b538, 0x59f111f1, 0xb605d019,
0x923f82a4, 0xaf194f9b, 0xab1c5ed5, 0xda6d8118,
0xd807aa98, 0xa3030242, 0x12835b01, 0x45706fbe,
0x243185be, 0x4ee4b28c, 0x550c7dc3, 0xd5ffb4e2,
0x72be5d74, 0xf27b896f, 0x80deb1fe, 0x3b1696b1,
0x9bdc06a7, 0x25c71235, 0xc19bf174, 0xcf692694,
0xe49b69c1, 0x9ef14ad2, 0xefbe4786, 0x384f25e3,
0x0fc19dc6, 0x8b8cd5b5, 0x240ca1cc, 0x77ac9c65,
0x2de92c6f, 0x592b0275, 0x4a7484aa, 0x6ea6e483,
0x5cb0a9dc, 0xbd41fbd4, 0x76f988da, 0x831153b5,
0x983e5152, 0xee66dfab, 0xa831c66d, 0x2db43210,
0xb00327c8, 0x98fb213f, 0xbf597fc7, 0xbeef0ee4,
0xc6e00bf3, 0x3da88fc2, 0xd5a79147, 0x930aa725,
0x06ca6351, 0xe003826f, 0x14292967, 0x0a0e6e70,
0x27b70a85, 0x46d22ffc, 0x2e1b2138, 0x5c26c926,
0x4d2c6dfc, 0x5ac42aed, 0x53380d13, 0x9d95b3df,
0x650a7354, 0x8baf63de, 0x766a0abb, 0x3c77b2a8,
0x81c2c92e, 0x47edaee6, 0x92722c85, 0x1482353b,
0xa2bfe8a1, 0x4cf10364, 0xa81a664b, 0xbc423001,
0xc24b8b70, 0xd0f89791, 0xc76c51a3, 0x0654be30,
0xd192e819, 0xd6ef5218, 0xd6990624, 0x5565a910,
0xf40e3585, 0x5771202a, 0x106aa070, 0x32bbd1b8,
0x19a4c116, 0xb8d2d0c8, 0x1e376c08, 0x5141ab53,
0x2748774c, 0xdf8eeb99, 0x34b0bcb5, 0xe19b48a8,
0x391c0cb3, 0xc5c95a63, 0x4ed8aa4a, 0xe3418acb,
0x5b9cca4f, 0x7763e373, 0x682e6ff3, 0xd6b2b8a3,
0x748f82ee, 0x5defb2fc, 0x78a5636f, 0x43172f60,
0x84c87814, 0xa1f0ab72, 0x8cc70208, 0x1a6439ec,
0x90befffa, 0x23631e28, 0xa4506ceb, 0xde82bde9,
0xbef9a3f7, 0xb2c67915, 0xc67178f2, 0xe372532b,
0xca273ece, 0xea26619c, 0xd186b8c7, 0x21c0c207,
0xeada7dd6, 0xcde0eb1e, 0xf57d4f7f, 0xee6ed178,
0x06f067aa, 0x72176fba, 0x0a637dc5, 0xa2c898a6,
0x113f9804, 0xbef90dae, 0x1b710b35, 0x131c471b,
0x28db77f5, 0x23047d84, 0x32caab7b, 0x40c72493,
0x3c9ebe0a, 0x15c9bebc, 0x431d67c4, 0x9c100d4c,
0x4cc5d4be, 0xcb3e42b6, 0x597f299c, 0xfc657e2a,
0x5fcb6fab, 0x3ad6faec, 0x6c44198c, 0x4a475817
];
function SHA512() {
if (!(this instanceof SHA512))
return new SHA512();
BlockHash.call(this);
this.h = [
0x6a09e667, 0xf3bcc908,
0xbb67ae85, 0x84caa73b,
0x3c6ef372, 0xfe94f82b,
0xa54ff53a, 0x5f1d36f1,
0x510e527f, 0xade682d1,
0x9b05688c, 0x2b3e6c1f,
0x1f83d9ab, 0xfb41bd6b,
0x5be0cd19, 0x137e2179 ];
this.k = sha512_K;
this.W = new Array(160);
}
utils.inherits(SHA512, BlockHash);
module.exports = SHA512;
SHA512.blockSize = 1024;
SHA512.outSize = 512;
SHA512.hmacStrength = 192;
SHA512.padLength = 128;
SHA512.prototype._prepareBlock = function _prepareBlock(msg, start) {
var W = this.W;
// 32 x 32bit words
for (var i = 0; i < 32; i++)
W[i] = msg[start + i];
for (; i < W.length; i += 2) {
var c0_hi = g1_512_hi(W[i - 4], W[i - 3]); // i - 2
var c0_lo = g1_512_lo(W[i - 4], W[i - 3]);
var c1_hi = W[i - 14]; // i - 7
var c1_lo = W[i - 13];
var c2_hi = g0_512_hi(W[i - 30], W[i - 29]); // i - 15
var c2_lo = g0_512_lo(W[i - 30], W[i - 29]);
var c3_hi = W[i - 32]; // i - 16
var c3_lo = W[i - 31];
W[i] = sum64_4_hi(
c0_hi, c0_lo,
c1_hi, c1_lo,
c2_hi, c2_lo,
c3_hi, c3_lo);
W[i + 1] = sum64_4_lo(
c0_hi, c0_lo,
c1_hi, c1_lo,
c2_hi, c2_lo,
c3_hi, c3_lo);
}
};
SHA512.prototype._update = function _update(msg, start) {
this._prepareBlock(msg, start);
var W = this.W;
var ah = this.h[0];
var al = this.h[1];
var bh = this.h[2];
var bl = this.h[3];
var ch = this.h[4];
var cl = this.h[5];
var dh = this.h[6];
var dl = this.h[7];
var eh = this.h[8];
var el = this.h[9];
var fh = this.h[10];
var fl = this.h[11];
var gh = this.h[12];
var gl = this.h[13];
var hh = this.h[14];
var hl = this.h[15];
assert(this.k.length === W.length);
for (var i = 0; i < W.length; i += 2) {
var c0_hi = hh;
var c0_lo = hl;
var c1_hi = s1_512_hi(eh, el);
var c1_lo = s1_512_lo(eh, el);
var c2_hi = ch64_hi(eh, el, fh, fl, gh, gl);
var c2_lo = ch64_lo(eh, el, fh, fl, gh, gl);
var c3_hi = this.k[i];
var c3_lo = this.k[i + 1];
var c4_hi = W[i];
var c4_lo = W[i + 1];
var T1_hi = sum64_5_hi(
c0_hi, c0_lo,
c1_hi, c1_lo,
c2_hi, c2_lo,
c3_hi, c3_lo,
c4_hi, c4_lo);
var T1_lo = sum64_5_lo(
c0_hi, c0_lo,
c1_hi, c1_lo,
c2_hi, c2_lo,
c3_hi, c3_lo,
c4_hi, c4_lo);
c0_hi = s0_512_hi(ah, al);
c0_lo = s0_512_lo(ah, al);
c1_hi = maj64_hi(ah, al, bh, bl, ch, cl);
c1_lo = maj64_lo(ah, al, bh, bl, ch, cl);
var T2_hi = sum64_hi(c0_hi, c0_lo, c1_hi, c1_lo);
var T2_lo = sum64_lo(c0_hi, c0_lo, c1_hi, c1_lo);
hh = gh;
hl = gl;
gh = fh;
gl = fl;
fh = eh;
fl = el;
eh = sum64_hi(dh, dl, T1_hi, T1_lo);
el = sum64_lo(dl, dl, T1_hi, T1_lo);
dh = ch;
dl = cl;
ch = bh;
cl = bl;
bh = ah;
bl = al;
ah = sum64_hi(T1_hi, T1_lo, T2_hi, T2_lo);
al = sum64_lo(T1_hi, T1_lo, T2_hi, T2_lo);
}
sum64(this.h, 0, ah, al);
sum64(this.h, 2, bh, bl);
sum64(this.h, 4, ch, cl);
sum64(this.h, 6, dh, dl);
sum64(this.h, 8, eh, el);
sum64(this.h, 10, fh, fl);
sum64(this.h, 12, gh, gl);
sum64(this.h, 14, hh, hl);
};
SHA512.prototype._digest = function digest(enc) {
if (enc === 'hex')
return utils.toHex32(this.h, 'big');
else
return utils.split32(this.h, 'big');
};
function ch64_hi(xh, xl, yh, yl, zh) {
var r = (xh & yh) ^ ((~xh) & zh);
if (r < 0)
r += 0x100000000;
return r;
}
function ch64_lo(xh, xl, yh, yl, zh, zl) {
var r = (xl & yl) ^ ((~xl) & zl);
if (r < 0)
r += 0x100000000;
return r;
}
function maj64_hi(xh, xl, yh, yl, zh) {
var r = (xh & yh) ^ (xh & zh) ^ (yh & zh);
if (r < 0)
r += 0x100000000;
return r;
}
function maj64_lo(xh, xl, yh, yl, zh, zl) {
var r = (xl & yl) ^ (xl & zl) ^ (yl & zl);
if (r < 0)
r += 0x100000000;
return r;
}
function s0_512_hi(xh, xl) {
var c0_hi = rotr64_hi(xh, xl, 28);
var c1_hi = rotr64_hi(xl, xh, 2); // 34
var c2_hi = rotr64_hi(xl, xh, 7); // 39
var r = c0_hi ^ c1_hi ^ c2_hi;
if (r < 0)
r += 0x100000000;
return r;
}
function s0_512_lo(xh, xl) {
var c0_lo = rotr64_lo(xh, xl, 28);
var c1_lo = rotr64_lo(xl, xh, 2); // 34
var c2_lo = rotr64_lo(xl, xh, 7); // 39
var r = c0_lo ^ c1_lo ^ c2_lo;
if (r < 0)
r += 0x100000000;
return r;
}
function s1_512_hi(xh, xl) {
var c0_hi = rotr64_hi(xh, xl, 14);
var c1_hi = rotr64_hi(xh, xl, 18);
var c2_hi = rotr64_hi(xl, xh, 9); // 41
var r = c0_hi ^ c1_hi ^ c2_hi;
if (r < 0)
r += 0x100000000;
return r;
}
function s1_512_lo(xh, xl) {
var c0_lo = rotr64_lo(xh, xl, 14);
var c1_lo = rotr64_lo(xh, xl, 18);
var c2_lo = rotr64_lo(xl, xh, 9); // 41
var r = c0_lo ^ c1_lo ^ c2_lo;
if (r < 0)
r += 0x100000000;
return r;
}
function g0_512_hi(xh, xl) {
var c0_hi = rotr64_hi(xh, xl, 1);
var c1_hi = rotr64_hi(xh, xl, 8);
var c2_hi = shr64_hi(xh, xl, 7);
var r = c0_hi ^ c1_hi ^ c2_hi;
if (r < 0)
r += 0x100000000;
return r;
}
function g0_512_lo(xh, xl) {
var c0_lo = rotr64_lo(xh, xl, 1);
var c1_lo = rotr64_lo(xh, xl, 8);
var c2_lo = shr64_lo(xh, xl, 7);
var r = c0_lo ^ c1_lo ^ c2_lo;
if (r < 0)
r += 0x100000000;
return r;
}
function g1_512_hi(xh, xl) {
var c0_hi = rotr64_hi(xh, xl, 19);
var c1_hi = rotr64_hi(xl, xh, 29); // 61
var c2_hi = shr64_hi(xh, xl, 6);
var r = c0_hi ^ c1_hi ^ c2_hi;
if (r < 0)
r += 0x100000000;
return r;
}
function g1_512_lo(xh, xl) {
var c0_lo = rotr64_lo(xh, xl, 19);
var c1_lo = rotr64_lo(xl, xh, 29); // 61
var c2_lo = shr64_lo(xh, xl, 6);
var r = c0_lo ^ c1_lo ^ c2_lo;
if (r < 0)
r += 0x100000000;
return r;
}
},{"../common":36,"../utils":46,"minimalistic-assert":49}],45:[function(require,module,exports){
'use strict';
var utils = require('../utils');
var rotr32 = utils.rotr32;
function ft_1(s, x, y, z) {
if (s === 0)
return ch32(x, y, z);
if (s === 1 || s === 3)
return p32(x, y, z);
if (s === 2)
return maj32(x, y, z);
}
exports.ft_1 = ft_1;
function ch32(x, y, z) {
return (x & y) ^ ((~x) & z);
}
exports.ch32 = ch32;
function maj32(x, y, z) {
return (x & y) ^ (x & z) ^ (y & z);
}
exports.maj32 = maj32;
function p32(x, y, z) {
return x ^ y ^ z;
}
exports.p32 = p32;
function s0_256(x) {
return rotr32(x, 2) ^ rotr32(x, 13) ^ rotr32(x, 22);
}
exports.s0_256 = s0_256;
function s1_256(x) {
return rotr32(x, 6) ^ rotr32(x, 11) ^ rotr32(x, 25);
}
exports.s1_256 = s1_256;
function g0_256(x) {
return rotr32(x, 7) ^ rotr32(x, 18) ^ (x >>> 3);
}
exports.g0_256 = g0_256;
function g1_256(x) {
return rotr32(x, 17) ^ rotr32(x, 19) ^ (x >>> 10);
}
exports.g1_256 = g1_256;
},{"../utils":46}],46:[function(require,module,exports){
'use strict';
var assert = require('minimalistic-assert');
var inherits = require('inherits');
exports.inherits = inherits;
function toArray(msg, enc) {
if (Array.isArray(msg))
return msg.slice();
if (!msg)
return [];
var res = [];
if (typeof msg === 'string') {
if (!enc) {
for (var i = 0; i < msg.length; i++) {
var c = msg.charCodeAt(i);
var hi = c >> 8;
var lo = c & 0xff;
if (hi)
res.push(hi, lo);
else
res.push(lo);
}
} else if (enc === 'hex') {
msg = msg.replace(/[^a-z0-9]+/ig, '');
if (msg.length % 2 !== 0)
msg = '0' + msg;
for (i = 0; i < msg.length; i += 2)
res.push(parseInt(msg[i] + msg[i + 1], 16));
}
} else {
for (i = 0; i < msg.length; i++)
res[i] = msg[i] | 0;
}
return res;
}
exports.toArray = toArray;
function toHex(msg) {
var res = '';
for (var i = 0; i < msg.length; i++)
res += zero2(msg[i].toString(16));
return res;
}
exports.toHex = toHex;
function htonl(w) {
var res = (w >>> 24) |
((w >>> 8) & 0xff00) |
((w << 8) & 0xff0000) |
((w & 0xff) << 24);
return res >>> 0;
}
exports.htonl = htonl;
function toHex32(msg, endian) {
var res = '';
for (var i = 0; i < msg.length; i++) {
var w = msg[i];
if (endian === 'little')
w = htonl(w);
res += zero8(w.toString(16));
}
return res;
}
exports.toHex32 = toHex32;
function zero2(word) {
if (word.length === 1)
return '0' + word;
else
return word;
}
exports.zero2 = zero2;
function zero8(word) {
if (word.length === 7)
return '0' + word;
else if (word.length === 6)
return '00' + word;
else if (word.length === 5)
return '000' + word;
else if (word.length === 4)
return '0000' + word;
else if (word.length === 3)
return '00000' + word;
else if (word.length === 2)
return '000000' + word;
else if (word.length === 1)
return '0000000' + word;
else
return word;
}
exports.zero8 = zero8;
function join32(msg, start, end, endian) {
var len = end - start;
assert(len % 4 === 0);
var res = new Array(len / 4);
for (var i = 0, k = start; i < res.length; i++, k += 4) {
var w;
if (endian === 'big')
w = (msg[k] << 24) | (msg[k + 1] << 16) | (msg[k + 2] << 8) | msg[k + 3];
else
w = (msg[k + 3] << 24) | (msg[k + 2] << 16) | (msg[k + 1] << 8) | msg[k];
res[i] = w >>> 0;
}
return res;
}
exports.join32 = join32;
function split32(msg, endian) {
var res = new Array(msg.length * 4);
for (var i = 0, k = 0; i < msg.length; i++, k += 4) {
var m = msg[i];
if (endian === 'big') {
res[k] = m >>> 24;
res[k + 1] = (m >>> 16) & 0xff;
res[k + 2] = (m >>> 8) & 0xff;
res[k + 3] = m & 0xff;
} else {
res[k + 3] = m >>> 24;
res[k + 2] = (m >>> 16) & 0xff;
res[k + 1] = (m >>> 8) & 0xff;
res[k] = m & 0xff;
}
}
return res;
}
exports.split32 = split32;
function rotr32(w, b) {
return (w >>> b) | (w << (32 - b));
}
exports.rotr32 = rotr32;
function rotl32(w, b) {
return (w << b) | (w >>> (32 - b));
}
exports.rotl32 = rotl32;
function sum32(a, b) {
return (a + b) >>> 0;
}
exports.sum32 = sum32;
function sum32_3(a, b, c) {
return (a + b + c) >>> 0;
}
exports.sum32_3 = sum32_3;
function sum32_4(a, b, c, d) {
return (a + b + c + d) >>> 0;
}
exports.sum32_4 = sum32_4;
function sum32_5(a, b, c, d, e) {
return (a + b + c + d + e) >>> 0;
}
exports.sum32_5 = sum32_5;
function sum64(buf, pos, ah, al) {
var bh = buf[pos];
var bl = buf[pos + 1];
var lo = (al + bl) >>> 0;
var hi = (lo < al ? 1 : 0) + ah + bh;
buf[pos] = hi >>> 0;
buf[pos + 1] = lo;
}
exports.sum64 = sum64;
function sum64_hi(ah, al, bh, bl) {
var lo = (al + bl) >>> 0;
var hi = (lo < al ? 1 : 0) + ah + bh;
return hi >>> 0;
}
exports.sum64_hi = sum64_hi;
function sum64_lo(ah, al, bh, bl) {
var lo = al + bl;
return lo >>> 0;
}
exports.sum64_lo = sum64_lo;
function sum64_4_hi(ah, al, bh, bl, ch, cl, dh, dl) {
var carry = 0;
var lo = al;
lo = (lo + bl) >>> 0;
carry += lo < al ? 1 : 0;
lo = (lo + cl) >>> 0;
carry += lo < cl ? 1 : 0;
lo = (lo + dl) >>> 0;
carry += lo < dl ? 1 : 0;
var hi = ah + bh + ch + dh + carry;
return hi >>> 0;
}
exports.sum64_4_hi = sum64_4_hi;
function sum64_4_lo(ah, al, bh, bl, ch, cl, dh, dl) {
var lo = al + bl + cl + dl;
return lo >>> 0;
}
exports.sum64_4_lo = sum64_4_lo;
function sum64_5_hi(ah, al, bh, bl, ch, cl, dh, dl, eh, el) {
var carry = 0;
var lo = al;
lo = (lo + bl) >>> 0;
carry += lo < al ? 1 : 0;
lo = (lo + cl) >>> 0;
carry += lo < cl ? 1 : 0;
lo = (lo + dl) >>> 0;
carry += lo < dl ? 1 : 0;
lo = (lo + el) >>> 0;
carry += lo < el ? 1 : 0;
var hi = ah + bh + ch + dh + eh + carry;
return hi >>> 0;
}
exports.sum64_5_hi = sum64_5_hi;
function sum64_5_lo(ah, al, bh, bl, ch, cl, dh, dl, eh, el) {
var lo = al + bl + cl + dl + el;
return lo >>> 0;
}
exports.sum64_5_lo = sum64_5_lo;
function rotr64_hi(ah, al, num) {
var r = (al << (32 - num)) | (ah >>> num);
return r >>> 0;
}
exports.rotr64_hi = rotr64_hi;
function rotr64_lo(ah, al, num) {
var r = (ah << (32 - num)) | (al >>> num);
return r >>> 0;
}
exports.rotr64_lo = rotr64_lo;
function shr64_hi(ah, al, num) {
return ah >>> num;
}
exports.shr64_hi = shr64_hi;
function shr64_lo(ah, al, num) {
var r = (ah << (32 - num)) | (al >>> num);
return r >>> 0;
}
exports.shr64_lo = shr64_lo;
},{"inherits":48,"minimalistic-assert":49}],47:[function(require,module,exports){
'use strict';
var hash = require('hash.js');
var utils = require('minimalistic-crypto-utils');
var assert = require('minimalistic-assert');
function HmacDRBG(options) {
if (!(this instanceof HmacDRBG))
return new HmacDRBG(options);
this.hash = options.hash;
this.predResist = !!options.predResist;
this.outLen = this.hash.outSize;
this.minEntropy = options.minEntropy || this.hash.hmacStrength;
this._reseed = null;
this.reseedInterval = null;
this.K = null;
this.V = null;
var entropy = utils.toArray(options.entropy, options.entropyEnc || 'hex');
var nonce = utils.toArray(options.nonce, options.nonceEnc || 'hex');
var pers = utils.toArray(options.pers, options.persEnc || 'hex');
assert(entropy.length >= (this.minEntropy / 8),
'Not enough entropy. Minimum is: ' + this.minEntropy + ' bits');
this._init(entropy, nonce, pers);
}
module.exports = HmacDRBG;
HmacDRBG.prototype._init = function init(entropy, nonce, pers) {
var seed = entropy.concat(nonce).concat(pers);
this.K = new Array(this.outLen / 8);
this.V = new Array(this.outLen / 8);
for (var i = 0; i < this.V.length; i++) {
this.K[i] = 0x00;
this.V[i] = 0x01;
}
this._update(seed);
this._reseed = 1;
this.reseedInterval = 0x1000000000000; // 2^48
};
HmacDRBG.prototype._hmac = function hmac() {
return new hash.hmac(this.hash, this.K);
};
HmacDRBG.prototype._update = function update(seed) {
var kmac = this._hmac()
.update(this.V)
.update([ 0x00 ]);
if (seed)
kmac = kmac.update(seed);
this.K = kmac.digest();
this.V = this._hmac().update(this.V).digest();
if (!seed)
return;
this.K = this._hmac()
.update(this.V)
.update([ 0x01 ])
.update(seed)
.digest();
this.V = this._hmac().update(this.V).digest();
};
HmacDRBG.prototype.reseed = function reseed(entropy, entropyEnc, add, addEnc) {
// Optional entropy enc
if (typeof entropyEnc !== 'string') {
addEnc = add;
add = entropyEnc;
entropyEnc = null;
}
entropy = utils.toArray(entropy, entropyEnc);
add = utils.toArray(add, addEnc);
assert(entropy.length >= (this.minEntropy / 8),
'Not enough entropy. Minimum is: ' + this.minEntropy + ' bits');
this._update(entropy.concat(add || []));
this._reseed = 1;
};
HmacDRBG.prototype.generate = function generate(len, enc, add, addEnc) {
if (this._reseed > this.reseedInterval)
throw new Error('Reseed is required');
// Optional encoding
if (typeof enc !== 'string') {
addEnc = add;
add = enc;
enc = null;
}
// Optional additional data
if (add) {
add = utils.toArray(add, addEnc || 'hex');
this._update(add);
}
var temp = [];
while (temp.length < len) {
this.V = this._hmac().update(this.V).digest();
temp = temp.concat(this.V);
}
var res = temp.slice(0, len);
this._update(add);
this._reseed++;
return utils.encode(res, enc);
};
},{"hash.js":35,"minimalistic-assert":49,"minimalistic-crypto-utils":50}],48:[function(require,module,exports){
if (typeof Object.create === 'function') {
// implementation from standard node.js 'util' module
module.exports = function inherits(ctor, superCtor) {
ctor.super_ = superCtor
ctor.prototype = Object.create(superCtor.prototype, {
constructor: {
value: ctor,
enumerable: false,
writable: true,
configurable: true
}
});
};
} else {
// old school shim for old browsers
module.exports = function inherits(ctor, superCtor) {
ctor.super_ = superCtor
var TempCtor = function () {}
TempCtor.prototype = superCtor.prototype
ctor.prototype = new TempCtor()
ctor.prototype.constructor = ctor
}
}
},{}],49:[function(require,module,exports){
module.exports = assert;
function assert(val, msg) {
if (!val)
throw new Error(msg || 'Assertion failed');
}
assert.equal = function assertEqual(l, r, msg) {
if (l != r)
throw new Error(msg || ('Assertion failed: ' + l + ' != ' + r));
};
},{}],50:[function(require,module,exports){
'use strict';
var utils = exports;
function toArray(msg, enc) {
if (Array.isArray(msg))
return msg.slice();
if (!msg)
return [];
var res = [];
if (typeof msg !== 'string') {
for (var i = 0; i < msg.length; i++)
res[i] = msg[i] | 0;
return res;
}
if (enc === 'hex') {
msg = msg.replace(/[^a-z0-9]+/ig, '');
if (msg.length % 2 !== 0)
msg = '0' + msg;
for (var i = 0; i < msg.length; i += 2)
res.push(parseInt(msg[i] + msg[i + 1], 16));
} else {
for (var i = 0; i < msg.length; i++) {
var c = msg.charCodeAt(i);
var hi = c >> 8;
var lo = c & 0xff;
if (hi)
res.push(hi, lo);
else
res.push(lo);
}
}
return res;
}
utils.toArray = toArray;
function zero2(word) {
if (word.length === 1)
return '0' + word;
else
return word;
}
utils.zero2 = zero2;
function toHex(msg) {
var res = '';
for (var i = 0; i < msg.length; i++)
res += zero2(msg[i].toString(16));
return res;
}
utils.toHex = toHex;
utils.encode = function encode(arr, enc) {
if (enc === 'hex')
return toHex(arr);
else
return arr;
};
},{}],51:[function(require,module,exports){
// Top level file is just a mixin of submodules & constants
'use strict';
var assign = require('./lib/utils/common').assign;
var deflate = require('./lib/deflate');
var inflate = require('./lib/inflate');
var constants = require('./lib/zlib/constants');
var pako = {};
assign(pako, deflate, inflate, constants);
module.exports = pako;
},{"./lib/deflate":52,"./lib/inflate":53,"./lib/utils/common":54,"./lib/zlib/constants":57}],52:[function(require,module,exports){
'use strict';
var zlib_deflate = require('./zlib/deflate');
var utils = require('./utils/common');
var strings = require('./utils/strings');
var msg = require('./zlib/messages');
var ZStream = require('./zlib/zstream');
var toString = Object.prototype.toString;
/* Public constants ==========================================================*/
/* ===========================================================================*/
var Z_NO_FLUSH = 0;
var Z_FINISH = 4;
var Z_OK = 0;
var Z_STREAM_END = 1;
var Z_SYNC_FLUSH = 2;
var Z_DEFAULT_COMPRESSION = -1;
var Z_DEFAULT_STRATEGY = 0;
var Z_DEFLATED = 8;
/* ===========================================================================*/
/**
* class Deflate
*
* Generic JS-style wrapper for zlib calls. If you don't need
* streaming behaviour - use more simple functions: [[deflate]],
* [[deflateRaw]] and [[gzip]].
**/
/* internal
* Deflate.chunks -> Array
*
* Chunks of output data, if [[Deflate#onData]] not overridden.
**/
/**
* Deflate.result -> Uint8Array|Array
*
* Compressed result, generated by default [[Deflate#onData]]
* and [[Deflate#onEnd]] handlers. Filled after you push last chunk
* (call [[Deflate#push]] with `Z_FINISH` / `true` param) or if you
* push a chunk with explicit flush (call [[Deflate#push]] with
* `Z_SYNC_FLUSH` param).
**/
/**
* Deflate.err -> Number
*
* Error code after deflate finished. 0 (Z_OK) on success.
* You will not need it in real life, because deflate errors
* are possible only on wrong options or bad `onData` / `onEnd`
* custom handlers.
**/
/**
* Deflate.msg -> String
*
* Error message, if [[Deflate.err]] != 0
**/
/**
* new Deflate(options)
* - options (Object): zlib deflate options.
*
* Creates new deflator instance with specified params. Throws exception
* on bad params. Supported options:
*
* - `level`
* - `windowBits`
* - `memLevel`
* - `strategy`
* - `dictionary`
*
* [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced)
* for more information on these.
*
* Additional options, for internal needs:
*
* - `chunkSize` - size of generated data chunks (16K by default)
* - `raw` (Boolean) - do raw deflate
* - `gzip` (Boolean) - create gzip wrapper
* - `to` (String) - if equal to 'string', then result will be "binary string"
* (each char code [0..255])
* - `header` (Object) - custom header for gzip
* - `text` (Boolean) - true if compressed data believed to be text
* - `time` (Number) - modification time, unix timestamp
* - `os` (Number) - operation system code
* - `extra` (Array) - array of bytes with extra data (max 65536)
* - `name` (String) - file name (binary string)
* - `comment` (String) - comment (binary string)
* - `hcrc` (Boolean) - true if header crc should be added
*
* ##### Example:
*
* ```javascript
* var pako = require('pako')
* , chunk1 = Uint8Array([1,2,3,4,5,6,7,8,9])
* , chunk2 = Uint8Array([10,11,12,13,14,15,16,17,18,19]);
*
* var deflate = new pako.Deflate({ level: 3});
*
* deflate.push(chunk1, false);
* deflate.push(chunk2, true); // true -> last chunk
*
* if (deflate.err) { throw new Error(deflate.err); }
*
* console.log(deflate.result);
* ```
**/
function Deflate(options) {
if (!(this instanceof Deflate)) return new Deflate(options);
this.options = utils.assign({
level: Z_DEFAULT_COMPRESSION,
method: Z_DEFLATED,
chunkSize: 16384,
windowBits: 15,
memLevel: 8,
strategy: Z_DEFAULT_STRATEGY,
to: ''
}, options || {});
var opt = this.options;
if (opt.raw && (opt.windowBits > 0)) {
opt.windowBits = -opt.windowBits;
}
else if (opt.gzip && (opt.windowBits > 0) && (opt.windowBits < 16)) {
opt.windowBits += 16;
}
this.err = 0; // error code, if happens (0 = Z_OK)
this.msg = ''; // error message
this.ended = false; // used to avoid multiple onEnd() calls
this.chunks = []; // chunks of compressed data
this.strm = new ZStream();
this.strm.avail_out = 0;
var status = zlib_deflate.deflateInit2(
this.strm,
opt.level,
opt.method,
opt.windowBits,
opt.memLevel,
opt.strategy
);
if (status !== Z_OK) {
throw new Error(msg[status]);
}
if (opt.header) {
zlib_deflate.deflateSetHeader(this.strm, opt.header);
}
if (opt.dictionary) {
var dict;
// Convert data if needed
if (typeof opt.dictionary === 'string') {
// If we need to compress text, change encoding to utf8.
dict = strings.string2buf(opt.dictionary);
} else if (toString.call(opt.dictionary) === '[object ArrayBuffer]') {
dict = new Uint8Array(opt.dictionary);
} else {
dict = opt.dictionary;
}
status = zlib_deflate.deflateSetDictionary(this.strm, dict);
if (status !== Z_OK) {
throw new Error(msg[status]);
}
this._dict_set = true;
}
}
/**
* Deflate#push(data[, mode]) -> Boolean
* - data (Uint8Array|Array|ArrayBuffer|String): input data. Strings will be
* converted to utf8 byte sequence.
* - mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes.
* See constants. Skipped or `false` means Z_NO_FLUSH, `true` means Z_FINISH.
*
* Sends input data to deflate pipe, generating [[Deflate#onData]] calls with
* new compressed chunks. Returns `true` on success. The last data block must have
* mode Z_FINISH (or `true`). That will flush internal pending buffers and call
* [[Deflate#onEnd]]. For interim explicit flushes (without ending the stream) you
* can use mode Z_SYNC_FLUSH, keeping the compression context.
*
* On fail call [[Deflate#onEnd]] with error code and return false.
*
* We strongly recommend to use `Uint8Array` on input for best speed (output
* array format is detected automatically). Also, don't skip last param and always
* use the same type in your code (boolean or number). That will improve JS speed.
*
* For regular `Array`-s make sure all elements are [0..255].
*
* ##### Example
*
* ```javascript
* push(chunk, false); // push one of data chunks
* ...
* push(chunk, true); // push last chunk
* ```
**/
Deflate.prototype.push = function (data, mode) {
var strm = this.strm;
var chunkSize = this.options.chunkSize;
var status, _mode;
if (this.ended) { return false; }
_mode = (mode === ~~mode) ? mode : ((mode === true) ? Z_FINISH : Z_NO_FLUSH);
// Convert data if needed
if (typeof data === 'string') {
// If we need to compress text, change encoding to utf8.
strm.input = strings.string2buf(data);
} else if (toString.call(data) === '[object ArrayBuffer]') {
strm.input = new Uint8Array(data);
} else {
strm.input = data;
}
strm.next_in = 0;
strm.avail_in = strm.input.length;
do {
if (strm.avail_out === 0) {
strm.output = new utils.Buf8(chunkSize);
strm.next_out = 0;
strm.avail_out = chunkSize;
}
status = zlib_deflate.deflate(strm, _mode); /* no bad return value */
if (status !== Z_STREAM_END && status !== Z_OK) {
this.onEnd(status);
this.ended = true;
return false;
}
if (strm.avail_out === 0 || (strm.avail_in === 0 && (_mode === Z_FINISH || _mode === Z_SYNC_FLUSH))) {
if (this.options.to === 'string') {
this.onData(strings.buf2binstring(utils.shrinkBuf(strm.output, strm.next_out)));
} else {
this.onData(utils.shrinkBuf(strm.output, strm.next_out));
}
}
} while ((strm.avail_in > 0 || strm.avail_out === 0) && status !== Z_STREAM_END);
// Finalize on the last chunk.
if (_mode === Z_FINISH) {
status = zlib_deflate.deflateEnd(this.strm);
this.onEnd(status);
this.ended = true;
return status === Z_OK;
}
// callback interim results if Z_SYNC_FLUSH.
if (_mode === Z_SYNC_FLUSH) {
this.onEnd(Z_OK);
strm.avail_out = 0;
return true;
}
return true;
};
/**
* Deflate#onData(chunk) -> Void
* - chunk (Uint8Array|Array|String): output data. Type of array depends
* on js engine support. When string output requested, each chunk
* will be string.
*
* By default, stores data blocks in `chunks[]` property and glue
* those in `onEnd`. Override this handler, if you need another behaviour.
**/
Deflate.prototype.onData = function (chunk) {
this.chunks.push(chunk);
};
/**
* Deflate#onEnd(status) -> Void
* - status (Number): deflate status. 0 (Z_OK) on success,
* other if not.
*
* Called once after you tell deflate that the input stream is
* complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH)
* or if an error happened. By default - join collected chunks,
* free memory and fill `results` / `err` properties.
**/
Deflate.prototype.onEnd = function (status) {
// On success - join
if (status === Z_OK) {
if (this.options.to === 'string') {
this.result = this.chunks.join('');
} else {
this.result = utils.flattenChunks(this.chunks);
}
}
this.chunks = [];
this.err = status;
this.msg = this.strm.msg;
};
/**
* deflate(data[, options]) -> Uint8Array|Array|String
* - data (Uint8Array|Array|String): input data to compress.
* - options (Object): zlib deflate options.
*
* Compress `data` with deflate algorithm and `options`.
*
* Supported options are:
*
* - level
* - windowBits
* - memLevel
* - strategy
* - dictionary
*
* [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced)
* for more information on these.
*
* Sugar (options):
*
* - `raw` (Boolean) - say that we work with raw stream, if you don't wish to specify
* negative windowBits implicitly.
* - `to` (String) - if equal to 'string', then result will be "binary string"
* (each char code [0..255])
*
* ##### Example:
*
* ```javascript
* var pako = require('pako')
* , data = Uint8Array([1,2,3,4,5,6,7,8,9]);
*
* console.log(pako.deflate(data));
* ```
**/
function deflate(input, options) {
var deflator = new Deflate(options);
deflator.push(input, true);
// That will never happens, if you don't cheat with options :)
if (deflator.err) { throw deflator.msg || msg[deflator.err]; }
return deflator.result;
}
/**
* deflateRaw(data[, options]) -> Uint8Array|Array|String
* - data (Uint8Array|Array|String): input data to compress.
* - options (Object): zlib deflate options.
*
* The same as [[deflate]], but creates raw data, without wrapper
* (header and adler32 crc).
**/
function deflateRaw(input, options) {
options = options || {};
options.raw = true;
return deflate(input, options);
}
/**
* gzip(data[, options]) -> Uint8Array|Array|String
* - data (Uint8Array|Array|String): input data to compress.
* - options (Object): zlib deflate options.
*
* The same as [[deflate]], but create gzip wrapper instead of
* deflate one.
**/
function gzip(input, options) {
options = options || {};
options.gzip = true;
return deflate(input, options);
}
exports.Deflate = Deflate;
exports.deflate = deflate;
exports.deflateRaw = deflateRaw;
exports.gzip = gzip;
},{"./utils/common":54,"./utils/strings":55,"./zlib/deflate":59,"./zlib/messages":64,"./zlib/zstream":66}],53:[function(require,module,exports){
'use strict';
var zlib_inflate = require('./zlib/inflate');
var utils = require('./utils/common');
var strings = require('./utils/strings');
var c = require('./zlib/constants');
var msg = require('./zlib/messages');
var ZStream = require('./zlib/zstream');
var GZheader = require('./zlib/gzheader');
var toString = Object.prototype.toString;
/**
* class Inflate
*
* Generic JS-style wrapper for zlib calls. If you don't need
* streaming behaviour - use more simple functions: [[inflate]]
* and [[inflateRaw]].
**/
/* internal
* inflate.chunks -> Array
*
* Chunks of output data, if [[Inflate#onData]] not overridden.
**/
/**
* Inflate.result -> Uint8Array|Array|String
*
* Uncompressed result, generated by default [[Inflate#onData]]
* and [[Inflate#onEnd]] handlers. Filled after you push last chunk
* (call [[Inflate#push]] with `Z_FINISH` / `true` param) or if you
* push a chunk with explicit flush (call [[Inflate#push]] with
* `Z_SYNC_FLUSH` param).
**/
/**
* Inflate.err -> Number
*
* Error code after inflate finished. 0 (Z_OK) on success.
* Should be checked if broken data possible.
**/
/**
* Inflate.msg -> String
*
* Error message, if [[Inflate.err]] != 0
**/
/**
* new Inflate(options)
* - options (Object): zlib inflate options.
*
* Creates new inflator instance with specified params. Throws exception
* on bad params. Supported options:
*
* - `windowBits`
* - `dictionary`
*
* [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced)
* for more information on these.
*
* Additional options, for internal needs:
*
* - `chunkSize` - size of generated data chunks (16K by default)
* - `raw` (Boolean) - do raw inflate
* - `to` (String) - if equal to 'string', then result will be converted
* from utf8 to utf16 (javascript) string. When string output requested,
* chunk length can differ from `chunkSize`, depending on content.
*
* By default, when no options set, autodetect deflate/gzip data format via
* wrapper header.
*
* ##### Example:
*
* ```javascript
* var pako = require('pako')
* , chunk1 = Uint8Array([1,2,3,4,5,6,7,8,9])
* , chunk2 = Uint8Array([10,11,12,13,14,15,16,17,18,19]);
*
* var inflate = new pako.Inflate({ level: 3});
*
* inflate.push(chunk1, false);
* inflate.push(chunk2, true); // true -> last chunk
*
* if (inflate.err) { throw new Error(inflate.err); }
*
* console.log(inflate.result);
* ```
**/
function Inflate(options) {
if (!(this instanceof Inflate)) return new Inflate(options);
this.options = utils.assign({
chunkSize: 16384,
windowBits: 0,
to: ''
}, options || {});
var opt = this.options;
// Force window size for `raw` data, if not set directly,
// because we have no header for autodetect.
if (opt.raw && (opt.windowBits >= 0) && (opt.windowBits < 16)) {
opt.windowBits = -opt.windowBits;
if (opt.windowBits === 0) { opt.windowBits = -15; }
}
// If `windowBits` not defined (and mode not raw) - set autodetect flag for gzip/deflate
if ((opt.windowBits >= 0) && (opt.windowBits < 16) &&
!(options && options.windowBits)) {
opt.windowBits += 32;
}
// Gzip header has no info about windows size, we can do autodetect only
// for deflate. So, if window size not set, force it to max when gzip possible
if ((opt.windowBits > 15) && (opt.windowBits < 48)) {
// bit 3 (16) -> gzipped data
// bit 4 (32) -> autodetect gzip/deflate
if ((opt.windowBits & 15) === 0) {
opt.windowBits |= 15;
}
}
this.err = 0; // error code, if happens (0 = Z_OK)
this.msg = ''; // error message
this.ended = false; // used to avoid multiple onEnd() calls
this.chunks = []; // chunks of compressed data
this.strm = new ZStream();
this.strm.avail_out = 0;
var status = zlib_inflate.inflateInit2(
this.strm,
opt.windowBits
);
if (status !== c.Z_OK) {
throw new Error(msg[status]);
}
this.header = new GZheader();
zlib_inflate.inflateGetHeader(this.strm, this.header);
}
/**
* Inflate#push(data[, mode]) -> Boolean
* - data (Uint8Array|Array|ArrayBuffer|String): input data
* - mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes.
* See constants. Skipped or `false` means Z_NO_FLUSH, `true` means Z_FINISH.
*
* Sends input data to inflate pipe, generating [[Inflate#onData]] calls with
* new output chunks. Returns `true` on success. The last data block must have
* mode Z_FINISH (or `true`). That will flush internal pending buffers and call
* [[Inflate#onEnd]]. For interim explicit flushes (without ending the stream) you
* can use mode Z_SYNC_FLUSH, keeping the decompression context.
*
* On fail call [[Inflate#onEnd]] with error code and return false.
*
* We strongly recommend to use `Uint8Array` on input for best speed (output
* format is detected automatically). Also, don't skip last param and always
* use the same type in your code (boolean or number). That will improve JS speed.
*
* For regular `Array`-s make sure all elements are [0..255].
*
* ##### Example
*
* ```javascript
* push(chunk, false); // push one of data chunks
* ...
* push(chunk, true); // push last chunk
* ```
**/
Inflate.prototype.push = function (data, mode) {
var strm = this.strm;
var chunkSize = this.options.chunkSize;
var dictionary = this.options.dictionary;
var status, _mode;
var next_out_utf8, tail, utf8str;
var dict;
// Flag to properly process Z_BUF_ERROR on testing inflate call
// when we check that all output data was flushed.
var allowBufError = false;
if (this.ended) { return false; }
_mode = (mode === ~~mode) ? mode : ((mode === true) ? c.Z_FINISH : c.Z_NO_FLUSH);
// Convert data if needed
if (typeof data === 'string') {
// Only binary strings can be decompressed on practice
strm.input = strings.binstring2buf(data);
} else if (toString.call(data) === '[object ArrayBuffer]') {
strm.input = new Uint8Array(data);
} else {
strm.input = data;
}
strm.next_in = 0;
strm.avail_in = strm.input.length;
do {
if (strm.avail_out === 0) {
strm.output = new utils.Buf8(chunkSize);
strm.next_out = 0;
strm.avail_out = chunkSize;
}
status = zlib_inflate.inflate(strm, c.Z_NO_FLUSH); /* no bad return value */
if (status === c.Z_NEED_DICT && dictionary) {
// Convert data if needed
if (typeof dictionary === 'string') {
dict = strings.string2buf(dictionary);
} else if (toString.call(dictionary) === '[object ArrayBuffer]') {
dict = new Uint8Array(dictionary);
} else {
dict = dictionary;
}
status = zlib_inflate.inflateSetDictionary(this.strm, dict);
}
if (status === c.Z_BUF_ERROR && allowBufError === true) {
status = c.Z_OK;
allowBufError = false;
}
if (status !== c.Z_STREAM_END && status !== c.Z_OK) {
this.onEnd(status);
this.ended = true;
return false;
}
if (strm.next_out) {
if (strm.avail_out === 0 || status === c.Z_STREAM_END || (strm.avail_in === 0 && (_mode === c.Z_FINISH || _mode === c.Z_SYNC_FLUSH))) {
if (this.options.to === 'string') {
next_out_utf8 = strings.utf8border(strm.output, strm.next_out);
tail = strm.next_out - next_out_utf8;
utf8str = strings.buf2string(strm.output, next_out_utf8);
// move tail
strm.next_out = tail;
strm.avail_out = chunkSize - tail;
if (tail) { utils.arraySet(strm.output, strm.output, next_out_utf8, tail, 0); }
this.onData(utf8str);
} else {
this.onData(utils.shrinkBuf(strm.output, strm.next_out));
}
}
}
// When no more input data, we should check that internal inflate buffers
// are flushed. The only way to do it when avail_out = 0 - run one more
// inflate pass. But if output data not exists, inflate return Z_BUF_ERROR.
// Here we set flag to process this error properly.
//
// NOTE. Deflate does not return error in this case and does not needs such
// logic.
if (strm.avail_in === 0 && strm.avail_out === 0) {
allowBufError = true;
}
} while ((strm.avail_in > 0 || strm.avail_out === 0) && status !== c.Z_STREAM_END);
if (status === c.Z_STREAM_END) {
_mode = c.Z_FINISH;
}
// Finalize on the last chunk.
if (_mode === c.Z_FINISH) {
status = zlib_inflate.inflateEnd(this.strm);
this.onEnd(status);
this.ended = true;
return status === c.Z_OK;
}
// callback interim results if Z_SYNC_FLUSH.
if (_mode === c.Z_SYNC_FLUSH) {
this.onEnd(c.Z_OK);
strm.avail_out = 0;
return true;
}
return true;
};
/**
* Inflate#onData(chunk) -> Void
* - chunk (Uint8Array|Array|String): output data. Type of array depends
* on js engine support. When string output requested, each chunk
* will be string.
*
* By default, stores data blocks in `chunks[]` property and glue
* those in `onEnd`. Override this handler, if you need another behaviour.
**/
Inflate.prototype.onData = function (chunk) {
this.chunks.push(chunk);
};
/**
* Inflate#onEnd(status) -> Void
* - status (Number): inflate status. 0 (Z_OK) on success,
* other if not.
*
* Called either after you tell inflate that the input stream is
* complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH)
* or if an error happened. By default - join collected chunks,
* free memory and fill `results` / `err` properties.
**/
Inflate.prototype.onEnd = function (status) {
// On success - join
if (status === c.Z_OK) {
if (this.options.to === 'string') {
// Glue & convert here, until we teach pako to send
// utf8 aligned strings to onData
this.result = this.chunks.join('');
} else {
this.result = utils.flattenChunks(this.chunks);
}
}
this.chunks = [];
this.err = status;
this.msg = this.strm.msg;
};
/**
* inflate(data[, options]) -> Uint8Array|Array|String
* - data (Uint8Array|Array|String): input data to decompress.
* - options (Object): zlib inflate options.
*
* Decompress `data` with inflate/ungzip and `options`. Autodetect
* format via wrapper header by default. That's why we don't provide
* separate `ungzip` method.
*
* Supported options are:
*
* - windowBits
*
* [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced)
* for more information.
*
* Sugar (options):
*
* - `raw` (Boolean) - say that we work with raw stream, if you don't wish to specify
* negative windowBits implicitly.
* - `to` (String) - if equal to 'string', then result will be converted
* from utf8 to utf16 (javascript) string. When string output requested,
* chunk length can differ from `chunkSize`, depending on content.
*
*
* ##### Example:
*
* ```javascript
* var pako = require('pako')
* , input = pako.deflate([1,2,3,4,5,6,7,8,9])
* , output;
*
* try {
* output = pako.inflate(input);
* } catch (err)
* console.log(err);
* }
* ```
**/
function inflate(input, options) {
var inflator = new Inflate(options);
inflator.push(input, true);
// That will never happens, if you don't cheat with options :)
if (inflator.err) { throw inflator.msg || msg[inflator.err]; }
return inflator.result;
}
/**
* inflateRaw(data[, options]) -> Uint8Array|Array|String
* - data (Uint8Array|Array|String): input data to decompress.
* - options (Object): zlib inflate options.
*
* The same as [[inflate]], but creates raw data, without wrapper
* (header and adler32 crc).
**/
function inflateRaw(input, options) {
options = options || {};
options.raw = true;
return inflate(input, options);
}
/**
* ungzip(data[, options]) -> Uint8Array|Array|String
* - data (Uint8Array|Array|String): input data to decompress.
* - options (Object): zlib inflate options.
*
* Just shortcut to [[inflate]], because it autodetects format
* by header.content. Done for convenience.
**/
exports.Inflate = Inflate;
exports.inflate = inflate;
exports.inflateRaw = inflateRaw;
exports.ungzip = inflate;
},{"./utils/common":54,"./utils/strings":55,"./zlib/constants":57,"./zlib/gzheader":60,"./zlib/inflate":62,"./zlib/messages":64,"./zlib/zstream":66}],54:[function(require,module,exports){
'use strict';
var TYPED_OK = (typeof Uint8Array !== 'undefined') &&
(typeof Uint16Array !== 'undefined') &&
(typeof Int32Array !== 'undefined');
function _has(obj, key) {
return Object.prototype.hasOwnProperty.call(obj, key);
}
exports.assign = function (obj /*from1, from2, from3, ...*/) {
var sources = Array.prototype.slice.call(arguments, 1);
while (sources.length) {
var source = sources.shift();
if (!source) { continue; }
if (typeof source !== 'object') {
throw new TypeError(source + 'must be non-object');
}
for (var p in source) {
if (_has(source, p)) {
obj[p] = source[p];
}
}
}
return obj;
};
// reduce buffer size, avoiding mem copy
exports.shrinkBuf = function (buf, size) {
if (buf.length === size) { return buf; }
if (buf.subarray) { return buf.subarray(0, size); }
buf.length = size;
return buf;
};
var fnTyped = {
arraySet: function (dest, src, src_offs, len, dest_offs) {
if (src.subarray && dest.subarray) {
dest.set(src.subarray(src_offs, src_offs + len), dest_offs);
return;
}
// Fallback to ordinary array
for (var i = 0; i < len; i++) {
dest[dest_offs + i] = src[src_offs + i];
}
},
// Join array of chunks to single array.
flattenChunks: function (chunks) {
var i, l, len, pos, chunk, result;
// calculate data length
len = 0;
for (i = 0, l = chunks.length; i < l; i++) {
len += chunks[i].length;
}
// join chunks
result = new Uint8Array(len);
pos = 0;
for (i = 0, l = chunks.length; i < l; i++) {
chunk = chunks[i];
result.set(chunk, pos);
pos += chunk.length;
}
return result;
}
};
var fnUntyped = {
arraySet: function (dest, src, src_offs, len, dest_offs) {
for (var i = 0; i < len; i++) {
dest[dest_offs + i] = src[src_offs + i];
}
},
// Join array of chunks to single array.
flattenChunks: function (chunks) {
return [].concat.apply([], chunks);
}
};
// Enable/Disable typed arrays use, for testing
//
exports.setTyped = function (on) {
if (on) {
exports.Buf8 = Uint8Array;
exports.Buf16 = Uint16Array;
exports.Buf32 = Int32Array;
exports.assign(exports, fnTyped);
} else {
exports.Buf8 = Array;
exports.Buf16 = Array;
exports.Buf32 = Array;
exports.assign(exports, fnUntyped);
}
};
exports.setTyped(TYPED_OK);
},{}],55:[function(require,module,exports){
// String encode/decode helpers
'use strict';
var utils = require('./common');
// Quick check if we can use fast array to bin string conversion
//
// - apply(Array) can fail on Android 2.2
// - apply(Uint8Array) can fail on iOS 5.1 Safari
//
var STR_APPLY_OK = true;
var STR_APPLY_UIA_OK = true;
try { String.fromCharCode.apply(null, [ 0 ]); } catch (__) { STR_APPLY_OK = false; }
try { String.fromCharCode.apply(null, new Uint8Array(1)); } catch (__) { STR_APPLY_UIA_OK = false; }
// Table with utf8 lengths (calculated by first byte of sequence)
// Note, that 5 & 6-byte values and some 4-byte values can not be represented in JS,
// because max possible codepoint is 0x10ffff
var _utf8len = new utils.Buf8(256);
for (var q = 0; q < 256; q++) {
_utf8len[q] = (q >= 252 ? 6 : q >= 248 ? 5 : q >= 240 ? 4 : q >= 224 ? 3 : q >= 192 ? 2 : 1);
}
_utf8len[254] = _utf8len[254] = 1; // Invalid sequence start
// convert string to array (typed, when possible)
exports.string2buf = function (str) {
var buf, c, c2, m_pos, i, str_len = str.length, buf_len = 0;
// count binary size
for (m_pos = 0; m_pos < str_len; m_pos++) {
c = str.charCodeAt(m_pos);
if ((c & 0xfc00) === 0xd800 && (m_pos + 1 < str_len)) {
c2 = str.charCodeAt(m_pos + 1);
if ((c2 & 0xfc00) === 0xdc00) {
c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00);
m_pos++;
}
}
buf_len += c < 0x80 ? 1 : c < 0x800 ? 2 : c < 0x10000 ? 3 : 4;
}
// allocate buffer
buf = new utils.Buf8(buf_len);
// convert
for (i = 0, m_pos = 0; i < buf_len; m_pos++) {
c = str.charCodeAt(m_pos);
if ((c & 0xfc00) === 0xd800 && (m_pos + 1 < str_len)) {
c2 = str.charCodeAt(m_pos + 1);
if ((c2 & 0xfc00) === 0xdc00) {
c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00);
m_pos++;
}
}
if (c < 0x80) {
/* one byte */
buf[i++] = c;
} else if (c < 0x800) {
/* two bytes */
buf[i++] = 0xC0 | (c >>> 6);
buf[i++] = 0x80 | (c & 0x3f);
} else if (c < 0x10000) {
/* three bytes */
buf[i++] = 0xE0 | (c >>> 12);
buf[i++] = 0x80 | (c >>> 6 & 0x3f);
buf[i++] = 0x80 | (c & 0x3f);
} else {
/* four bytes */
buf[i++] = 0xf0 | (c >>> 18);
buf[i++] = 0x80 | (c >>> 12 & 0x3f);
buf[i++] = 0x80 | (c >>> 6 & 0x3f);
buf[i++] = 0x80 | (c & 0x3f);
}
}
return buf;
};
// Helper (used in 2 places)
function buf2binstring(buf, len) {
// use fallback for big arrays to avoid stack overflow
if (len < 65537) {
if ((buf.subarray && STR_APPLY_UIA_OK) || (!buf.subarray && STR_APPLY_OK)) {
return String.fromCharCode.apply(null, utils.shrinkBuf(buf, len));
}
}
var result = '';
for (var i = 0; i < len; i++) {
result += String.fromCharCode(buf[i]);
}
return result;
}
// Convert byte array to binary string
exports.buf2binstring = function (buf) {
return buf2binstring(buf, buf.length);
};
// Convert binary string (typed, when possible)
exports.binstring2buf = function (str) {
var buf = new utils.Buf8(str.length);
for (var i = 0, len = buf.length; i < len; i++) {
buf[i] = str.charCodeAt(i);
}
return buf;
};
// convert array to string
exports.buf2string = function (buf, max) {
var i, out, c, c_len;
var len = max || buf.length;
// Reserve max possible length (2 words per char)
// NB: by unknown reasons, Array is significantly faster for
// String.fromCharCode.apply than Uint16Array.
var utf16buf = new Array(len * 2);
for (out = 0, i = 0; i < len;) {
c = buf[i++];
// quick process ascii
if (c < 0x80) { utf16buf[out++] = c; continue; }
c_len = _utf8len[c];
// skip 5 & 6 byte codes
if (c_len > 4) { utf16buf[out++] = 0xfffd; i += c_len - 1; continue; }
// apply mask on first byte
c &= c_len === 2 ? 0x1f : c_len === 3 ? 0x0f : 0x07;
// join the rest
while (c_len > 1 && i < len) {
c = (c << 6) | (buf[i++] & 0x3f);
c_len--;
}
// terminated by end of string?
if (c_len > 1) { utf16buf[out++] = 0xfffd; continue; }
if (c < 0x10000) {
utf16buf[out++] = c;
} else {
c -= 0x10000;
utf16buf[out++] = 0xd800 | ((c >> 10) & 0x3ff);
utf16buf[out++] = 0xdc00 | (c & 0x3ff);
}
}
return buf2binstring(utf16buf, out);
};
// Calculate max possible position in utf8 buffer,
// that will not break sequence. If that's not possible
// - (very small limits) return max size as is.
//
// buf[] - utf8 bytes array
// max - length limit (mandatory);
exports.utf8border = function (buf, max) {
var pos;
max = max || buf.length;
if (max > buf.length) { max = buf.length; }
// go back from last position, until start of sequence found
pos = max - 1;
while (pos >= 0 && (buf[pos] & 0xC0) === 0x80) { pos--; }
// Very small and broken sequence,
// return max, because we should return something anyway.
if (pos < 0) { return max; }
// If we came to start of buffer - that means buffer is too small,
// return max too.
if (pos === 0) { return max; }
return (pos + _utf8len[buf[pos]] > max) ? pos : max;
};
},{"./common":54}],56:[function(require,module,exports){
'use strict';
// Note: adler32 takes 12% for level 0 and 2% for level 6.
// It isn't worth it to make additional optimizations as in original.
// Small size is preferable.
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
function adler32(adler, buf, len, pos) {
var s1 = (adler & 0xffff) |0,
s2 = ((adler >>> 16) & 0xffff) |0,
n = 0;
while (len !== 0) {
// Set limit ~ twice less than 5552, to keep
// s2 in 31-bits, because we force signed ints.
// in other case %= will fail.
n = len > 2000 ? 2000 : len;
len -= n;
do {
s1 = (s1 + buf[pos++]) |0;
s2 = (s2 + s1) |0;
} while (--n);
s1 %= 65521;
s2 %= 65521;
}
return (s1 | (s2 << 16)) |0;
}
module.exports = adler32;
},{}],57:[function(require,module,exports){
'use strict';
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
module.exports = {
/* Allowed flush values; see deflate() and inflate() below for details */
Z_NO_FLUSH: 0,
Z_PARTIAL_FLUSH: 1,
Z_SYNC_FLUSH: 2,
Z_FULL_FLUSH: 3,
Z_FINISH: 4,
Z_BLOCK: 5,
Z_TREES: 6,
/* Return codes for the compression/decompression functions. Negative values
* are errors, positive values are used for special but normal events.
*/
Z_OK: 0,
Z_STREAM_END: 1,
Z_NEED_DICT: 2,
Z_ERRNO: -1,
Z_STREAM_ERROR: -2,
Z_DATA_ERROR: -3,
//Z_MEM_ERROR: -4,
Z_BUF_ERROR: -5,
//Z_VERSION_ERROR: -6,
/* compression levels */
Z_NO_COMPRESSION: 0,
Z_BEST_SPEED: 1,
Z_BEST_COMPRESSION: 9,
Z_DEFAULT_COMPRESSION: -1,
Z_FILTERED: 1,
Z_HUFFMAN_ONLY: 2,
Z_RLE: 3,
Z_FIXED: 4,
Z_DEFAULT_STRATEGY: 0,
/* Possible values of the data_type field (though see inflate()) */
Z_BINARY: 0,
Z_TEXT: 1,
//Z_ASCII: 1, // = Z_TEXT (deprecated)
Z_UNKNOWN: 2,
/* The deflate compression method */
Z_DEFLATED: 8
//Z_NULL: null // Use -1 or null inline, depending on var type
};
},{}],58:[function(require,module,exports){
'use strict';
// Note: we can't get significant speed boost here.
// So write code to minimize size - no pregenerated tables
// and array tools dependencies.
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
// Use ordinary array, since untyped makes no boost here
function makeTable() {
var c, table = [];
for (var n = 0; n < 256; n++) {
c = n;
for (var k = 0; k < 8; k++) {
c = ((c & 1) ? (0xEDB88320 ^ (c >>> 1)) : (c >>> 1));
}
table[n] = c;
}
return table;
}
// Create table on load. Just 255 signed longs. Not a problem.
var crcTable = makeTable();
function crc32(crc, buf, len, pos) {
var t = crcTable,
end = pos + len;
crc ^= -1;
for (var i = pos; i < end; i++) {
crc = (crc >>> 8) ^ t[(crc ^ buf[i]) & 0xFF];
}
return (crc ^ (-1)); // >>> 0;
}
module.exports = crc32;
},{}],59:[function(require,module,exports){
'use strict';
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
var utils = require('../utils/common');
var trees = require('./trees');
var adler32 = require('./adler32');
var crc32 = require('./crc32');
var msg = require('./messages');
/* Public constants ==========================================================*/
/* ===========================================================================*/
/* Allowed flush values; see deflate() and inflate() below for details */
var Z_NO_FLUSH = 0;
var Z_PARTIAL_FLUSH = 1;
//var Z_SYNC_FLUSH = 2;
var Z_FULL_FLUSH = 3;
var Z_FINISH = 4;
var Z_BLOCK = 5;
//var Z_TREES = 6;
/* Return codes for the compression/decompression functions. Negative values
* are errors, positive values are used for special but normal events.
*/
var Z_OK = 0;
var Z_STREAM_END = 1;
//var Z_NEED_DICT = 2;
//var Z_ERRNO = -1;
var Z_STREAM_ERROR = -2;
var Z_DATA_ERROR = -3;
//var Z_MEM_ERROR = -4;
var Z_BUF_ERROR = -5;
//var Z_VERSION_ERROR = -6;
/* compression levels */
//var Z_NO_COMPRESSION = 0;
//var Z_BEST_SPEED = 1;
//var Z_BEST_COMPRESSION = 9;
var Z_DEFAULT_COMPRESSION = -1;
var Z_FILTERED = 1;
var Z_HUFFMAN_ONLY = 2;
var Z_RLE = 3;
var Z_FIXED = 4;
var Z_DEFAULT_STRATEGY = 0;
/* Possible values of the data_type field (though see inflate()) */
//var Z_BINARY = 0;
//var Z_TEXT = 1;
//var Z_ASCII = 1; // = Z_TEXT
var Z_UNKNOWN = 2;
/* The deflate compression method */
var Z_DEFLATED = 8;
/*============================================================================*/
var MAX_MEM_LEVEL = 9;
/* Maximum value for memLevel in deflateInit2 */
var MAX_WBITS = 15;
/* 32K LZ77 window */
var DEF_MEM_LEVEL = 8;
var LENGTH_CODES = 29;
/* number of length codes, not counting the special END_BLOCK code */
var LITERALS = 256;
/* number of literal bytes 0..255 */
var L_CODES = LITERALS + 1 + LENGTH_CODES;
/* number of Literal or Length codes, including the END_BLOCK code */
var D_CODES = 30;
/* number of distance codes */
var BL_CODES = 19;
/* number of codes used to transfer the bit lengths */
var HEAP_SIZE = 2 * L_CODES + 1;
/* maximum heap size */
var MAX_BITS = 15;
/* All codes must not exceed MAX_BITS bits */
var MIN_MATCH = 3;
var MAX_MATCH = 258;
var MIN_LOOKAHEAD = (MAX_MATCH + MIN_MATCH + 1);
var PRESET_DICT = 0x20;
var INIT_STATE = 42;
var EXTRA_STATE = 69;
var NAME_STATE = 73;
var COMMENT_STATE = 91;
var HCRC_STATE = 103;
var BUSY_STATE = 113;
var FINISH_STATE = 666;
var BS_NEED_MORE = 1; /* block not completed, need more input or more output */
var BS_BLOCK_DONE = 2; /* block flush performed */
var BS_FINISH_STARTED = 3; /* finish started, need only more output at next deflate */
var BS_FINISH_DONE = 4; /* finish done, accept no more input or output */
var OS_CODE = 0x03; // Unix :) . Don't detect, use this default.
function err(strm, errorCode) {
strm.msg = msg[errorCode];
return errorCode;
}
function rank(f) {
return ((f) << 1) - ((f) > 4 ? 9 : 0);
}
function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } }
/* =========================================================================
* Flush as much pending output as possible. All deflate() output goes
* through this function so some applications may wish to modify it
* to avoid allocating a large strm->output buffer and copying into it.
* (See also read_buf()).
*/
function flush_pending(strm) {
var s = strm.state;
//_tr_flush_bits(s);
var len = s.pending;
if (len > strm.avail_out) {
len = strm.avail_out;
}
if (len === 0) { return; }
utils.arraySet(strm.output, s.pending_buf, s.pending_out, len, strm.next_out);
strm.next_out += len;
s.pending_out += len;
strm.total_out += len;
strm.avail_out -= len;
s.pending -= len;
if (s.pending === 0) {
s.pending_out = 0;
}
}
function flush_block_only(s, last) {
trees._tr_flush_block(s, (s.block_start >= 0 ? s.block_start : -1), s.strstart - s.block_start, last);
s.block_start = s.strstart;
flush_pending(s.strm);
}
function put_byte(s, b) {
s.pending_buf[s.pending++] = b;
}
/* =========================================================================
* Put a short in the pending buffer. The 16-bit value is put in MSB order.
* IN assertion: the stream state is correct and there is enough room in
* pending_buf.
*/
function putShortMSB(s, b) {
// put_byte(s, (Byte)(b >> 8));
// put_byte(s, (Byte)(b & 0xff));
s.pending_buf[s.pending++] = (b >>> 8) & 0xff;
s.pending_buf[s.pending++] = b & 0xff;
}
/* ===========================================================================
* Read a new buffer from the current input stream, update the adler32
* and total number of bytes read. All deflate() input goes through
* this function so some applications may wish to modify it to avoid
* allocating a large strm->input buffer and copying from it.
* (See also flush_pending()).
*/
function read_buf(strm, buf, start, size) {
var len = strm.avail_in;
if (len > size) { len = size; }
if (len === 0) { return 0; }
strm.avail_in -= len;
// zmemcpy(buf, strm->next_in, len);
utils.arraySet(buf, strm.input, strm.next_in, len, start);
if (strm.state.wrap === 1) {
strm.adler = adler32(strm.adler, buf, len, start);
}
else if (strm.state.wrap === 2) {
strm.adler = crc32(strm.adler, buf, len, start);
}
strm.next_in += len;
strm.total_in += len;
return len;
}
/* ===========================================================================
* Set match_start to the longest match starting at the given string and
* return its length. Matches shorter or equal to prev_length are discarded,
* in which case the result is equal to prev_length and match_start is
* garbage.
* IN assertions: cur_match is the head of the hash chain for the current
* string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
* OUT assertion: the match length is not greater than s->lookahead.
*/
function longest_match(s, cur_match) {
var chain_length = s.max_chain_length; /* max hash chain length */
var scan = s.strstart; /* current string */
var match; /* matched string */
var len; /* length of current match */
var best_len = s.prev_length; /* best match length so far */
var nice_match = s.nice_match; /* stop if match long enough */
var limit = (s.strstart > (s.w_size - MIN_LOOKAHEAD)) ?
s.strstart - (s.w_size - MIN_LOOKAHEAD) : 0/*NIL*/;
var _win = s.window; // shortcut
var wmask = s.w_mask;
var prev = s.prev;
/* Stop when cur_match becomes <= limit. To simplify the code,
* we prevent matches with the string of window index 0.
*/
var strend = s.strstart + MAX_MATCH;
var scan_end1 = _win[scan + best_len - 1];
var scan_end = _win[scan + best_len];
/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
* It is easy to get rid of this optimization if necessary.
*/
// Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
/* Do not waste too much time if we already have a good match: */
if (s.prev_length >= s.good_match) {
chain_length >>= 2;
}
/* Do not look for matches beyond the end of the input. This is necessary
* to make deflate deterministic.
*/
if (nice_match > s.lookahead) { nice_match = s.lookahead; }
// Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
do {
// Assert(cur_match < s->strstart, "no future");
match = cur_match;
/* Skip to next match if the match length cannot increase
* or if the match length is less than 2. Note that the checks below
* for insufficient lookahead only occur occasionally for performance
* reasons. Therefore uninitialized memory will be accessed, and
* conditional jumps will be made that depend on those values.
* However the length of the match is limited to the lookahead, so
* the output of deflate is not affected by the uninitialized values.
*/
if (_win[match + best_len] !== scan_end ||
_win[match + best_len - 1] !== scan_end1 ||
_win[match] !== _win[scan] ||
_win[++match] !== _win[scan + 1]) {
continue;
}
/* The check at best_len-1 can be removed because it will be made
* again later. (This heuristic is not always a win.)
* It is not necessary to compare scan[2] and match[2] since they
* are always equal when the other bytes match, given that
* the hash keys are equal and that HASH_BITS >= 8.
*/
scan += 2;
match++;
// Assert(*scan == *match, "match[2]?");
/* We check for insufficient lookahead only every 8th comparison;
* the 256th check will be made at strstart+258.
*/
do {
/*jshint noempty:false*/
} while (_win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
_win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
_win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
_win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
scan < strend);
// Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
len = MAX_MATCH - (strend - scan);
scan = strend - MAX_MATCH;
if (len > best_len) {
s.match_start = cur_match;
best_len = len;
if (len >= nice_match) {
break;
}
scan_end1 = _win[scan + best_len - 1];
scan_end = _win[scan + best_len];
}
} while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length !== 0);
if (best_len <= s.lookahead) {
return best_len;
}
return s.lookahead;
}
/* ===========================================================================
* Fill the window when the lookahead becomes insufficient.
* Updates strstart and lookahead.
*
* IN assertion: lookahead < MIN_LOOKAHEAD
* OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
* At least one byte has been read, or avail_in == 0; reads are
* performed for at least two bytes (required for the zip translate_eol
* option -- not supported here).
*/
function fill_window(s) {
var _w_size = s.w_size;
var p, n, m, more, str;
//Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
do {
more = s.window_size - s.lookahead - s.strstart;
// JS ints have 32 bit, block below not needed
/* Deal with !@#$% 64K limit: */
//if (sizeof(int) <= 2) {
// if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
// more = wsize;
//
// } else if (more == (unsigned)(-1)) {
// /* Very unlikely, but possible on 16 bit machine if
// * strstart == 0 && lookahead == 1 (input done a byte at time)
// */
// more--;
// }
//}
/* If the window is almost full and there is insufficient lookahead,
* move the upper half to the lower one to make room in the upper half.
*/
if (s.strstart >= _w_size + (_w_size - MIN_LOOKAHEAD)) {
utils.arraySet(s.window, s.window, _w_size, _w_size, 0);
s.match_start -= _w_size;
s.strstart -= _w_size;
/* we now have strstart >= MAX_DIST */
s.block_start -= _w_size;
/* Slide the hash table (could be avoided with 32 bit values
at the expense of memory usage). We slide even when level == 0
to keep the hash table consistent if we switch back to level > 0
later. (Using level 0 permanently is not an optimal usage of
zlib, so we don't care about this pathological case.)
*/
n = s.hash_size;
p = n;
do {
m = s.head[--p];
s.head[p] = (m >= _w_size ? m - _w_size : 0);
} while (--n);
n = _w_size;
p = n;
do {
m = s.prev[--p];
s.prev[p] = (m >= _w_size ? m - _w_size : 0);
/* If n is not on any hash chain, prev[n] is garbage but
* its value will never be used.
*/
} while (--n);
more += _w_size;
}
if (s.strm.avail_in === 0) {
break;
}
/* If there was no sliding:
* strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
* more == window_size - lookahead - strstart
* => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
* => more >= window_size - 2*WSIZE + 2
* In the BIG_MEM or MMAP case (not yet supported),
* window_size == input_size + MIN_LOOKAHEAD &&
* strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
* Otherwise, window_size == 2*WSIZE so more >= 2.
* If there was sliding, more >= WSIZE. So in all cases, more >= 2.
*/
//Assert(more >= 2, "more < 2");
n = read_buf(s.strm, s.window, s.strstart + s.lookahead, more);
s.lookahead += n;
/* Initialize the hash value now that we have some input: */
if (s.lookahead + s.insert >= MIN_MATCH) {
str = s.strstart - s.insert;
s.ins_h = s.window[str];
/* UPDATE_HASH(s, s->ins_h, s->window[str + 1]); */
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + 1]) & s.hash_mask;
//#if MIN_MATCH != 3
// Call update_hash() MIN_MATCH-3 more times
//#endif
while (s.insert) {
/* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + MIN_MATCH - 1]) & s.hash_mask;
s.prev[str & s.w_mask] = s.head[s.ins_h];
s.head[s.ins_h] = str;
str++;
s.insert--;
if (s.lookahead + s.insert < MIN_MATCH) {
break;
}
}
}
/* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
* but this is not important since only literal bytes will be emitted.
*/
} while (s.lookahead < MIN_LOOKAHEAD && s.strm.avail_in !== 0);
/* If the WIN_INIT bytes after the end of the current data have never been
* written, then zero those bytes in order to avoid memory check reports of
* the use of uninitialized (or uninitialised as Julian writes) bytes by
* the longest match routines. Update the high water mark for the next
* time through here. WIN_INIT is set to MAX_MATCH since the longest match
* routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
*/
// if (s.high_water < s.window_size) {
// var curr = s.strstart + s.lookahead;
// var init = 0;
//
// if (s.high_water < curr) {
// /* Previous high water mark below current data -- zero WIN_INIT
// * bytes or up to end of window, whichever is less.
// */
// init = s.window_size - curr;
// if (init > WIN_INIT)
// init = WIN_INIT;
// zmemzero(s->window + curr, (unsigned)init);
// s->high_water = curr + init;
// }
// else if (s->high_water < (ulg)curr + WIN_INIT) {
// /* High water mark at or above current data, but below current data
// * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
// * to end of window, whichever is less.
// */
// init = (ulg)curr + WIN_INIT - s->high_water;
// if (init > s->window_size - s->high_water)
// init = s->window_size - s->high_water;
// zmemzero(s->window + s->high_water, (unsigned)init);
// s->high_water += init;
// }
// }
//
// Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
// "not enough room for search");
}
/* ===========================================================================
* Copy without compression as much as possible from the input stream, return
* the current block state.
* This function does not insert new strings in the dictionary since
* uncompressible data is probably not useful. This function is used
* only for the level=0 compression option.
* NOTE: this function should be optimized to avoid extra copying from
* window to pending_buf.
*/
function deflate_stored(s, flush) {
/* Stored blocks are limited to 0xffff bytes, pending_buf is limited
* to pending_buf_size, and each stored block has a 5 byte header:
*/
var max_block_size = 0xffff;
if (max_block_size > s.pending_buf_size - 5) {
max_block_size = s.pending_buf_size - 5;
}
/* Copy as much as possible from input to output: */
for (;;) {
/* Fill the window as much as possible: */
if (s.lookahead <= 1) {
//Assert(s->strstart < s->w_size+MAX_DIST(s) ||
// s->block_start >= (long)s->w_size, "slide too late");
// if (!(s.strstart < s.w_size + (s.w_size - MIN_LOOKAHEAD) ||
// s.block_start >= s.w_size)) {
// throw new Error("slide too late");
// }
fill_window(s);
if (s.lookahead === 0 && flush === Z_NO_FLUSH) {
return BS_NEED_MORE;
}
if (s.lookahead === 0) {
break;
}
/* flush the current block */
}
//Assert(s->block_start >= 0L, "block gone");
// if (s.block_start < 0) throw new Error("block gone");
s.strstart += s.lookahead;
s.lookahead = 0;
/* Emit a stored block if pending_buf will be full: */
var max_start = s.block_start + max_block_size;
if (s.strstart === 0 || s.strstart >= max_start) {
/* strstart == 0 is possible when wraparound on 16-bit machine */
s.lookahead = s.strstart - max_start;
s.strstart = max_start;
/*** FLUSH_BLOCK(s, 0); ***/
flush_block_only(s, false);
if (s.strm.avail_out === 0) {
return BS_NEED_MORE;
}
/***/
}
/* Flush if we may have to slide, otherwise block_start may become
* negative and the data will be gone:
*/
if (s.strstart - s.block_start >= (s.w_size - MIN_LOOKAHEAD)) {
/*** FLUSH_BLOCK(s, 0); ***/
flush_block_only(s, false);
if (s.strm.avail_out === 0) {
return BS_NEED_MORE;
}
/***/
}
}
s.insert = 0;
if (flush === Z_FINISH) {
/*** FLUSH_BLOCK(s, 1); ***/
flush_block_only(s, true);
if (s.strm.avail_out === 0) {
return BS_FINISH_STARTED;
}
/***/
return BS_FINISH_DONE;
}
if (s.strstart > s.block_start) {
/*** FLUSH_BLOCK(s, 0); ***/
flush_block_only(s, false);
if (s.strm.avail_out === 0) {
return BS_NEED_MORE;
}
/***/
}
return BS_NEED_MORE;
}
/* ===========================================================================
* Compress as much as possible from the input stream, return the current
* block state.
* This function does not perform lazy evaluation of matches and inserts
* new strings in the dictionary only for unmatched strings or for short
* matches. It is used only for the fast compression options.
*/
function deflate_fast(s, flush) {
var hash_head; /* head of the hash chain */
var bflush; /* set if current block must be flushed */
for (;;) {
/* Make sure that we always have enough lookahead, except
* at the end of the input file. We need MAX_MATCH bytes
* for the next match, plus MIN_MATCH bytes to insert the
* string following the next match.
*/
if (s.lookahead < MIN_LOOKAHEAD) {
fill_window(s);
if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) {
return BS_NEED_MORE;
}
if (s.lookahead === 0) {
break; /* flush the current block */
}
}
/* Insert the string window[strstart .. strstart+2] in the
* dictionary, and set hash_head to the head of the hash chain:
*/
hash_head = 0/*NIL*/;
if (s.lookahead >= MIN_MATCH) {
/*** INSERT_STRING(s, s.strstart, hash_head); ***/
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask;
hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
s.head[s.ins_h] = s.strstart;
/***/
}
/* Find the longest match, discarding those <= prev_length.
* At this point we have always match_length < MIN_MATCH
*/
if (hash_head !== 0/*NIL*/ && ((s.strstart - hash_head) <= (s.w_size - MIN_LOOKAHEAD))) {
/* To simplify the code, we prevent matches with the string
* of window index 0 (in particular we have to avoid a match
* of the string with itself at the start of the input file).
*/
s.match_length = longest_match(s, hash_head);
/* longest_match() sets match_start */
}
if (s.match_length >= MIN_MATCH) {
// check_match(s, s.strstart, s.match_start, s.match_length); // for debug only
/*** _tr_tally_dist(s, s.strstart - s.match_start,
s.match_length - MIN_MATCH, bflush); ***/
bflush = trees._tr_tally(s, s.strstart - s.match_start, s.match_length - MIN_MATCH);
s.lookahead -= s.match_length;
/* Insert new strings in the hash table only if the match length
* is not too large. This saves time but degrades compression.
*/
if (s.match_length <= s.max_lazy_match/*max_insert_length*/ && s.lookahead >= MIN_MATCH) {
s.match_length--; /* string at strstart already in table */
do {
s.strstart++;
/*** INSERT_STRING(s, s.strstart, hash_head); ***/
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask;
hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
s.head[s.ins_h] = s.strstart;
/***/
/* strstart never exceeds WSIZE-MAX_MATCH, so there are
* always MIN_MATCH bytes ahead.
*/
} while (--s.match_length !== 0);
s.strstart++;
} else
{
s.strstart += s.match_length;
s.match_length = 0;
s.ins_h = s.window[s.strstart];
/* UPDATE_HASH(s, s.ins_h, s.window[s.strstart+1]); */
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + 1]) & s.hash_mask;
//#if MIN_MATCH != 3
// Call UPDATE_HASH() MIN_MATCH-3 more times
//#endif
/* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
* matter since it will be recomputed at next deflate call.
*/
}
} else {
/* No match, output a literal byte */
//Tracevv((stderr,"%c", s.window[s.strstart]));
/*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/
bflush = trees._tr_tally(s, 0, s.window[s.strstart]);
s.lookahead--;
s.strstart++;
}
if (bflush) {
/*** FLUSH_BLOCK(s, 0); ***/
flush_block_only(s, false);
if (s.strm.avail_out === 0) {
return BS_NEED_MORE;
}
/***/
}
}
s.insert = ((s.strstart < (MIN_MATCH - 1)) ? s.strstart : MIN_MATCH - 1);
if (flush === Z_FINISH) {
/*** FLUSH_BLOCK(s, 1); ***/
flush_block_only(s, true);
if (s.strm.avail_out === 0) {
return BS_FINISH_STARTED;
}
/***/
return BS_FINISH_DONE;
}
if (s.last_lit) {
/*** FLUSH_BLOCK(s, 0); ***/
flush_block_only(s, false);
if (s.strm.avail_out === 0) {
return BS_NEED_MORE;
}
/***/
}
return BS_BLOCK_DONE;
}
/* ===========================================================================
* Same as above, but achieves better compression. We use a lazy
* evaluation for matches: a match is finally adopted only if there is
* no better match at the next window position.
*/
function deflate_slow(s, flush) {
var hash_head; /* head of hash chain */
var bflush; /* set if current block must be flushed */
var max_insert;
/* Process the input block. */
for (;;) {
/* Make sure that we always have enough lookahead, except
* at the end of the input file. We need MAX_MATCH bytes
* for the next match, plus MIN_MATCH bytes to insert the
* string following the next match.
*/
if (s.lookahead < MIN_LOOKAHEAD) {
fill_window(s);
if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) {
return BS_NEED_MORE;
}
if (s.lookahead === 0) { break; } /* flush the current block */
}
/* Insert the string window[strstart .. strstart+2] in the
* dictionary, and set hash_head to the head of the hash chain:
*/
hash_head = 0/*NIL*/;
if (s.lookahead >= MIN_MATCH) {
/*** INSERT_STRING(s, s.strstart, hash_head); ***/
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask;
hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
s.head[s.ins_h] = s.strstart;
/***/
}
/* Find the longest match, discarding those <= prev_length.
*/
s.prev_length = s.match_length;
s.prev_match = s.match_start;
s.match_length = MIN_MATCH - 1;
if (hash_head !== 0/*NIL*/ && s.prev_length < s.max_lazy_match &&
s.strstart - hash_head <= (s.w_size - MIN_LOOKAHEAD)/*MAX_DIST(s)*/) {
/* To simplify the code, we prevent matches with the string
* of window index 0 (in particular we have to avoid a match
* of the string with itself at the start of the input file).
*/
s.match_length = longest_match(s, hash_head);
/* longest_match() sets match_start */
if (s.match_length <= 5 &&
(s.strategy === Z_FILTERED || (s.match_length === MIN_MATCH && s.strstart - s.match_start > 4096/*TOO_FAR*/))) {
/* If prev_match is also MIN_MATCH, match_start is garbage
* but we will ignore the current match anyway.
*/
s.match_length = MIN_MATCH - 1;
}
}
/* If there was a match at the previous step and the current
* match is not better, output the previous match:
*/
if (s.prev_length >= MIN_MATCH && s.match_length <= s.prev_length) {
max_insert = s.strstart + s.lookahead - MIN_MATCH;
/* Do not insert strings in hash table beyond this. */
//check_match(s, s.strstart-1, s.prev_match, s.prev_length);
/***_tr_tally_dist(s, s.strstart - 1 - s.prev_match,
s.prev_length - MIN_MATCH, bflush);***/
bflush = trees._tr_tally(s, s.strstart - 1 - s.prev_match, s.prev_length - MIN_MATCH);
/* Insert in hash table all strings up to the end of the match.
* strstart-1 and strstart are already inserted. If there is not
* enough lookahead, the last two strings are not inserted in
* the hash table.
*/
s.lookahead -= s.prev_length - 1;
s.prev_length -= 2;
do {
if (++s.strstart <= max_insert) {
/*** INSERT_STRING(s, s.strstart, hash_head); ***/
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask;
hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
s.head[s.ins_h] = s.strstart;
/***/
}
} while (--s.prev_length !== 0);
s.match_available = 0;
s.match_length = MIN_MATCH - 1;
s.strstart++;
if (bflush) {
/*** FLUSH_BLOCK(s, 0); ***/
flush_block_only(s, false);
if (s.strm.avail_out === 0) {
return BS_NEED_MORE;
}
/***/
}
} else if (s.match_available) {
/* If there was no match at the previous position, output a
* single literal. If there was a match but the current match
* is longer, truncate the previous match to a single literal.
*/
//Tracevv((stderr,"%c", s->window[s->strstart-1]));
/*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/
bflush = trees._tr_tally(s, 0, s.window[s.strstart - 1]);
if (bflush) {
/*** FLUSH_BLOCK_ONLY(s, 0) ***/
flush_block_only(s, false);
/***/
}
s.strstart++;
s.lookahead--;
if (s.strm.avail_out === 0) {
return BS_NEED_MORE;
}
} else {
/* There is no previous match to compare with, wait for
* the next step to decide.
*/
s.match_available = 1;
s.strstart++;
s.lookahead--;
}
}
//Assert (flush != Z_NO_FLUSH, "no flush?");
if (s.match_available) {
//Tracevv((stderr,"%c", s->window[s->strstart-1]));
/*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/
bflush = trees._tr_tally(s, 0, s.window[s.strstart - 1]);
s.match_available = 0;
}
s.insert = s.strstart < MIN_MATCH - 1 ? s.strstart : MIN_MATCH - 1;
if (flush === Z_FINISH) {
/*** FLUSH_BLOCK(s, 1); ***/
flush_block_only(s, true);
if (s.strm.avail_out === 0) {
return BS_FINISH_STARTED;
}
/***/
return BS_FINISH_DONE;
}
if (s.last_lit) {
/*** FLUSH_BLOCK(s, 0); ***/
flush_block_only(s, false);
if (s.strm.avail_out === 0) {
return BS_NEED_MORE;
}
/***/
}
return BS_BLOCK_DONE;
}
/* ===========================================================================
* For Z_RLE, simply look for runs of bytes, generate matches only of distance
* one. Do not maintain a hash table. (It will be regenerated if this run of
* deflate switches away from Z_RLE.)
*/
function deflate_rle(s, flush) {
var bflush; /* set if current block must be flushed */
var prev; /* byte at distance one to match */
var scan, strend; /* scan goes up to strend for length of run */
var _win = s.window;
for (;;) {
/* Make sure that we always have enough lookahead, except
* at the end of the input file. We need MAX_MATCH bytes
* for the longest run, plus one for the unrolled loop.
*/
if (s.lookahead <= MAX_MATCH) {
fill_window(s);
if (s.lookahead <= MAX_MATCH && flush === Z_NO_FLUSH) {
return BS_NEED_MORE;
}
if (s.lookahead === 0) { break; } /* flush the current block */
}
/* See how many times the previous byte repeats */
s.match_length = 0;
if (s.lookahead >= MIN_MATCH && s.strstart > 0) {
scan = s.strstart - 1;
prev = _win[scan];
if (prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan]) {
strend = s.strstart + MAX_MATCH;
do {
/*jshint noempty:false*/
} while (prev === _win[++scan] && prev === _win[++scan] &&
prev === _win[++scan] && prev === _win[++scan] &&
prev === _win[++scan] && prev === _win[++scan] &&
prev === _win[++scan] && prev === _win[++scan] &&
scan < strend);
s.match_length = MAX_MATCH - (strend - scan);
if (s.match_length > s.lookahead) {
s.match_length = s.lookahead;
}
}
//Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
}
/* Emit match if have run of MIN_MATCH or longer, else emit literal */
if (s.match_length >= MIN_MATCH) {
//check_match(s, s.strstart, s.strstart - 1, s.match_length);
/*** _tr_tally_dist(s, 1, s.match_length - MIN_MATCH, bflush); ***/
bflush = trees._tr_tally(s, 1, s.match_length - MIN_MATCH);
s.lookahead -= s.match_length;
s.strstart += s.match_length;
s.match_length = 0;
} else {
/* No match, output a literal byte */
//Tracevv((stderr,"%c", s->window[s->strstart]));
/*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/
bflush = trees._tr_tally(s, 0, s.window[s.strstart]);
s.lookahead--;
s.strstart++;
}
if (bflush) {
/*** FLUSH_BLOCK(s, 0); ***/
flush_block_only(s, false);
if (s.strm.avail_out === 0) {
return BS_NEED_MORE;
}
/***/
}
}
s.insert = 0;
if (flush === Z_FINISH) {
/*** FLUSH_BLOCK(s, 1); ***/
flush_block_only(s, true);
if (s.strm.avail_out === 0) {
return BS_FINISH_STARTED;
}
/***/
return BS_FINISH_DONE;
}
if (s.last_lit) {
/*** FLUSH_BLOCK(s, 0); ***/
flush_block_only(s, false);
if (s.strm.avail_out === 0) {
return BS_NEED_MORE;
}
/***/
}
return BS_BLOCK_DONE;
}
/* ===========================================================================
* For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
* (It will be regenerated if this run of deflate switches away from Huffman.)
*/
function deflate_huff(s, flush) {
var bflush; /* set if current block must be flushed */
for (;;) {
/* Make sure that we have a literal to write. */
if (s.lookahead === 0) {
fill_window(s);
if (s.lookahead === 0) {
if (flush === Z_NO_FLUSH) {
return BS_NEED_MORE;
}
break; /* flush the current block */
}
}
/* Output a literal byte */
s.match_length = 0;
//Tracevv((stderr,"%c", s->window[s->strstart]));
/*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/
bflush = trees._tr_tally(s, 0, s.window[s.strstart]);
s.lookahead--;
s.strstart++;
if (bflush) {
/*** FLUSH_BLOCK(s, 0); ***/
flush_block_only(s, false);
if (s.strm.avail_out === 0) {
return BS_NEED_MORE;
}
/***/
}
}
s.insert = 0;
if (flush === Z_FINISH) {
/*** FLUSH_BLOCK(s, 1); ***/
flush_block_only(s, true);
if (s.strm.avail_out === 0) {
return BS_FINISH_STARTED;
}
/***/
return BS_FINISH_DONE;
}
if (s.last_lit) {
/*** FLUSH_BLOCK(s, 0); ***/
flush_block_only(s, false);
if (s.strm.avail_out === 0) {
return BS_NEED_MORE;
}
/***/
}
return BS_BLOCK_DONE;
}
/* Values for max_lazy_match, good_match and max_chain_length, depending on
* the desired pack level (0..9). The values given below have been tuned to
* exclude worst case performance for pathological files. Better values may be
* found for specific files.
*/
function Config(good_length, max_lazy, nice_length, max_chain, func) {
this.good_length = good_length;
this.max_lazy = max_lazy;
this.nice_length = nice_length;
this.max_chain = max_chain;
this.func = func;
}
var configuration_table;
configuration_table = [
/* good lazy nice chain */
new Config(0, 0, 0, 0, deflate_stored), /* 0 store only */
new Config(4, 4, 8, 4, deflate_fast), /* 1 max speed, no lazy matches */
new Config(4, 5, 16, 8, deflate_fast), /* 2 */
new Config(4, 6, 32, 32, deflate_fast), /* 3 */
new Config(4, 4, 16, 16, deflate_slow), /* 4 lazy matches */
new Config(8, 16, 32, 32, deflate_slow), /* 5 */
new Config(8, 16, 128, 128, deflate_slow), /* 6 */
new Config(8, 32, 128, 256, deflate_slow), /* 7 */
new Config(32, 128, 258, 1024, deflate_slow), /* 8 */
new Config(32, 258, 258, 4096, deflate_slow) /* 9 max compression */
];
/* ===========================================================================
* Initialize the "longest match" routines for a new zlib stream
*/
function lm_init(s) {
s.window_size = 2 * s.w_size;
/*** CLEAR_HASH(s); ***/
zero(s.head); // Fill with NIL (= 0);
/* Set the default configuration parameters:
*/
s.max_lazy_match = configuration_table[s.level].max_lazy;
s.good_match = configuration_table[s.level].good_length;
s.nice_match = configuration_table[s.level].nice_length;
s.max_chain_length = configuration_table[s.level].max_chain;
s.strstart = 0;
s.block_start = 0;
s.lookahead = 0;
s.insert = 0;
s.match_length = s.prev_length = MIN_MATCH - 1;
s.match_available = 0;
s.ins_h = 0;
}
function DeflateState() {
this.strm = null; /* pointer back to this zlib stream */
this.status = 0; /* as the name implies */
this.pending_buf = null; /* output still pending */
this.pending_buf_size = 0; /* size of pending_buf */
this.pending_out = 0; /* next pending byte to output to the stream */
this.pending = 0; /* nb of bytes in the pending buffer */
this.wrap = 0; /* bit 0 true for zlib, bit 1 true for gzip */
this.gzhead = null; /* gzip header information to write */
this.gzindex = 0; /* where in extra, name, or comment */
this.method = Z_DEFLATED; /* can only be DEFLATED */
this.last_flush = -1; /* value of flush param for previous deflate call */
this.w_size = 0; /* LZ77 window size (32K by default) */
this.w_bits = 0; /* log2(w_size) (8..16) */
this.w_mask = 0; /* w_size - 1 */
this.window = null;
/* Sliding window. Input bytes are read into the second half of the window,
* and move to the first half later to keep a dictionary of at least wSize
* bytes. With this organization, matches are limited to a distance of
* wSize-MAX_MATCH bytes, but this ensures that IO is always
* performed with a length multiple of the block size.
*/
this.window_size = 0;
/* Actual size of window: 2*wSize, except when the user input buffer
* is directly used as sliding window.
*/
this.prev = null;
/* Link to older string with same hash index. To limit the size of this
* array to 64K, this link is maintained only for the last 32K strings.
* An index in this array is thus a window index modulo 32K.
*/
this.head = null; /* Heads of the hash chains or NIL. */
this.ins_h = 0; /* hash index of string to be inserted */
this.hash_size = 0; /* number of elements in hash table */
this.hash_bits = 0; /* log2(hash_size) */
this.hash_mask = 0; /* hash_size-1 */
this.hash_shift = 0;
/* Number of bits by which ins_h must be shifted at each input
* step. It must be such that after MIN_MATCH steps, the oldest
* byte no longer takes part in the hash key, that is:
* hash_shift * MIN_MATCH >= hash_bits
*/
this.block_start = 0;
/* Window position at the beginning of the current output block. Gets
* negative when the window is moved backwards.
*/
this.match_length = 0; /* length of best match */
this.prev_match = 0; /* previous match */
this.match_available = 0; /* set if previous match exists */
this.strstart = 0; /* start of string to insert */
this.match_start = 0; /* start of matching string */
this.lookahead = 0; /* number of valid bytes ahead in window */
this.prev_length = 0;
/* Length of the best match at previous step. Matches not greater than this
* are discarded. This is used in the lazy match evaluation.
*/
this.max_chain_length = 0;
/* To speed up deflation, hash chains are never searched beyond this
* length. A higher limit improves compression ratio but degrades the
* speed.
*/
this.max_lazy_match = 0;
/* Attempt to find a better match only when the current match is strictly
* smaller than this value. This mechanism is used only for compression
* levels >= 4.
*/
// That's alias to max_lazy_match, don't use directly
//this.max_insert_length = 0;
/* Insert new strings in the hash table only if the match length is not
* greater than this length. This saves time but degrades compression.
* max_insert_length is used only for compression levels <= 3.
*/
this.level = 0; /* compression level (1..9) */
this.strategy = 0; /* favor or force Huffman coding*/
this.good_match = 0;
/* Use a faster search when the previous match is longer than this */
this.nice_match = 0; /* Stop searching when current match exceeds this */
/* used by trees.c: */
/* Didn't use ct_data typedef below to suppress compiler warning */
// struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */
// struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
// struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */
// Use flat array of DOUBLE size, with interleaved fata,
// because JS does not support effective
this.dyn_ltree = new utils.Buf16(HEAP_SIZE * 2);
this.dyn_dtree = new utils.Buf16((2 * D_CODES + 1) * 2);
this.bl_tree = new utils.Buf16((2 * BL_CODES + 1) * 2);
zero(this.dyn_ltree);
zero(this.dyn_dtree);
zero(this.bl_tree);
this.l_desc = null; /* desc. for literal tree */
this.d_desc = null; /* desc. for distance tree */
this.bl_desc = null; /* desc. for bit length tree */
//ush bl_count[MAX_BITS+1];
this.bl_count = new utils.Buf16(MAX_BITS + 1);
/* number of codes at each bit length for an optimal tree */
//int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
this.heap = new utils.Buf16(2 * L_CODES + 1); /* heap used to build the Huffman trees */
zero(this.heap);
this.heap_len = 0; /* number of elements in the heap */
this.heap_max = 0; /* element of largest frequency */
/* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
* The same heap array is used to build all trees.
*/
this.depth = new utils.Buf16(2 * L_CODES + 1); //uch depth[2*L_CODES+1];
zero(this.depth);
/* Depth of each subtree used as tie breaker for trees of equal frequency
*/
this.l_buf = 0; /* buffer index for literals or lengths */
this.lit_bufsize = 0;
/* Size of match buffer for literals/lengths. There are 4 reasons for
* limiting lit_bufsize to 64K:
* - frequencies can be kept in 16 bit counters
* - if compression is not successful for the first block, all input
* data is still in the window so we can still emit a stored block even
* when input comes from standard input. (This can also be done for
* all blocks if lit_bufsize is not greater than 32K.)
* - if compression is not successful for a file smaller than 64K, we can
* even emit a stored file instead of a stored block (saving 5 bytes).
* This is applicable only for zip (not gzip or zlib).
* - creating new Huffman trees less frequently may not provide fast
* adaptation to changes in the input data statistics. (Take for
* example a binary file with poorly compressible code followed by
* a highly compressible string table.) Smaller buffer sizes give
* fast adaptation but have of course the overhead of transmitting
* trees more frequently.
* - I can't count above 4
*/
this.last_lit = 0; /* running index in l_buf */
this.d_buf = 0;
/* Buffer index for distances. To simplify the code, d_buf and l_buf have
* the same number of elements. To use different lengths, an extra flag
* array would be necessary.
*/
this.opt_len = 0; /* bit length of current block with optimal trees */
this.static_len = 0; /* bit length of current block with static trees */
this.matches = 0; /* number of string matches in current block */
this.insert = 0; /* bytes at end of window left to insert */
this.bi_buf = 0;
/* Output buffer. bits are inserted starting at the bottom (least
* significant bits).
*/
this.bi_valid = 0;
/* Number of valid bits in bi_buf. All bits above the last valid bit
* are always zero.
*/
// Used for window memory init. We safely ignore it for JS. That makes
// sense only for pointers and memory check tools.
//this.high_water = 0;
/* High water mark offset in window for initialized bytes -- bytes above
* this are set to zero in order to avoid memory check warnings when
* longest match routines access bytes past the input. This is then
* updated to the new high water mark.
*/
}
function deflateResetKeep(strm) {
var s;
if (!strm || !strm.state) {
return err(strm, Z_STREAM_ERROR);
}
strm.total_in = strm.total_out = 0;
strm.data_type = Z_UNKNOWN;
s = strm.state;
s.pending = 0;
s.pending_out = 0;
if (s.wrap < 0) {
s.wrap = -s.wrap;
/* was made negative by deflate(..., Z_FINISH); */
}
s.status = (s.wrap ? INIT_STATE : BUSY_STATE);
strm.adler = (s.wrap === 2) ?
0 // crc32(0, Z_NULL, 0)
:
1; // adler32(0, Z_NULL, 0)
s.last_flush = Z_NO_FLUSH;
trees._tr_init(s);
return Z_OK;
}
function deflateReset(strm) {
var ret = deflateResetKeep(strm);
if (ret === Z_OK) {
lm_init(strm.state);
}
return ret;
}
function deflateSetHeader(strm, head) {
if (!strm || !strm.state) { return Z_STREAM_ERROR; }
if (strm.state.wrap !== 2) { return Z_STREAM_ERROR; }
strm.state.gzhead = head;
return Z_OK;
}
function deflateInit2(strm, level, method, windowBits, memLevel, strategy) {
if (!strm) { // === Z_NULL
return Z_STREAM_ERROR;
}
var wrap = 1;
if (level === Z_DEFAULT_COMPRESSION) {
level = 6;
}
if (windowBits < 0) { /* suppress zlib wrapper */
wrap = 0;
windowBits = -windowBits;
}
else if (windowBits > 15) {
wrap = 2; /* write gzip wrapper instead */
windowBits -= 16;
}
if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method !== Z_DEFLATED ||
windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
strategy < 0 || strategy > Z_FIXED) {
return err(strm, Z_STREAM_ERROR);
}
if (windowBits === 8) {
windowBits = 9;
}
/* until 256-byte window bug fixed */
var s = new DeflateState();
strm.state = s;
s.strm = strm;
s.wrap = wrap;
s.gzhead = null;
s.w_bits = windowBits;
s.w_size = 1 << s.w_bits;
s.w_mask = s.w_size - 1;
s.hash_bits = memLevel + 7;
s.hash_size = 1 << s.hash_bits;
s.hash_mask = s.hash_size - 1;
s.hash_shift = ~~((s.hash_bits + MIN_MATCH - 1) / MIN_MATCH);
s.window = new utils.Buf8(s.w_size * 2);
s.head = new utils.Buf16(s.hash_size);
s.prev = new utils.Buf16(s.w_size);
// Don't need mem init magic for JS.
//s.high_water = 0; /* nothing written to s->window yet */
s.lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
s.pending_buf_size = s.lit_bufsize * 4;
//overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
//s->pending_buf = (uchf *) overlay;
s.pending_buf = new utils.Buf8(s.pending_buf_size);
// It is offset from `s.pending_buf` (size is `s.lit_bufsize * 2`)
//s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
s.d_buf = 1 * s.lit_bufsize;
//s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
s.l_buf = (1 + 2) * s.lit_bufsize;
s.level = level;
s.strategy = strategy;
s.method = method;
return deflateReset(strm);
}
function deflateInit(strm, level) {
return deflateInit2(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY);
}
function deflate(strm, flush) {
var old_flush, s;
var beg, val; // for gzip header write only
if (!strm || !strm.state ||
flush > Z_BLOCK || flush < 0) {
return strm ? err(strm, Z_STREAM_ERROR) : Z_STREAM_ERROR;
}
s = strm.state;
if (!strm.output ||
(!strm.input && strm.avail_in !== 0) ||
(s.status === FINISH_STATE && flush !== Z_FINISH)) {
return err(strm, (strm.avail_out === 0) ? Z_BUF_ERROR : Z_STREAM_ERROR);
}
s.strm = strm; /* just in case */
old_flush = s.last_flush;
s.last_flush = flush;
/* Write the header */
if (s.status === INIT_STATE) {
if (s.wrap === 2) { // GZIP header
strm.adler = 0; //crc32(0L, Z_NULL, 0);
put_byte(s, 31);
put_byte(s, 139);
put_byte(s, 8);
if (!s.gzhead) { // s->gzhead == Z_NULL
put_byte(s, 0);
put_byte(s, 0);
put_byte(s, 0);
put_byte(s, 0);
put_byte(s, 0);
put_byte(s, s.level === 9 ? 2 :
(s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ?
4 : 0));
put_byte(s, OS_CODE);
s.status = BUSY_STATE;
}
else {
put_byte(s, (s.gzhead.text ? 1 : 0) +
(s.gzhead.hcrc ? 2 : 0) +
(!s.gzhead.extra ? 0 : 4) +
(!s.gzhead.name ? 0 : 8) +
(!s.gzhead.comment ? 0 : 16)
);
put_byte(s, s.gzhead.time & 0xff);
put_byte(s, (s.gzhead.time >> 8) & 0xff);
put_byte(s, (s.gzhead.time >> 16) & 0xff);
put_byte(s, (s.gzhead.time >> 24) & 0xff);
put_byte(s, s.level === 9 ? 2 :
(s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ?
4 : 0));
put_byte(s, s.gzhead.os & 0xff);
if (s.gzhead.extra && s.gzhead.extra.length) {
put_byte(s, s.gzhead.extra.length & 0xff);
put_byte(s, (s.gzhead.extra.length >> 8) & 0xff);
}
if (s.gzhead.hcrc) {
strm.adler = crc32(strm.adler, s.pending_buf, s.pending, 0);
}
s.gzindex = 0;
s.status = EXTRA_STATE;
}
}
else // DEFLATE header
{
var header = (Z_DEFLATED + ((s.w_bits - 8) << 4)) << 8;
var level_flags = -1;
if (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2) {
level_flags = 0;
} else if (s.level < 6) {
level_flags = 1;
} else if (s.level === 6) {
level_flags = 2;
} else {
level_flags = 3;
}
header |= (level_flags << 6);
if (s.strstart !== 0) { header |= PRESET_DICT; }
header += 31 - (header % 31);
s.status = BUSY_STATE;
putShortMSB(s, header);
/* Save the adler32 of the preset dictionary: */
if (s.strstart !== 0) {
putShortMSB(s, strm.adler >>> 16);
putShortMSB(s, strm.adler & 0xffff);
}
strm.adler = 1; // adler32(0L, Z_NULL, 0);
}
}
//#ifdef GZIP
if (s.status === EXTRA_STATE) {
if (s.gzhead.extra/* != Z_NULL*/) {
beg = s.pending; /* start of bytes to update crc */
while (s.gzindex < (s.gzhead.extra.length & 0xffff)) {
if (s.pending === s.pending_buf_size) {
if (s.gzhead.hcrc && s.pending > beg) {
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
}
flush_pending(strm);
beg = s.pending;
if (s.pending === s.pending_buf_size) {
break;
}
}
put_byte(s, s.gzhead.extra[s.gzindex] & 0xff);
s.gzindex++;
}
if (s.gzhead.hcrc && s.pending > beg) {
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
}
if (s.gzindex === s.gzhead.extra.length) {
s.gzindex = 0;
s.status = NAME_STATE;
}
}
else {
s.status = NAME_STATE;
}
}
if (s.status === NAME_STATE) {
if (s.gzhead.name/* != Z_NULL*/) {
beg = s.pending; /* start of bytes to update crc */
//int val;
do {
if (s.pending === s.pending_buf_size) {
if (s.gzhead.hcrc && s.pending > beg) {
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
}
flush_pending(strm);
beg = s.pending;
if (s.pending === s.pending_buf_size) {
val = 1;
break;
}
}
// JS specific: little magic to add zero terminator to end of string
if (s.gzindex < s.gzhead.name.length) {
val = s.gzhead.name.charCodeAt(s.gzindex++) & 0xff;
} else {
val = 0;
}
put_byte(s, val);
} while (val !== 0);
if (s.gzhead.hcrc && s.pending > beg) {
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
}
if (val === 0) {
s.gzindex = 0;
s.status = COMMENT_STATE;
}
}
else {
s.status = COMMENT_STATE;
}
}
if (s.status === COMMENT_STATE) {
if (s.gzhead.comment/* != Z_NULL*/) {
beg = s.pending; /* start of bytes to update crc */
//int val;
do {
if (s.pending === s.pending_buf_size) {
if (s.gzhead.hcrc && s.pending > beg) {
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
}
flush_pending(strm);
beg = s.pending;
if (s.pending === s.pending_buf_size) {
val = 1;
break;
}
}
// JS specific: little magic to add zero terminator to end of string
if (s.gzindex < s.gzhead.comment.length) {
val = s.gzhead.comment.charCodeAt(s.gzindex++) & 0xff;
} else {
val = 0;
}
put_byte(s, val);
} while (val !== 0);
if (s.gzhead.hcrc && s.pending > beg) {
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
}
if (val === 0) {
s.status = HCRC_STATE;
}
}
else {
s.status = HCRC_STATE;
}
}
if (s.status === HCRC_STATE) {
if (s.gzhead.hcrc) {
if (s.pending + 2 > s.pending_buf_size) {
flush_pending(strm);
}
if (s.pending + 2 <= s.pending_buf_size) {
put_byte(s, strm.adler & 0xff);
put_byte(s, (strm.adler >> 8) & 0xff);
strm.adler = 0; //crc32(0L, Z_NULL, 0);
s.status = BUSY_STATE;
}
}
else {
s.status = BUSY_STATE;
}
}
//#endif
/* Flush as much pending output as possible */
if (s.pending !== 0) {
flush_pending(strm);
if (strm.avail_out === 0) {
/* Since avail_out is 0, deflate will be called again with
* more output space, but possibly with both pending and
* avail_in equal to zero. There won't be anything to do,
* but this is not an error situation so make sure we
* return OK instead of BUF_ERROR at next call of deflate:
*/
s.last_flush = -1;
return Z_OK;
}
/* Make sure there is something to do and avoid duplicate consecutive
* flushes. For repeated and useless calls with Z_FINISH, we keep
* returning Z_STREAM_END instead of Z_BUF_ERROR.
*/
} else if (strm.avail_in === 0 && rank(flush) <= rank(old_flush) &&
flush !== Z_FINISH) {
return err(strm, Z_BUF_ERROR);
}
/* User must not provide more input after the first FINISH: */
if (s.status === FINISH_STATE && strm.avail_in !== 0) {
return err(strm, Z_BUF_ERROR);
}
/* Start a new block or continue the current one.
*/
if (strm.avail_in !== 0 || s.lookahead !== 0 ||
(flush !== Z_NO_FLUSH && s.status !== FINISH_STATE)) {
var bstate = (s.strategy === Z_HUFFMAN_ONLY) ? deflate_huff(s, flush) :
(s.strategy === Z_RLE ? deflate_rle(s, flush) :
configuration_table[s.level].func(s, flush));
if (bstate === BS_FINISH_STARTED || bstate === BS_FINISH_DONE) {
s.status = FINISH_STATE;
}
if (bstate === BS_NEED_MORE || bstate === BS_FINISH_STARTED) {
if (strm.avail_out === 0) {
s.last_flush = -1;
/* avoid BUF_ERROR next call, see above */
}
return Z_OK;
/* If flush != Z_NO_FLUSH && avail_out == 0, the next call
* of deflate should use the same flush parameter to make sure
* that the flush is complete. So we don't have to output an
* empty block here, this will be done at next call. This also
* ensures that for a very small output buffer, we emit at most
* one empty block.
*/
}
if (bstate === BS_BLOCK_DONE) {
if (flush === Z_PARTIAL_FLUSH) {
trees._tr_align(s);
}
else if (flush !== Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
trees._tr_stored_block(s, 0, 0, false);
/* For a full flush, this empty block will be recognized
* as a special marker by inflate_sync().
*/
if (flush === Z_FULL_FLUSH) {
/*** CLEAR_HASH(s); ***/ /* forget history */
zero(s.head); // Fill with NIL (= 0);
if (s.lookahead === 0) {
s.strstart = 0;
s.block_start = 0;
s.insert = 0;
}
}
}
flush_pending(strm);
if (strm.avail_out === 0) {
s.last_flush = -1; /* avoid BUF_ERROR at next call, see above */
return Z_OK;
}
}
}
//Assert(strm->avail_out > 0, "bug2");
//if (strm.avail_out <= 0) { throw new Error("bug2");}
if (flush !== Z_FINISH) { return Z_OK; }
if (s.wrap <= 0) { return Z_STREAM_END; }
/* Write the trailer */
if (s.wrap === 2) {
put_byte(s, strm.adler & 0xff);
put_byte(s, (strm.adler >> 8) & 0xff);
put_byte(s, (strm.adler >> 16) & 0xff);
put_byte(s, (strm.adler >> 24) & 0xff);
put_byte(s, strm.total_in & 0xff);
put_byte(s, (strm.total_in >> 8) & 0xff);
put_byte(s, (strm.total_in >> 16) & 0xff);
put_byte(s, (strm.total_in >> 24) & 0xff);
}
else
{
putShortMSB(s, strm.adler >>> 16);
putShortMSB(s, strm.adler & 0xffff);
}
flush_pending(strm);
/* If avail_out is zero, the application will call deflate again
* to flush the rest.
*/
if (s.wrap > 0) { s.wrap = -s.wrap; }
/* write the trailer only once! */
return s.pending !== 0 ? Z_OK : Z_STREAM_END;
}
function deflateEnd(strm) {
var status;
if (!strm/*== Z_NULL*/ || !strm.state/*== Z_NULL*/) {
return Z_STREAM_ERROR;
}
status = strm.state.status;
if (status !== INIT_STATE &&
status !== EXTRA_STATE &&
status !== NAME_STATE &&
status !== COMMENT_STATE &&
status !== HCRC_STATE &&
status !== BUSY_STATE &&
status !== FINISH_STATE
) {
return err(strm, Z_STREAM_ERROR);
}
strm.state = null;
return status === BUSY_STATE ? err(strm, Z_DATA_ERROR) : Z_OK;
}
/* =========================================================================
* Initializes the compression dictionary from the given byte
* sequence without producing any compressed output.
*/
function deflateSetDictionary(strm, dictionary) {
var dictLength = dictionary.length;
var s;
var str, n;
var wrap;
var avail;
var next;
var input;
var tmpDict;
if (!strm/*== Z_NULL*/ || !strm.state/*== Z_NULL*/) {
return Z_STREAM_ERROR;
}
s = strm.state;
wrap = s.wrap;
if (wrap === 2 || (wrap === 1 && s.status !== INIT_STATE) || s.lookahead) {
return Z_STREAM_ERROR;
}
/* when using zlib wrappers, compute Adler-32 for provided dictionary */
if (wrap === 1) {
/* adler32(strm->adler, dictionary, dictLength); */
strm.adler = adler32(strm.adler, dictionary, dictLength, 0);
}
s.wrap = 0; /* avoid computing Adler-32 in read_buf */
/* if dictionary would fill window, just replace the history */
if (dictLength >= s.w_size) {
if (wrap === 0) { /* already empty otherwise */
/*** CLEAR_HASH(s); ***/
zero(s.head); // Fill with NIL (= 0);
s.strstart = 0;
s.block_start = 0;
s.insert = 0;
}
/* use the tail */
// dictionary = dictionary.slice(dictLength - s.w_size);
tmpDict = new utils.Buf8(s.w_size);
utils.arraySet(tmpDict, dictionary, dictLength - s.w_size, s.w_size, 0);
dictionary = tmpDict;
dictLength = s.w_size;
}
/* insert dictionary into window and hash */
avail = strm.avail_in;
next = strm.next_in;
input = strm.input;
strm.avail_in = dictLength;
strm.next_in = 0;
strm.input = dictionary;
fill_window(s);
while (s.lookahead >= MIN_MATCH) {
str = s.strstart;
n = s.lookahead - (MIN_MATCH - 1);
do {
/* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + MIN_MATCH - 1]) & s.hash_mask;
s.prev[str & s.w_mask] = s.head[s.ins_h];
s.head[s.ins_h] = str;
str++;
} while (--n);
s.strstart = str;
s.lookahead = MIN_MATCH - 1;
fill_window(s);
}
s.strstart += s.lookahead;
s.block_start = s.strstart;
s.insert = s.lookahead;
s.lookahead = 0;
s.match_length = s.prev_length = MIN_MATCH - 1;
s.match_available = 0;
strm.next_in = next;
strm.input = input;
strm.avail_in = avail;
s.wrap = wrap;
return Z_OK;
}
exports.deflateInit = deflateInit;
exports.deflateInit2 = deflateInit2;
exports.deflateReset = deflateReset;
exports.deflateResetKeep = deflateResetKeep;
exports.deflateSetHeader = deflateSetHeader;
exports.deflate = deflate;
exports.deflateEnd = deflateEnd;
exports.deflateSetDictionary = deflateSetDictionary;
exports.deflateInfo = 'pako deflate (from Nodeca project)';
/* Not implemented
exports.deflateBound = deflateBound;
exports.deflateCopy = deflateCopy;
exports.deflateParams = deflateParams;
exports.deflatePending = deflatePending;
exports.deflatePrime = deflatePrime;
exports.deflateTune = deflateTune;
*/
},{"../utils/common":54,"./adler32":56,"./crc32":58,"./messages":64,"./trees":65}],60:[function(require,module,exports){
'use strict';
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
function GZheader() {
/* true if compressed data believed to be text */
this.text = 0;
/* modification time */
this.time = 0;
/* extra flags (not used when writing a gzip file) */
this.xflags = 0;
/* operating system */
this.os = 0;
/* pointer to extra field or Z_NULL if none */
this.extra = null;
/* extra field length (valid if extra != Z_NULL) */
this.extra_len = 0; // Actually, we don't need it in JS,
// but leave for few code modifications
//
// Setup limits is not necessary because in js we should not preallocate memory
// for inflate use constant limit in 65536 bytes
//
/* space at extra (only when reading header) */
// this.extra_max = 0;
/* pointer to zero-terminated file name or Z_NULL */
this.name = '';
/* space at name (only when reading header) */
// this.name_max = 0;
/* pointer to zero-terminated comment or Z_NULL */
this.comment = '';
/* space at comment (only when reading header) */
// this.comm_max = 0;
/* true if there was or will be a header crc */
this.hcrc = 0;
/* true when done reading gzip header (not used when writing a gzip file) */
this.done = false;
}
module.exports = GZheader;
},{}],61:[function(require,module,exports){
'use strict';
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
// See state defs from inflate.js
var BAD = 30; /* got a data error -- remain here until reset */
var TYPE = 12; /* i: waiting for type bits, including last-flag bit */
/*
Decode literal, length, and distance codes and write out the resulting
literal and match bytes until either not enough input or output is
available, an end-of-block is encountered, or a data error is encountered.
When large enough input and output buffers are supplied to inflate(), for
example, a 16K input buffer and a 64K output buffer, more than 95% of the
inflate execution time is spent in this routine.
Entry assumptions:
state.mode === LEN
strm.avail_in >= 6
strm.avail_out >= 258
start >= strm.avail_out
state.bits < 8
On return, state.mode is one of:
LEN -- ran out of enough output space or enough available input
TYPE -- reached end of block code, inflate() to interpret next block
BAD -- error in block data
Notes:
- The maximum input bits used by a length/distance pair is 15 bits for the
length code, 5 bits for the length extra, 15 bits for the distance code,
and 13 bits for the distance extra. This totals 48 bits, or six bytes.
Therefore if strm.avail_in >= 6, then there is enough input to avoid
checking for available input while decoding.
- The maximum bytes that a single length/distance pair can output is 258
bytes, which is the maximum length that can be coded. inflate_fast()
requires strm.avail_out >= 258 for each loop to avoid checking for
output space.
*/
module.exports = function inflate_fast(strm, start) {
var state;
var _in; /* local strm.input */
var last; /* have enough input while in < last */
var _out; /* local strm.output */
var beg; /* inflate()'s initial strm.output */
var end; /* while out < end, enough space available */
//#ifdef INFLATE_STRICT
var dmax; /* maximum distance from zlib header */
//#endif
var wsize; /* window size or zero if not using window */
var whave; /* valid bytes in the window */
var wnext; /* window write index */
// Use `s_window` instead `window`, avoid conflict with instrumentation tools
var s_window; /* allocated sliding window, if wsize != 0 */
var hold; /* local strm.hold */
var bits; /* local strm.bits */
var lcode; /* local strm.lencode */
var dcode; /* local strm.distcode */
var lmask; /* mask for first level of length codes */
var dmask; /* mask for first level of distance codes */
var here; /* retrieved table entry */
var op; /* code bits, operation, extra bits, or */
/* window position, window bytes to copy */
var len; /* match length, unused bytes */
var dist; /* match distance */
var from; /* where to copy match from */
var from_source;
var input, output; // JS specific, because we have no pointers
/* copy state to local variables */
state = strm.state;
//here = state.here;
_in = strm.next_in;
input = strm.input;
last = _in + (strm.avail_in - 5);
_out = strm.next_out;
output = strm.output;
beg = _out - (start - strm.avail_out);
end = _out + (strm.avail_out - 257);
//#ifdef INFLATE_STRICT
dmax = state.dmax;
//#endif
wsize = state.wsize;
whave = state.whave;
wnext = state.wnext;
s_window = state.window;
hold = state.hold;
bits = state.bits;
lcode = state.lencode;
dcode = state.distcode;
lmask = (1 << state.lenbits) - 1;
dmask = (1 << state.distbits) - 1;
/* decode literals and length/distances until end-of-block or not enough
input data or output space */
top:
do {
if (bits < 15) {
hold += input[_in++] << bits;
bits += 8;
hold += input[_in++] << bits;
bits += 8;
}
here = lcode[hold & lmask];
dolen:
for (;;) { // Goto emulation
op = here >>> 24/*here.bits*/;
hold >>>= op;
bits -= op;
op = (here >>> 16) & 0xff/*here.op*/;
if (op === 0) { /* literal */
//Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ?
// "inflate: literal '%c'\n" :
// "inflate: literal 0x%02x\n", here.val));
output[_out++] = here & 0xffff/*here.val*/;
}
else if (op & 16) { /* length base */
len = here & 0xffff/*here.val*/;
op &= 15; /* number of extra bits */
if (op) {
if (bits < op) {
hold += input[_in++] << bits;
bits += 8;
}
len += hold & ((1 << op) - 1);
hold >>>= op;
bits -= op;
}
//Tracevv((stderr, "inflate: length %u\n", len));
if (bits < 15) {
hold += input[_in++] << bits;
bits += 8;
hold += input[_in++] << bits;
bits += 8;
}
here = dcode[hold & dmask];
dodist:
for (;;) { // goto emulation
op = here >>> 24/*here.bits*/;
hold >>>= op;
bits -= op;
op = (here >>> 16) & 0xff/*here.op*/;
if (op & 16) { /* distance base */
dist = here & 0xffff/*here.val*/;
op &= 15; /* number of extra bits */
if (bits < op) {
hold += input[_in++] << bits;
bits += 8;
if (bits < op) {
hold += input[_in++] << bits;
bits += 8;
}
}
dist += hold & ((1 << op) - 1);
//#ifdef INFLATE_STRICT
if (dist > dmax) {
strm.msg = 'invalid distance too far back';
state.mode = BAD;
break top;
}
//#endif
hold >>>= op;
bits -= op;
//Tracevv((stderr, "inflate: distance %u\n", dist));
op = _out - beg; /* max distance in output */
if (dist > op) { /* see if copy from window */
op = dist - op; /* distance back in window */
if (op > whave) {
if (state.sane) {
strm.msg = 'invalid distance too far back';
state.mode = BAD;
break top;
}
// (!) This block is disabled in zlib defaults,
// don't enable it for binary compatibility
//#ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR
// if (len <= op - whave) {
// do {
// output[_out++] = 0;
// } while (--len);
// continue top;
// }
// len -= op - whave;
// do {
// output[_out++] = 0;
// } while (--op > whave);
// if (op === 0) {
// from = _out - dist;
// do {
// output[_out++] = output[from++];
// } while (--len);
// continue top;
// }
//#endif
}
from = 0; // window index
from_source = s_window;
if (wnext === 0) { /* very common case */
from += wsize - op;
if (op < len) { /* some from window */
len -= op;
do {
output[_out++] = s_window[from++];
} while (--op);
from = _out - dist; /* rest from output */
from_source = output;
}
}
else if (wnext < op) { /* wrap around window */
from += wsize + wnext - op;
op -= wnext;
if (op < len) { /* some from end of window */
len -= op;
do {
output[_out++] = s_window[from++];
} while (--op);
from = 0;
if (wnext < len) { /* some from start of window */
op = wnext;
len -= op;
do {
output[_out++] = s_window[from++];
} while (--op);
from = _out - dist; /* rest from output */
from_source = output;
}
}
}
else { /* contiguous in window */
from += wnext - op;
if (op < len) { /* some from window */
len -= op;
do {
output[_out++] = s_window[from++];
} while (--op);
from = _out - dist; /* rest from output */
from_source = output;
}
}
while (len > 2) {
output[_out++] = from_source[from++];
output[_out++] = from_source[from++];
output[_out++] = from_source[from++];
len -= 3;
}
if (len) {
output[_out++] = from_source[from++];
if (len > 1) {
output[_out++] = from_source[from++];
}
}
}
else {
from = _out - dist; /* copy direct from output */
do { /* minimum length is three */
output[_out++] = output[from++];
output[_out++] = output[from++];
output[_out++] = output[from++];
len -= 3;
} while (len > 2);
if (len) {
output[_out++] = output[from++];
if (len > 1) {
output[_out++] = output[from++];
}
}
}
}
else if ((op & 64) === 0) { /* 2nd level distance code */
here = dcode[(here & 0xffff)/*here.val*/ + (hold & ((1 << op) - 1))];
continue dodist;
}
else {
strm.msg = 'invalid distance code';
state.mode = BAD;
break top;
}
break; // need to emulate goto via "continue"
}
}
else if ((op & 64) === 0) { /* 2nd level length code */
here = lcode[(here & 0xffff)/*here.val*/ + (hold & ((1 << op) - 1))];
continue dolen;
}
else if (op & 32) { /* end-of-block */
//Tracevv((stderr, "inflate: end of block\n"));
state.mode = TYPE;
break top;
}
else {
strm.msg = 'invalid literal/length code';
state.mode = BAD;
break top;
}
break; // need to emulate goto via "continue"
}
} while (_in < last && _out < end);
/* return unused bytes (on entry, bits < 8, so in won't go too far back) */
len = bits >> 3;
_in -= len;
bits -= len << 3;
hold &= (1 << bits) - 1;
/* update state and return */
strm.next_in = _in;
strm.next_out = _out;
strm.avail_in = (_in < last ? 5 + (last - _in) : 5 - (_in - last));
strm.avail_out = (_out < end ? 257 + (end - _out) : 257 - (_out - end));
state.hold = hold;
state.bits = bits;
return;
};
},{}],62:[function(require,module,exports){
'use strict';
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
var utils = require('../utils/common');
var adler32 = require('./adler32');
var crc32 = require('./crc32');
var inflate_fast = require('./inffast');
var inflate_table = require('./inftrees');
var CODES = 0;
var LENS = 1;
var DISTS = 2;
/* Public constants ==========================================================*/
/* ===========================================================================*/
/* Allowed flush values; see deflate() and inflate() below for details */
//var Z_NO_FLUSH = 0;
//var Z_PARTIAL_FLUSH = 1;
//var Z_SYNC_FLUSH = 2;
//var Z_FULL_FLUSH = 3;
var Z_FINISH = 4;
var Z_BLOCK = 5;
var Z_TREES = 6;
/* Return codes for the compression/decompression functions. Negative values
* are errors, positive values are used for special but normal events.
*/
var Z_OK = 0;
var Z_STREAM_END = 1;
var Z_NEED_DICT = 2;
//var Z_ERRNO = -1;
var Z_STREAM_ERROR = -2;
var Z_DATA_ERROR = -3;
var Z_MEM_ERROR = -4;
var Z_BUF_ERROR = -5;
//var Z_VERSION_ERROR = -6;
/* The deflate compression method */
var Z_DEFLATED = 8;
/* STATES ====================================================================*/
/* ===========================================================================*/
var HEAD = 1; /* i: waiting for magic header */
var FLAGS = 2; /* i: waiting for method and flags (gzip) */
var TIME = 3; /* i: waiting for modification time (gzip) */
var OS = 4; /* i: waiting for extra flags and operating system (gzip) */
var EXLEN = 5; /* i: waiting for extra length (gzip) */
var EXTRA = 6; /* i: waiting for extra bytes (gzip) */
var NAME = 7; /* i: waiting for end of file name (gzip) */
var COMMENT = 8; /* i: waiting for end of comment (gzip) */
var HCRC = 9; /* i: waiting for header crc (gzip) */
var DICTID = 10; /* i: waiting for dictionary check value */
var DICT = 11; /* waiting for inflateSetDictionary() call */
var TYPE = 12; /* i: waiting for type bits, including last-flag bit */
var TYPEDO = 13; /* i: same, but skip check to exit inflate on new block */
var STORED = 14; /* i: waiting for stored size (length and complement) */
var COPY_ = 15; /* i/o: same as COPY below, but only first time in */
var COPY = 16; /* i/o: waiting for input or output to copy stored block */
var TABLE = 17; /* i: waiting for dynamic block table lengths */
var LENLENS = 18; /* i: waiting for code length code lengths */
var CODELENS = 19; /* i: waiting for length/lit and distance code lengths */
var LEN_ = 20; /* i: same as LEN below, but only first time in */
var LEN = 21; /* i: waiting for length/lit/eob code */
var LENEXT = 22; /* i: waiting for length extra bits */
var DIST = 23; /* i: waiting for distance code */
var DISTEXT = 24; /* i: waiting for distance extra bits */
var MATCH = 25; /* o: waiting for output space to copy string */
var LIT = 26; /* o: waiting for output space to write literal */
var CHECK = 27; /* i: waiting for 32-bit check value */
var LENGTH = 28; /* i: waiting for 32-bit length (gzip) */
var DONE = 29; /* finished check, done -- remain here until reset */
var BAD = 30; /* got a data error -- remain here until reset */
var MEM = 31; /* got an inflate() memory error -- remain here until reset */
var SYNC = 32; /* looking for synchronization bytes to restart inflate() */
/* ===========================================================================*/
var ENOUGH_LENS = 852;
var ENOUGH_DISTS = 592;
//var ENOUGH = (ENOUGH_LENS+ENOUGH_DISTS);
var MAX_WBITS = 15;
/* 32K LZ77 window */
var DEF_WBITS = MAX_WBITS;
function zswap32(q) {
return (((q >>> 24) & 0xff) +
((q >>> 8) & 0xff00) +
((q & 0xff00) << 8) +
((q & 0xff) << 24));
}
function InflateState() {
this.mode = 0; /* current inflate mode */
this.last = false; /* true if processing last block */
this.wrap = 0; /* bit 0 true for zlib, bit 1 true for gzip */
this.havedict = false; /* true if dictionary provided */
this.flags = 0; /* gzip header method and flags (0 if zlib) */
this.dmax = 0; /* zlib header max distance (INFLATE_STRICT) */
this.check = 0; /* protected copy of check value */
this.total = 0; /* protected copy of output count */
// TODO: may be {}
this.head = null; /* where to save gzip header information */
/* sliding window */
this.wbits = 0; /* log base 2 of requested window size */
this.wsize = 0; /* window size or zero if not using window */
this.whave = 0; /* valid bytes in the window */
this.wnext = 0; /* window write index */
this.window = null; /* allocated sliding window, if needed */
/* bit accumulator */
this.hold = 0; /* input bit accumulator */
this.bits = 0; /* number of bits in "in" */
/* for string and stored block copying */
this.length = 0; /* literal or length of data to copy */
this.offset = 0; /* distance back to copy string from */
/* for table and code decoding */
this.extra = 0; /* extra bits needed */
/* fixed and dynamic code tables */
this.lencode = null; /* starting table for length/literal codes */
this.distcode = null; /* starting table for distance codes */
this.lenbits = 0; /* index bits for lencode */
this.distbits = 0; /* index bits for distcode */
/* dynamic table building */
this.ncode = 0; /* number of code length code lengths */
this.nlen = 0; /* number of length code lengths */
this.ndist = 0; /* number of distance code lengths */
this.have = 0; /* number of code lengths in lens[] */
this.next = null; /* next available space in codes[] */
this.lens = new utils.Buf16(320); /* temporary storage for code lengths */
this.work = new utils.Buf16(288); /* work area for code table building */
/*
because we don't have pointers in js, we use lencode and distcode directly
as buffers so we don't need codes
*/
//this.codes = new utils.Buf32(ENOUGH); /* space for code tables */
this.lendyn = null; /* dynamic table for length/literal codes (JS specific) */
this.distdyn = null; /* dynamic table for distance codes (JS specific) */
this.sane = 0; /* if false, allow invalid distance too far */
this.back = 0; /* bits back of last unprocessed length/lit */
this.was = 0; /* initial length of match */
}
function inflateResetKeep(strm) {
var state;
if (!strm || !strm.state) { return Z_STREAM_ERROR; }
state = strm.state;
strm.total_in = strm.total_out = state.total = 0;
strm.msg = ''; /*Z_NULL*/
if (state.wrap) { /* to support ill-conceived Java test suite */
strm.adler = state.wrap & 1;
}
state.mode = HEAD;
state.last = 0;
state.havedict = 0;
state.dmax = 32768;
state.head = null/*Z_NULL*/;
state.hold = 0;
state.bits = 0;
//state.lencode = state.distcode = state.next = state.codes;
state.lencode = state.lendyn = new utils.Buf32(ENOUGH_LENS);
state.distcode = state.distdyn = new utils.Buf32(ENOUGH_DISTS);
state.sane = 1;
state.back = -1;
//Tracev((stderr, "inflate: reset\n"));
return Z_OK;
}
function inflateReset(strm) {
var state;
if (!strm || !strm.state) { return Z_STREAM_ERROR; }
state = strm.state;
state.wsize = 0;
state.whave = 0;
state.wnext = 0;
return inflateResetKeep(strm);
}
function inflateReset2(strm, windowBits) {
var wrap;
var state;
/* get the state */
if (!strm || !strm.state) { return Z_STREAM_ERROR; }
state = strm.state;
/* extract wrap request from windowBits parameter */
if (windowBits < 0) {
wrap = 0;
windowBits = -windowBits;
}
else {
wrap = (windowBits >> 4) + 1;
if (windowBits < 48) {
windowBits &= 15;
}
}
/* set number of window bits, free window if different */
if (windowBits && (windowBits < 8 || windowBits > 15)) {
return Z_STREAM_ERROR;
}
if (state.window !== null && state.wbits !== windowBits) {
state.window = null;
}
/* update state and reset the rest of it */
state.wrap = wrap;
state.wbits = windowBits;
return inflateReset(strm);
}
function inflateInit2(strm, windowBits) {
var ret;
var state;
if (!strm) { return Z_STREAM_ERROR; }
//strm.msg = Z_NULL; /* in case we return an error */
state = new InflateState();
//if (state === Z_NULL) return Z_MEM_ERROR;
//Tracev((stderr, "inflate: allocated\n"));
strm.state = state;
state.window = null/*Z_NULL*/;
ret = inflateReset2(strm, windowBits);
if (ret !== Z_OK) {
strm.state = null/*Z_NULL*/;
}
return ret;
}
function inflateInit(strm) {
return inflateInit2(strm, DEF_WBITS);
}
/*
Return state with length and distance decoding tables and index sizes set to
fixed code decoding. Normally this returns fixed tables from inffixed.h.
If BUILDFIXED is defined, then instead this routine builds the tables the
first time it's called, and returns those tables the first time and
thereafter. This reduces the size of the code by about 2K bytes, in
exchange for a little execution time. However, BUILDFIXED should not be
used for threaded applications, since the rewriting of the tables and virgin
may not be thread-safe.
*/
var virgin = true;
var lenfix, distfix; // We have no pointers in JS, so keep tables separate
function fixedtables(state) {
/* build fixed huffman tables if first call (may not be thread safe) */
if (virgin) {
var sym;
lenfix = new utils.Buf32(512);
distfix = new utils.Buf32(32);
/* literal/length table */
sym = 0;
while (sym < 144) { state.lens[sym++] = 8; }
while (sym < 256) { state.lens[sym++] = 9; }
while (sym < 280) { state.lens[sym++] = 7; }
while (sym < 288) { state.lens[sym++] = 8; }
inflate_table(LENS, state.lens, 0, 288, lenfix, 0, state.work, { bits: 9 });
/* distance table */
sym = 0;
while (sym < 32) { state.lens[sym++] = 5; }
inflate_table(DISTS, state.lens, 0, 32, distfix, 0, state.work, { bits: 5 });
/* do this just once */
virgin = false;
}
state.lencode = lenfix;
state.lenbits = 9;
state.distcode = distfix;
state.distbits = 5;
}
/*
Update the window with the last wsize (normally 32K) bytes written before
returning. If window does not exist yet, create it. This is only called
when a window is already in use, or when output has been written during this
inflate call, but the end of the deflate stream has not been reached yet.
It is also called to create a window for dictionary data when a dictionary
is loaded.
Providing output buffers larger than 32K to inflate() should provide a speed
advantage, since only the last 32K of output is copied to the sliding window
upon return from inflate(), and since all distances after the first 32K of
output will fall in the output data, making match copies simpler and faster.
The advantage may be dependent on the size of the processor's data caches.
*/
function updatewindow(strm, src, end, copy) {
var dist;
var state = strm.state;
/* if it hasn't been done already, allocate space for the window */
if (state.window === null) {
state.wsize = 1 << state.wbits;
state.wnext = 0;
state.whave = 0;
state.window = new utils.Buf8(state.wsize);
}
/* copy state->wsize or less output bytes into the circular window */
if (copy >= state.wsize) {
utils.arraySet(state.window, src, end - state.wsize, state.wsize, 0);
state.wnext = 0;
state.whave = state.wsize;
}
else {
dist = state.wsize - state.wnext;
if (dist > copy) {
dist = copy;
}
//zmemcpy(state->window + state->wnext, end - copy, dist);
utils.arraySet(state.window, src, end - copy, dist, state.wnext);
copy -= dist;
if (copy) {
//zmemcpy(state->window, end - copy, copy);
utils.arraySet(state.window, src, end - copy, copy, 0);
state.wnext = copy;
state.whave = state.wsize;
}
else {
state.wnext += dist;
if (state.wnext === state.wsize) { state.wnext = 0; }
if (state.whave < state.wsize) { state.whave += dist; }
}
}
return 0;
}
function inflate(strm, flush) {
var state;
var input, output; // input/output buffers
var next; /* next input INDEX */
var put; /* next output INDEX */
var have, left; /* available input and output */
var hold; /* bit buffer */
var bits; /* bits in bit buffer */
var _in, _out; /* save starting available input and output */
var copy; /* number of stored or match bytes to copy */
var from; /* where to copy match bytes from */
var from_source;
var here = 0; /* current decoding table entry */
var here_bits, here_op, here_val; // paked "here" denormalized (JS specific)
//var last; /* parent table entry */
var last_bits, last_op, last_val; // paked "last" denormalized (JS specific)
var len; /* length to copy for repeats, bits to drop */
var ret; /* return code */
var hbuf = new utils.Buf8(4); /* buffer for gzip header crc calculation */
var opts;
var n; // temporary var for NEED_BITS
var order = /* permutation of code lengths */
[ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 ];
if (!strm || !strm.state || !strm.output ||
(!strm.input && strm.avail_in !== 0)) {
return Z_STREAM_ERROR;
}
state = strm.state;
if (state.mode === TYPE) { state.mode = TYPEDO; } /* skip check */
//--- LOAD() ---
put = strm.next_out;
output = strm.output;
left = strm.avail_out;
next = strm.next_in;
input = strm.input;
have = strm.avail_in;
hold = state.hold;
bits = state.bits;
//---
_in = have;
_out = left;
ret = Z_OK;
inf_leave: // goto emulation
for (;;) {
switch (state.mode) {
case HEAD:
if (state.wrap === 0) {
state.mode = TYPEDO;
break;
}
//=== NEEDBITS(16);
while (bits < 16) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
if ((state.wrap & 2) && hold === 0x8b1f) { /* gzip header */
state.check = 0/*crc32(0L, Z_NULL, 0)*/;
//=== CRC2(state.check, hold);
hbuf[0] = hold & 0xff;
hbuf[1] = (hold >>> 8) & 0xff;
state.check = crc32(state.check, hbuf, 2, 0);
//===//
//=== INITBITS();
hold = 0;
bits = 0;
//===//
state.mode = FLAGS;
break;
}
state.flags = 0; /* expect zlib header */
if (state.head) {
state.head.done = false;
}
if (!(state.wrap & 1) || /* check if zlib header allowed */
(((hold & 0xff)/*BITS(8)*/ << 8) + (hold >> 8)) % 31) {
strm.msg = 'incorrect header check';
state.mode = BAD;
break;
}
if ((hold & 0x0f)/*BITS(4)*/ !== Z_DEFLATED) {
strm.msg = 'unknown compression method';
state.mode = BAD;
break;
}
//--- DROPBITS(4) ---//
hold >>>= 4;
bits -= 4;
//---//
len = (hold & 0x0f)/*BITS(4)*/ + 8;
if (state.wbits === 0) {
state.wbits = len;
}
else if (len > state.wbits) {
strm.msg = 'invalid window size';
state.mode = BAD;
break;
}
state.dmax = 1 << len;
//Tracev((stderr, "inflate: zlib header ok\n"));
strm.adler = state.check = 1/*adler32(0L, Z_NULL, 0)*/;
state.mode = hold & 0x200 ? DICTID : TYPE;
//=== INITBITS();
hold = 0;
bits = 0;
//===//
break;
case FLAGS:
//=== NEEDBITS(16); */
while (bits < 16) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
state.flags = hold;
if ((state.flags & 0xff) !== Z_DEFLATED) {
strm.msg = 'unknown compression method';
state.mode = BAD;
break;
}
if (state.flags & 0xe000) {
strm.msg = 'unknown header flags set';
state.mode = BAD;
break;
}
if (state.head) {
state.head.text = ((hold >> 8) & 1);
}
if (state.flags & 0x0200) {
//=== CRC2(state.check, hold);
hbuf[0] = hold & 0xff;
hbuf[1] = (hold >>> 8) & 0xff;
state.check = crc32(state.check, hbuf, 2, 0);
//===//
}
//=== INITBITS();
hold = 0;
bits = 0;
//===//
state.mode = TIME;
/* falls through */
case TIME:
//=== NEEDBITS(32); */
while (bits < 32) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
if (state.head) {
state.head.time = hold;
}
if (state.flags & 0x0200) {
//=== CRC4(state.check, hold)
hbuf[0] = hold & 0xff;
hbuf[1] = (hold >>> 8) & 0xff;
hbuf[2] = (hold >>> 16) & 0xff;
hbuf[3] = (hold >>> 24) & 0xff;
state.check = crc32(state.check, hbuf, 4, 0);
//===
}
//=== INITBITS();
hold = 0;
bits = 0;
//===//
state.mode = OS;
/* falls through */
case OS:
//=== NEEDBITS(16); */
while (bits < 16) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
if (state.head) {
state.head.xflags = (hold & 0xff);
state.head.os = (hold >> 8);
}
if (state.flags & 0x0200) {
//=== CRC2(state.check, hold);
hbuf[0] = hold & 0xff;
hbuf[1] = (hold >>> 8) & 0xff;
state.check = crc32(state.check, hbuf, 2, 0);
//===//
}
//=== INITBITS();
hold = 0;
bits = 0;
//===//
state.mode = EXLEN;
/* falls through */
case EXLEN:
if (state.flags & 0x0400) {
//=== NEEDBITS(16); */
while (bits < 16) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
state.length = hold;
if (state.head) {
state.head.extra_len = hold;
}
if (state.flags & 0x0200) {
//=== CRC2(state.check, hold);
hbuf[0] = hold & 0xff;
hbuf[1] = (hold >>> 8) & 0xff;
state.check = crc32(state.check, hbuf, 2, 0);
//===//
}
//=== INITBITS();
hold = 0;
bits = 0;
//===//
}
else if (state.head) {
state.head.extra = null/*Z_NULL*/;
}
state.mode = EXTRA;
/* falls through */
case EXTRA:
if (state.flags & 0x0400) {
copy = state.length;
if (copy > have) { copy = have; }
if (copy) {
if (state.head) {
len = state.head.extra_len - state.length;
if (!state.head.extra) {
// Use untyped array for more convenient processing later
state.head.extra = new Array(state.head.extra_len);
}
utils.arraySet(
state.head.extra,
input,
next,
// extra field is limited to 65536 bytes
// - no need for additional size check
copy,
/*len + copy > state.head.extra_max - len ? state.head.extra_max : copy,*/
len
);
//zmemcpy(state.head.extra + len, next,
// len + copy > state.head.extra_max ?
// state.head.extra_max - len : copy);
}
if (state.flags & 0x0200) {
state.check = crc32(state.check, input, copy, next);
}
have -= copy;
next += copy;
state.length -= copy;
}
if (state.length) { break inf_leave; }
}
state.length = 0;
state.mode = NAME;
/* falls through */
case NAME:
if (state.flags & 0x0800) {
if (have === 0) { break inf_leave; }
copy = 0;
do {
// TODO: 2 or 1 bytes?
len = input[next + copy++];
/* use constant limit because in js we should not preallocate memory */
if (state.head && len &&
(state.length < 65536 /*state.head.name_max*/)) {
state.head.name += String.fromCharCode(len);
}
} while (len && copy < have);
if (state.flags & 0x0200) {
state.check = crc32(state.check, input, copy, next);
}
have -= copy;
next += copy;
if (len) { break inf_leave; }
}
else if (state.head) {
state.head.name = null;
}
state.length = 0;
state.mode = COMMENT;
/* falls through */
case COMMENT:
if (state.flags & 0x1000) {
if (have === 0) { break inf_leave; }
copy = 0;
do {
len = input[next + copy++];
/* use constant limit because in js we should not preallocate memory */
if (state.head && len &&
(state.length < 65536 /*state.head.comm_max*/)) {
state.head.comment += String.fromCharCode(len);
}
} while (len && copy < have);
if (state.flags & 0x0200) {
state.check = crc32(state.check, input, copy, next);
}
have -= copy;
next += copy;
if (len) { break inf_leave; }
}
else if (state.head) {
state.head.comment = null;
}
state.mode = HCRC;
/* falls through */
case HCRC:
if (state.flags & 0x0200) {
//=== NEEDBITS(16); */
while (bits < 16) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
if (hold !== (state.check & 0xffff)) {
strm.msg = 'header crc mismatch';
state.mode = BAD;
break;
}
//=== INITBITS();
hold = 0;
bits = 0;
//===//
}
if (state.head) {
state.head.hcrc = ((state.flags >> 9) & 1);
state.head.done = true;
}
strm.adler = state.check = 0;
state.mode = TYPE;
break;
case DICTID:
//=== NEEDBITS(32); */
while (bits < 32) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
strm.adler = state.check = zswap32(hold);
//=== INITBITS();
hold = 0;
bits = 0;
//===//
state.mode = DICT;
/* falls through */
case DICT:
if (state.havedict === 0) {
//--- RESTORE() ---
strm.next_out = put;
strm.avail_out = left;
strm.next_in = next;
strm.avail_in = have;
state.hold = hold;
state.bits = bits;
//---
return Z_NEED_DICT;
}
strm.adler = state.check = 1/*adler32(0L, Z_NULL, 0)*/;
state.mode = TYPE;
/* falls through */
case TYPE:
if (flush === Z_BLOCK || flush === Z_TREES) { break inf_leave; }
/* falls through */
case TYPEDO:
if (state.last) {
//--- BYTEBITS() ---//
hold >>>= bits & 7;
bits -= bits & 7;
//---//
state.mode = CHECK;
break;
}
//=== NEEDBITS(3); */
while (bits < 3) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
state.last = (hold & 0x01)/*BITS(1)*/;
//--- DROPBITS(1) ---//
hold >>>= 1;
bits -= 1;
//---//
switch ((hold & 0x03)/*BITS(2)*/) {
case 0: /* stored block */
//Tracev((stderr, "inflate: stored block%s\n",
// state.last ? " (last)" : ""));
state.mode = STORED;
break;
case 1: /* fixed block */
fixedtables(state);
//Tracev((stderr, "inflate: fixed codes block%s\n",
// state.last ? " (last)" : ""));
state.mode = LEN_; /* decode codes */
if (flush === Z_TREES) {
//--- DROPBITS(2) ---//
hold >>>= 2;
bits -= 2;
//---//
break inf_leave;
}
break;
case 2: /* dynamic block */
//Tracev((stderr, "inflate: dynamic codes block%s\n",
// state.last ? " (last)" : ""));
state.mode = TABLE;
break;
case 3:
strm.msg = 'invalid block type';
state.mode = BAD;
}
//--- DROPBITS(2) ---//
hold >>>= 2;
bits -= 2;
//---//
break;
case STORED:
//--- BYTEBITS() ---// /* go to byte boundary */
hold >>>= bits & 7;
bits -= bits & 7;
//---//
//=== NEEDBITS(32); */
while (bits < 32) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
if ((hold & 0xffff) !== ((hold >>> 16) ^ 0xffff)) {
strm.msg = 'invalid stored block lengths';
state.mode = BAD;
break;
}
state.length = hold & 0xffff;
//Tracev((stderr, "inflate: stored length %u\n",
// state.length));
//=== INITBITS();
hold = 0;
bits = 0;
//===//
state.mode = COPY_;
if (flush === Z_TREES) { break inf_leave; }
/* falls through */
case COPY_:
state.mode = COPY;
/* falls through */
case COPY:
copy = state.length;
if (copy) {
if (copy > have) { copy = have; }
if (copy > left) { copy = left; }
if (copy === 0) { break inf_leave; }
//--- zmemcpy(put, next, copy); ---
utils.arraySet(output, input, next, copy, put);
//---//
have -= copy;
next += copy;
left -= copy;
put += copy;
state.length -= copy;
break;
}
//Tracev((stderr, "inflate: stored end\n"));
state.mode = TYPE;
break;
case TABLE:
//=== NEEDBITS(14); */
while (bits < 14) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
state.nlen = (hold & 0x1f)/*BITS(5)*/ + 257;
//--- DROPBITS(5) ---//
hold >>>= 5;
bits -= 5;
//---//
state.ndist = (hold & 0x1f)/*BITS(5)*/ + 1;
//--- DROPBITS(5) ---//
hold >>>= 5;
bits -= 5;
//---//
state.ncode = (hold & 0x0f)/*BITS(4)*/ + 4;
//--- DROPBITS(4) ---//
hold >>>= 4;
bits -= 4;
//---//
//#ifndef PKZIP_BUG_WORKAROUND
if (state.nlen > 286 || state.ndist > 30) {
strm.msg = 'too many length or distance symbols';
state.mode = BAD;
break;
}
//#endif
//Tracev((stderr, "inflate: table sizes ok\n"));
state.have = 0;
state.mode = LENLENS;
/* falls through */
case LENLENS:
while (state.have < state.ncode) {
//=== NEEDBITS(3);
while (bits < 3) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
state.lens[order[state.have++]] = (hold & 0x07);//BITS(3);
//--- DROPBITS(3) ---//
hold >>>= 3;
bits -= 3;
//---//
}
while (state.have < 19) {
state.lens[order[state.have++]] = 0;
}
// We have separate tables & no pointers. 2 commented lines below not needed.
//state.next = state.codes;
//state.lencode = state.next;
// Switch to use dynamic table
state.lencode = state.lendyn;
state.lenbits = 7;
opts = { bits: state.lenbits };
ret = inflate_table(CODES, state.lens, 0, 19, state.lencode, 0, state.work, opts);
state.lenbits = opts.bits;
if (ret) {
strm.msg = 'invalid code lengths set';
state.mode = BAD;
break;
}
//Tracev((stderr, "inflate: code lengths ok\n"));
state.have = 0;
state.mode = CODELENS;
/* falls through */
case CODELENS:
while (state.have < state.nlen + state.ndist) {
for (;;) {
here = state.lencode[hold & ((1 << state.lenbits) - 1)];/*BITS(state.lenbits)*/
here_bits = here >>> 24;
here_op = (here >>> 16) & 0xff;
here_val = here & 0xffff;
if ((here_bits) <= bits) { break; }
//--- PULLBYTE() ---//
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
//---//
}
if (here_val < 16) {
//--- DROPBITS(here.bits) ---//
hold >>>= here_bits;
bits -= here_bits;
//---//
state.lens[state.have++] = here_val;
}
else {
if (here_val === 16) {
//=== NEEDBITS(here.bits + 2);
n = here_bits + 2;
while (bits < n) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
//--- DROPBITS(here.bits) ---//
hold >>>= here_bits;
bits -= here_bits;
//---//
if (state.have === 0) {
strm.msg = 'invalid bit length repeat';
state.mode = BAD;
break;
}
len = state.lens[state.have - 1];
copy = 3 + (hold & 0x03);//BITS(2);
//--- DROPBITS(2) ---//
hold >>>= 2;
bits -= 2;
//---//
}
else if (here_val === 17) {
//=== NEEDBITS(here.bits + 3);
n = here_bits + 3;
while (bits < n) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
//--- DROPBITS(here.bits) ---//
hold >>>= here_bits;
bits -= here_bits;
//---//
len = 0;
copy = 3 + (hold & 0x07);//BITS(3);
//--- DROPBITS(3) ---//
hold >>>= 3;
bits -= 3;
//---//
}
else {
//=== NEEDBITS(here.bits + 7);
n = here_bits + 7;
while (bits < n) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
//--- DROPBITS(here.bits) ---//
hold >>>= here_bits;
bits -= here_bits;
//---//
len = 0;
copy = 11 + (hold & 0x7f);//BITS(7);
//--- DROPBITS(7) ---//
hold >>>= 7;
bits -= 7;
//---//
}
if (state.have + copy > state.nlen + state.ndist) {
strm.msg = 'invalid bit length repeat';
state.mode = BAD;
break;
}
while (copy--) {
state.lens[state.have++] = len;
}
}
}
/* handle error breaks in while */
if (state.mode === BAD) { break; }
/* check for end-of-block code (better have one) */
if (state.lens[256] === 0) {
strm.msg = 'invalid code -- missing end-of-block';
state.mode = BAD;
break;
}
/* build code tables -- note: do not change the lenbits or distbits
values here (9 and 6) without reading the comments in inftrees.h
concerning the ENOUGH constants, which depend on those values */
state.lenbits = 9;
opts = { bits: state.lenbits };
ret = inflate_table(LENS, state.lens, 0, state.nlen, state.lencode, 0, state.work, opts);
// We have separate tables & no pointers. 2 commented lines below not needed.
// state.next_index = opts.table_index;
state.lenbits = opts.bits;
// state.lencode = state.next;
if (ret) {
strm.msg = 'invalid literal/lengths set';
state.mode = BAD;
break;
}
state.distbits = 6;
//state.distcode.copy(state.codes);
// Switch to use dynamic table
state.distcode = state.distdyn;
opts = { bits: state.distbits };
ret = inflate_table(DISTS, state.lens, state.nlen, state.ndist, state.distcode, 0, state.work, opts);
// We have separate tables & no pointers. 2 commented lines below not needed.
// state.next_index = opts.table_index;
state.distbits = opts.bits;
// state.distcode = state.next;
if (ret) {
strm.msg = 'invalid distances set';
state.mode = BAD;
break;
}
//Tracev((stderr, 'inflate: codes ok\n'));
state.mode = LEN_;
if (flush === Z_TREES) { break inf_leave; }
/* falls through */
case LEN_:
state.mode = LEN;
/* falls through */
case LEN:
if (have >= 6 && left >= 258) {
//--- RESTORE() ---
strm.next_out = put;
strm.avail_out = left;
strm.next_in = next;
strm.avail_in = have;
state.hold = hold;
state.bits = bits;
//---
inflate_fast(strm, _out);
//--- LOAD() ---
put = strm.next_out;
output = strm.output;
left = strm.avail_out;
next = strm.next_in;
input = strm.input;
have = strm.avail_in;
hold = state.hold;
bits = state.bits;
//---
if (state.mode === TYPE) {
state.back = -1;
}
break;
}
state.back = 0;
for (;;) {
here = state.lencode[hold & ((1 << state.lenbits) - 1)]; /*BITS(state.lenbits)*/
here_bits = here >>> 24;
here_op = (here >>> 16) & 0xff;
here_val = here & 0xffff;
if (here_bits <= bits) { break; }
//--- PULLBYTE() ---//
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
//---//
}
if (here_op && (here_op & 0xf0) === 0) {
last_bits = here_bits;
last_op = here_op;
last_val = here_val;
for (;;) {
here = state.lencode[last_val +
((hold & ((1 << (last_bits + last_op)) - 1))/*BITS(last.bits + last.op)*/ >> last_bits)];
here_bits = here >>> 24;
here_op = (here >>> 16) & 0xff;
here_val = here & 0xffff;
if ((last_bits + here_bits) <= bits) { break; }
//--- PULLBYTE() ---//
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
//---//
}
//--- DROPBITS(last.bits) ---//
hold >>>= last_bits;
bits -= last_bits;
//---//
state.back += last_bits;
}
//--- DROPBITS(here.bits) ---//
hold >>>= here_bits;
bits -= here_bits;
//---//
state.back += here_bits;
state.length = here_val;
if (here_op === 0) {
//Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ?
// "inflate: literal '%c'\n" :
// "inflate: literal 0x%02x\n", here.val));
state.mode = LIT;
break;
}
if (here_op & 32) {
//Tracevv((stderr, "inflate: end of block\n"));
state.back = -1;
state.mode = TYPE;
break;
}
if (here_op & 64) {
strm.msg = 'invalid literal/length code';
state.mode = BAD;
break;
}
state.extra = here_op & 15;
state.mode = LENEXT;
/* falls through */
case LENEXT:
if (state.extra) {
//=== NEEDBITS(state.extra);
n = state.extra;
while (bits < n) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
state.length += hold & ((1 << state.extra) - 1)/*BITS(state.extra)*/;
//--- DROPBITS(state.extra) ---//
hold >>>= state.extra;
bits -= state.extra;
//---//
state.back += state.extra;
}
//Tracevv((stderr, "inflate: length %u\n", state.length));
state.was = state.length;
state.mode = DIST;
/* falls through */
case DIST:
for (;;) {
here = state.distcode[hold & ((1 << state.distbits) - 1)];/*BITS(state.distbits)*/
here_bits = here >>> 24;
here_op = (here >>> 16) & 0xff;
here_val = here & 0xffff;
if ((here_bits) <= bits) { break; }
//--- PULLBYTE() ---//
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
//---//
}
if ((here_op & 0xf0) === 0) {
last_bits = here_bits;
last_op = here_op;
last_val = here_val;
for (;;) {
here = state.distcode[last_val +
((hold & ((1 << (last_bits + last_op)) - 1))/*BITS(last.bits + last.op)*/ >> last_bits)];
here_bits = here >>> 24;
here_op = (here >>> 16) & 0xff;
here_val = here & 0xffff;
if ((last_bits + here_bits) <= bits) { break; }
//--- PULLBYTE() ---//
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
//---//
}
//--- DROPBITS(last.bits) ---//
hold >>>= last_bits;
bits -= last_bits;
//---//
state.back += last_bits;
}
//--- DROPBITS(here.bits) ---//
hold >>>= here_bits;
bits -= here_bits;
//---//
state.back += here_bits;
if (here_op & 64) {
strm.msg = 'invalid distance code';
state.mode = BAD;
break;
}
state.offset = here_val;
state.extra = (here_op) & 15;
state.mode = DISTEXT;
/* falls through */
case DISTEXT:
if (state.extra) {
//=== NEEDBITS(state.extra);
n = state.extra;
while (bits < n) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
state.offset += hold & ((1 << state.extra) - 1)/*BITS(state.extra)*/;
//--- DROPBITS(state.extra) ---//
hold >>>= state.extra;
bits -= state.extra;
//---//
state.back += state.extra;
}
//#ifdef INFLATE_STRICT
if (state.offset > state.dmax) {
strm.msg = 'invalid distance too far back';
state.mode = BAD;
break;
}
//#endif
//Tracevv((stderr, "inflate: distance %u\n", state.offset));
state.mode = MATCH;
/* falls through */
case MATCH:
if (left === 0) { break inf_leave; }
copy = _out - left;
if (state.offset > copy) { /* copy from window */
copy = state.offset - copy;
if (copy > state.whave) {
if (state.sane) {
strm.msg = 'invalid distance too far back';
state.mode = BAD;
break;
}
// (!) This block is disabled in zlib defaults,
// don't enable it for binary compatibility
//#ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR
// Trace((stderr, "inflate.c too far\n"));
// copy -= state.whave;
// if (copy > state.length) { copy = state.length; }
// if (copy > left) { copy = left; }
// left -= copy;
// state.length -= copy;
// do {
// output[put++] = 0;
// } while (--copy);
// if (state.length === 0) { state.mode = LEN; }
// break;
//#endif
}
if (copy > state.wnext) {
copy -= state.wnext;
from = state.wsize - copy;
}
else {
from = state.wnext - copy;
}
if (copy > state.length) { copy = state.length; }
from_source = state.window;
}
else { /* copy from output */
from_source = output;
from = put - state.offset;
copy = state.length;
}
if (copy > left) { copy = left; }
left -= copy;
state.length -= copy;
do {
output[put++] = from_source[from++];
} while (--copy);
if (state.length === 0) { state.mode = LEN; }
break;
case LIT:
if (left === 0) { break inf_leave; }
output[put++] = state.length;
left--;
state.mode = LEN;
break;
case CHECK:
if (state.wrap) {
//=== NEEDBITS(32);
while (bits < 32) {
if (have === 0) { break inf_leave; }
have--;
// Use '|' instead of '+' to make sure that result is signed
hold |= input[next++] << bits;
bits += 8;
}
//===//
_out -= left;
strm.total_out += _out;
state.total += _out;
if (_out) {
strm.adler = state.check =
/*UPDATE(state.check, put - _out, _out);*/
(state.flags ? crc32(state.check, output, _out, put - _out) : adler32(state.check, output, _out, put - _out));
}
_out = left;
// NB: crc32 stored as signed 32-bit int, zswap32 returns signed too
if ((state.flags ? hold : zswap32(hold)) !== state.check) {
strm.msg = 'incorrect data check';
state.mode = BAD;
break;
}
//=== INITBITS();
hold = 0;
bits = 0;
//===//
//Tracev((stderr, "inflate: check matches trailer\n"));
}
state.mode = LENGTH;
/* falls through */
case LENGTH:
if (state.wrap && state.flags) {
//=== NEEDBITS(32);
while (bits < 32) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
if (hold !== (state.total & 0xffffffff)) {
strm.msg = 'incorrect length check';
state.mode = BAD;
break;
}
//=== INITBITS();
hold = 0;
bits = 0;
//===//
//Tracev((stderr, "inflate: length matches trailer\n"));
}
state.mode = DONE;
/* falls through */
case DONE:
ret = Z_STREAM_END;
break inf_leave;
case BAD:
ret = Z_DATA_ERROR;
break inf_leave;
case MEM:
return Z_MEM_ERROR;
case SYNC:
/* falls through */
default:
return Z_STREAM_ERROR;
}
}
// inf_leave <- here is real place for "goto inf_leave", emulated via "break inf_leave"
/*
Return from inflate(), updating the total counts and the check value.
If there was no progress during the inflate() call, return a buffer
error. Call updatewindow() to create and/or update the window state.
Note: a memory error from inflate() is non-recoverable.
*/
//--- RESTORE() ---
strm.next_out = put;
strm.avail_out = left;
strm.next_in = next;
strm.avail_in = have;
state.hold = hold;
state.bits = bits;
//---
if (state.wsize || (_out !== strm.avail_out && state.mode < BAD &&
(state.mode < CHECK || flush !== Z_FINISH))) {
if (updatewindow(strm, strm.output, strm.next_out, _out - strm.avail_out)) {
state.mode = MEM;
return Z_MEM_ERROR;
}
}
_in -= strm.avail_in;
_out -= strm.avail_out;
strm.total_in += _in;
strm.total_out += _out;
state.total += _out;
if (state.wrap && _out) {
strm.adler = state.check = /*UPDATE(state.check, strm.next_out - _out, _out);*/
(state.flags ? crc32(state.check, output, _out, strm.next_out - _out) : adler32(state.check, output, _out, strm.next_out - _out));
}
strm.data_type = state.bits + (state.last ? 64 : 0) +
(state.mode === TYPE ? 128 : 0) +
(state.mode === LEN_ || state.mode === COPY_ ? 256 : 0);
if (((_in === 0 && _out === 0) || flush === Z_FINISH) && ret === Z_OK) {
ret = Z_BUF_ERROR;
}
return ret;
}
function inflateEnd(strm) {
if (!strm || !strm.state /*|| strm->zfree == (free_func)0*/) {
return Z_STREAM_ERROR;
}
var state = strm.state;
if (state.window) {
state.window = null;
}
strm.state = null;
return Z_OK;
}
function inflateGetHeader(strm, head) {
var state;
/* check state */
if (!strm || !strm.state) { return Z_STREAM_ERROR; }
state = strm.state;
if ((state.wrap & 2) === 0) { return Z_STREAM_ERROR; }
/* save header structure */
state.head = head;
head.done = false;
return Z_OK;
}
function inflateSetDictionary(strm, dictionary) {
var dictLength = dictionary.length;
var state;
var dictid;
var ret;
/* check state */
if (!strm /* == Z_NULL */ || !strm.state /* == Z_NULL */) { return Z_STREAM_ERROR; }
state = strm.state;
if (state.wrap !== 0 && state.mode !== DICT) {
return Z_STREAM_ERROR;
}
/* check for correct dictionary identifier */
if (state.mode === DICT) {
dictid = 1; /* adler32(0, null, 0)*/
/* dictid = adler32(dictid, dictionary, dictLength); */
dictid = adler32(dictid, dictionary, dictLength, 0);
if (dictid !== state.check) {
return Z_DATA_ERROR;
}
}
/* copy dictionary to window using updatewindow(), which will amend the
existing dictionary if appropriate */
ret = updatewindow(strm, dictionary, dictLength, dictLength);
if (ret) {
state.mode = MEM;
return Z_MEM_ERROR;
}
state.havedict = 1;
// Tracev((stderr, "inflate: dictionary set\n"));
return Z_OK;
}
exports.inflateReset = inflateReset;
exports.inflateReset2 = inflateReset2;
exports.inflateResetKeep = inflateResetKeep;
exports.inflateInit = inflateInit;
exports.inflateInit2 = inflateInit2;
exports.inflate = inflate;
exports.inflateEnd = inflateEnd;
exports.inflateGetHeader = inflateGetHeader;
exports.inflateSetDictionary = inflateSetDictionary;
exports.inflateInfo = 'pako inflate (from Nodeca project)';
/* Not implemented
exports.inflateCopy = inflateCopy;
exports.inflateGetDictionary = inflateGetDictionary;
exports.inflateMark = inflateMark;
exports.inflatePrime = inflatePrime;
exports.inflateSync = inflateSync;
exports.inflateSyncPoint = inflateSyncPoint;
exports.inflateUndermine = inflateUndermine;
*/
},{"../utils/common":54,"./adler32":56,"./crc32":58,"./inffast":61,"./inftrees":63}],63:[function(require,module,exports){
'use strict';
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
var utils = require('../utils/common');
var MAXBITS = 15;
var ENOUGH_LENS = 852;
var ENOUGH_DISTS = 592;
//var ENOUGH = (ENOUGH_LENS+ENOUGH_DISTS);
var CODES = 0;
var LENS = 1;
var DISTS = 2;
var lbase = [ /* Length codes 257..285 base */
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0
];
var lext = [ /* Length codes 257..285 extra */
16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 72, 78
];
var dbase = [ /* Distance codes 0..29 base */
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
8193, 12289, 16385, 24577, 0, 0
];
var dext = [ /* Distance codes 0..29 extra */
16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
28, 28, 29, 29, 64, 64
];
module.exports = function inflate_table(type, lens, lens_index, codes, table, table_index, work, opts)
{
var bits = opts.bits;
//here = opts.here; /* table entry for duplication */
var len = 0; /* a code's length in bits */
var sym = 0; /* index of code symbols */
var min = 0, max = 0; /* minimum and maximum code lengths */
var root = 0; /* number of index bits for root table */
var curr = 0; /* number of index bits for current table */
var drop = 0; /* code bits to drop for sub-table */
var left = 0; /* number of prefix codes available */
var used = 0; /* code entries in table used */
var huff = 0; /* Huffman code */
var incr; /* for incrementing code, index */
var fill; /* index for replicating entries */
var low; /* low bits for current root entry */
var mask; /* mask for low root bits */
var next; /* next available space in table */
var base = null; /* base value table to use */
var base_index = 0;
// var shoextra; /* extra bits table to use */
var end; /* use base and extra for symbol > end */
var count = new utils.Buf16(MAXBITS + 1); //[MAXBITS+1]; /* number of codes of each length */
var offs = new utils.Buf16(MAXBITS + 1); //[MAXBITS+1]; /* offsets in table for each length */
var extra = null;
var extra_index = 0;
var here_bits, here_op, here_val;
/*
Process a set of code lengths to create a canonical Huffman code. The
code lengths are lens[0..codes-1]. Each length corresponds to the
symbols 0..codes-1. The Huffman code is generated by first sorting the
symbols by length from short to long, and retaining the symbol order
for codes with equal lengths. Then the code starts with all zero bits
for the first code of the shortest length, and the codes are integer
increments for the same length, and zeros are appended as the length
increases. For the deflate format, these bits are stored backwards
from their more natural integer increment ordering, and so when the
decoding tables are built in the large loop below, the integer codes
are incremented backwards.
This routine assumes, but does not check, that all of the entries in
lens[] are in the range 0..MAXBITS. The caller must assure this.
1..MAXBITS is interpreted as that code length. zero means that that
symbol does not occur in this code.
The codes are sorted by computing a count of codes for each length,
creating from that a table of starting indices for each length in the
sorted table, and then entering the symbols in order in the sorted
table. The sorted table is work[], with that space being provided by
the caller.
The length counts are used for other purposes as well, i.e. finding
the minimum and maximum length codes, determining if there are any
codes at all, checking for a valid set of lengths, and looking ahead
at length counts to determine sub-table sizes when building the
decoding tables.
*/
/* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
for (len = 0; len <= MAXBITS; len++) {
count[len] = 0;
}
for (sym = 0; sym < codes; sym++) {
count[lens[lens_index + sym]]++;
}
/* bound code lengths, force root to be within code lengths */
root = bits;
for (max = MAXBITS; max >= 1; max--) {
if (count[max] !== 0) { break; }
}
if (root > max) {
root = max;
}
if (max === 0) { /* no symbols to code at all */
//table.op[opts.table_index] = 64; //here.op = (var char)64; /* invalid code marker */
//table.bits[opts.table_index] = 1; //here.bits = (var char)1;
//table.val[opts.table_index++] = 0; //here.val = (var short)0;
table[table_index++] = (1 << 24) | (64 << 16) | 0;
//table.op[opts.table_index] = 64;
//table.bits[opts.table_index] = 1;
//table.val[opts.table_index++] = 0;
table[table_index++] = (1 << 24) | (64 << 16) | 0;
opts.bits = 1;
return 0; /* no symbols, but wait for decoding to report error */
}
for (min = 1; min < max; min++) {
if (count[min] !== 0) { break; }
}
if (root < min) {
root = min;
}
/* check for an over-subscribed or incomplete set of lengths */
left = 1;
for (len = 1; len <= MAXBITS; len++) {
left <<= 1;
left -= count[len];
if (left < 0) {
return -1;
} /* over-subscribed */
}
if (left > 0 && (type === CODES || max !== 1)) {
return -1; /* incomplete set */
}
/* generate offsets into symbol table for each length for sorting */
offs[1] = 0;
for (len = 1; len < MAXBITS; len++) {
offs[len + 1] = offs[len] + count[len];
}
/* sort symbols by length, by symbol order within each length */
for (sym = 0; sym < codes; sym++) {
if (lens[lens_index + sym] !== 0) {
work[offs[lens[lens_index + sym]]++] = sym;
}
}
/*
Create and fill in decoding tables. In this loop, the table being
filled is at next and has curr index bits. The code being used is huff
with length len. That code is converted to an index by dropping drop
bits off of the bottom. For codes where len is less than drop + curr,
those top drop + curr - len bits are incremented through all values to
fill the table with replicated entries.
root is the number of index bits for the root table. When len exceeds
root, sub-tables are created pointed to by the root entry with an index
of the low root bits of huff. This is saved in low to check for when a
new sub-table should be started. drop is zero when the root table is
being filled, and drop is root when sub-tables are being filled.
When a new sub-table is needed, it is necessary to look ahead in the
code lengths to determine what size sub-table is needed. The length
counts are used for this, and so count[] is decremented as codes are
entered in the tables.
used keeps track of how many table entries have been allocated from the
provided *table space. It is checked for LENS and DIST tables against
the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in
the initial root table size constants. See the comments in inftrees.h
for more information.
sym increments through all symbols, and the loop terminates when
all codes of length max, i.e. all codes, have been processed. This
routine permits incomplete codes, so another loop after this one fills
in the rest of the decoding tables with invalid code markers.
*/
/* set up for code type */
// poor man optimization - use if-else instead of switch,
// to avoid deopts in old v8
if (type === CODES) {
base = extra = work; /* dummy value--not used */
end = 19;
} else if (type === LENS) {
base = lbase;
base_index -= 257;
extra = lext;
extra_index -= 257;
end = 256;
} else { /* DISTS */
base = dbase;
extra = dext;
end = -1;
}
/* initialize opts for loop */
huff = 0; /* starting code */
sym = 0; /* starting code symbol */
len = min; /* starting code length */
next = table_index; /* current table to fill in */
curr = root; /* current table index bits */
drop = 0; /* current bits to drop from code for index */
low = -1; /* trigger new sub-table when len > root */
used = 1 << root; /* use root table entries */
mask = used - 1; /* mask for comparing low */
/* check available table space */
if ((type === LENS && used > ENOUGH_LENS) ||
(type === DISTS && used > ENOUGH_DISTS)) {
return 1;
}
/* process all codes and make table entries */
for (;;) {
/* create table entry */
here_bits = len - drop;
if (work[sym] < end) {
here_op = 0;
here_val = work[sym];
}
else if (work[sym] > end) {
here_op = extra[extra_index + work[sym]];
here_val = base[base_index + work[sym]];
}
else {
here_op = 32 + 64; /* end of block */
here_val = 0;
}
/* replicate for those indices with low len bits equal to huff */
incr = 1 << (len - drop);
fill = 1 << curr;
min = fill; /* save offset to next table */
do {
fill -= incr;
table[next + (huff >> drop) + fill] = (here_bits << 24) | (here_op << 16) | here_val |0;
} while (fill !== 0);
/* backwards increment the len-bit code huff */
incr = 1 << (len - 1);
while (huff & incr) {
incr >>= 1;
}
if (incr !== 0) {
huff &= incr - 1;
huff += incr;
} else {
huff = 0;
}
/* go to next symbol, update count, len */
sym++;
if (--count[len] === 0) {
if (len === max) { break; }
len = lens[lens_index + work[sym]];
}
/* create new sub-table if needed */
if (len > root && (huff & mask) !== low) {
/* if first time, transition to sub-tables */
if (drop === 0) {
drop = root;
}
/* increment past last table */
next += min; /* here min is 1 << curr */
/* determine length of next table */
curr = len - drop;
left = 1 << curr;
while (curr + drop < max) {
left -= count[curr + drop];
if (left <= 0) { break; }
curr++;
left <<= 1;
}
/* check for enough space */
used += 1 << curr;
if ((type === LENS && used > ENOUGH_LENS) ||
(type === DISTS && used > ENOUGH_DISTS)) {
return 1;
}
/* point entry in root table to sub-table */
low = huff & mask;
/*table.op[low] = curr;
table.bits[low] = root;
table.val[low] = next - opts.table_index;*/
table[low] = (root << 24) | (curr << 16) | (next - table_index) |0;
}
}
/* fill in remaining table entry if code is incomplete (guaranteed to have
at most one remaining entry, since if the code is incomplete, the
maximum code length that was allowed to get this far is one bit) */
if (huff !== 0) {
//table.op[next + huff] = 64; /* invalid code marker */
//table.bits[next + huff] = len - drop;
//table.val[next + huff] = 0;
table[next + huff] = ((len - drop) << 24) | (64 << 16) |0;
}
/* set return parameters */
//opts.table_index += used;
opts.bits = root;
return 0;
};
},{"../utils/common":54}],64:[function(require,module,exports){
'use strict';
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
module.exports = {
2: 'need dictionary', /* Z_NEED_DICT 2 */
1: 'stream end', /* Z_STREAM_END 1 */
0: '', /* Z_OK 0 */
'-1': 'file error', /* Z_ERRNO (-1) */
'-2': 'stream error', /* Z_STREAM_ERROR (-2) */
'-3': 'data error', /* Z_DATA_ERROR (-3) */
'-4': 'insufficient memory', /* Z_MEM_ERROR (-4) */
'-5': 'buffer error', /* Z_BUF_ERROR (-5) */
'-6': 'incompatible version' /* Z_VERSION_ERROR (-6) */
};
},{}],65:[function(require,module,exports){
'use strict';
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
var utils = require('../utils/common');
/* Public constants ==========================================================*/
/* ===========================================================================*/
//var Z_FILTERED = 1;
//var Z_HUFFMAN_ONLY = 2;
//var Z_RLE = 3;
var Z_FIXED = 4;
//var Z_DEFAULT_STRATEGY = 0;
/* Possible values of the data_type field (though see inflate()) */
var Z_BINARY = 0;
var Z_TEXT = 1;
//var Z_ASCII = 1; // = Z_TEXT
var Z_UNKNOWN = 2;
/*============================================================================*/
function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } }
// From zutil.h
var STORED_BLOCK = 0;
var STATIC_TREES = 1;
var DYN_TREES = 2;
/* The three kinds of block type */
var MIN_MATCH = 3;
var MAX_MATCH = 258;
/* The minimum and maximum match lengths */
// From deflate.h
/* ===========================================================================
* Internal compression state.
*/
var LENGTH_CODES = 29;
/* number of length codes, not counting the special END_BLOCK code */
var LITERALS = 256;
/* number of literal bytes 0..255 */
var L_CODES = LITERALS + 1 + LENGTH_CODES;
/* number of Literal or Length codes, including the END_BLOCK code */
var D_CODES = 30;
/* number of distance codes */
var BL_CODES = 19;
/* number of codes used to transfer the bit lengths */
var HEAP_SIZE = 2 * L_CODES + 1;
/* maximum heap size */
var MAX_BITS = 15;
/* All codes must not exceed MAX_BITS bits */
var Buf_size = 16;
/* size of bit buffer in bi_buf */
/* ===========================================================================
* Constants
*/
var MAX_BL_BITS = 7;
/* Bit length codes must not exceed MAX_BL_BITS bits */
var END_BLOCK = 256;
/* end of block literal code */
var REP_3_6 = 16;
/* repeat previous bit length 3-6 times (2 bits of repeat count) */
var REPZ_3_10 = 17;
/* repeat a zero length 3-10 times (3 bits of repeat count) */
var REPZ_11_138 = 18;
/* repeat a zero length 11-138 times (7 bits of repeat count) */
/* eslint-disable comma-spacing,array-bracket-spacing */
var extra_lbits = /* extra bits for each length code */
[0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0];
var extra_dbits = /* extra bits for each distance code */
[0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13];
var extra_blbits = /* extra bits for each bit length code */
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7];
var bl_order =
[16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15];
/* eslint-enable comma-spacing,array-bracket-spacing */
/* The lengths of the bit length codes are sent in order of decreasing
* probability, to avoid transmitting the lengths for unused bit length codes.
*/
/* ===========================================================================
* Local data. These are initialized only once.
*/
// We pre-fill arrays with 0 to avoid uninitialized gaps
var DIST_CODE_LEN = 512; /* see definition of array dist_code below */
// !!!! Use flat array instead of structure, Freq = i*2, Len = i*2+1
var static_ltree = new Array((L_CODES + 2) * 2);
zero(static_ltree);
/* The static literal tree. Since the bit lengths are imposed, there is no
* need for the L_CODES extra codes used during heap construction. However
* The codes 286 and 287 are needed to build a canonical tree (see _tr_init
* below).
*/
var static_dtree = new Array(D_CODES * 2);
zero(static_dtree);
/* The static distance tree. (Actually a trivial tree since all codes use
* 5 bits.)
*/
var _dist_code = new Array(DIST_CODE_LEN);
zero(_dist_code);
/* Distance codes. The first 256 values correspond to the distances
* 3 .. 258, the last 256 values correspond to the top 8 bits of
* the 15 bit distances.
*/
var _length_code = new Array(MAX_MATCH - MIN_MATCH + 1);
zero(_length_code);
/* length code for each normalized match length (0 == MIN_MATCH) */
var base_length = new Array(LENGTH_CODES);
zero(base_length);
/* First normalized length for each code (0 = MIN_MATCH) */
var base_dist = new Array(D_CODES);
zero(base_dist);
/* First normalized distance for each code (0 = distance of 1) */
function StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) {
this.static_tree = static_tree; /* static tree or NULL */
this.extra_bits = extra_bits; /* extra bits for each code or NULL */
this.extra_base = extra_base; /* base index for extra_bits */
this.elems = elems; /* max number of elements in the tree */
this.max_length = max_length; /* max bit length for the codes */
// show if `static_tree` has data or dummy - needed for monomorphic objects
this.has_stree = static_tree && static_tree.length;
}
var static_l_desc;
var static_d_desc;
var static_bl_desc;
function TreeDesc(dyn_tree, stat_desc) {
this.dyn_tree = dyn_tree; /* the dynamic tree */
this.max_code = 0; /* largest code with non zero frequency */
this.stat_desc = stat_desc; /* the corresponding static tree */
}
function d_code(dist) {
return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)];
}
/* ===========================================================================
* Output a short LSB first on the stream.
* IN assertion: there is enough room in pendingBuf.
*/
function put_short(s, w) {
// put_byte(s, (uch)((w) & 0xff));
// put_byte(s, (uch)((ush)(w) >> 8));
s.pending_buf[s.pending++] = (w) & 0xff;
s.pending_buf[s.pending++] = (w >>> 8) & 0xff;
}
/* ===========================================================================
* Send a value on a given number of bits.
* IN assertion: length <= 16 and value fits in length bits.
*/
function send_bits(s, value, length) {
if (s.bi_valid > (Buf_size - length)) {
s.bi_buf |= (value << s.bi_valid) & 0xffff;
put_short(s, s.bi_buf);
s.bi_buf = value >> (Buf_size - s.bi_valid);
s.bi_valid += length - Buf_size;
} else {
s.bi_buf |= (value << s.bi_valid) & 0xffff;
s.bi_valid += length;
}
}
function send_code(s, c, tree) {
send_bits(s, tree[c * 2]/*.Code*/, tree[c * 2 + 1]/*.Len*/);
}
/* ===========================================================================
* Reverse the first len bits of a code, using straightforward code (a faster
* method would use a table)
* IN assertion: 1 <= len <= 15
*/
function bi_reverse(code, len) {
var res = 0;
do {
res |= code & 1;
code >>>= 1;
res <<= 1;
} while (--len > 0);
return res >>> 1;
}
/* ===========================================================================
* Flush the bit buffer, keeping at most 7 bits in it.
*/
function bi_flush(s) {
if (s.bi_valid === 16) {
put_short(s, s.bi_buf);
s.bi_buf = 0;
s.bi_valid = 0;
} else if (s.bi_valid >= 8) {
s.pending_buf[s.pending++] = s.bi_buf & 0xff;
s.bi_buf >>= 8;
s.bi_valid -= 8;
}
}
/* ===========================================================================
* Compute the optimal bit lengths for a tree and update the total bit length
* for the current block.
* IN assertion: the fields freq and dad are set, heap[heap_max] and
* above are the tree nodes sorted by increasing frequency.
* OUT assertions: the field len is set to the optimal bit length, the
* array bl_count contains the frequencies for each bit length.
* The length opt_len is updated; static_len is also updated if stree is
* not null.
*/
function gen_bitlen(s, desc)
// deflate_state *s;
// tree_desc *desc; /* the tree descriptor */
{
var tree = desc.dyn_tree;
var max_code = desc.max_code;
var stree = desc.stat_desc.static_tree;
var has_stree = desc.stat_desc.has_stree;
var extra = desc.stat_desc.extra_bits;
var base = desc.stat_desc.extra_base;
var max_length = desc.stat_desc.max_length;
var h; /* heap index */
var n, m; /* iterate over the tree elements */
var bits; /* bit length */
var xbits; /* extra bits */
var f; /* frequency */
var overflow = 0; /* number of elements with bit length too large */
for (bits = 0; bits <= MAX_BITS; bits++) {
s.bl_count[bits] = 0;
}
/* In a first pass, compute the optimal bit lengths (which may
* overflow in the case of the bit length tree).
*/
tree[s.heap[s.heap_max] * 2 + 1]/*.Len*/ = 0; /* root of the heap */
for (h = s.heap_max + 1; h < HEAP_SIZE; h++) {
n = s.heap[h];
bits = tree[tree[n * 2 + 1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1;
if (bits > max_length) {
bits = max_length;
overflow++;
}
tree[n * 2 + 1]/*.Len*/ = bits;
/* We overwrite tree[n].Dad which is no longer needed */
if (n > max_code) { continue; } /* not a leaf node */
s.bl_count[bits]++;
xbits = 0;
if (n >= base) {
xbits = extra[n - base];
}
f = tree[n * 2]/*.Freq*/;
s.opt_len += f * (bits + xbits);
if (has_stree) {
s.static_len += f * (stree[n * 2 + 1]/*.Len*/ + xbits);
}
}
if (overflow === 0) { return; }
// Trace((stderr,"\nbit length overflow\n"));
/* This happens for example on obj2 and pic of the Calgary corpus */
/* Find the first bit length which could increase: */
do {
bits = max_length - 1;
while (s.bl_count[bits] === 0) { bits--; }
s.bl_count[bits]--; /* move one leaf down the tree */
s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */
s.bl_count[max_length]--;
/* The brother of the overflow item also moves one step up,
* but this does not affect bl_count[max_length]
*/
overflow -= 2;
} while (overflow > 0);
/* Now recompute all bit lengths, scanning in increasing frequency.
* h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
* lengths instead of fixing only the wrong ones. This idea is taken
* from 'ar' written by Haruhiko Okumura.)
*/
for (bits = max_length; bits !== 0; bits--) {
n = s.bl_count[bits];
while (n !== 0) {
m = s.heap[--h];
if (m > max_code) { continue; }
if (tree[m * 2 + 1]/*.Len*/ !== bits) {
// Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/;
tree[m * 2 + 1]/*.Len*/ = bits;
}
n--;
}
}
}
/* ===========================================================================
* Generate the codes for a given tree and bit counts (which need not be
* optimal).
* IN assertion: the array bl_count contains the bit length statistics for
* the given tree and the field len is set for all tree elements.
* OUT assertion: the field code is set for all tree elements of non
* zero code length.
*/
function gen_codes(tree, max_code, bl_count)
// ct_data *tree; /* the tree to decorate */
// int max_code; /* largest code with non zero frequency */
// ushf *bl_count; /* number of codes at each bit length */
{
var next_code = new Array(MAX_BITS + 1); /* next code value for each bit length */
var code = 0; /* running code value */
var bits; /* bit index */
var n; /* code index */
/* The distribution counts are first used to generate the code values
* without bit reversal.
*/
for (bits = 1; bits <= MAX_BITS; bits++) {
next_code[bits] = code = (code + bl_count[bits - 1]) << 1;
}
/* Check that the bit counts in bl_count are consistent. The last code
* must be all ones.
*/
//Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
// "inconsistent bit counts");
//Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
for (n = 0; n <= max_code; n++) {
var len = tree[n * 2 + 1]/*.Len*/;
if (len === 0) { continue; }
/* Now reverse the bits */
tree[n * 2]/*.Code*/ = bi_reverse(next_code[len]++, len);
//Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
// n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
}
}
/* ===========================================================================
* Initialize the various 'constant' tables.
*/
function tr_static_init() {
var n; /* iterates over tree elements */
var bits; /* bit counter */
var length; /* length value */
var code; /* code value */
var dist; /* distance index */
var bl_count = new Array(MAX_BITS + 1);
/* number of codes at each bit length for an optimal tree */
// do check in _tr_init()
//if (static_init_done) return;
/* For some embedded targets, global variables are not initialized: */
/*#ifdef NO_INIT_GLOBAL_POINTERS
static_l_desc.static_tree = static_ltree;
static_l_desc.extra_bits = extra_lbits;
static_d_desc.static_tree = static_dtree;
static_d_desc.extra_bits = extra_dbits;
static_bl_desc.extra_bits = extra_blbits;
#endif*/
/* Initialize the mapping length (0..255) -> length code (0..28) */
length = 0;
for (code = 0; code < LENGTH_CODES - 1; code++) {
base_length[code] = length;
for (n = 0; n < (1 << extra_lbits[code]); n++) {
_length_code[length++] = code;
}
}
//Assert (length == 256, "tr_static_init: length != 256");
/* Note that the length 255 (match length 258) can be represented
* in two different ways: code 284 + 5 bits or code 285, so we
* overwrite length_code[255] to use the best encoding:
*/
_length_code[length - 1] = code;
/* Initialize the mapping dist (0..32K) -> dist code (0..29) */
dist = 0;
for (code = 0; code < 16; code++) {
base_dist[code] = dist;
for (n = 0; n < (1 << extra_dbits[code]); n++) {
_dist_code[dist++] = code;
}
}
//Assert (dist == 256, "tr_static_init: dist != 256");
dist >>= 7; /* from now on, all distances are divided by 128 */
for (; code < D_CODES; code++) {
base_dist[code] = dist << 7;
for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
_dist_code[256 + dist++] = code;
}
}
//Assert (dist == 256, "tr_static_init: 256+dist != 512");
/* Construct the codes of the static literal tree */
for (bits = 0; bits <= MAX_BITS; bits++) {
bl_count[bits] = 0;
}
n = 0;
while (n <= 143) {
static_ltree[n * 2 + 1]/*.Len*/ = 8;
n++;
bl_count[8]++;
}
while (n <= 255) {
static_ltree[n * 2 + 1]/*.Len*/ = 9;
n++;
bl_count[9]++;
}
while (n <= 279) {
static_ltree[n * 2 + 1]/*.Len*/ = 7;
n++;
bl_count[7]++;
}
while (n <= 287) {
static_ltree[n * 2 + 1]/*.Len*/ = 8;
n++;
bl_count[8]++;
}
/* Codes 286 and 287 do not exist, but we must include them in the
* tree construction to get a canonical Huffman tree (longest code
* all ones)
*/
gen_codes(static_ltree, L_CODES + 1, bl_count);
/* The static distance tree is trivial: */
for (n = 0; n < D_CODES; n++) {
static_dtree[n * 2 + 1]/*.Len*/ = 5;
static_dtree[n * 2]/*.Code*/ = bi_reverse(n, 5);
}
// Now data ready and we can init static trees
static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS);
static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0, D_CODES, MAX_BITS);
static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0, BL_CODES, MAX_BL_BITS);
//static_init_done = true;
}
/* ===========================================================================
* Initialize a new block.
*/
function init_block(s) {
var n; /* iterates over tree elements */
/* Initialize the trees. */
for (n = 0; n < L_CODES; n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; }
for (n = 0; n < D_CODES; n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; }
for (n = 0; n < BL_CODES; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; }
s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1;
s.opt_len = s.static_len = 0;
s.last_lit = s.matches = 0;
}
/* ===========================================================================
* Flush the bit buffer and align the output on a byte boundary
*/
function bi_windup(s)
{
if (s.bi_valid > 8) {
put_short(s, s.bi_buf);
} else if (s.bi_valid > 0) {
//put_byte(s, (Byte)s->bi_buf);
s.pending_buf[s.pending++] = s.bi_buf;
}
s.bi_buf = 0;
s.bi_valid = 0;
}
/* ===========================================================================
* Copy a stored block, storing first the length and its
* one's complement if requested.
*/
function copy_block(s, buf, len, header)
//DeflateState *s;
//charf *buf; /* the input data */
//unsigned len; /* its length */
//int header; /* true if block header must be written */
{
bi_windup(s); /* align on byte boundary */
if (header) {
put_short(s, len);
put_short(s, ~len);
}
// while (len--) {
// put_byte(s, *buf++);
// }
utils.arraySet(s.pending_buf, s.window, buf, len, s.pending);
s.pending += len;
}
/* ===========================================================================
* Compares to subtrees, using the tree depth as tie breaker when
* the subtrees have equal frequency. This minimizes the worst case length.
*/
function smaller(tree, n, m, depth) {
var _n2 = n * 2;
var _m2 = m * 2;
return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ ||
(tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m]));
}
/* ===========================================================================
* Restore the heap property by moving down the tree starting at node k,
* exchanging a node with the smallest of its two sons if necessary, stopping
* when the heap property is re-established (each father smaller than its
* two sons).
*/
function pqdownheap(s, tree, k)
// deflate_state *s;
// ct_data *tree; /* the tree to restore */
// int k; /* node to move down */
{
var v = s.heap[k];
var j = k << 1; /* left son of k */
while (j <= s.heap_len) {
/* Set j to the smallest of the two sons: */
if (j < s.heap_len &&
smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) {
j++;
}
/* Exit if v is smaller than both sons */
if (smaller(tree, v, s.heap[j], s.depth)) { break; }
/* Exchange v with the smallest son */
s.heap[k] = s.heap[j];
k = j;
/* And continue down the tree, setting j to the left son of k */
j <<= 1;
}
s.heap[k] = v;
}
// inlined manually
// var SMALLEST = 1;
/* ===========================================================================
* Send the block data compressed using the given Huffman trees
*/
function compress_block(s, ltree, dtree)
// deflate_state *s;
// const ct_data *ltree; /* literal tree */
// const ct_data *dtree; /* distance tree */
{
var dist; /* distance of matched string */
var lc; /* match length or unmatched char (if dist == 0) */
var lx = 0; /* running index in l_buf */
var code; /* the code to send */
var extra; /* number of extra bits to send */
if (s.last_lit !== 0) {
do {
dist = (s.pending_buf[s.d_buf + lx * 2] << 8) | (s.pending_buf[s.d_buf + lx * 2 + 1]);
lc = s.pending_buf[s.l_buf + lx];
lx++;
if (dist === 0) {
send_code(s, lc, ltree); /* send a literal byte */
//Tracecv(isgraph(lc), (stderr," '%c' ", lc));
} else {
/* Here, lc is the match length - MIN_MATCH */
code = _length_code[lc];
send_code(s, code + LITERALS + 1, ltree); /* send the length code */
extra = extra_lbits[code];
if (extra !== 0) {
lc -= base_length[code];
send_bits(s, lc, extra); /* send the extra length bits */
}
dist--; /* dist is now the match distance - 1 */
code = d_code(dist);
//Assert (code < D_CODES, "bad d_code");
send_code(s, code, dtree); /* send the distance code */
extra = extra_dbits[code];
if (extra !== 0) {
dist -= base_dist[code];
send_bits(s, dist, extra); /* send the extra distance bits */
}
} /* literal or match pair ? */
/* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
//Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
// "pendingBuf overflow");
} while (lx < s.last_lit);
}
send_code(s, END_BLOCK, ltree);
}
/* ===========================================================================
* Construct one Huffman tree and assigns the code bit strings and lengths.
* Update the total bit length for the current block.
* IN assertion: the field freq is set for all tree elements.
* OUT assertions: the fields len and code are set to the optimal bit length
* and corresponding code. The length opt_len is updated; static_len is
* also updated if stree is not null. The field max_code is set.
*/
function build_tree(s, desc)
// deflate_state *s;
// tree_desc *desc; /* the tree descriptor */
{
var tree = desc.dyn_tree;
var stree = desc.stat_desc.static_tree;
var has_stree = desc.stat_desc.has_stree;
var elems = desc.stat_desc.elems;
var n, m; /* iterate over heap elements */
var max_code = -1; /* largest code with non zero frequency */
var node; /* new node being created */
/* Construct the initial heap, with least frequent element in
* heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
* heap[0] is not used.
*/
s.heap_len = 0;
s.heap_max = HEAP_SIZE;
for (n = 0; n < elems; n++) {
if (tree[n * 2]/*.Freq*/ !== 0) {
s.heap[++s.heap_len] = max_code = n;
s.depth[n] = 0;
} else {
tree[n * 2 + 1]/*.Len*/ = 0;
}
}
/* The pkzip format requires that at least one distance code exists,
* and that at least one bit should be sent even if there is only one
* possible code. So to avoid special checks later on we force at least
* two codes of non zero frequency.
*/
while (s.heap_len < 2) {
node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0);
tree[node * 2]/*.Freq*/ = 1;
s.depth[node] = 0;
s.opt_len--;
if (has_stree) {
s.static_len -= stree[node * 2 + 1]/*.Len*/;
}
/* node is 0 or 1 so it does not have extra bits */
}
desc.max_code = max_code;
/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
* establish sub-heaps of increasing lengths:
*/
for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); }
/* Construct the Huffman tree by repeatedly combining the least two
* frequent nodes.
*/
node = elems; /* next internal node of the tree */
do {
//pqremove(s, tree, n); /* n = node of least frequency */
/*** pqremove ***/
n = s.heap[1/*SMALLEST*/];
s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--];
pqdownheap(s, tree, 1/*SMALLEST*/);
/***/
m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */
s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */
s.heap[--s.heap_max] = m;
/* Create a new node father of n and m */
tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/;
s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1;
tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node;
/* and insert the new node in the heap */
s.heap[1/*SMALLEST*/] = node++;
pqdownheap(s, tree, 1/*SMALLEST*/);
} while (s.heap_len >= 2);
s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/];
/* At this point, the fields freq and dad are set. We can now
* generate the bit lengths.
*/
gen_bitlen(s, desc);
/* The field len is now set, we can generate the bit codes */
gen_codes(tree, max_code, s.bl_count);
}
/* ===========================================================================
* Scan a literal or distance tree to determine the frequencies of the codes
* in the bit length tree.
*/
function scan_tree(s, tree, max_code)
// deflate_state *s;
// ct_data *tree; /* the tree to be scanned */
// int max_code; /* and its largest code of non zero frequency */
{
var n; /* iterates over all tree elements */
var prevlen = -1; /* last emitted length */
var curlen; /* length of current code */
var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */
var count = 0; /* repeat count of the current code */
var max_count = 7; /* max repeat count */
var min_count = 4; /* min repeat count */
if (nextlen === 0) {
max_count = 138;
min_count = 3;
}
tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */
for (n = 0; n <= max_code; n++) {
curlen = nextlen;
nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;
if (++count < max_count && curlen === nextlen) {
continue;
} else if (count < min_count) {
s.bl_tree[curlen * 2]/*.Freq*/ += count;
} else if (curlen !== 0) {
if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; }
s.bl_tree[REP_3_6 * 2]/*.Freq*/++;
} else if (count <= 10) {
s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++;
} else {
s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++;
}
count = 0;
prevlen = curlen;
if (nextlen === 0) {
max_count = 138;
min_count = 3;
} else if (curlen === nextlen) {
max_count = 6;
min_count = 3;
} else {
max_count = 7;
min_count = 4;
}
}
}
/* ===========================================================================
* Send a literal or distance tree in compressed form, using the codes in
* bl_tree.
*/
function send_tree(s, tree, max_code)
// deflate_state *s;
// ct_data *tree; /* the tree to be scanned */
// int max_code; /* and its largest code of non zero frequency */
{
var n; /* iterates over all tree elements */
var prevlen = -1; /* last emitted length */
var curlen; /* length of current code */
var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */
var count = 0; /* repeat count of the current code */
var max_count = 7; /* max repeat count */
var min_count = 4; /* min repeat count */
/* tree[max_code+1].Len = -1; */ /* guard already set */
if (nextlen === 0) {
max_count = 138;
min_count = 3;
}
for (n = 0; n <= max_code; n++) {
curlen = nextlen;
nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;
if (++count < max_count && curlen === nextlen) {
continue;
} else if (count < min_count) {
do { send_code(s, curlen, s.bl_tree); } while (--count !== 0);
} else if (curlen !== 0) {
if (curlen !== prevlen) {
send_code(s, curlen, s.bl_tree);
count--;
}
//Assert(count >= 3 && count <= 6, " 3_6?");
send_code(s, REP_3_6, s.bl_tree);
send_bits(s, count - 3, 2);
} else if (count <= 10) {
send_code(s, REPZ_3_10, s.bl_tree);
send_bits(s, count - 3, 3);
} else {
send_code(s, REPZ_11_138, s.bl_tree);
send_bits(s, count - 11, 7);
}
count = 0;
prevlen = curlen;
if (nextlen === 0) {
max_count = 138;
min_count = 3;
} else if (curlen === nextlen) {
max_count = 6;
min_count = 3;
} else {
max_count = 7;
min_count = 4;
}
}
}
/* ===========================================================================
* Construct the Huffman tree for the bit lengths and return the index in
* bl_order of the last bit length code to send.
*/
function build_bl_tree(s) {
var max_blindex; /* index of last bit length code of non zero freq */
/* Determine the bit length frequencies for literal and distance trees */
scan_tree(s, s.dyn_ltree, s.l_desc.max_code);
scan_tree(s, s.dyn_dtree, s.d_desc.max_code);
/* Build the bit length tree: */
build_tree(s, s.bl_desc);
/* opt_len now includes the length of the tree representations, except
* the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
*/
/* Determine the number of bit length codes to send. The pkzip format
* requires that at least 4 bit length codes be sent. (appnote.txt says
* 3 but the actual value used is 4.)
*/
for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
if (s.bl_tree[bl_order[max_blindex] * 2 + 1]/*.Len*/ !== 0) {
break;
}
}
/* Update opt_len to include the bit length tree and counts */
s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
//Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
// s->opt_len, s->static_len));
return max_blindex;
}
/* ===========================================================================
* Send the header for a block using dynamic Huffman trees: the counts, the
* lengths of the bit length codes, the literal tree and the distance tree.
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
*/
function send_all_trees(s, lcodes, dcodes, blcodes)
// deflate_state *s;
// int lcodes, dcodes, blcodes; /* number of codes for each tree */
{
var rank; /* index in bl_order */
//Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
//Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
// "too many codes");
//Tracev((stderr, "\nbl counts: "));
send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */
send_bits(s, dcodes - 1, 5);
send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */
for (rank = 0; rank < blcodes; rank++) {
//Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1]/*.Len*/, 3);
}
//Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */
//Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */
//Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
}
/* ===========================================================================
* Check if the data type is TEXT or BINARY, using the following algorithm:
* - TEXT if the two conditions below are satisfied:
* a) There are no non-portable control characters belonging to the
* "black list" (0..6, 14..25, 28..31).
* b) There is at least one printable character belonging to the
* "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
* - BINARY otherwise.
* - The following partially-portable control characters form a
* "gray list" that is ignored in this detection algorithm:
* (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
* IN assertion: the fields Freq of dyn_ltree are set.
*/
function detect_data_type(s) {
/* black_mask is the bit mask of black-listed bytes
* set bits 0..6, 14..25, and 28..31
* 0xf3ffc07f = binary 11110011111111111100000001111111
*/
var black_mask = 0xf3ffc07f;
var n;
/* Check for non-textual ("black-listed") bytes. */
for (n = 0; n <= 31; n++, black_mask >>>= 1) {
if ((black_mask & 1) && (s.dyn_ltree[n * 2]/*.Freq*/ !== 0)) {
return Z_BINARY;
}
}
/* Check for textual ("white-listed") bytes. */
if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 ||
s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) {
return Z_TEXT;
}
for (n = 32; n < LITERALS; n++) {
if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) {
return Z_TEXT;
}
}
/* There are no "black-listed" or "white-listed" bytes:
* this stream either is empty or has tolerated ("gray-listed") bytes only.
*/
return Z_BINARY;
}
var static_init_done = false;
/* ===========================================================================
* Initialize the tree data structures for a new zlib stream.
*/
function _tr_init(s)
{
if (!static_init_done) {
tr_static_init();
static_init_done = true;
}
s.l_desc = new TreeDesc(s.dyn_ltree, static_l_desc);
s.d_desc = new TreeDesc(s.dyn_dtree, static_d_desc);
s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc);
s.bi_buf = 0;
s.bi_valid = 0;
/* Initialize the first block of the first file: */
init_block(s);
}
/* ===========================================================================
* Send a stored block
*/
function _tr_stored_block(s, buf, stored_len, last)
//DeflateState *s;
//charf *buf; /* input block */
//ulg stored_len; /* length of input block */
//int last; /* one if this is the last block for a file */
{
send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3); /* send block type */
copy_block(s, buf, stored_len, true); /* with header */
}
/* ===========================================================================
* Send one empty static block to give enough lookahead for inflate.
* This takes 10 bits, of which 7 may remain in the bit buffer.
*/
function _tr_align(s) {
send_bits(s, STATIC_TREES << 1, 3);
send_code(s, END_BLOCK, static_ltree);
bi_flush(s);
}
/* ===========================================================================
* Determine the best encoding for the current block: dynamic trees, static
* trees or store, and output the encoded block to the zip file.
*/
function _tr_flush_block(s, buf, stored_len, last)
//DeflateState *s;
//charf *buf; /* input block, or NULL if too old */
//ulg stored_len; /* length of input block */
//int last; /* one if this is the last block for a file */
{
var opt_lenb, static_lenb; /* opt_len and static_len in bytes */
var max_blindex = 0; /* index of last bit length code of non zero freq */
/* Build the Huffman trees unless a stored block is forced */
if (s.level > 0) {
/* Check if the file is binary or text */
if (s.strm.data_type === Z_UNKNOWN) {
s.strm.data_type = detect_data_type(s);
}
/* Construct the literal and distance trees */
build_tree(s, s.l_desc);
// Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
// s->static_len));
build_tree(s, s.d_desc);
// Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
// s->static_len));
/* At this point, opt_len and static_len are the total bit lengths of
* the compressed block data, excluding the tree representations.
*/
/* Build the bit length tree for the above two trees, and get the index
* in bl_order of the last bit length code to send.
*/
max_blindex = build_bl_tree(s);
/* Determine the best encoding. Compute the block lengths in bytes. */
opt_lenb = (s.opt_len + 3 + 7) >>> 3;
static_lenb = (s.static_len + 3 + 7) >>> 3;
// Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
// opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
// s->last_lit));
if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; }
} else {
// Assert(buf != (char*)0, "lost buf");
opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
}
if ((stored_len + 4 <= opt_lenb) && (buf !== -1)) {
/* 4: two words for the lengths */
/* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
* Otherwise we can't have processed more than WSIZE input bytes since
* the last block flush, because compression would have been
* successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
* transform a block into a stored block.
*/
_tr_stored_block(s, buf, stored_len, last);
} else if (s.strategy === Z_FIXED || static_lenb === opt_lenb) {
send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3);
compress_block(s, static_ltree, static_dtree);
} else {
send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3);
send_all_trees(s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1);
compress_block(s, s.dyn_ltree, s.dyn_dtree);
}
// Assert (s->compressed_len == s->bits_sent, "bad compressed size");
/* The above check is made mod 2^32, for files larger than 512 MB
* and uLong implemented on 32 bits.
*/
init_block(s);
if (last) {
bi_windup(s);
}
// Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
// s->compressed_len-7*last));
}
/* ===========================================================================
* Save the match info and tally the frequency counts. Return true if
* the current block must be flushed.
*/
function _tr_tally(s, dist, lc)
// deflate_state *s;
// unsigned dist; /* distance of matched string */
// unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
{
//var out_length, in_length, dcode;
s.pending_buf[s.d_buf + s.last_lit * 2] = (dist >>> 8) & 0xff;
s.pending_buf[s.d_buf + s.last_lit * 2 + 1] = dist & 0xff;
s.pending_buf[s.l_buf + s.last_lit] = lc & 0xff;
s.last_lit++;
if (dist === 0) {
/* lc is the unmatched char */
s.dyn_ltree[lc * 2]/*.Freq*/++;
} else {
s.matches++;
/* Here, lc is the match length - MIN_MATCH */
dist--; /* dist = match distance - 1 */
//Assert((ush)dist < (ush)MAX_DIST(s) &&
// (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
// (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
s.dyn_ltree[(_length_code[lc] + LITERALS + 1) * 2]/*.Freq*/++;
s.dyn_dtree[d_code(dist) * 2]/*.Freq*/++;
}
// (!) This block is disabled in zlib defaults,
// don't enable it for binary compatibility
//#ifdef TRUNCATE_BLOCK
// /* Try to guess if it is profitable to stop the current block here */
// if ((s.last_lit & 0x1fff) === 0 && s.level > 2) {
// /* Compute an upper bound for the compressed length */
// out_length = s.last_lit*8;
// in_length = s.strstart - s.block_start;
//
// for (dcode = 0; dcode < D_CODES; dcode++) {
// out_length += s.dyn_dtree[dcode*2]/*.Freq*/ * (5 + extra_dbits[dcode]);
// }
// out_length >>>= 3;
// //Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
// // s->last_lit, in_length, out_length,
// // 100L - out_length*100L/in_length));
// if (s.matches < (s.last_lit>>1)/*int /2*/ && out_length < (in_length>>1)/*int /2*/) {
// return true;
// }
// }
//#endif
return (s.last_lit === s.lit_bufsize - 1);
/* We avoid equality with lit_bufsize because of wraparound at 64K
* on 16 bit machines and because stored blocks are restricted to
* 64K-1 bytes.
*/
}
exports._tr_init = _tr_init;
exports._tr_stored_block = _tr_stored_block;
exports._tr_flush_block = _tr_flush_block;
exports._tr_tally = _tr_tally;
exports._tr_align = _tr_align;
},{"../utils/common":54}],66:[function(require,module,exports){
'use strict';
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
function ZStream() {
/* next input byte */
this.input = null; // JS specific, because we have no pointers
this.next_in = 0;
/* number of bytes available at input */
this.avail_in = 0;
/* total number of input bytes read so far */
this.total_in = 0;
/* next output byte should be put there */
this.output = null; // JS specific, because we have no pointers
this.next_out = 0;
/* remaining free space at output */
this.avail_out = 0;
/* total number of bytes output so far */
this.total_out = 0;
/* last error message, NULL if no error */
this.msg = ''/*Z_NULL*/;
/* not visible by applications */
this.state = null;
/* best guess about the data type: binary or text */
this.data_type = 2/*Z_UNKNOWN*/;
/* adler32 value of the uncompressed data */
this.adler = 0;
}
module.exports = ZStream;
},{}],67:[function(require,module,exports){
// shim for using process in browser
var process = module.exports = {};
// cached from whatever global is present so that test runners that stub it
// don't break things. But we need to wrap it in a try catch in case it is
// wrapped in strict mode code which doesn't define any globals. It's inside a
// function because try/catches deoptimize in certain engines.
var cachedSetTimeout;
var cachedClearTimeout;
function defaultSetTimout() {
throw new Error('setTimeout has not been defined');
}
function defaultClearTimeout () {
throw new Error('clearTimeout has not been defined');
}
(function () {
try {
if (typeof setTimeout === 'function') {
cachedSetTimeout = setTimeout;
} else {
cachedSetTimeout = defaultSetTimout;
}
} catch (e) {
cachedSetTimeout = defaultSetTimout;
}
try {
if (typeof clearTimeout === 'function') {
cachedClearTimeout = clearTimeout;
} else {
cachedClearTimeout = defaultClearTimeout;
}
} catch (e) {
cachedClearTimeout = defaultClearTimeout;
}
} ())
function runTimeout(fun) {
if (cachedSetTimeout === setTimeout) {
//normal enviroments in sane situations
return setTimeout(fun, 0);
}
// if setTimeout wasn't available but was latter defined
if ((cachedSetTimeout === defaultSetTimout || !cachedSetTimeout) && setTimeout) {
cachedSetTimeout = setTimeout;
return setTimeout(fun, 0);
}
try {
// when when somebody has screwed with setTimeout but no I.E. maddness
return cachedSetTimeout(fun, 0);
} catch(e){
try {
// When we are in I.E. but the script has been evaled so I.E. doesn't trust the global object when called normally
return cachedSetTimeout.call(null, fun, 0);
} catch(e){
// same as above but when it's a version of I.E. that must have the global object for 'this', hopfully our context correct otherwise it will throw a global error
return cachedSetTimeout.call(this, fun, 0);
}
}
}
function runClearTimeout(marker) {
if (cachedClearTimeout === clearTimeout) {
//normal enviroments in sane situations
return clearTimeout(marker);
}
// if clearTimeout wasn't available but was latter defined
if ((cachedClearTimeout === defaultClearTimeout || !cachedClearTimeout) && clearTimeout) {
cachedClearTimeout = clearTimeout;
return clearTimeout(marker);
}
try {
// when when somebody has screwed with setTimeout but no I.E. maddness
return cachedClearTimeout(marker);
} catch (e){
try {
// When we are in I.E. but the script has been evaled so I.E. doesn't trust the global object when called normally
return cachedClearTimeout.call(null, marker);
} catch (e){
// same as above but when it's a version of I.E. that must have the global object for 'this', hopfully our context correct otherwise it will throw a global error.
// Some versions of I.E. have different rules for clearTimeout vs setTimeout
return cachedClearTimeout.call(this, marker);
}
}
}
var queue = [];
var draining = false;
var currentQueue;
var queueIndex = -1;
function cleanUpNextTick() {
if (!draining || !currentQueue) {
return;
}
draining = false;
if (currentQueue.length) {
queue = currentQueue.concat(queue);
} else {
queueIndex = -1;
}
if (queue.length) {
drainQueue();
}
}
function drainQueue() {
if (draining) {
return;
}
var timeout = runTimeout(cleanUpNextTick);
draining = true;
var len = queue.length;
while(len) {
currentQueue = queue;
queue = [];
while (++queueIndex < len) {
if (currentQueue) {
currentQueue[queueIndex].run();
}
}
queueIndex = -1;
len = queue.length;
}
currentQueue = null;
draining = false;
runClearTimeout(timeout);
}
process.nextTick = function (fun) {
var args = new Array(arguments.length - 1);
if (arguments.length > 1) {
for (var i = 1; i < arguments.length; i++) {
args[i - 1] = arguments[i];
}
}
queue.push(new Item(fun, args));
if (queue.length === 1 && !draining) {
runTimeout(drainQueue);
}
};
// v8 likes predictible objects
function Item(fun, array) {
this.fun = fun;
this.array = array;
}
Item.prototype.run = function () {
this.fun.apply(null, this.array);
};
process.title = 'browser';
process.browser = true;
process.env = {};
process.argv = [];
process.version = ''; // empty string to avoid regexp issues
process.versions = {};
function noop() {}
process.on = noop;
process.addListener = noop;
process.once = noop;
process.off = noop;
process.removeListener = noop;
process.removeAllListeners = noop;
process.emit = noop;
process.prependListener = noop;
process.prependOnceListener = noop;
process.listeners = function (name) { return [] }
process.binding = function (name) {
throw new Error('process.binding is not supported');
};
process.cwd = function () { return '/' };
process.chdir = function (dir) {
throw new Error('process.chdir is not supported');
};
process.umask = function() { return 0; };
},{}],68:[function(require,module,exports){
'use strict';
/*
node-bzip - a pure-javascript Node.JS module for decoding bzip2 data
Copyright (C) 2012 Eli Skeggs
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
http://www.gnu.org/licenses/lgpl-2.1.html
Adapted from bzip2.js, copyright 2011 antimatter15 (antimatter15@gmail.com).
Based on micro-bunzip by Rob Landley (rob@landley.net).
Based on bzip2 decompression code by Julian R Seward (jseward@acm.org),
which also acknowledges contributions by Mike Burrows, David Wheeler,
Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten,
Robert Sedgewick, and Jon L. Bentley.
*/
var BITMASK = [0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F, 0xFF];
// offset in bytes
var BitReader = function BitReader(stream) {
this.stream = stream;
this.bitOffset = 0;
this.curByte = 0;
this.hasByte = false;
};
BitReader.prototype._ensureByte = function () {
if (!this.hasByte) {
this.curByte = this.stream.readByte();
this.hasByte = true;
}
};
// reads bits from the buffer
BitReader.prototype.read = function (bits) {
var result = 0;
while (bits > 0) {
this._ensureByte();
var remaining = 8 - this.bitOffset;
// if we're in a byte
if (bits >= remaining) {
result <<= remaining;
result |= BITMASK[remaining] & this.curByte;
this.hasByte = false;
this.bitOffset = 0;
bits -= remaining;
} else {
result <<= bits;
var shift = remaining - bits;
result |= (this.curByte & BITMASK[bits] << shift) >> shift;
this.bitOffset += bits;
bits = 0;
}
}
return result;
};
// seek to an arbitrary point in the buffer (expressed in bits)
BitReader.prototype.seek = function (pos) {
var n_bit = pos % 8;
var n_byte = (pos - n_bit) / 8;
this.bitOffset = n_bit;
this.stream.seek(n_byte);
this.hasByte = false;
};
// reads 6 bytes worth of data using the read method
BitReader.prototype.pi = function () {
var buf = new Uint8Array(6),
i;
for (i = 0; i < buf.length; i++) {
buf[i] = this.read(8);
}
return bufToHex(buf);
};
function bufToHex(buf) {
return Array.prototype.map.call(buf, x => ('00' + x.toString(16)).slice(-2)).join('');
}
module.exports = BitReader;
},{}],69:[function(require,module,exports){
"use strict";
/* CRC32, used in Bzip2 implementation.
* This is a port of CRC32.java from the jbzip2 implementation at
* https://code.google.com/p/jbzip2
* which is:
* Copyright (c) 2011 Matthew Francis
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
* This JavaScript implementation is:
* Copyright (c) 2013 C. Scott Ananian
* with the same licensing terms as Matthew Francis' original implementation.
*/
module.exports = function () {
/**
* A static CRC lookup table
*/
var crc32Lookup = new Uint32Array([0x00000000, 0x04c11db7, 0x09823b6e, 0x0d4326d9, 0x130476dc, 0x17c56b6b, 0x1a864db2, 0x1e475005, 0x2608edb8, 0x22c9f00f, 0x2f8ad6d6, 0x2b4bcb61, 0x350c9b64, 0x31cd86d3, 0x3c8ea00a, 0x384fbdbd, 0x4c11db70, 0x48d0c6c7, 0x4593e01e, 0x4152fda9, 0x5f15adac, 0x5bd4b01b, 0x569796c2, 0x52568b75, 0x6a1936c8, 0x6ed82b7f, 0x639b0da6, 0x675a1011, 0x791d4014, 0x7ddc5da3, 0x709f7b7a, 0x745e66cd, 0x9823b6e0, 0x9ce2ab57, 0x91a18d8e, 0x95609039, 0x8b27c03c, 0x8fe6dd8b, 0x82a5fb52, 0x8664e6e5, 0xbe2b5b58, 0xbaea46ef, 0xb7a96036, 0xb3687d81, 0xad2f2d84, 0xa9ee3033, 0xa4ad16ea, 0xa06c0b5d, 0xd4326d90, 0xd0f37027, 0xddb056fe, 0xd9714b49, 0xc7361b4c, 0xc3f706fb, 0xceb42022, 0xca753d95, 0xf23a8028, 0xf6fb9d9f, 0xfbb8bb46, 0xff79a6f1, 0xe13ef6f4, 0xe5ffeb43, 0xe8bccd9a, 0xec7dd02d, 0x34867077, 0x30476dc0, 0x3d044b19, 0x39c556ae, 0x278206ab, 0x23431b1c, 0x2e003dc5, 0x2ac12072, 0x128e9dcf, 0x164f8078, 0x1b0ca6a1, 0x1fcdbb16, 0x018aeb13, 0x054bf6a4, 0x0808d07d, 0x0cc9cdca, 0x7897ab07, 0x7c56b6b0, 0x71159069, 0x75d48dde, 0x6b93dddb, 0x6f52c06c, 0x6211e6b5, 0x66d0fb02, 0x5e9f46bf, 0x5a5e5b08, 0x571d7dd1, 0x53dc6066, 0x4d9b3063, 0x495a2dd4, 0x44190b0d, 0x40d816ba, 0xaca5c697, 0xa864db20, 0xa527fdf9, 0xa1e6e04e, 0xbfa1b04b, 0xbb60adfc, 0xb6238b25, 0xb2e29692, 0x8aad2b2f, 0x8e6c3698, 0x832f1041, 0x87ee0df6, 0x99a95df3, 0x9d684044, 0x902b669d, 0x94ea7b2a, 0xe0b41de7, 0xe4750050, 0xe9362689, 0xedf73b3e, 0xf3b06b3b, 0xf771768c, 0xfa325055, 0xfef34de2, 0xc6bcf05f, 0xc27dede8, 0xcf3ecb31, 0xcbffd686, 0xd5b88683, 0xd1799b34, 0xdc3abded, 0xd8fba05a, 0x690ce0ee, 0x6dcdfd59, 0x608edb80, 0x644fc637, 0x7a089632, 0x7ec98b85, 0x738aad5c, 0x774bb0eb, 0x4f040d56, 0x4bc510e1, 0x46863638, 0x42472b8f, 0x5c007b8a, 0x58c1663d, 0x558240e4, 0x51435d53, 0x251d3b9e, 0x21dc2629, 0x2c9f00f0, 0x285e1d47, 0x36194d42, 0x32d850f5, 0x3f9b762c, 0x3b5a6b9b, 0x0315d626, 0x07d4cb91, 0x0a97ed48, 0x0e56f0ff, 0x1011a0fa, 0x14d0bd4d, 0x19939b94, 0x1d528623, 0xf12f560e, 0xf5ee4bb9, 0xf8ad6d60, 0xfc6c70d7, 0xe22b20d2, 0xe6ea3d65, 0xeba91bbc, 0xef68060b, 0xd727bbb6, 0xd3e6a601, 0xdea580d8, 0xda649d6f, 0xc423cd6a, 0xc0e2d0dd, 0xcda1f604, 0xc960ebb3, 0xbd3e8d7e, 0xb9ff90c9, 0xb4bcb610, 0xb07daba7, 0xae3afba2, 0xaafbe615, 0xa7b8c0cc, 0xa379dd7b, 0x9b3660c6, 0x9ff77d71, 0x92b45ba8, 0x9675461f, 0x8832161a, 0x8cf30bad, 0x81b02d74, 0x857130c3, 0x5d8a9099, 0x594b8d2e, 0x5408abf7, 0x50c9b640, 0x4e8ee645, 0x4a4ffbf2, 0x470cdd2b, 0x43cdc09c, 0x7b827d21, 0x7f436096, 0x7200464f, 0x76c15bf8, 0x68860bfd, 0x6c47164a, 0x61043093, 0x65c52d24, 0x119b4be9, 0x155a565e, 0x18197087, 0x1cd86d30, 0x029f3d35, 0x065e2082, 0x0b1d065b, 0x0fdc1bec, 0x3793a651, 0x3352bbe6, 0x3e119d3f, 0x3ad08088, 0x2497d08d, 0x2056cd3a, 0x2d15ebe3, 0x29d4f654, 0xc5a92679, 0xc1683bce, 0xcc2b1d17, 0xc8ea00a0, 0xd6ad50a5, 0xd26c4d12, 0xdf2f6bcb, 0xdbee767c, 0xe3a1cbc1, 0xe760d676, 0xea23f0af, 0xeee2ed18, 0xf0a5bd1d, 0xf464a0aa, 0xf9278673, 0xfde69bc4, 0x89b8fd09, 0x8d79e0be, 0x803ac667, 0x84fbdbd0, 0x9abc8bd5, 0x9e7d9662, 0x933eb0bb, 0x97ffad0c, 0xafb010b1, 0xab710d06, 0xa6322bdf, 0xa2f33668, 0xbcb4666d, 0xb8757bda, 0xb5365d03, 0xb1f740b4]);
var CRC32 = function CRC32() {
/**
* The current CRC
*/
var crc = 0xffffffff;
/**
* @return The current CRC
*/
this.getCRC = function () {
return ~crc >>> 0; // return an unsigned value
};
/**
* Update the CRC with a single byte
* @param value The value to update the CRC with
*/
this.updateCRC = function (value) {
crc = crc << 8 ^ crc32Lookup[(crc >>> 24 ^ value) & 0xff];
};
/**
* Update the CRC with a sequence of identical bytes
* @param value The value to update the CRC with
* @param count The number of bytes
*/
this.updateCRCRun = function (value, count) {
while (count-- > 0) {
crc = crc << 8 ^ crc32Lookup[(crc >>> 24 ^ value) & 0xff];
}
};
};
return CRC32;
}();
},{}],70:[function(require,module,exports){
'use strict';
/*
seek-bzip - a pure-javascript module for seeking within bzip2 data
Copyright (C) 2013 C. Scott Ananian
Copyright (C) 2012 Eli Skeggs
Copyright (C) 2011 Kevin Kwok
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
http://www.gnu.org/licenses/lgpl-2.1.html
Adapted from node-bzip, copyright 2012 Eli Skeggs.
Adapted from bzip2.js, copyright 2011 Kevin Kwok (antimatter15@gmail.com).
Based on micro-bunzip by Rob Landley (rob@landley.net).
Based on bzip2 decompression code by Julian R Seward (jseward@acm.org),
which also acknowledges contributions by Mike Burrows, David Wheeler,
Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten,
Robert Sedgewick, and Jon L. Bentley.
*/
var BitReader = require('./bitreader');
var Stream = require('./stream');
var CRC32 = require('./crc32');
var MAX_HUFCODE_BITS = 20;
var MAX_SYMBOLS = 258;
var SYMBOL_RUNA = 0;
var SYMBOL_RUNB = 1;
var MIN_GROUPS = 2;
var MAX_GROUPS = 6;
var GROUP_SIZE = 50;
var WHOLEPI = "314159265359";
var SQRTPI = "177245385090";
var mtf = function mtf(array, index) {
var src = array[index],
i;
for (i = index; i > 0; i--) {
array[i] = array[i - 1];
}
array[0] = src;
return src;
};
var Err = {
OK: 0,
LAST_BLOCK: -1,
NOT_BZIP_DATA: -2,
UNEXPECTED_INPUT_EOF: -3,
UNEXPECTED_OUTPUT_EOF: -4,
DATA_ERROR: -5,
OUT_OF_MEMORY: -6,
OBSOLETE_INPUT: -7,
END_OF_BLOCK: -8
};
var ErrorMessages = {};
ErrorMessages[Err.LAST_BLOCK] = "Bad file checksum";
ErrorMessages[Err.NOT_BZIP_DATA] = "Not bzip data";
ErrorMessages[Err.UNEXPECTED_INPUT_EOF] = "Unexpected input EOF";
ErrorMessages[Err.UNEXPECTED_OUTPUT_EOF] = "Unexpected output EOF";
ErrorMessages[Err.DATA_ERROR] = "Data error";
ErrorMessages[Err.OUT_OF_MEMORY] = "Out of memory";
ErrorMessages[Err.OBSOLETE_INPUT] = "Obsolete (pre 0.9.5) bzip format not supported.";
var _throw = function _throw(status, optDetail) {
var msg = ErrorMessages[status] || 'unknown error';
if (optDetail) {
msg += ': ' + optDetail;
}
var e = new TypeError(msg);
e.errorCode = status;
throw e;
};
var Bunzip = function Bunzip(inputStream, outputStream) {
this.writePos = this.writeCurrent = this.writeCount = 0;
this._start_bunzip(inputStream, outputStream);
};
Bunzip.prototype._init_block = function () {
var moreBlocks = this._get_next_block();
if (!moreBlocks) {
this.writeCount = -1;
return false; /* no more blocks */
}
this.blockCRC = new CRC32();
return true;
};
/* XXX micro-bunzip uses (inputStream, inputBuffer, len) as arguments */
Bunzip.prototype._start_bunzip = function (inputStream, outputStream) {
/* Ensure that file starts with "BZh['1'-'9']." */
var buf = new Uint8Array(4);
if (inputStream.read(buf, 0, 4) !== 4 || String.fromCharCode(buf[0], buf[1], buf[2]) !== 'BZh') _throw(Err.NOT_BZIP_DATA, 'bad magic');
var level = buf[3] - 0x30;
if (level < 1 || level > 9) _throw(Err.NOT_BZIP_DATA, 'level out of range');
this.reader = new BitReader(inputStream);
/* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of
uncompressed data. Allocate intermediate buffer for block. */
this.dbufSize = 100000 * level;
this.nextoutput = 0;
this.outputStream = outputStream;
this.streamCRC = 0;
};
Bunzip.prototype._get_next_block = function () {
var i, j, k;
var reader = this.reader;
// this is get_next_block() function from micro-bunzip:
/* Read in header signature and CRC, then validate signature.
(last block signature means CRC is for whole file, return now) */
var h = reader.pi();
if (h === SQRTPI) {
// last block
return false; /* no more blocks */
}
if (h !== WHOLEPI) _throw(Err.NOT_BZIP_DATA);
this.targetBlockCRC = reader.read(32) >>> 0; // (convert to unsigned)
this.streamCRC = (this.targetBlockCRC ^ (this.streamCRC << 1 | this.streamCRC >>> 31)) >>> 0;
/* We can add support for blockRandomised if anybody complains. There was
some code for this in busybox 1.0.0-pre3, but nobody ever noticed that
it didn't actually work. */
if (reader.read(1)) _throw(Err.OBSOLETE_INPUT);
var origPointer = reader.read(24);
if (origPointer > this.dbufSize) _throw(Err.DATA_ERROR, 'initial position out of bounds');
/* mapping table: if some byte values are never used (encoding things
like ascii text), the compression code removes the gaps to have fewer
symbols to deal with, and writes a sparse bitfield indicating which
values were present. We make a translation table to convert the symbols
back to the corresponding bytes. */
var t = reader.read(16);
var symToByte = new Uint8Array(256),
symTotal = 0;
for (i = 0; i < 16; i++) {
if (t & 1 << 0xF - i) {
var o = i * 16;
k = reader.read(16);
for (j = 0; j < 16; j++) if (k & 1 << 0xF - j) symToByte[symTotal++] = o + j;
}
}
/* How many different huffman coding groups does this block use? */
var groupCount = reader.read(3);
if (groupCount < MIN_GROUPS || groupCount > MAX_GROUPS) _throw(Err.DATA_ERROR);
/* nSelectors: Every GROUP_SIZE many symbols we select a new huffman coding
group. Read in the group selector list, which is stored as MTF encoded
bit runs. (MTF=Move To Front, as each value is used it's moved to the
start of the list.) */
var nSelectors = reader.read(15);
if (nSelectors === 0) _throw(Err.DATA_ERROR);
var mtfSymbol = new Uint8Array(256);
for (i = 0; i < groupCount; i++) mtfSymbol[i] = i;
var selectors = new Uint8Array(nSelectors); // was 32768...
for (i = 0; i < nSelectors; i++) {
/* Get next value */
for (j = 0; reader.read(1); j++) if (j >= groupCount) _throw(Err.DATA_ERROR);
/* Decode MTF to get the next selector */
selectors[i] = mtf(mtfSymbol, j);
}
/* Read the huffman coding tables for each group, which code for symTotal
literal symbols, plus two run symbols (RUNA, RUNB) */
var symCount = symTotal + 2;
var groups = [],
hufGroup;
for (j = 0; j < groupCount; j++) {
var length = new Uint8Array(symCount),
temp = new Uint16Array(MAX_HUFCODE_BITS + 1);
/* Read huffman code lengths for each symbol. They're stored in
a way similar to mtf; record a starting value for the first symbol,
and an offset from the previous value for everys symbol after that. */
t = reader.read(5); // lengths
for (i = 0; i < symCount; i++) {
for (;;) {
if (t < 1 || t > MAX_HUFCODE_BITS) _throw(Err.DATA_ERROR);
/* If first bit is 0, stop. Else second bit indicates whether
to increment or decrement the value. */
if (!reader.read(1)) break;
if (!reader.read(1)) t++;else t--;
}
length[i] = t;
}
/* Find largest and smallest lengths in this group */
var minLen, maxLen;
minLen = maxLen = length[0];
for (i = 1; i < symCount; i++) {
if (length[i] > maxLen) maxLen = length[i];else if (length[i] < minLen) minLen = length[i];
}
/* Calculate permute[], base[], and limit[] tables from length[].
*
* permute[] is the lookup table for converting huffman coded symbols
* into decoded symbols. base[] is the amount to subtract from the
* value of a huffman symbol of a given length when using permute[].
*
* limit[] indicates the largest numerical value a symbol with a given
* number of bits can have. This is how the huffman codes can vary in
* length: each code with a value>limit[length] needs another bit.
*/
hufGroup = {};
groups.push(hufGroup);
hufGroup.permute = new Uint16Array(MAX_SYMBOLS);
hufGroup.limit = new Uint32Array(MAX_HUFCODE_BITS + 2);
hufGroup.base = new Uint32Array(MAX_HUFCODE_BITS + 1);
hufGroup.minLen = minLen;
hufGroup.maxLen = maxLen;
/* Calculate permute[]. Concurently, initialize temp[] and limit[]. */
var pp = 0;
for (i = minLen; i <= maxLen; i++) {
temp[i] = hufGroup.limit[i] = 0;
for (t = 0; t < symCount; t++) if (length[t] === i) hufGroup.permute[pp++] = t;
}
/* Count symbols coded for at each bit length */
for (i = 0; i < symCount; i++) temp[length[i]]++;
/* Calculate limit[] (the largest symbol-coding value at each bit
* length, which is (previous limit<<1)+symbols at this level), and
* base[] (number of symbols to ignore at each bit length, which is
* limit minus the cumulative count of symbols coded for already). */
pp = t = 0;
for (i = minLen; i < maxLen; i++) {
pp += temp[i];
/* We read the largest possible symbol size and then unget bits
after determining how many we need, and those extra bits could
be set to anything. (They're noise from future symbols.) At
each level we're really only interested in the first few bits,
so here we set all the trailing to-be-ignored bits to 1 so they
don't affect the value>limit[length] comparison. */
hufGroup.limit[i] = pp - 1;
pp <<= 1;
t += temp[i];
hufGroup.base[i + 1] = pp - t;
}
hufGroup.limit[maxLen + 1] = Number.MAX_VALUE; /* Sentinal value for reading next sym. */
hufGroup.limit[maxLen] = pp + temp[maxLen] - 1;
hufGroup.base[minLen] = 0;
}
/* We've finished reading and digesting the block header. Now read this
block's huffman coded symbols from the file and undo the huffman coding
and run length encoding, saving the result into dbuf[dbufCount++]=uc */
/* Initialize symbol occurrence counters and symbol Move To Front table */
var byteCount = new Uint32Array(256);
for (i = 0; i < 256; i++) mtfSymbol[i] = i;
/* Loop through compressed symbols. */
var runPos = 0,
dbufCount = 0,
selector = 0,
uc;
var dbuf = this.dbuf = new Uint32Array(this.dbufSize);
symCount = 0;
for (;;) {
/* Determine which huffman coding group to use. */
if (!symCount--) {
symCount = GROUP_SIZE - 1;
if (selector >= nSelectors) {
_throw(Err.DATA_ERROR);
}
hufGroup = groups[selectors[selector++]];
}
/* Read next huffman-coded symbol. */
i = hufGroup.minLen;
j = reader.read(i);
for (;; i++) {
if (i > hufGroup.maxLen) {
_throw(Err.DATA_ERROR);
}
if (j <= hufGroup.limit[i]) break;
j = j << 1 | reader.read(1);
}
/* Huffman decode value to get nextSym (with bounds checking) */
j -= hufGroup.base[i];
if (j < 0 || j >= MAX_SYMBOLS) {
_throw(Err.DATA_ERROR);
}
var nextSym = hufGroup.permute[j];
/* We have now decoded the symbol, which indicates either a new literal
byte, or a repeated run of the most recent literal byte. First,
check if nextSym indicates a repeated run, and if so loop collecting
how many times to repeat the last literal. */
if (nextSym === SYMBOL_RUNA || nextSym === SYMBOL_RUNB) {
/* If this is the start of a new run, zero out counter */
if (!runPos) {
runPos = 1;
t = 0;
}
/* Neat trick that saves 1 symbol: instead of or-ing 0 or 1 at
each bit position, add 1 or 2 instead. For example,
1011 is 1<<0 + 1<<1 + 2<<2. 1010 is 2<<0 + 2<<1 + 1<<2.
You can make any bit pattern that way using 1 less symbol than
the basic or 0/1 method (except all bits 0, which would use no
symbols, but a run of length 0 doesn't mean anything in this
context). Thus space is saved. */
if (nextSym === SYMBOL_RUNA) t += runPos;else t += 2 * runPos;
runPos <<= 1;
continue;
}
/* When we hit the first non-run symbol after a run, we now know
how many times to repeat the last literal, so append that many
copies to our buffer of decoded symbols (dbuf) now. (The last
literal used is the one at the head of the mtfSymbol array.) */
if (runPos) {
runPos = 0;
if (dbufCount + t > this.dbufSize) {
_throw(Err.DATA_ERROR);
}
uc = symToByte[mtfSymbol[0]];
byteCount[uc] += t;
while (t--) dbuf[dbufCount++] = uc;
}
/* Is this the terminating symbol? */
if (nextSym > symTotal) break;
/* At this point, nextSym indicates a new literal character. Subtract
one to get the position in the MTF array at which this literal is
currently to be found. (Note that the result can't be -1 or 0,
because 0 and 1 are RUNA and RUNB. But another instance of the
first symbol in the mtf array, position 0, would have been handled
as part of a run above. Therefore 1 unused mtf position minus
2 non-literal nextSym values equals -1.) */
if (dbufCount >= this.dbufSize) {
_throw(Err.DATA_ERROR);
}
i = nextSym - 1;
uc = mtf(mtfSymbol, i);
uc = symToByte[uc];
/* We have our literal byte. Save it into dbuf. */
byteCount[uc]++;
dbuf[dbufCount++] = uc;
}
/* At this point, we've read all the huffman-coded symbols (and repeated
runs) for this block from the input stream, and decoded them into the
intermediate buffer. There are dbufCount many decoded bytes in dbuf[].
Now undo the Burrows-Wheeler transform on dbuf.
See http://dogma.net/markn/articles/bwt/bwt.htm
*/
if (origPointer < 0 || origPointer >= dbufCount) {
_throw(Err.DATA_ERROR);
}
/* Turn byteCount into cumulative occurrence counts of 0 to n-1. */
j = 0;
for (i = 0; i < 256; i++) {
k = j + byteCount[i];
byteCount[i] = j;
j = k;
}
/* Figure out what order dbuf would be in if we sorted it. */
for (i = 0; i < dbufCount; i++) {
uc = dbuf[i] & 0xff;
dbuf[byteCount[uc]] |= i << 8;
byteCount[uc]++;
}
/* Decode first byte by hand to initialize "previous" byte. Note that it
doesn't get output, and if the first three characters are identical
it doesn't qualify as a run (hence writeRunCountdown=5). */
var pos = 0,
current = 0,
run = 0;
if (dbufCount) {
pos = dbuf[origPointer];
current = pos & 0xff;
pos >>= 8;
run = -1;
}
this.writePos = pos;
this.writeCurrent = current;
this.writeCount = dbufCount;
this.writeRun = run;
return true; /* more blocks to come */
};
/* Undo burrows-wheeler transform on intermediate buffer to produce output.
If start_bunzip was initialized with out_fd=-1, then up to len bytes of
data are written to outbuf. Return value is number of bytes written or
error (all errors are negative numbers). If out_fd!=-1, outbuf and len
are ignored, data is written to out_fd and return is RETVAL_OK or error.
*/
Bunzip.prototype._read_bunzip = function (outputBuffer, len) {
var copies, previous, outbyte;
/* james@jamestaylor.org: writeCount goes to -1 when the buffer is fully
decoded, which results in this returning RETVAL_LAST_BLOCK, also
equal to -1... Confusing, I'm returning 0 here to indicate no
bytes written into the buffer */
if (this.writeCount < 0) {
return 0;
}
var gotcount = 0;
var dbuf = this.dbuf,
pos = this.writePos,
current = this.writeCurrent;
var dbufCount = this.writeCount,
outputsize = this.outputsize;
var run = this.writeRun;
while (dbufCount) {
dbufCount--;
previous = current;
pos = dbuf[pos];
current = pos & 0xff;
pos >>= 8;
if (run++ === 3) {
copies = current;
outbyte = previous;
current = -1;
} else {
copies = 1;
outbyte = current;
}
this.blockCRC.updateCRCRun(outbyte, copies);
while (copies--) {
this.outputStream.writeByte(outbyte);
this.nextoutput++;
}
if (current != previous) run = 0;
}
this.writeCount = dbufCount;
// check CRC
if (this.blockCRC.getCRC() !== this.targetBlockCRC) {
_throw(Err.DATA_ERROR, "Bad block CRC " + "(got " + this.blockCRC.getCRC().toString(16) + " expected " + this.targetBlockCRC.toString(16) + ")");
}
return this.nextoutput;
};
var coerceInputStream = function coerceInputStream(input) {
if ('readByte' in input) {
return input;
}
var inputStream = new Stream();
inputStream.pos = 0;
inputStream.readByte = function () {
return input[this.pos++];
};
inputStream.seek = function (pos) {
this.pos = pos;
};
inputStream.eof = function () {
return this.pos >= input.length;
};
return inputStream;
};
var coerceOutputStream = function coerceOutputStream(output) {
var outputStream = new Stream();
var resizeOk = true;
if (output) {
if (typeof output === 'number') {
outputStream.buffer = new Uint8Array(output);
resizeOk = false;
} else if ('writeByte' in output) {
return output;
} else {
outputStream.buffer = output;
resizeOk = false;
}
} else {
outputStream.buffer = new Uint8Array(16384);
}
outputStream.pos = 0;
outputStream.writeByte = function (_byte) {
if (resizeOk && this.pos >= this.buffer.length) {
var newBuffer = new Uint8Array(this.buffer.length * 2);
newBuffer.set(this.buffer);
this.buffer = newBuffer;
}
this.buffer[this.pos++] = _byte;
};
outputStream.getBuffer = function () {
// trim buffer
if (this.pos !== this.buffer.length) {
if (!resizeOk) throw new TypeError('outputsize does not match decoded input');
var newBuffer = new Uint8Array(this.pos);
newBuffer.set(this.buffer.subarray(0, this.pos));
this.buffer = newBuffer;
}
return this.buffer;
};
outputStream._coerced = true;
return outputStream;
};
/* Static helper functions */
Bunzip.Err = Err;
// 'input' can be a stream or a buffer
// 'output' can be a stream or a buffer or a number (buffer size)
Bunzip.decode = function (input, output, multistream) {
// make a stream from a buffer, if necessary
var inputStream = coerceInputStream(input);
var outputStream = coerceOutputStream(output);
var bz = new Bunzip(inputStream, outputStream);
while (true) {
if ('eof' in inputStream && inputStream.eof()) break;
if (bz._init_block()) {
bz._read_bunzip();
} else {
var targetStreamCRC = bz.reader.read(32) >>> 0; // (convert to unsigned)
if (targetStreamCRC !== bz.streamCRC) {
_throw(Err.DATA_ERROR, "Bad stream CRC " + "(got " + bz.streamCRC.toString(16) + " expected " + targetStreamCRC.toString(16) + ")");
}
if (multistream && 'eof' in inputStream && !inputStream.eof()) {
// note that start_bunzip will also resync the bit reader to next byte
bz._start_bunzip(inputStream, outputStream);
} else break;
}
}
if ('getBuffer' in outputStream) return outputStream.getBuffer();
};
Bunzip.decodeBlock = function (input, pos, output) {
// make a stream from a buffer, if necessary
var inputStream = coerceInputStream(input);
var outputStream = coerceOutputStream(output);
var bz = new Bunzip(inputStream, outputStream);
bz.reader.seek(pos);
/* Fill the decode buffer for the block */
var moreBlocks = bz._get_next_block();
if (moreBlocks) {
/* Init the CRC for writing */
bz.blockCRC = new CRC32();
/* Zero this so the current byte from before the seek is not written */
bz.writeCopies = 0;
/* Decompress the block and write to stdout */
bz._read_bunzip();
// XXX keep writing?
}
if ('getBuffer' in outputStream) return outputStream.getBuffer();
};
/* Reads bzip2 file from stream or buffer `input`, and invoke
* `callback(position, size)` once for each bzip2 block,
* where position gives the starting position (in *bits*)
* and size gives uncompressed size of the block (in *bytes*). */
Bunzip.table = function (input, callback, multistream) {
// make a stream from a buffer, if necessary
var inputStream = new Stream();
inputStream.delegate = coerceInputStream(input);
inputStream.pos = 0;
inputStream.readByte = function () {
this.pos++;
return this.delegate.readByte();
};
if (inputStream.delegate.eof) {
inputStream.eof = inputStream.delegate.eof.bind(inputStream.delegate);
}
var outputStream = new Stream();
outputStream.pos = 0;
outputStream.writeByte = function () {
this.pos++;
};
var bz = new Bunzip(inputStream, outputStream);
var blockSize = bz.dbufSize;
while (true) {
if ('eof' in inputStream && inputStream.eof()) break;
var position = inputStream.pos * 8 + bz.reader.bitOffset;
if (bz.reader.hasByte) {
position -= 8;
}
if (bz._init_block()) {
var start = outputStream.pos;
bz._read_bunzip();
callback(position, outputStream.pos - start);
} else {
var crc = bz.reader.read(32); // (but we ignore the crc)
if (multistream && 'eof' in inputStream && !inputStream.eof()) {
// note that start_bunzip will also resync the bit reader to next byte
bz._start_bunzip(inputStream, outputStream);
console.assert(bz.dbufSize === blockSize, "shouldn't change block size within multistream file");
} else break;
}
}
};
Bunzip.Stream = Stream;
module.exports = Bunzip;
},{"./bitreader":68,"./crc32":69,"./stream":71}],71:[function(require,module,exports){
"use strict";
/* very simple input/output stream interface */
var Stream = function Stream() {};
// input streams //////////////
/** Returns the next byte, or -1 for EOF. */
Stream.prototype.readByte = function () {
throw new Error("abstract method readByte() not implemented");
};
/** Attempts to fill the buffer; returns number of bytes read, or
* -1 for EOF. */
Stream.prototype.read = function (buffer, bufOffset, length) {
var bytesRead = 0;
while (bytesRead < length) {
var c = this.readByte();
if (c < 0) {
// EOF
return bytesRead === 0 ? -1 : bytesRead;
}
buffer[bufOffset++] = c;
bytesRead++;
}
return bytesRead;
};
Stream.prototype.seek = function (new_pos) {
throw new Error("abstract method seek() not implemented");
};
// output streams ///////////
Stream.prototype.writeByte = function (_byte) {
throw new Error("abstract method readByte() not implemented");
};
Stream.prototype.write = function (buffer, bufOffset, length) {
var i;
for (i = 0; i < length; i++) {
this.writeByte(buffer[bufOffset++]);
}
return length;
};
Stream.prototype.flush = function () {};
module.exports = Stream;
},{}],72:[function(require,module,exports){
'use strict';
// This is free and unencumbered software released into the public domain.
// See LICENSE.md for more information.
//
// Utilities
//
/**
* @param {number} a The number to test.
* @param {number} min The minimum value in the range, inclusive.
* @param {number} max The maximum value in the range, inclusive.
* @return {boolean} True if a >= min and a <= max.
*/
function inRange(a, min, max) {
return min <= a && a <= max;
}
/**
* @param {*} o
* @return {Object}
*/
function ToDictionary(o) {
if (o === undefined) return {};
if (o === Object(o)) return o;
throw TypeError('Could not convert argument to dictionary');
}
/**
* @param {string} string Input string of UTF-16 code units.
* @return {!Array.<number>} Code points.
*/
function stringToCodePoints(string) {
// https://heycam.github.io/webidl/#dfn-obtain-unicode
// 1. Let S be the DOMString value.
var s = String(string);
// 2. Let n be the length of S.
var n = s.length;
// 3. Initialize i to 0.
var i = 0;
// 4. Initialize U to be an empty sequence of Unicode characters.
var u = [];
// 5. While i < n:
while (i < n) {
// 1. Let c be the code unit in S at index i.
var c = s.charCodeAt(i);
// 2. Depending on the value of c:
// c < 0xD800 or c > 0xDFFF
if (c < 0xD800 || c > 0xDFFF) {
// Append to U the Unicode character with code point c.
u.push(c);
}
// 0xDC00 ≤ c ≤ 0xDFFF
else if (0xDC00 <= c && c <= 0xDFFF) {
// Append to U a U+FFFD REPLACEMENT CHARACTER.
u.push(0xFFFD);
}
// 0xD800 ≤ c ≤ 0xDBFF
else if (0xD800 <= c && c <= 0xDBFF) {
// 1. If i = n1, then append to U a U+FFFD REPLACEMENT
// CHARACTER.
if (i === n - 1) {
u.push(0xFFFD);
}
// 2. Otherwise, i < n1:
else {
// 1. Let d be the code unit in S at index i+1.
var d = string.charCodeAt(i + 1);
// 2. If 0xDC00 ≤ d ≤ 0xDFFF, then:
if (0xDC00 <= d && d <= 0xDFFF) {
// 1. Let a be c & 0x3FF.
var a = c & 0x3FF;
// 2. Let b be d & 0x3FF.
var b = d & 0x3FF;
// 3. Append to U the Unicode character with code point
// 2^16+2^10*a+b.
u.push(0x10000 + (a << 10) + b);
// 4. Set i to i+1.
i += 1;
}
// 3. Otherwise, d < 0xDC00 or d > 0xDFFF. Append to U a
// U+FFFD REPLACEMENT CHARACTER.
else {
u.push(0xFFFD);
}
}
}
// 3. Set i to i+1.
i += 1;
}
// 6. Return U.
return u;
}
/**
* @param {!Array.<number>} code_points Array of code points.
* @return {string} string String of UTF-16 code units.
*/
function codePointsToString(code_points) {
var s = '';
for (var i = 0; i < code_points.length; ++i) {
var cp = code_points[i];
if (cp <= 0xFFFF) {
s += String.fromCharCode(cp);
} else {
cp -= 0x10000;
s += String.fromCharCode((cp >> 10) + 0xD800,
(cp & 0x3FF) + 0xDC00);
}
}
return s;
}
//
// Implementation of Encoding specification
// https://encoding.spec.whatwg.org/
//
//
// 3. Terminology
//
/**
* End-of-stream is a special token that signifies no more tokens
* are in the stream.
* @const
*/ var end_of_stream = -1;
/**
* A stream represents an ordered sequence of tokens.
*
* @constructor
* @param {!(Array.<number>|Uint8Array)} tokens Array of tokens that provide the
* stream.
*/
function Stream(tokens) {
/** @type {!Array.<number>} */
this.tokens = [].slice.call(tokens);
}
Stream.prototype = {
/**
* @return {boolean} True if end-of-stream has been hit.
*/
endOfStream: function() {
return !this.tokens.length;
},
/**
* When a token is read from a stream, the first token in the
* stream must be returned and subsequently removed, and
* end-of-stream must be returned otherwise.
*
* @return {number} Get the next token from the stream, or
* end_of_stream.
*/
read: function() {
if (!this.tokens.length)
return end_of_stream;
return this.tokens.shift();
},
/**
* When one or more tokens are prepended to a stream, those tokens
* must be inserted, in given order, before the first token in the
* stream.
*
* @param {(number|!Array.<number>)} token The token(s) to prepend to the stream.
*/
prepend: function(token) {
if (Array.isArray(token)) {
var tokens = /**@type {!Array.<number>}*/(token);
while (tokens.length)
this.tokens.unshift(tokens.pop());
} else {
this.tokens.unshift(token);
}
},
/**
* When one or more tokens are pushed to a stream, those tokens
* must be inserted, in given order, after the last token in the
* stream.
*
* @param {(number|!Array.<number>)} token The tokens(s) to prepend to the stream.
*/
push: function(token) {
if (Array.isArray(token)) {
var tokens = /**@type {!Array.<number>}*/(token);
while (tokens.length)
this.tokens.push(tokens.shift());
} else {
this.tokens.push(token);
}
}
};
//
// 4. Encodings
//
// 4.1 Encoders and decoders
/** @const */
var finished = -1;
/**
* @param {boolean} fatal If true, decoding errors raise an exception.
* @param {number=} opt_code_point Override the standard fallback code point.
* @return {number} The code point to insert on a decoding error.
*/
function decoderError(fatal, opt_code_point) {
if (fatal)
throw TypeError('Decoder error');
return opt_code_point || 0xFFFD;
}
//
// 7. API
//
/** @const */ var DEFAULT_ENCODING = 'utf-8';
// 7.1 Interface TextDecoder
/**
* @constructor
* @param {string=} encoding The label of the encoding;
* defaults to 'utf-8'.
* @param {Object=} options
*/
function TextDecoder(encoding, options) {
if (!(this instanceof TextDecoder)) {
return new TextDecoder(encoding, options);
}
encoding = encoding !== undefined ? String(encoding).toLowerCase() : DEFAULT_ENCODING;
if (encoding !== DEFAULT_ENCODING) {
throw new Error('Encoding not supported. Only utf-8 is supported');
}
options = ToDictionary(options);
/** @private @type {boolean} */
this._streaming = false;
/** @private @type {boolean} */
this._BOMseen = false;
/** @private @type {?Decoder} */
this._decoder = null;
/** @private @type {boolean} */
this._fatal = Boolean(options['fatal']);
/** @private @type {boolean} */
this._ignoreBOM = Boolean(options['ignoreBOM']);
Object.defineProperty(this, 'encoding', {value: 'utf-8'});
Object.defineProperty(this, 'fatal', {value: this._fatal});
Object.defineProperty(this, 'ignoreBOM', {value: this._ignoreBOM});
}
TextDecoder.prototype = {
/**
* @param {ArrayBufferView=} input The buffer of bytes to decode.
* @param {Object=} options
* @return {string} The decoded string.
*/
decode: function decode(input, options) {
var bytes;
if (typeof input === 'object' && input instanceof ArrayBuffer) {
bytes = new Uint8Array(input);
} else if (typeof input === 'object' && 'buffer' in input &&
input.buffer instanceof ArrayBuffer) {
bytes = new Uint8Array(input.buffer,
input.byteOffset,
input.byteLength);
} else {
bytes = new Uint8Array(0);
}
options = ToDictionary(options);
if (!this._streaming) {
this._decoder = new UTF8Decoder({fatal: this._fatal});
this._BOMseen = false;
}
this._streaming = Boolean(options['stream']);
var input_stream = new Stream(bytes);
var code_points = [];
/** @type {?(number|!Array.<number>)} */
var result;
while (!input_stream.endOfStream()) {
result = this._decoder.handler(input_stream, input_stream.read());
if (result === finished)
break;
if (result === null)
continue;
if (Array.isArray(result))
code_points.push.apply(code_points, /**@type {!Array.<number>}*/(result));
else
code_points.push(result);
}
if (!this._streaming) {
do {
result = this._decoder.handler(input_stream, input_stream.read());
if (result === finished)
break;
if (result === null)
continue;
if (Array.isArray(result))
code_points.push.apply(code_points, /**@type {!Array.<number>}*/(result));
else
code_points.push(result);
} while (!input_stream.endOfStream());
this._decoder = null;
}
if (code_points.length) {
// If encoding is one of utf-8, utf-16be, and utf-16le, and
// ignore BOM flag and BOM seen flag are unset, run these
// subsubsteps:
if (['utf-8'].indexOf(this.encoding) !== -1 &&
!this._ignoreBOM && !this._BOMseen) {
// If token is U+FEFF, set BOM seen flag.
if (code_points[0] === 0xFEFF) {
this._BOMseen = true;
code_points.shift();
} else {
// Otherwise, if token is not end-of-stream, set BOM seen
// flag and append token to output.
this._BOMseen = true;
}
}
}
return codePointsToString(code_points);
}
};
// 7.2 Interface TextEncoder
/**
* @constructor
* @param {string=} encoding The label of the encoding;
* defaults to 'utf-8'.
* @param {Object=} options
*/
function TextEncoder(encoding, options) {
if (!(this instanceof TextEncoder))
return new TextEncoder(encoding, options);
encoding = encoding !== undefined ? String(encoding).toLowerCase() : DEFAULT_ENCODING;
if (encoding !== DEFAULT_ENCODING) {
throw new Error('Encoding not supported. Only utf-8 is supported');
}
options = ToDictionary(options);
/** @private @type {boolean} */
this._streaming = false;
/** @private @type {?Encoder} */
this._encoder = null;
/** @private @type {{fatal: boolean}} */
this._options = {fatal: Boolean(options['fatal'])};
Object.defineProperty(this, 'encoding', {value: 'utf-8'});
}
TextEncoder.prototype = {
/**
* @param {string=} opt_string The string to encode.
* @param {Object=} options
* @return {Uint8Array} Encoded bytes, as a Uint8Array.
*/
encode: function encode(opt_string, options) {
opt_string = opt_string ? String(opt_string) : '';
options = ToDictionary(options);
// NOTE: This option is nonstandard. None of the encodings
// permitted for encoding (i.e. UTF-8, UTF-16) are stateful,
// so streaming is not necessary.
if (!this._streaming)
this._encoder = new UTF8Encoder(this._options);
this._streaming = Boolean(options['stream']);
var bytes = [];
var input_stream = new Stream(stringToCodePoints(opt_string));
/** @type {?(number|!Array.<number>)} */
var result;
while (!input_stream.endOfStream()) {
result = this._encoder.handler(input_stream, input_stream.read());
if (result === finished)
break;
if (Array.isArray(result))
bytes.push.apply(bytes, /**@type {!Array.<number>}*/(result));
else
bytes.push(result);
}
if (!this._streaming) {
while (true) {
result = this._encoder.handler(input_stream, input_stream.read());
if (result === finished)
break;
if (Array.isArray(result))
bytes.push.apply(bytes, /**@type {!Array.<number>}*/(result));
else
bytes.push(result);
}
this._encoder = null;
}
return new Uint8Array(bytes);
}
};
//
// 8. The encoding
//
// 8.1 utf-8
/**
* @constructor
* @implements {Decoder}
* @param {{fatal: boolean}} options
*/
function UTF8Decoder(options) {
var fatal = options.fatal;
// utf-8's decoder's has an associated utf-8 code point, utf-8
// bytes seen, and utf-8 bytes needed (all initially 0), a utf-8
// lower boundary (initially 0x80), and a utf-8 upper boundary
// (initially 0xBF).
var /** @type {number} */ utf8_code_point = 0,
/** @type {number} */ utf8_bytes_seen = 0,
/** @type {number} */ utf8_bytes_needed = 0,
/** @type {number} */ utf8_lower_boundary = 0x80,
/** @type {number} */ utf8_upper_boundary = 0xBF;
/**
* @param {Stream} stream The stream of bytes being decoded.
* @param {number} bite The next byte read from the stream.
* @return {?(number|!Array.<number>)} The next code point(s)
* decoded, or null if not enough data exists in the input
* stream to decode a complete code point.
*/
this.handler = function(stream, bite) {
// 1. If byte is end-of-stream and utf-8 bytes needed is not 0,
// set utf-8 bytes needed to 0 and return error.
if (bite === end_of_stream && utf8_bytes_needed !== 0) {
utf8_bytes_needed = 0;
return decoderError(fatal);
}
// 2. If byte is end-of-stream, return finished.
if (bite === end_of_stream)
return finished;
// 3. If utf-8 bytes needed is 0, based on byte:
if (utf8_bytes_needed === 0) {
// 0x00 to 0x7F
if (inRange(bite, 0x00, 0x7F)) {
// Return a code point whose value is byte.
return bite;
}
// 0xC2 to 0xDF
if (inRange(bite, 0xC2, 0xDF)) {
// Set utf-8 bytes needed to 1 and utf-8 code point to byte
// 0xC0.
utf8_bytes_needed = 1;
utf8_code_point = bite - 0xC0;
}
// 0xE0 to 0xEF
else if (inRange(bite, 0xE0, 0xEF)) {
// 1. If byte is 0xE0, set utf-8 lower boundary to 0xA0.
if (bite === 0xE0)
utf8_lower_boundary = 0xA0;
// 2. If byte is 0xED, set utf-8 upper boundary to 0x9F.
if (bite === 0xED)
utf8_upper_boundary = 0x9F;
// 3. Set utf-8 bytes needed to 2 and utf-8 code point to
// byte 0xE0.
utf8_bytes_needed = 2;
utf8_code_point = bite - 0xE0;
}
// 0xF0 to 0xF4
else if (inRange(bite, 0xF0, 0xF4)) {
// 1. If byte is 0xF0, set utf-8 lower boundary to 0x90.
if (bite === 0xF0)
utf8_lower_boundary = 0x90;
// 2. If byte is 0xF4, set utf-8 upper boundary to 0x8F.
if (bite === 0xF4)
utf8_upper_boundary = 0x8F;
// 3. Set utf-8 bytes needed to 3 and utf-8 code point to
// byte 0xF0.
utf8_bytes_needed = 3;
utf8_code_point = bite - 0xF0;
}
// Otherwise
else {
// Return error.
return decoderError(fatal);
}
// Then (byte is in the range 0xC2 to 0xF4) set utf-8 code
// point to utf-8 code point << (6 × utf-8 bytes needed) and
// return continue.
utf8_code_point = utf8_code_point << (6 * utf8_bytes_needed);
return null;
}
// 4. If byte is not in the range utf-8 lower boundary to utf-8
// upper boundary, run these substeps:
if (!inRange(bite, utf8_lower_boundary, utf8_upper_boundary)) {
// 1. Set utf-8 code point, utf-8 bytes needed, and utf-8
// bytes seen to 0, set utf-8 lower boundary to 0x80, and set
// utf-8 upper boundary to 0xBF.
utf8_code_point = utf8_bytes_needed = utf8_bytes_seen = 0;
utf8_lower_boundary = 0x80;
utf8_upper_boundary = 0xBF;
// 2. Prepend byte to stream.
stream.prepend(bite);
// 3. Return error.
return decoderError(fatal);
}
// 5. Set utf-8 lower boundary to 0x80 and utf-8 upper boundary
// to 0xBF.
utf8_lower_boundary = 0x80;
utf8_upper_boundary = 0xBF;
// 6. Increase utf-8 bytes seen by one and set utf-8 code point
// to utf-8 code point + (byte 0x80) << (6 × (utf-8 bytes
// needed utf-8 bytes seen)).
utf8_bytes_seen += 1;
utf8_code_point += (bite - 0x80) << (6 * (utf8_bytes_needed - utf8_bytes_seen));
// 7. If utf-8 bytes seen is not equal to utf-8 bytes needed,
// continue.
if (utf8_bytes_seen !== utf8_bytes_needed)
return null;
// 8. Let code point be utf-8 code point.
var code_point = utf8_code_point;
// 9. Set utf-8 code point, utf-8 bytes needed, and utf-8 bytes
// seen to 0.
utf8_code_point = utf8_bytes_needed = utf8_bytes_seen = 0;
// 10. Return a code point whose value is code point.
return code_point;
};
}
/**
* @constructor
* @implements {Encoder}
* @param {{fatal: boolean}} options
*/
function UTF8Encoder(options) {
var fatal = options.fatal;
/**
* @param {Stream} stream Input stream.
* @param {number} code_point Next code point read from the stream.
* @return {(number|!Array.<number>)} Byte(s) to emit.
*/
this.handler = function(stream, code_point) {
// 1. If code point is end-of-stream, return finished.
if (code_point === end_of_stream)
return finished;
// 2. If code point is in the range U+0000 to U+007F, return a
// byte whose value is code point.
if (inRange(code_point, 0x0000, 0x007f))
return code_point;
// 3. Set count and offset based on the range code point is in:
var count, offset;
// U+0080 to U+07FF: 1 and 0xC0
if (inRange(code_point, 0x0080, 0x07FF)) {
count = 1;
offset = 0xC0;
}
// U+0800 to U+FFFF: 2 and 0xE0
else if (inRange(code_point, 0x0800, 0xFFFF)) {
count = 2;
offset = 0xE0;
}
// U+10000 to U+10FFFF: 3 and 0xF0
else if (inRange(code_point, 0x10000, 0x10FFFF)) {
count = 3;
offset = 0xF0;
}
// 4.Let bytes be a byte sequence whose first byte is (code
// point >> (6 × count)) + offset.
var bytes = [(code_point >> (6 * count)) + offset];
// 5. Run these substeps while count is greater than 0:
while (count > 0) {
// 1. Set temp to code point >> (6 × (count 1)).
var temp = code_point >> (6 * (count - 1));
// 2. Append to bytes 0x80 | (temp & 0x3F).
bytes.push(0x80 | (temp & 0x3F));
// 3. Decrease count by one.
count -= 1;
}
// 6. Return bytes bytes, in order.
return bytes;
};
}
exports.TextEncoder = TextEncoder;
exports.TextDecoder = TextDecoder;
},{}],73:[function(require,module,exports){
/*jshint bitwise: false*/
(function(nacl) {
'use strict';
// Ported in 2014 by Dmitry Chestnykh and Devi Mandiri.
// Public domain.
//
// Implementation derived from TweetNaCl version 20140427.
// See for details: http://tweetnacl.cr.yp.to/
var gf = function(init) {
var i, r = new Float64Array(16);
if (init) for (i = 0; i < init.length; i++) r[i] = init[i];
return r;
};
// Pluggable, initialized in high-level API below.
var randombytes = function(/* x, n */) { throw new Error('no PRNG'); };
var _9 = new Uint8Array(32); _9[0] = 9;
var gf0 = gf(),
gf1 = gf([1]),
_121665 = gf([0xdb41, 1]),
D = gf([0x78a3, 0x1359, 0x4dca, 0x75eb, 0xd8ab, 0x4141, 0x0a4d, 0x0070, 0xe898, 0x7779, 0x4079, 0x8cc7, 0xfe73, 0x2b6f, 0x6cee, 0x5203]),
D2 = gf([0xf159, 0x26b2, 0x9b94, 0xebd6, 0xb156, 0x8283, 0x149a, 0x00e0, 0xd130, 0xeef3, 0x80f2, 0x198e, 0xfce7, 0x56df, 0xd9dc, 0x2406]),
X = gf([0xd51a, 0x8f25, 0x2d60, 0xc956, 0xa7b2, 0x9525, 0xc760, 0x692c, 0xdc5c, 0xfdd6, 0xe231, 0xc0a4, 0x53fe, 0xcd6e, 0x36d3, 0x2169]),
Y = gf([0x6658, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666]),
I = gf([0xa0b0, 0x4a0e, 0x1b27, 0xc4ee, 0xe478, 0xad2f, 0x1806, 0x2f43, 0xd7a7, 0x3dfb, 0x0099, 0x2b4d, 0xdf0b, 0x4fc1, 0x2480, 0x2b83]);
function vn(x, xi, y, yi, n) {
var i,d = 0;
for (i = 0; i < n; i++) d |= x[xi+i]^y[yi+i];
return (1 & ((d - 1) >>> 8)) - 1;
}
function crypto_verify_32(x, xi, y, yi) {
return vn(x,xi,y,yi,32);
}
function set25519(r, a) {
var i;
for (i = 0; i < 16; i++) r[i] = a[i]|0;
}
function car25519(o) {
var i, v, c = 1;
for (i = 0; i < 16; i++) {
v = o[i] + c + 65535;
c = Math.floor(v / 65536);
o[i] = v - c * 65536;
}
o[0] += c-1 + 37 * (c-1);
}
function sel25519(p, q, b) {
var t, c = ~(b-1);
for (var i = 0; i < 16; i++) {
t = c & (p[i] ^ q[i]);
p[i] ^= t;
q[i] ^= t;
}
}
function pack25519(o, n) {
var i, j, b;
var m = gf(), t = gf();
for (i = 0; i < 16; i++) t[i] = n[i];
car25519(t);
car25519(t);
car25519(t);
for (j = 0; j < 2; j++) {
m[0] = t[0] - 0xffed;
for (i = 1; i < 15; i++) {
m[i] = t[i] - 0xffff - ((m[i-1]>>16) & 1);
m[i-1] &= 0xffff;
}
m[15] = t[15] - 0x7fff - ((m[14]>>16) & 1);
b = (m[15]>>16) & 1;
m[14] &= 0xffff;
sel25519(t, m, 1-b);
}
for (i = 0; i < 16; i++) {
o[2*i] = t[i] & 0xff;
o[2*i+1] = t[i]>>8;
}
}
function neq25519(a, b) {
var c = new Uint8Array(32), d = new Uint8Array(32);
pack25519(c, a);
pack25519(d, b);
return crypto_verify_32(c, 0, d, 0);
}
function par25519(a) {
var d = new Uint8Array(32);
pack25519(d, a);
return d[0] & 1;
}
function unpack25519(o, n) {
var i;
for (i = 0; i < 16; i++) o[i] = n[2*i] + (n[2*i+1] << 8);
o[15] &= 0x7fff;
}
function A(o, a, b) {
for (var i = 0; i < 16; i++) o[i] = a[i] + b[i];
}
function Z(o, a, b) {
for (var i = 0; i < 16; i++) o[i] = a[i] - b[i];
}
function M(o, a, b) {
var v, c,
t0 = 0, t1 = 0, t2 = 0, t3 = 0, t4 = 0, t5 = 0, t6 = 0, t7 = 0,
t8 = 0, t9 = 0, t10 = 0, t11 = 0, t12 = 0, t13 = 0, t14 = 0, t15 = 0,
t16 = 0, t17 = 0, t18 = 0, t19 = 0, t20 = 0, t21 = 0, t22 = 0, t23 = 0,
t24 = 0, t25 = 0, t26 = 0, t27 = 0, t28 = 0, t29 = 0, t30 = 0,
b0 = b[0],
b1 = b[1],
b2 = b[2],
b3 = b[3],
b4 = b[4],
b5 = b[5],
b6 = b[6],
b7 = b[7],
b8 = b[8],
b9 = b[9],
b10 = b[10],
b11 = b[11],
b12 = b[12],
b13 = b[13],
b14 = b[14],
b15 = b[15];
v = a[0];
t0 += v * b0;
t1 += v * b1;
t2 += v * b2;
t3 += v * b3;
t4 += v * b4;
t5 += v * b5;
t6 += v * b6;
t7 += v * b7;
t8 += v * b8;
t9 += v * b9;
t10 += v * b10;
t11 += v * b11;
t12 += v * b12;
t13 += v * b13;
t14 += v * b14;
t15 += v * b15;
v = a[1];
t1 += v * b0;
t2 += v * b1;
t3 += v * b2;
t4 += v * b3;
t5 += v * b4;
t6 += v * b5;
t7 += v * b6;
t8 += v * b7;
t9 += v * b8;
t10 += v * b9;
t11 += v * b10;
t12 += v * b11;
t13 += v * b12;
t14 += v * b13;
t15 += v * b14;
t16 += v * b15;
v = a[2];
t2 += v * b0;
t3 += v * b1;
t4 += v * b2;
t5 += v * b3;
t6 += v * b4;
t7 += v * b5;
t8 += v * b6;
t9 += v * b7;
t10 += v * b8;
t11 += v * b9;
t12 += v * b10;
t13 += v * b11;
t14 += v * b12;
t15 += v * b13;
t16 += v * b14;
t17 += v * b15;
v = a[3];
t3 += v * b0;
t4 += v * b1;
t5 += v * b2;
t6 += v * b3;
t7 += v * b4;
t8 += v * b5;
t9 += v * b6;
t10 += v * b7;
t11 += v * b8;
t12 += v * b9;
t13 += v * b10;
t14 += v * b11;
t15 += v * b12;
t16 += v * b13;
t17 += v * b14;
t18 += v * b15;
v = a[4];
t4 += v * b0;
t5 += v * b1;
t6 += v * b2;
t7 += v * b3;
t8 += v * b4;
t9 += v * b5;
t10 += v * b6;
t11 += v * b7;
t12 += v * b8;
t13 += v * b9;
t14 += v * b10;
t15 += v * b11;
t16 += v * b12;
t17 += v * b13;
t18 += v * b14;
t19 += v * b15;
v = a[5];
t5 += v * b0;
t6 += v * b1;
t7 += v * b2;
t8 += v * b3;
t9 += v * b4;
t10 += v * b5;
t11 += v * b6;
t12 += v * b7;
t13 += v * b8;
t14 += v * b9;
t15 += v * b10;
t16 += v * b11;
t17 += v * b12;
t18 += v * b13;
t19 += v * b14;
t20 += v * b15;
v = a[6];
t6 += v * b0;
t7 += v * b1;
t8 += v * b2;
t9 += v * b3;
t10 += v * b4;
t11 += v * b5;
t12 += v * b6;
t13 += v * b7;
t14 += v * b8;
t15 += v * b9;
t16 += v * b10;
t17 += v * b11;
t18 += v * b12;
t19 += v * b13;
t20 += v * b14;
t21 += v * b15;
v = a[7];
t7 += v * b0;
t8 += v * b1;
t9 += v * b2;
t10 += v * b3;
t11 += v * b4;
t12 += v * b5;
t13 += v * b6;
t14 += v * b7;
t15 += v * b8;
t16 += v * b9;
t17 += v * b10;
t18 += v * b11;
t19 += v * b12;
t20 += v * b13;
t21 += v * b14;
t22 += v * b15;
v = a[8];
t8 += v * b0;
t9 += v * b1;
t10 += v * b2;
t11 += v * b3;
t12 += v * b4;
t13 += v * b5;
t14 += v * b6;
t15 += v * b7;
t16 += v * b8;
t17 += v * b9;
t18 += v * b10;
t19 += v * b11;
t20 += v * b12;
t21 += v * b13;
t22 += v * b14;
t23 += v * b15;
v = a[9];
t9 += v * b0;
t10 += v * b1;
t11 += v * b2;
t12 += v * b3;
t13 += v * b4;
t14 += v * b5;
t15 += v * b6;
t16 += v * b7;
t17 += v * b8;
t18 += v * b9;
t19 += v * b10;
t20 += v * b11;
t21 += v * b12;
t22 += v * b13;
t23 += v * b14;
t24 += v * b15;
v = a[10];
t10 += v * b0;
t11 += v * b1;
t12 += v * b2;
t13 += v * b3;
t14 += v * b4;
t15 += v * b5;
t16 += v * b6;
t17 += v * b7;
t18 += v * b8;
t19 += v * b9;
t20 += v * b10;
t21 += v * b11;
t22 += v * b12;
t23 += v * b13;
t24 += v * b14;
t25 += v * b15;
v = a[11];
t11 += v * b0;
t12 += v * b1;
t13 += v * b2;
t14 += v * b3;
t15 += v * b4;
t16 += v * b5;
t17 += v * b6;
t18 += v * b7;
t19 += v * b8;
t20 += v * b9;
t21 += v * b10;
t22 += v * b11;
t23 += v * b12;
t24 += v * b13;
t25 += v * b14;
t26 += v * b15;
v = a[12];
t12 += v * b0;
t13 += v * b1;
t14 += v * b2;
t15 += v * b3;
t16 += v * b4;
t17 += v * b5;
t18 += v * b6;
t19 += v * b7;
t20 += v * b8;
t21 += v * b9;
t22 += v * b10;
t23 += v * b11;
t24 += v * b12;
t25 += v * b13;
t26 += v * b14;
t27 += v * b15;
v = a[13];
t13 += v * b0;
t14 += v * b1;
t15 += v * b2;
t16 += v * b3;
t17 += v * b4;
t18 += v * b5;
t19 += v * b6;
t20 += v * b7;
t21 += v * b8;
t22 += v * b9;
t23 += v * b10;
t24 += v * b11;
t25 += v * b12;
t26 += v * b13;
t27 += v * b14;
t28 += v * b15;
v = a[14];
t14 += v * b0;
t15 += v * b1;
t16 += v * b2;
t17 += v * b3;
t18 += v * b4;
t19 += v * b5;
t20 += v * b6;
t21 += v * b7;
t22 += v * b8;
t23 += v * b9;
t24 += v * b10;
t25 += v * b11;
t26 += v * b12;
t27 += v * b13;
t28 += v * b14;
t29 += v * b15;
v = a[15];
t15 += v * b0;
t16 += v * b1;
t17 += v * b2;
t18 += v * b3;
t19 += v * b4;
t20 += v * b5;
t21 += v * b6;
t22 += v * b7;
t23 += v * b8;
t24 += v * b9;
t25 += v * b10;
t26 += v * b11;
t27 += v * b12;
t28 += v * b13;
t29 += v * b14;
t30 += v * b15;
t0 += 38 * t16;
t1 += 38 * t17;
t2 += 38 * t18;
t3 += 38 * t19;
t4 += 38 * t20;
t5 += 38 * t21;
t6 += 38 * t22;
t7 += 38 * t23;
t8 += 38 * t24;
t9 += 38 * t25;
t10 += 38 * t26;
t11 += 38 * t27;
t12 += 38 * t28;
t13 += 38 * t29;
t14 += 38 * t30;
// t15 left as is
// first car
c = 1;
v = t0 + c + 65535; c = Math.floor(v / 65536); t0 = v - c * 65536;
v = t1 + c + 65535; c = Math.floor(v / 65536); t1 = v - c * 65536;
v = t2 + c + 65535; c = Math.floor(v / 65536); t2 = v - c * 65536;
v = t3 + c + 65535; c = Math.floor(v / 65536); t3 = v - c * 65536;
v = t4 + c + 65535; c = Math.floor(v / 65536); t4 = v - c * 65536;
v = t5 + c + 65535; c = Math.floor(v / 65536); t5 = v - c * 65536;
v = t6 + c + 65535; c = Math.floor(v / 65536); t6 = v - c * 65536;
v = t7 + c + 65535; c = Math.floor(v / 65536); t7 = v - c * 65536;
v = t8 + c + 65535; c = Math.floor(v / 65536); t8 = v - c * 65536;
v = t9 + c + 65535; c = Math.floor(v / 65536); t9 = v - c * 65536;
v = t10 + c + 65535; c = Math.floor(v / 65536); t10 = v - c * 65536;
v = t11 + c + 65535; c = Math.floor(v / 65536); t11 = v - c * 65536;
v = t12 + c + 65535; c = Math.floor(v / 65536); t12 = v - c * 65536;
v = t13 + c + 65535; c = Math.floor(v / 65536); t13 = v - c * 65536;
v = t14 + c + 65535; c = Math.floor(v / 65536); t14 = v - c * 65536;
v = t15 + c + 65535; c = Math.floor(v / 65536); t15 = v - c * 65536;
t0 += c-1 + 37 * (c-1);
// second car
c = 1;
v = t0 + c + 65535; c = Math.floor(v / 65536); t0 = v - c * 65536;
v = t1 + c + 65535; c = Math.floor(v / 65536); t1 = v - c * 65536;
v = t2 + c + 65535; c = Math.floor(v / 65536); t2 = v - c * 65536;
v = t3 + c + 65535; c = Math.floor(v / 65536); t3 = v - c * 65536;
v = t4 + c + 65535; c = Math.floor(v / 65536); t4 = v - c * 65536;
v = t5 + c + 65535; c = Math.floor(v / 65536); t5 = v - c * 65536;
v = t6 + c + 65535; c = Math.floor(v / 65536); t6 = v - c * 65536;
v = t7 + c + 65535; c = Math.floor(v / 65536); t7 = v - c * 65536;
v = t8 + c + 65535; c = Math.floor(v / 65536); t8 = v - c * 65536;
v = t9 + c + 65535; c = Math.floor(v / 65536); t9 = v - c * 65536;
v = t10 + c + 65535; c = Math.floor(v / 65536); t10 = v - c * 65536;
v = t11 + c + 65535; c = Math.floor(v / 65536); t11 = v - c * 65536;
v = t12 + c + 65535; c = Math.floor(v / 65536); t12 = v - c * 65536;
v = t13 + c + 65535; c = Math.floor(v / 65536); t13 = v - c * 65536;
v = t14 + c + 65535; c = Math.floor(v / 65536); t14 = v - c * 65536;
v = t15 + c + 65535; c = Math.floor(v / 65536); t15 = v - c * 65536;
t0 += c-1 + 37 * (c-1);
o[ 0] = t0;
o[ 1] = t1;
o[ 2] = t2;
o[ 3] = t3;
o[ 4] = t4;
o[ 5] = t5;
o[ 6] = t6;
o[ 7] = t7;
o[ 8] = t8;
o[ 9] = t9;
o[10] = t10;
o[11] = t11;
o[12] = t12;
o[13] = t13;
o[14] = t14;
o[15] = t15;
}
function S(o, a) {
M(o, a, a);
}
function inv25519(o, i) {
var c = gf();
var a;
for (a = 0; a < 16; a++) c[a] = i[a];
for (a = 253; a >= 0; a--) {
S(c, c);
if(a !== 2 && a !== 4) M(c, c, i);
}
for (a = 0; a < 16; a++) o[a] = c[a];
}
function pow2523(o, i) {
var c = gf();
var a;
for (a = 0; a < 16; a++) c[a] = i[a];
for (a = 250; a >= 0; a--) {
S(c, c);
if(a !== 1) M(c, c, i);
}
for (a = 0; a < 16; a++) o[a] = c[a];
}
function crypto_scalarmult(q, n, p) {
var z = new Uint8Array(32);
var x = new Float64Array(80), r, i;
var a = gf(), b = gf(), c = gf(),
d = gf(), e = gf(), f = gf();
for (i = 0; i < 31; i++) z[i] = n[i];
z[31]=(n[31]&127)|64;
z[0]&=248;
unpack25519(x,p);
for (i = 0; i < 16; i++) {
b[i]=x[i];
d[i]=a[i]=c[i]=0;
}
a[0]=d[0]=1;
for (i=254; i>=0; --i) {
r=(z[i>>>3]>>>(i&7))&1;
sel25519(a,b,r);
sel25519(c,d,r);
A(e,a,c);
Z(a,a,c);
A(c,b,d);
Z(b,b,d);
S(d,e);
S(f,a);
M(a,c,a);
M(c,b,e);
A(e,a,c);
Z(a,a,c);
S(b,a);
Z(c,d,f);
M(a,c,_121665);
A(a,a,d);
M(c,c,a);
M(a,d,f);
M(d,b,x);
S(b,e);
sel25519(a,b,r);
sel25519(c,d,r);
}
for (i = 0; i < 16; i++) {
x[i+16]=a[i];
x[i+32]=c[i];
x[i+48]=b[i];
x[i+64]=d[i];
}
var x32 = x.subarray(32);
var x16 = x.subarray(16);
inv25519(x32,x32);
M(x16,x16,x32);
pack25519(q,x16);
return 0;
}
function crypto_scalarmult_base(q, n) {
return crypto_scalarmult(q, n, _9);
}
function crypto_box_keypair(y, x) {
randombytes(x, 32);
return crypto_scalarmult_base(y, x);
}
function add(p, q) {
var a = gf(), b = gf(), c = gf(),
d = gf(), e = gf(), f = gf(),
g = gf(), h = gf(), t = gf();
Z(a, p[1], p[0]);
Z(t, q[1], q[0]);
M(a, a, t);
A(b, p[0], p[1]);
A(t, q[0], q[1]);
M(b, b, t);
M(c, p[3], q[3]);
M(c, c, D2);
M(d, p[2], q[2]);
A(d, d, d);
Z(e, b, a);
Z(f, d, c);
A(g, d, c);
A(h, b, a);
M(p[0], e, f);
M(p[1], h, g);
M(p[2], g, f);
M(p[3], e, h);
}
function cswap(p, q, b) {
var i;
for (i = 0; i < 4; i++) {
sel25519(p[i], q[i], b);
}
}
function pack(r, p) {
var tx = gf(), ty = gf(), zi = gf();
inv25519(zi, p[2]);
M(tx, p[0], zi);
M(ty, p[1], zi);
pack25519(r, ty);
r[31] ^= par25519(tx) << 7;
}
function scalarmult(p, q, s) {
var b, i;
set25519(p[0], gf0);
set25519(p[1], gf1);
set25519(p[2], gf1);
set25519(p[3], gf0);
for (i = 255; i >= 0; --i) {
b = (s[(i/8)|0] >> (i&7)) & 1;
cswap(p, q, b);
add(q, p);
add(p, p);
cswap(p, q, b);
}
}
function scalarbase(p, s) {
var q = [gf(), gf(), gf(), gf()];
set25519(q[0], X);
set25519(q[1], Y);
set25519(q[2], gf1);
M(q[3], X, Y);
scalarmult(p, q, s);
}
function crypto_sign_keypair(pk, sk, seeded) {
var d;
var p = [gf(), gf(), gf(), gf()];
var i;
if (!seeded) randombytes(sk, 32);
d = nacl.hash(sk.subarray(0, 32));
d[0] &= 248;
d[31] &= 127;
d[31] |= 64;
scalarbase(p, d);
pack(pk, p);
for (i = 0; i < 32; i++) sk[i+32] = pk[i];
return 0;
}
var L = new Float64Array([0xed, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x10]);
function modL(r, x) {
var carry, i, j, k;
for (i = 63; i >= 32; --i) {
carry = 0;
for (j = i - 32, k = i - 12; j < k; ++j) {
x[j] += carry - 16 * x[i] * L[j - (i - 32)];
carry = (x[j] + 128) >> 8;
x[j] -= carry * 256;
}
x[j] += carry;
x[i] = 0;
}
carry = 0;
for (j = 0; j < 32; j++) {
x[j] += carry - (x[31] >> 4) * L[j];
carry = x[j] >> 8;
x[j] &= 255;
}
for (j = 0; j < 32; j++) x[j] -= carry * L[j];
for (i = 0; i < 32; i++) {
x[i+1] += x[i] >> 8;
r[i] = x[i] & 255;
}
}
function reduce(r) {
var x = new Float64Array(64), i;
for (i = 0; i < 64; i++) x[i] = r[i];
for (i = 0; i < 64; i++) r[i] = 0;
modL(r, x);
}
// Note: difference from C - smlen returned, not passed as argument.
function crypto_sign(sm, m, n, sk) {
var d, h, r;
var i, j, x = new Float64Array(64);
var p = [gf(), gf(), gf(), gf()];
d = nacl.hash(sk.subarray(0, 32));
d[0] &= 248;
d[31] &= 127;
d[31] |= 64;
var smlen = n + 64;
for (i = 0; i < n; i++) sm[64 + i] = m[i];
for (i = 0; i < 32; i++) sm[32 + i] = d[32 + i];
r = nacl.hash(sm.subarray(32, smlen));
reduce(r);
scalarbase(p, r);
pack(sm, p);
for (i = 32; i < 64; i++) sm[i] = sk[i];
h = nacl.hash(sm.subarray(0, smlen));
reduce(h);
for (i = 0; i < 64; i++) x[i] = 0;
for (i = 0; i < 32; i++) x[i] = r[i];
for (i = 0; i < 32; i++) {
for (j = 0; j < 32; j++) {
x[i+j] += h[i] * d[j];
}
}
modL(sm.subarray(32), x);
return smlen;
}
function unpackneg(r, p) {
var t = gf(), chk = gf(), num = gf(),
den = gf(), den2 = gf(), den4 = gf(),
den6 = gf();
set25519(r[2], gf1);
unpack25519(r[1], p);
S(num, r[1]);
M(den, num, D);
Z(num, num, r[2]);
A(den, r[2], den);
S(den2, den);
S(den4, den2);
M(den6, den4, den2);
M(t, den6, num);
M(t, t, den);
pow2523(t, t);
M(t, t, num);
M(t, t, den);
M(t, t, den);
M(r[0], t, den);
S(chk, r[0]);
M(chk, chk, den);
if (neq25519(chk, num)) M(r[0], r[0], I);
S(chk, r[0]);
M(chk, chk, den);
if (neq25519(chk, num)) return -1;
if (par25519(r[0]) === (p[31]>>7)) Z(r[0], gf0, r[0]);
M(r[3], r[0], r[1]);
return 0;
}
function crypto_sign_open(m, sm, n, pk) {
var i, mlen;
var t = new Uint8Array(32), h;
var p = [gf(), gf(), gf(), gf()],
q = [gf(), gf(), gf(), gf()];
mlen = -1;
if (n < 64) return -1;
if (unpackneg(q, pk)) return -1;
for (i = 0; i < n; i++) m[i] = sm[i];
for (i = 0; i < 32; i++) m[i+32] = pk[i];
h = nacl.hash(m.subarray(0, n));
reduce(h);
scalarmult(p, q, h);
scalarbase(q, sm.subarray(32));
add(p, q);
pack(t, p);
n -= 64;
if (crypto_verify_32(sm, 0, t, 0)) {
for (i = 0; i < n; i++) m[i] = 0;
return -1;
}
for (i = 0; i < n; i++) m[i] = sm[i + 64];
mlen = n;
return mlen;
}
var crypto_scalarmult_BYTES = 32,
crypto_scalarmult_SCALARBYTES = 32,
crypto_box_PUBLICKEYBYTES = 32,
crypto_box_SECRETKEYBYTES = 32,
crypto_sign_BYTES = 64,
crypto_sign_PUBLICKEYBYTES = 32,
crypto_sign_SECRETKEYBYTES = 64,
crypto_sign_SEEDBYTES = 32;
function checkArrayTypes() {
for (var i = 0; i < arguments.length; i++) {
if (!(arguments[i] instanceof Uint8Array))
throw new TypeError('unexpected type, use Uint8Array');
}
}
function cleanup(arr) {
for (var i = 0; i < arr.length; i++) arr[i] = 0;
}
nacl.scalarMult = function(n, p) {
checkArrayTypes(n, p);
if (n.length !== crypto_scalarmult_SCALARBYTES) throw new Error('bad n size');
if (p.length !== crypto_scalarmult_BYTES) throw new Error('bad p size');
var q = new Uint8Array(crypto_scalarmult_BYTES);
crypto_scalarmult(q, n, p);
return q;
};
nacl.box = {};
nacl.box.keyPair = function() {
var pk = new Uint8Array(crypto_box_PUBLICKEYBYTES);
var sk = new Uint8Array(crypto_box_SECRETKEYBYTES);
crypto_box_keypair(pk, sk);
return {publicKey: pk, secretKey: sk};
};
nacl.box.keyPair.fromSecretKey = function(secretKey) {
checkArrayTypes(secretKey);
if (secretKey.length !== crypto_box_SECRETKEYBYTES)
throw new Error('bad secret key size');
var pk = new Uint8Array(crypto_box_PUBLICKEYBYTES);
crypto_scalarmult_base(pk, secretKey);
return {publicKey: pk, secretKey: new Uint8Array(secretKey)};
};
nacl.sign = function(msg, secretKey) {
checkArrayTypes(msg, secretKey);
if (secretKey.length !== crypto_sign_SECRETKEYBYTES)
throw new Error('bad secret key size');
var signedMsg = new Uint8Array(crypto_sign_BYTES+msg.length);
crypto_sign(signedMsg, msg, msg.length, secretKey);
return signedMsg;
};
nacl.sign.detached = function(msg, secretKey) {
var signedMsg = nacl.sign(msg, secretKey);
var sig = new Uint8Array(crypto_sign_BYTES);
for (var i = 0; i < sig.length; i++) sig[i] = signedMsg[i];
return sig;
};
nacl.sign.detached.verify = function(msg, sig, publicKey) {
checkArrayTypes(msg, sig, publicKey);
if (sig.length !== crypto_sign_BYTES)
throw new Error('bad signature size');
if (publicKey.length !== crypto_sign_PUBLICKEYBYTES)
throw new Error('bad public key size');
var sm = new Uint8Array(crypto_sign_BYTES + msg.length);
var m = new Uint8Array(crypto_sign_BYTES + msg.length);
var i;
for (i = 0; i < crypto_sign_BYTES; i++) sm[i] = sig[i];
for (i = 0; i < msg.length; i++) sm[i+crypto_sign_BYTES] = msg[i];
return (crypto_sign_open(m, sm, sm.length, publicKey) >= 0);
};
nacl.sign.keyPair = function() {
var pk = new Uint8Array(crypto_sign_PUBLICKEYBYTES);
var sk = new Uint8Array(crypto_sign_SECRETKEYBYTES);
crypto_sign_keypair(pk, sk);
return {publicKey: pk, secretKey: sk};
};
nacl.sign.keyPair.fromSecretKey = function(secretKey) {
checkArrayTypes(secretKey);
if (secretKey.length !== crypto_sign_SECRETKEYBYTES)
throw new Error('bad secret key size');
var pk = new Uint8Array(crypto_sign_PUBLICKEYBYTES);
for (var i = 0; i < pk.length; i++) pk[i] = secretKey[32+i];
return {publicKey: pk, secretKey: new Uint8Array(secretKey)};
};
nacl.sign.keyPair.fromSeed = function(seed) {
checkArrayTypes(seed);
if (seed.length !== crypto_sign_SEEDBYTES)
throw new Error('bad seed size');
var pk = new Uint8Array(crypto_sign_PUBLICKEYBYTES);
var sk = new Uint8Array(crypto_sign_SECRETKEYBYTES);
for (var i = 0; i < 32; i++) sk[i] = seed[i];
crypto_sign_keypair(pk, sk, true);
return {publicKey: pk, secretKey: sk};
};
nacl.setPRNG = function(fn) {
randombytes = fn;
};
(function() {
// Initialize PRNG if environment provides CSPRNG.
// If not, methods calling randombytes will throw.
var crypto = typeof self !== 'undefined' ? (self.crypto || self.msCrypto) : null;
if (crypto && crypto.getRandomValues) {
// Browsers.
var QUOTA = 65536;
nacl.setPRNG(function(x, n) {
var i, v = new Uint8Array(n);
for (i = 0; i < n; i += QUOTA) {
crypto.getRandomValues(v.subarray(i, i + Math.min(n - i, QUOTA)));
}
for (i = 0; i < n; i++) x[i] = v[i];
cleanup(v);
});
} else if (typeof require !== 'undefined') {
// Node.js.
crypto = require('crypto');
if (crypto && crypto.randomBytes) {
nacl.setPRNG(function(x, n) {
var i, v = crypto.randomBytes(n);
for (i = 0; i < n; i++) x[i] = v[i];
cleanup(v);
});
}
}
})();
})(typeof module !== 'undefined' && module.exports ? module.exports : (self.nacl = self.nacl || {}));
},{"crypto":"crypto"}],74:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.webToNode = exports.nodeToWeb = undefined;
var _streams = require('./streams');
var _streams2 = _interopRequireDefault(_streams);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
const NodeReadableStream = typeof window === 'undefined' && require('stream').Readable;
/**
* Web / node stream conversion functions
* From https://github.com/gwicke/node-web-streams
*/
let nodeToWeb;
let webToNode;
if (NodeReadableStream) {
/**
* Convert a Node Readable Stream to a Web ReadableStream
* @param {Readable} nodeStream
* @returns {ReadableStream}
*/
exports.nodeToWeb = nodeToWeb = function nodeToWeb(nodeStream) {
return new ReadableStream({
start(controller) {
nodeStream.pause();
nodeStream.on('data', chunk => {
controller.enqueue(chunk);
nodeStream.pause();
});
nodeStream.on('end', () => controller.close());
nodeStream.on('error', e => controller.error(e));
},
pull() {
nodeStream.resume();
},
cancel(reason) {
nodeStream.pause();
if (nodeStream.cancel) {
return nodeStream.cancel(reason);
}
}
});
};
class NodeReadable extends NodeReadableStream {
constructor(webStream, options) {
super(options);
this._webStream = webStream;
this._reader = _streams2.default.getReader(webStream);
this._reading = false;
this._doneReadingPromise = Promise.resolve();
this._cancelling = false;
}
_read(size) {
if (this._reading || this._cancelling) {
return;
}
this._reading = true;
const doRead = async () => {
try {
while (true) {
var _ref = await this._reader.read();
const done = _ref.done,
value = _ref.value;
if (done) {
this.push(null);
break;
}
if (!this.push(value) || this._cancelling) {
this._reading = false;
break;
}
}
} catch (e) {
this.emit('error', e);
}
};
this._doneReadingPromise = doRead();
}
async cancel(reason) {
this._cancelling = true;
await this._doneReadingPromise;
this._reader.releaseLock();
return this._webStream.cancel(reason);
}
}
/**
* Convert a Web ReadableStream to a Node Readable Stream
* @param {ReadableStream} webStream
* @returns {Readable}
*/
exports.webToNode = webToNode = function webToNode(webStream) {
return new NodeReadable(webStream);
};
}
exports.nodeToWeb = nodeToWeb;
exports.webToNode = webToNode;
},{"./streams":76,"stream":"stream"}],75:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.externalBuffer = exports.Reader = undefined;
var _streams = require('./streams');
var _streams2 = _interopRequireDefault(_streams);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
const doneReadingSet = new WeakSet();
const externalBuffer = Symbol('externalBuffer');
/**
* A wrapper class over the native ReadableStreamDefaultReader.
* This additionally implements pushing back data on the stream, which
* lets us implement peeking and a host of convenience functions.
* It also lets you read data other than streams, such as a Uint8Array.
* @class
*/
function Reader(input) {
this.stream = input;
if (input[externalBuffer]) {
this[externalBuffer] = input[externalBuffer].slice();
}
let streamType = _streams2.default.isStream(input);
if (streamType === 'node') {
input = _streams2.default.nodeToWeb(input);
}
if (streamType) {
const reader = input.getReader();
this._read = reader.read.bind(reader);
this._releaseLock = () => {
reader.closed.catch(function () {});
reader.releaseLock();
};
return;
}
let doneReading = false;
this._read = async () => {
if (doneReading || doneReadingSet.has(input)) {
return { value: undefined, done: true };
}
doneReading = true;
return { value: input, done: false };
};
this._releaseLock = () => {
if (doneReading) {
try {
doneReadingSet.add(input);
} catch (e) {}
}
};
}
/**
* Read a chunk of data.
* @returns {Promise<Object>} Either { done: false, value: Uint8Array | String } or { done: true, value: undefined }
* @async
*/
Reader.prototype.read = async function () {
if (this[externalBuffer] && this[externalBuffer].length) {
const value = this[externalBuffer].shift();
return { done: false, value };
}
return this._read();
};
/**
* Allow others to read the stream.
*/
Reader.prototype.releaseLock = function () {
if (this[externalBuffer]) {
this.stream[externalBuffer] = this[externalBuffer];
}
this._releaseLock();
};
/**
* Read up to and including the first \n character.
* @returns {Promise<String|Undefined>}
* @async
*/
Reader.prototype.readLine = async function () {
let buffer = [];
let returnVal;
while (!returnVal) {
var _ref = await this.read();
let done = _ref.done,
value = _ref.value;
value += '';
if (done) {
if (buffer.length) return _streams2.default.concat(buffer);
return;
}
const lineEndIndex = value.indexOf('\n') + 1;
if (lineEndIndex) {
returnVal = _streams2.default.concat(buffer.concat(value.substr(0, lineEndIndex)));
buffer = [];
}
if (lineEndIndex !== value.length) {
buffer.push(value.substr(lineEndIndex));
}
}
this.unshift(...buffer);
return returnVal;
};
/**
* Read a single byte/character.
* @returns {Promise<Number|String|Undefined>}
* @async
*/
Reader.prototype.readByte = async function () {
var _ref2 = await this.read();
const done = _ref2.done,
value = _ref2.value;
if (done) return;
const byte = value[0];
this.unshift(_streams2.default.slice(value, 1));
return byte;
};
/**
* Read a specific amount of bytes/characters, unless the stream ends before that amount.
* @returns {Promise<Uint8Array|String|Undefined>}
* @async
*/
Reader.prototype.readBytes = async function (length) {
const buffer = [];
let bufferLength = 0;
while (true) {
var _ref3 = await this.read();
const done = _ref3.done,
value = _ref3.value;
if (done) {
if (buffer.length) return _streams2.default.concat(buffer);
return;
}
buffer.push(value);
bufferLength += value.length;
if (bufferLength >= length) {
const bufferConcat = _streams2.default.concat(buffer);
this.unshift(_streams2.default.slice(bufferConcat, length));
return _streams2.default.slice(bufferConcat, 0, length);
}
}
};
/**
* Peek (look ahead) a specific amount of bytes/characters, unless the stream ends before that amount.
* @returns {Promise<Uint8Array|String|Undefined>}
* @async
*/
Reader.prototype.peekBytes = async function (length) {
const bytes = await this.readBytes(length);
this.unshift(bytes);
return bytes;
};
/**
* Push data to the front of the stream.
* @param {...(Uint8Array|String|Undefined)} values
*/
Reader.prototype.unshift = function (...values) {
if (!this[externalBuffer]) {
this[externalBuffer] = [];
}
this[externalBuffer].unshift(...values.filter(value => value && value.length));
};
/**
* Read the stream to the end and return its contents, concatenated by the join function (defaults to streams.concat).
* @param {Function} join
* @returns {Promise<Uint8array|String|Any>} the return value of join()
* @async
*/
Reader.prototype.readToEnd = async function (join = _streams2.default.concat) {
const result = [];
while (true) {
var _ref4 = await this.read();
const done = _ref4.done,
value = _ref4.value;
if (done) break;
result.push(value);
}
return join(result);
};
exports.Reader = Reader;
exports.externalBuffer = externalBuffer;
},{"./streams":76}],76:[function(require,module,exports){
(function (process){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _util = require('./util');
var _nodeConversions = require('./node-conversions');
var _reader = require('./reader');
const NodeBuffer = typeof window === 'undefined' && require('buffer').Buffer;
/**
* Convert data to Stream
* @param {ReadableStream|Uint8array|String} input data to convert
* @returns {ReadableStream} Converted data
*/
function toStream(input) {
let streamType = (0, _util.isStream)(input);
if (streamType === 'node') {
return (0, _nodeConversions.nodeToWeb)(input);
} else if (streamType) {
return input;
}
return new ReadableStream({
start(controller) {
controller.enqueue(input);
controller.close();
}
});
}
/**
* Concat a list of Uint8Arrays, Strings or Streams
* The caller should not mix Uint8Arrays with Strings, but may mix Streams with non-Streams.
* @param {Array<Uint8array|String|ReadableStream>} Array of Uint8Arrays/Strings/Streams to concatenate
* @returns {Uint8array|String|ReadableStream} Concatenated array
*/
function concat(list) {
if (list.some(_util.isStream)) {
return concatStream(list);
}
if (typeof list[0] === 'string') {
return list.join('');
}
if (NodeBuffer && NodeBuffer.isBuffer(list[0])) {
return NodeBuffer.concat(list);
}
return (0, _util.concatUint8Array)(list);
}
/**
* Concat a list of Streams
* @param {Array<ReadableStream|Uint8array|String>} list Array of Uint8Arrays/Strings/Streams to concatenate
* @returns {ReadableStream} Concatenated list
*/
function concatStream(list) {
list = list.map(toStream);
const transform = transformWithCancel(async function (reason) {
await Promise.all(transforms.map(stream => cancel(stream, reason)));
});
let prev = Promise.resolve();
const transforms = list.map((stream, i) => transformPair(stream, (readable, writable) => {
prev = prev.then(() => pipe(readable, transform.writable, {
preventClose: i !== list.length - 1
}));
return prev;
}));
return transform.readable;
}
/**
* Get a Reader
* @param {ReadableStream|Uint8array|String} input
* @returns {Reader}
*/
function getReader(input) {
return new _reader.Reader(input);
}
/**
* Get a Writer
* @param {WritableStream} input
* @returns {WritableStreamDefaultWriter}
*/
function getWriter(input) {
const writer = input.getWriter();
const releaseLock = writer.releaseLock;
writer.releaseLock = () => {
writer.closed.catch(function () {});
releaseLock.call(writer);
};
return writer;
}
/**
* Pipe a readable stream to a writable stream. Don't throw on input stream errors, but forward them to the output stream.
* @param {ReadableStream|Uint8array|String} input
* @param {WritableStream} target
* @param {Object} (optional) options
* @returns {Promise<undefined>} Promise indicating when piping has finished (input stream closed or errored)
* @async
*/
async function pipe(input, target, options) {
input = toStream(input);
try {
if (input[_reader.externalBuffer]) {
const writer = getWriter(target);
for (let i = 0; i < input[_reader.externalBuffer].length; i++) {
await writer.ready;
await writer.write(input[_reader.externalBuffer][i]);
}
writer.releaseLock();
}
return await input.pipeTo(target, options);
} catch (e) {}
}
/**
* Pipe a readable stream through a transform stream.
* @param {ReadableStream|Uint8array|String} input
* @param {Object} (optional) options
* @returns {ReadableStream} transformed stream
*/
function transformRaw(input, options) {
const transformStream = new TransformStream(options);
pipe(input, transformStream.writable);
return transformStream.readable;
}
/**
* Create a cancelable TransformStream.
* @param {Function} cancel
* @returns {TransformStream}
*/
function transformWithCancel(cancel) {
let pulled = false;
let backpressureChangePromiseResolve;
let outputController;
return {
readable: new ReadableStream({
start(controller) {
outputController = controller;
},
pull() {
if (backpressureChangePromiseResolve) {
backpressureChangePromiseResolve();
} else {
pulled = true;
}
},
cancel
}, { highWaterMark: 0 }),
writable: new WritableStream({
write: async function write(chunk) {
outputController.enqueue(chunk);
if (!pulled) {
await new Promise(resolve => {
backpressureChangePromiseResolve = resolve;
});
backpressureChangePromiseResolve = null;
} else {
pulled = false;
}
},
close: outputController.close.bind(outputController),
abort: outputController.error.bind(outputController)
})
};
}
/**
* Transform a stream using helper functions which are called on each chunk, and on stream close, respectively.
* @param {ReadableStream|Uint8array|String} input
* @param {Function} process
* @param {Function} finish
* @returns {ReadableStream|Uint8array|String}
*/
function transform(input, process = () => undefined, finish = () => undefined) {
if ((0, _util.isStream)(input)) {
return transformRaw(input, {
async transform(value, controller) {
try {
const result = await process(value);
if (result !== undefined) controller.enqueue(result);
} catch (e) {
controller.error(e);
}
},
async flush(controller) {
try {
const result = await finish();
if (result !== undefined) controller.enqueue(result);
} catch (e) {
controller.error(e);
}
}
});
}
const result1 = process(input);
const result2 = finish();
if (result1 !== undefined && result2 !== undefined) return concat([result1, result2]);
return result1 !== undefined ? result1 : result2;
}
/**
* Transform a stream using a helper function which is passed a readable and a writable stream.
* This function also maintains the possibility to cancel the input stream,
* and does so on cancelation of the output stream, despite cancelation
* normally being impossible when the input stream is being read from.
* @param {ReadableStream|Uint8array|String} input
* @param {Function} fn
* @returns {ReadableStream}
*/
function transformPair(input, fn) {
let incomingTransformController;
const incoming = new TransformStream({
start(controller) {
incomingTransformController = controller;
}
});
const pipeDonePromise = pipe(input, incoming.writable);
const outgoing = transformWithCancel(async function () {
incomingTransformController.error(new Error('Readable side was canceled.'));
await pipeDonePromise;
await new Promise(setTimeout);
});
fn(incoming.readable, outgoing.writable);
return outgoing.readable;
}
/**
* Parse a stream using a helper function which is passed a Reader.
* The reader additionally has a remainder() method which returns a
* stream pointing to the remainder of input, and is linked to input
* for cancelation.
* @param {ReadableStream|Uint8array|String} input
* @param {Function} fn
* @returns {Any} the return value of fn()
*/
function parse(input, fn) {
let returnValue;
const transformed = transformPair(input, (readable, writable) => {
const reader = getReader(readable);
reader.remainder = () => {
reader.releaseLock();
pipe(readable, writable);
return transformed;
};
returnValue = fn(reader);
});
return returnValue;
}
/**
* Tee a Stream for reading it twice. The input stream can no longer be read after tee()ing.
* Reading either of the two returned streams will pull from the input stream.
* The input stream will only be canceled if both of the returned streams are canceled.
* @param {ReadableStream|Uint8array|String} input
* @returns {Array<ReadableStream|Uint8array|String>} array containing two copies of input
*/
function tee(input) {
if ((0, _util.isStream)(input)) {
const teed = toStream(input).tee();
teed[0][_reader.externalBuffer] = teed[1][_reader.externalBuffer] = input[_reader.externalBuffer];
return teed;
}
return [slice(input), slice(input)];
}
/**
* Clone a Stream for reading it twice. The input stream can still be read after clone()ing.
* Reading from the clone will pull from the input stream.
* The input stream will only be canceled if both the clone and the input stream are canceled.
* @param {ReadableStream|Uint8array|String} input
* @returns {ReadableStream|Uint8array|String} cloned input
*/
function clone(input) {
if ((0, _util.isStream)(input)) {
const teed = tee(input);
overwrite(input, teed[0]);
return teed[1];
}
return slice(input);
}
/**
* Clone a Stream for reading it twice. Data will arrive at the same rate as the input stream is being read.
* Reading from the clone will NOT pull from the input stream. Data only arrives when reading the input stream.
* The input stream will NOT be canceled if the clone is canceled, only if the input stream are canceled.
* If the input stream is canceled, the clone will be errored.
* @param {ReadableStream|Uint8array|String} input
* @returns {ReadableStream|Uint8array|String} cloned input
*/
function passiveClone(input) {
if ((0, _util.isStream)(input)) {
return new ReadableStream({
start(controller) {
const transformed = transformPair(input, async (readable, writable) => {
const reader = getReader(readable);
const writer = getWriter(writable);
try {
while (true) {
await writer.ready;
var _ref = await reader.read();
const done = _ref.done,
value = _ref.value;
if (done) {
try {
controller.close();
} catch (e) {}
await writer.close();
return;
}
try {
controller.enqueue(value);
} catch (e) {}
await writer.write(value);
}
} catch (e) {
controller.error(e);
await writer.abort(e);
}
});
overwrite(input, transformed);
}
});
}
return slice(input);
}
/**
* Modify a stream object to point to a different stream object.
* This is used internally by clone() and passiveClone() to provide an abstraction over tee().
* @param {ReadableStream} input
* @param {ReadableStream} clone
*/
function overwrite(input, clone) {
// Overwrite input.getReader, input.locked, etc to point to clone
Object.entries(Object.getOwnPropertyDescriptors(ReadableStream.prototype)).forEach(([name, descriptor]) => {
if (name === 'constructor') {
return;
}
if (descriptor.value) {
descriptor.value = descriptor.value.bind(clone);
} else {
descriptor.get = descriptor.get.bind(clone);
}
Object.defineProperty(input, name, descriptor);
});
}
/**
* Return a stream pointing to a part of the input stream.
* @param {ReadableStream|Uint8array|String} input
* @returns {ReadableStream|Uint8array|String} clone
*/
function slice(input, begin = 0, end = Infinity) {
if ((0, _util.isStream)(input)) {
if (begin >= 0 && end >= 0) {
let bytesRead = 0;
return transformRaw(input, {
transform(value, controller) {
if (bytesRead < end) {
if (bytesRead + value.length >= begin) {
controller.enqueue(slice(value, Math.max(begin - bytesRead, 0), end - bytesRead));
}
bytesRead += value.length;
} else {
controller.terminate();
}
}
});
}
if (begin < 0 && (end < 0 || end === Infinity)) {
let lastBytes = [];
return transform(input, value => {
if (value.length >= -begin) lastBytes = [value];else lastBytes.push(value);
}, () => slice(concat(lastBytes), begin, end));
}
if (begin === 0 && end < 0) {
let lastBytes;
return transform(input, value => {
const returnValue = lastBytes ? concat([lastBytes, value]) : value;
if (returnValue.length >= -end) {
lastBytes = slice(returnValue, end);
return slice(returnValue, begin, end);
} else {
lastBytes = returnValue;
}
});
}
console.warn(`stream.slice(input, ${begin}, ${end}) not implemented efficiently.`);
return fromAsync(async () => slice((await readToEnd(input)), begin, end));
}
if (input[_reader.externalBuffer]) {
input = concat(input[_reader.externalBuffer].concat([input]));
}
if ((0, _util.isUint8Array)(input) && !(NodeBuffer && NodeBuffer.isBuffer(input))) {
if (end === Infinity) end = input.length;
return input.subarray(begin, end);
}
return input.slice(begin, end);
}
/**
* Read a stream to the end and return its contents, concatenated by the concat function (defaults to concat).
* @param {ReadableStream|Uint8array|String} input
* @param {Function} concat
* @returns {Promise<Uint8array|String|Any>} the return value of concat()
* @async
*/
async function readToEnd(input, concat) {
if ((0, _util.isStream)(input)) {
return getReader(input).readToEnd(concat);
}
return input;
}
/**
* Cancel a stream.
* @param {ReadableStream|Uint8array|String} input
* @param {Any} reason
* @returns {Promise<Any>} indicates when the stream has been canceled
* @async
*/
async function cancel(input, reason) {
if ((0, _util.isStream)(input) && input.cancel) {
return input.cancel(reason);
}
}
/**
* Convert an async function to a Stream. When the function returns, its return value is enqueued to the stream.
* @param {Function} fn
* @returns {ReadableStream}
*/
function fromAsync(fn) {
return new ReadableStream({
pull: async controller => {
try {
controller.enqueue((await fn()));
controller.close();
} catch (e) {
controller.error(e);
}
}
});
}
exports.default = { isStream: _util.isStream, isUint8Array: _util.isUint8Array, toStream, concatUint8Array: _util.concatUint8Array, concatStream, concat, getReader, getWriter, pipe, transformRaw, transform, transformPair, parse, clone, passiveClone, slice, readToEnd, cancel, fromAsync, nodeToWeb: _nodeConversions.nodeToWeb, webToNode: _nodeConversions.webToNode };
}).call(this,require('_process'))
},{"./node-conversions":74,"./reader":75,"./util":77,"_process":67,"buffer":"buffer"}],77:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
const NodeReadableStream = typeof window === 'undefined' && require('stream').Readable;
/**
* Check whether data is a Stream, and if so of which type
* @param {Any} input data to check
* @returns {'web'|'node'|false}
*/
function isStream(input) {
if (ReadableStream.prototype.isPrototypeOf(input)) {
return 'web';
}
if (NodeReadableStream && NodeReadableStream.prototype.isPrototypeOf(input)) {
return 'node';
}
return false;
}
/**
* Check whether data is a Uint8Array
* @param {Any} input data to check
* @returns {Boolean}
*/
function isUint8Array(input) {
return Uint8Array.prototype.isPrototypeOf(input);
}
/**
* Concat Uint8Arrays
* @param {Array<Uint8array>} Array of Uint8Arrays to concatenate
* @returns {Uint8array} Concatenated array
*/
function concatUint8Array(arrays) {
if (arrays.length === 1) return arrays[0];
let totalLength = 0;
for (let i = 0; i < arrays.length; i++) {
if (!isUint8Array(arrays[i])) {
throw new Error('concatUint8Array: Data must be in the form of a Uint8Array');
}
totalLength += arrays[i].length;
}
const result = new Uint8Array(totalLength);
let pos = 0;
arrays.forEach(function (element) {
result.set(element, pos);
pos += element.length;
});
return result;
}
exports.isStream = isStream;
exports.isUint8Array = isUint8Array;
exports.concatUint8Array = concatUint8Array;
},{"stream":"stream"}],78:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.CleartextMessage = CleartextMessage;
exports.readArmored = readArmored;
exports.fromText = fromText;
var _armor = require('./encoding/armor');
var _armor2 = _interopRequireDefault(_armor);
var _enums = require('./enums');
var _enums2 = _interopRequireDefault(_enums);
var _util = require('./util');
var _util2 = _interopRequireDefault(_util);
var _packet = require('./packet');
var _packet2 = _interopRequireDefault(_packet);
var _signature = require('./signature');
var _message = require('./message');
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* @class
* @classdesc Class that represents an OpenPGP cleartext signed message.
* See {@link https://tools.ietf.org/html/rfc4880#section-7}
* @param {String} text The cleartext of the signed message
* @param {module:signature.Signature} signature The detached signature or an empty signature for unsigned messages
*/
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @requires encoding/armor
* @requires enums
* @requires util
* @requires packet
* @requires signature
* @module cleartext
*/
function CleartextMessage(text, signature) {
if (!(this instanceof CleartextMessage)) {
return new CleartextMessage(text, signature);
}
// normalize EOL to canonical form <CR><LF>
this.text = _util2.default.canonicalizeEOL(_util2.default.removeTrailingSpaces(text));
if (signature && !(signature instanceof _signature.Signature)) {
throw new Error('Invalid signature input');
}
this.signature = signature || new _signature.Signature(new _packet2.default.List());
}
/**
* Returns the key IDs of the keys that signed the cleartext message
* @returns {Array<module:type/keyid>} array of keyid objects
*/
CleartextMessage.prototype.getSigningKeyIds = function () {
const keyIds = [];
const signatureList = this.signature.packets;
signatureList.forEach(function (packet) {
keyIds.push(packet.issuerKeyId);
});
return keyIds;
};
/**
* Sign the cleartext message
* @param {Array<module:key.Key>} privateKeys private keys with decrypted secret key data for signing
* @param {Signature} signature (optional) any existing detached signature
* @param {Date} date (optional) The creation time of the signature that should be created
* @param {Array} userIds (optional) user IDs to sign with, e.g. [{ name:'Steve Sender', email:'steve@openpgp.org' }]
* @returns {Promise<module:cleartext.CleartextMessage>} new cleartext message with signed content
* @async
*/
CleartextMessage.prototype.sign = async function (privateKeys, signature = null, date = new Date(), userIds = []) {
return new CleartextMessage(this.text, (await this.signDetached(privateKeys, signature, date, userIds)));
};
/**
* Sign the cleartext message
* @param {Array<module:key.Key>} privateKeys private keys with decrypted secret key data for signing
* @param {Signature} signature (optional) any existing detached signature
* @param {Date} date (optional) The creation time of the signature that should be created
* @param {Array} userIds (optional) user IDs to sign with, e.g. [{ name:'Steve Sender', email:'steve@openpgp.org' }]
* @returns {Promise<module:signature.Signature>} new detached signature of message content
* @async
*/
CleartextMessage.prototype.signDetached = async function (privateKeys, signature = null, date = new Date(), userIds = []) {
const literalDataPacket = new _packet2.default.Literal();
literalDataPacket.setText(this.text);
return new _signature.Signature((await (0, _message.createSignaturePackets)(literalDataPacket, privateKeys, signature, date, userIds)));
};
/**
* Verify signatures of cleartext signed message
* @param {Array<module:key.Key>} keys array of keys to verify signatures
* @param {Date} date (optional) Verify the signature against the given date, i.e. check signature creation time < date < expiration time
* @returns {Promise<Array<{keyid: module:type/keyid, valid: Boolean}>>} list of signer's keyid and validity of signature
* @async
*/
CleartextMessage.prototype.verify = function (keys, date = new Date()) {
return this.verifyDetached(this.signature, keys, date);
};
/**
* Verify signatures of cleartext signed message
* @param {Array<module:key.Key>} keys array of keys to verify signatures
* @param {Date} date (optional) Verify the signature against the given date, i.e. check signature creation time < date < expiration time
* @returns {Promise<Array<{keyid: module:type/keyid, valid: Boolean}>>} list of signer's keyid and validity of signature
* @async
*/
CleartextMessage.prototype.verifyDetached = function (signature, keys, date = new Date()) {
const signatureList = signature.packets;
const literalDataPacket = new _packet2.default.Literal();
// we assume that cleartext signature is generated based on UTF8 cleartext
literalDataPacket.setText(this.text);
return (0, _message.createVerificationObjects)(signatureList, [literalDataPacket], keys, date);
};
/**
* Get cleartext
* @returns {String} cleartext of message
*/
CleartextMessage.prototype.getText = function () {
// normalize end of line to \n
return _util2.default.nativeEOL(this.text);
};
/**
* Returns ASCII armored text of cleartext signed message
* @returns {String | ReadableStream<String>} ASCII armor
*/
CleartextMessage.prototype.armor = function () {
let hashes = this.signature.packets.map(function (packet) {
return _enums2.default.read(_enums2.default.hash, packet.hashAlgorithm).toUpperCase();
});
hashes = hashes.filter(function (item, i, ar) {
return ar.indexOf(item) === i;
});
const body = {
hash: hashes.join(),
text: this.text,
data: this.signature.packets.write()
};
return _armor2.default.encode(_enums2.default.armor.signed, body);
};
/**
* reads an OpenPGP cleartext signed message and returns a CleartextMessage object
* @param {String | ReadableStream<String>} armoredText text to be parsed
* @returns {module:cleartext.CleartextMessage} new cleartext message object
* @async
* @static
*/
async function readArmored(armoredText) {
const input = await _armor2.default.decode(armoredText);
if (input.type !== _enums2.default.armor.signed) {
throw new Error('No cleartext signed message.');
}
const packetlist = new _packet2.default.List();
await packetlist.read(input.data);
verifyHeaders(input.headers, packetlist);
const signature = new _signature.Signature(packetlist);
return new CleartextMessage(input.text, signature);
}
/**
* Compare hash algorithm specified in the armor header with signatures
* @param {Array<String>} headers Armor headers
* @param {module:packet.List} packetlist The packetlist with signature packets
* @private
*/
function verifyHeaders(headers, packetlist) {
const checkHashAlgos = function checkHashAlgos(hashAlgos) {
const check = packet => algo => packet.hashAlgorithm === algo;
for (let i = 0; i < packetlist.length; i++) {
if (packetlist[i].tag === _enums2.default.packet.signature && !hashAlgos.some(check(packetlist[i]))) {
return false;
}
}
return true;
};
let oneHeader = null;
let hashAlgos = [];
headers.forEach(function (header) {
oneHeader = header.match(/Hash: (.+)/); // get header value
if (oneHeader) {
oneHeader = oneHeader[1].replace(/\s/g, ''); // remove whitespace
oneHeader = oneHeader.split(',');
oneHeader = oneHeader.map(function (hash) {
hash = hash.toLowerCase();
try {
return _enums2.default.write(_enums2.default.hash, hash);
} catch (e) {
throw new Error('Unknown hash algorithm in armor header: ' + hash);
}
});
hashAlgos = hashAlgos.concat(oneHeader);
} else {
throw new Error('Only "Hash" header allowed in cleartext signed message');
}
});
if (!hashAlgos.length && !checkHashAlgos([_enums2.default.hash.md5])) {
throw new Error('If no "Hash" header in cleartext signed message, then only MD5 signatures allowed');
} else if (hashAlgos.length && !checkHashAlgos(hashAlgos)) {
throw new Error('Hash algorithm mismatch in armor header and signature');
}
}
/**
* Creates a new CleartextMessage object from text
* @param {String} text
* @static
*/
function fromText(text) {
return new CleartextMessage(text);
}
},{"./encoding/armor":112,"./enums":114,"./message":121,"./packet":126,"./signature":146,"./util":153}],79:[function(require,module,exports){
"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
var _enums = require("../enums");
var _enums2 = _interopRequireDefault(_enums);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
exports.default = {
/**
* @memberof module:config
* @property {Integer} prefer_hash_algorithm Default hash algorithm {@link module:enums.hash}
*/
prefer_hash_algorithm: _enums2.default.hash.sha256,
/**
* @memberof module:config
* @property {Integer} encryption_cipher Default encryption cipher {@link module:enums.symmetric}
*/
encryption_cipher: _enums2.default.symmetric.aes256,
/**
* @memberof module:config
* @property {Integer} compression Default compression algorithm {@link module:enums.compression}
*/
compression: _enums2.default.compression.uncompressed,
/**
* @memberof module:config
* @property {Integer} deflate_level Default zip/zlib compression level, between 1 and 9
*/
deflate_level: 6,
/**
* Use Authenticated Encryption with Additional Data (AEAD) protection for symmetric encryption.
* **NOT INTEROPERABLE WITH OTHER OPENPGP IMPLEMENTATIONS**
* **FUTURE OPENPGP.JS VERSIONS MAY BREAK COMPATIBILITY WHEN USING THIS OPTION**
* @memberof module:config
* @property {Boolean} aead_protect
*/
aead_protect: false,
/**
* Use Authenticated Encryption with Additional Data (AEAD) protection for symmetric encryption.
* 0 means we implement a variant of {@link https://tools.ietf.org/html/draft-ford-openpgp-format-00|this IETF draft}.
* 4 means we implement {@link https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-04|RFC4880bis-04}.
* Note that this determines how AEAD packets are parsed even when aead_protect is set to false
* @memberof module:config
* @property {Integer} aead_protect_version
*/
aead_protect_version: 4,
/**
* Default Authenticated Encryption with Additional Data (AEAD) encryption mode
* Only has an effect when aead_protect is set to true.
* @memberof module:config
* @property {Integer} aead_mode Default AEAD mode {@link module:enums.aead}
*/
aead_mode: _enums2.default.aead.eax,
/**
* Chunk Size Byte for Authenticated Encryption with Additional Data (AEAD) mode
* Only has an effect when aead_protect is set to true.
* Must be an integer value from 0 to 56.
* @memberof module:config
* @property {Integer} aead_chunk_size_byte
*/
aead_chunk_size_byte: 12,
/**
* {@link https://tools.ietf.org/html/rfc4880#section-3.7.1.3|RFC4880 3.7.1.3}:
* Iteration Count Byte for S2K (String to Key)
* @memberof module:config
* @property {Integer} s2k_iteration_count_byte
*/
s2k_iteration_count_byte: 224,
/** Use integrity protection for symmetric encryption
* @memberof module:config
* @property {Boolean} integrity_protect
*/
integrity_protect: true,
/**
* @memberof module:config
* @property {Boolean} ignore_mdc_error Fail on decrypt if message is not integrity protected
*/
ignore_mdc_error: false,
/**
* @memberof module:config
* @property {Boolean} allow_unauthenticated_stream Stream unauthenticated data before integrity has been checked
*/
allow_unauthenticated_stream: false,
/**
* @memberof module:config
* @property {Boolean} checksum_required Do not throw error when armor is missing a checksum
*/
checksum_required: false,
/**
* @memberof module:config
* @property {Boolean} rsa_blinding
*/
rsa_blinding: true,
/**
* Work-around for rare GPG decryption bug when encrypting with multiple passwords.
* **Slower and slightly less secure**
* @memberof module:config
* @property {Boolean} password_collision_check
*/
password_collision_check: false,
/**
* @memberof module:config
* @property {Boolean} revocations_expire If true, expired revocation signatures are ignored
*/
revocations_expire: false,
/**
* @memberof module:config
* @property {Boolean} use_native Use native Node.js crypto/zlib and WebCrypto APIs when available
*/
use_native: true,
/**
* @memberof module:config
* @property {Integer} min_bytes_for_web_crypto The minimum amount of bytes for which to use native WebCrypto APIs when available
*/
min_bytes_for_web_crypto: 1000,
/**
* @memberof module:config
* @property {Boolean} Use transferable objects between the Web Worker and main thread
*/
zero_copy: false,
/**
* @memberof module:config
* @property {Boolean} debug If enabled, debug messages will be printed
*/
debug: false,
/**
* @memberof module:config
* @property {Boolean} tolerant Ignore unsupported/unrecognizable packets instead of throwing an error
*/
tolerant: true,
/**
* @memberof module:config
* @property {Boolean} show_version Whether to include {@link module:config/config.versionstring} in armored messages
*/
show_version: true,
/**
* @memberof module:config
* @property {Boolean} show_comment Whether to include {@link module:config/config.commentstring} in armored messages
*/
show_comment: true,
/**
* @memberof module:config
* @property {String} versionstring A version string to be included in armored messages
*/
versionstring: "OpenPGP.js v4.5.1",
/**
* @memberof module:config
* @property {String} commentstring A comment string to be included in armored messages
*/
commentstring: "https://openpgpjs.org",
/**
* @memberof module:config
* @property {String} keyserver
*/
keyserver: "https://keyserver.ubuntu.com",
/**
* @memberof module:config
* @property {String} node_store
*/
node_store: "./openpgp.store",
/**
* Max userid string length (used for parsing)
* @memberof module:config
* @property {Integer} max_userid_length
*/
max_userid_length: 1024 * 5
}; // GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* Global configuration values.
* @requires enums
*/
},{"../enums":114}],80:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _config = require('./config.js');
Object.defineProperty(exports, 'default', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_config).default;
}
});
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
},{"./config.js":79}],81:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _cipher = require('./cipher');
var _cipher2 = _interopRequireDefault(_cipher);
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
// OpenPGP.js - An OpenPGP implementation in javascript
// Copyright (C) 2015-2016 Decentral
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @fileoverview Implementation of RFC 3394 AES Key Wrap & Key Unwrap funcions
* @see module:crypto/public_key/elliptic/ecdh
* @requires crypto/cipher
* @requires util
* @module crypto/aes_kw
*/
function wrap(key, data) {
const aes = new _cipher2.default["aes" + key.length * 8](key);
const IV = new Uint32Array([0xA6A6A6A6, 0xA6A6A6A6]);
const P = unpack(data);
let A = IV;
const R = P;
const n = P.length / 2;
const t = new Uint32Array([0, 0]);
let B = new Uint32Array(4);
for (let j = 0; j <= 5; ++j) {
for (let i = 0; i < n; ++i) {
t[1] = n * j + (1 + i);
// B = A
B[0] = A[0];
B[1] = A[1];
// B = A || R[i]
B[2] = R[2 * i];
B[3] = R[2 * i + 1];
// B = AES(K, B)
B = unpack(aes.encrypt(pack(B)));
// A = MSB(64, B) ^ t
A = B.subarray(0, 2);
A[0] ^= t[0];
A[1] ^= t[1];
// R[i] = LSB(64, B)
R[2 * i] = B[2];
R[2 * i + 1] = B[3];
}
}
return pack(A, R);
}
function unwrap(key, data) {
const aes = new _cipher2.default["aes" + key.length * 8](key);
const IV = new Uint32Array([0xA6A6A6A6, 0xA6A6A6A6]);
const C = unpack(data);
let A = C.subarray(0, 2);
const R = C.subarray(2);
const n = C.length / 2 - 1;
const t = new Uint32Array([0, 0]);
let B = new Uint32Array(4);
for (let j = 5; j >= 0; --j) {
for (let i = n - 1; i >= 0; --i) {
t[1] = n * j + (i + 1);
// B = A ^ t
B[0] = A[0] ^ t[0];
B[1] = A[1] ^ t[1];
// B = (A ^ t) || R[i]
B[2] = R[2 * i];
B[3] = R[2 * i + 1];
// B = AES-1(B)
B = unpack(aes.decrypt(pack(B)));
// A = MSB(64, B)
A = B.subarray(0, 2);
// R[i] = LSB(64, B)
R[2 * i] = B[2];
R[2 * i + 1] = B[3];
}
}
if (A[0] === IV[0] && A[1] === IV[1]) {
return pack(R);
}
throw new Error("Key Data Integrity failed");
}
function createArrayBuffer(data) {
if (_util2.default.isString(data)) {
const length = data.length;
const buffer = new ArrayBuffer(length);
const view = new Uint8Array(buffer);
for (let j = 0; j < length; ++j) {
view[j] = data.charCodeAt(j);
}
return buffer;
}
return new Uint8Array(data).buffer;
}
function unpack(data) {
const length = data.length;
const buffer = createArrayBuffer(data);
const view = new DataView(buffer);
const arr = new Uint32Array(length / 4);
for (let i = 0; i < length / 4; ++i) {
arr[i] = view.getUint32(4 * i);
}
return arr;
}
function pack() {
let length = 0;
for (let k = 0; k < arguments.length; ++k) {
length += 4 * arguments[k].length;
}
const buffer = new ArrayBuffer(length);
const view = new DataView(buffer);
let offset = 0;
for (let i = 0; i < arguments.length; ++i) {
for (let j = 0; j < arguments[i].length; ++j) {
view.setUint32(offset + 4 * j, arguments[i][j]);
}
offset += 4 * arguments[i].length;
}
return new Uint8Array(buffer);
}
exports.default = {
/**
* AES key wrap
* @function
* @param {String} key
* @param {String} data
* @returns {Uint8Array}
*/
wrap,
/**
* AES key unwrap
* @function
* @param {String} key
* @param {String} data
* @returns {Uint8Array}
* @throws {Error}
*/
unwrap
};
},{"../util":153,"./cipher":87}],82:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _cfb = require('asmcrypto.js/dist_es5/aes/cfb');
var _webStreamTools = require('web-stream-tools');
var _webStreamTools2 = _interopRequireDefault(_webStreamTools);
var _cipher = require('./cipher');
var _cipher2 = _interopRequireDefault(_cipher);
var _config = require('../config');
var _config2 = _interopRequireDefault(_config);
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
const webCrypto = _util2.default.getWebCrypto(); // Modified by ProtonTech AG
// Modified by Recurity Labs GmbH
// modified version of https://www.hanewin.net/encrypt/PGdecode.js:
/* OpenPGP encryption using RSA/AES
* Copyright 2005-2006 Herbert Hanewinkel, www.haneWIN.de
* version 2.0, check www.haneWIN.de for the latest version
* This software is provided as-is, without express or implied warranty.
* Permission to use, copy, modify, distribute or sell this software, with or
* without fee, for any purpose and by any individual or organization, is hereby
* granted, provided that the above copyright notice and this paragraph appear
* in all copies. Distribution as a part of an application or binary must
* include the above copyright notice in the documentation and/or other
* materials provided with the application or distribution.
*/
/**
* @requires web-stream-tools
* @requires crypto/cipher
* @requires util
* @module crypto/cfb
*/
const nodeCrypto = _util2.default.getNodeCrypto();
const Buffer = _util2.default.getNodeBuffer();
exports.default = {
encrypt: function encrypt(algo, key, plaintext, iv) {
if (algo.substr(0, 3) === 'aes') {
return aesEncrypt(algo, key, plaintext, iv);
}
const cipherfn = new _cipher2.default[algo](key);
const block_size = cipherfn.blockSize;
let blocki = new Uint8Array(block_size);
const blockc = iv;
let pos = 0;
const ciphertext = new Uint8Array(plaintext.length);
let i;
let j = 0;
while (plaintext.length > block_size * pos) {
const encblock = cipherfn.encrypt(blockc);
blocki = plaintext.subarray(pos * block_size, pos * block_size + block_size);
for (i = 0; i < blocki.length; i++) {
blockc[i] = blocki[i] ^ encblock[i];
ciphertext[j++] = blockc[i];
}
pos++;
}
return ciphertext;
},
decrypt: async function decrypt(algo, key, ciphertext, iv) {
if (algo.substr(0, 3) === 'aes') {
return aesDecrypt(algo, key, ciphertext, iv);
}
ciphertext = await _webStreamTools2.default.readToEnd(ciphertext);
const cipherfn = new _cipher2.default[algo](key);
const block_size = cipherfn.blockSize;
let blockp = iv;
let pos = 0;
const plaintext = new Uint8Array(ciphertext.length);
const offset = 0;
let i;
let j = 0;
while (ciphertext.length > block_size * pos) {
const decblock = cipherfn.encrypt(blockp);
blockp = ciphertext.subarray(pos * block_size + offset, pos * block_size + block_size + offset);
for (i = 0; i < blockp.length; i++) {
plaintext[j++] = blockp[i] ^ decblock[i];
}
pos++;
}
return plaintext;
}
};
function aesEncrypt(algo, key, pt, iv) {
if (_util2.default.getWebCrypto() && key.length !== 24 && // Chrome doesn't support 192 bit keys, see https://www.chromium.org/blink/webcrypto#TOC-AES-support
!_util2.default.isStream(pt) && pt.length >= 3000 * _config2.default.min_bytes_for_web_crypto // Default to a 3MB minimum. Chrome is pretty slow for small messages, see: https://bugs.chromium.org/p/chromium/issues/detail?id=701188#c2
) {
// Web Crypto
return webEncrypt(algo, key, pt, iv);
}
if (nodeCrypto) {
// Node crypto library.
return nodeEncrypt(algo, key, pt, iv);
} // asm.js fallback
const cfb = new _cfb.AES_CFB(key, iv);
return _webStreamTools2.default.transform(pt, value => cfb.AES_Encrypt_process(value), () => cfb.AES_Encrypt_finish());
}
function aesDecrypt(algo, key, ct, iv) {
if (nodeCrypto) {
// Node crypto library.
return nodeDecrypt(algo, key, ct, iv);
}
if (_util2.default.isStream(ct)) {
const cfb = new _cfb.AES_CFB(key, iv);
return _webStreamTools2.default.transform(ct, value => cfb.AES_Decrypt_process(value), () => cfb.AES_Decrypt_finish());
}
return _cfb.AES_CFB.decrypt(ct, key, iv);
}
function xorMut(a, b) {
for (let i = 0; i < a.length; i++) {
a[i] = a[i] ^ b[i];
}
}
async function webEncrypt(algo, key, pt, iv) {
const ALGO = 'AES-CBC';
const _key = await webCrypto.importKey('raw', key, { name: ALGO }, false, ['encrypt']);
const blockSize = _cipher2.default[algo].blockSize;
const cbc_pt = _util2.default.concatUint8Array([new Uint8Array(blockSize), pt]);
const ct = new Uint8Array((await webCrypto.encrypt({ name: ALGO, iv }, _key, cbc_pt))).subarray(0, pt.length);
xorMut(ct, pt);
return ct;
}
function nodeEncrypt(algo, key, pt, iv) {
key = new Buffer(key);
iv = new Buffer(iv);
const cipherObj = new nodeCrypto.createCipheriv('aes-' + algo.substr(3, 3) + '-cfb', key, iv);
return _webStreamTools2.default.transform(pt, value => new Uint8Array(cipherObj.update(new Buffer(value))));
}
function nodeDecrypt(algo, key, ct, iv) {
key = new Buffer(key);
iv = new Buffer(iv);
const decipherObj = new nodeCrypto.createDecipheriv('aes-' + algo.substr(3, 3) + '-cfb', key, iv);
return _webStreamTools2.default.transform(ct, value => new Uint8Array(decipherObj.update(new Buffer(value))));
}
},{"../config":80,"../util":153,"./cipher":87,"asmcrypto.js/dist_es5/aes/cfb":6,"web-stream-tools":76}],83:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _ecb = require('asmcrypto.js/dist_es5/aes/ecb');
// TODO use webCrypto or nodeCrypto when possible.
function aes(length) {
const C = function C(key) {
const aes_ecb = new _ecb.AES_ECB(key);
this.encrypt = function (block) {
return aes_ecb.encrypt(block);
};
this.decrypt = function (block) {
return aes_ecb.decrypt(block);
};
};
C.blockSize = C.prototype.blockSize = 16;
C.keySize = C.prototype.keySize = length / 8;
return C;
} /**
* @requires asmcrypto.js
*/
exports.default = aes;
},{"asmcrypto.js/dist_es5/aes/ecb":8}],84:[function(require,module,exports){
"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
/* Modified by Recurity Labs GmbH
*
* Originally written by nklein software (nklein.com)
*/
/*
* Javascript implementation based on Bruce Schneier's reference implementation.
*
*
* The constructor doesn't do much of anything. It's just here
* so we can start defining properties and methods and such.
*/
function Blowfish() {}
/*
* Declare the block size so that protocols know what size
* Initialization Vector (IV) they will need.
*/
Blowfish.prototype.BLOCKSIZE = 8;
/*
* These are the default SBOXES.
*/
Blowfish.prototype.SBOXES = [[0xd1310ba6, 0x98dfb5ac, 0x2ffd72db, 0xd01adfb7, 0xb8e1afed, 0x6a267e96, 0xba7c9045, 0xf12c7f99, 0x24a19947, 0xb3916cf7, 0x0801f2e2, 0x858efc16, 0x636920d8, 0x71574e69, 0xa458fea3, 0xf4933d7e, 0x0d95748f, 0x728eb658, 0x718bcd58, 0x82154aee, 0x7b54a41d, 0xc25a59b5, 0x9c30d539, 0x2af26013, 0xc5d1b023, 0x286085f0, 0xca417918, 0xb8db38ef, 0x8e79dcb0, 0x603a180e, 0x6c9e0e8b, 0xb01e8a3e, 0xd71577c1, 0xbd314b27, 0x78af2fda, 0x55605c60, 0xe65525f3, 0xaa55ab94, 0x57489862, 0x63e81440, 0x55ca396a, 0x2aab10b6, 0xb4cc5c34, 0x1141e8ce, 0xa15486af, 0x7c72e993, 0xb3ee1411, 0x636fbc2a, 0x2ba9c55d, 0x741831f6, 0xce5c3e16, 0x9b87931e, 0xafd6ba33, 0x6c24cf5c, 0x7a325381, 0x28958677, 0x3b8f4898, 0x6b4bb9af, 0xc4bfe81b, 0x66282193, 0x61d809cc, 0xfb21a991, 0x487cac60, 0x5dec8032, 0xef845d5d, 0xe98575b1, 0xdc262302, 0xeb651b88, 0x23893e81, 0xd396acc5, 0x0f6d6ff3, 0x83f44239, 0x2e0b4482, 0xa4842004, 0x69c8f04a, 0x9e1f9b5e, 0x21c66842, 0xf6e96c9a, 0x670c9c61, 0xabd388f0, 0x6a51a0d2, 0xd8542f68, 0x960fa728, 0xab5133a3, 0x6eef0b6c, 0x137a3be4, 0xba3bf050, 0x7efb2a98, 0xa1f1651d, 0x39af0176, 0x66ca593e, 0x82430e88, 0x8cee8619, 0x456f9fb4, 0x7d84a5c3, 0x3b8b5ebe, 0xe06f75d8, 0x85c12073, 0x401a449f, 0x56c16aa6, 0x4ed3aa62, 0x363f7706, 0x1bfedf72, 0x429b023d, 0x37d0d724, 0xd00a1248, 0xdb0fead3, 0x49f1c09b, 0x075372c9, 0x80991b7b, 0x25d479d8, 0xf6e8def7, 0xe3fe501a, 0xb6794c3b, 0x976ce0bd, 0x04c006ba, 0xc1a94fb6, 0x409f60c4, 0x5e5c9ec2, 0x196a2463, 0x68fb6faf, 0x3e6c53b5, 0x1339b2eb, 0x3b52ec6f, 0x6dfc511f, 0x9b30952c, 0xcc814544, 0xaf5ebd09, 0xbee3d004, 0xde334afd, 0x660f2807, 0x192e4bb3, 0xc0cba857, 0x45c8740f, 0xd20b5f39, 0xb9d3fbdb, 0x5579c0bd, 0x1a60320a, 0xd6a100c6, 0x402c7279, 0x679f25fe, 0xfb1fa3cc, 0x8ea5e9f8, 0xdb3222f8, 0x3c7516df, 0xfd616b15, 0x2f501ec8, 0xad0552ab, 0x323db5fa, 0xfd238760, 0x53317b48, 0x3e00df82, 0x9e5c57bb, 0xca6f8ca0, 0x1a87562e, 0xdf1769db, 0xd542a8f6, 0x287effc3, 0xac6732c6, 0x8c4f5573, 0x695b27b0, 0xbbca58c8, 0xe1ffa35d, 0xb8f011a0, 0x10fa3d98, 0xfd2183b8, 0x4afcb56c, 0x2dd1d35b, 0x9a53e479, 0xb6f84565, 0xd28e49bc, 0x4bfb9790, 0xe1ddf2da, 0xa4cb7e33, 0x62fb1341, 0xcee4c6e8, 0xef20cada, 0x36774c01, 0xd07e9efe, 0x2bf11fb4, 0x95dbda4d, 0xae909198, 0xeaad8e71, 0x6b93d5a0, 0xd08ed1d0, 0xafc725e0, 0x8e3c5b2f, 0x8e7594b7, 0x8ff6e2fb, 0xf2122b64, 0x8888b812, 0x900df01c, 0x4fad5ea0, 0x688fc31c, 0xd1cff191, 0xb3a8c1ad, 0x2f2f2218, 0xbe0e1777, 0xea752dfe, 0x8b021fa1, 0xe5a0cc0f, 0xb56f74e8, 0x18acf3d6, 0xce89e299, 0xb4a84fe0, 0xfd13e0b7, 0x7cc43b81, 0xd2ada8d9, 0x165fa266, 0x80957705, 0x93cc7314, 0x211a1477, 0xe6ad2065, 0x77b5fa86, 0xc75442f5, 0xfb9d35cf, 0xebcdaf0c, 0x7b3e89a0, 0xd6411bd3, 0xae1e7e49, 0x00250e2d, 0x2071b35e, 0x226800bb, 0x57b8e0af, 0x2464369b, 0xf009b91e, 0x5563911d, 0x59dfa6aa, 0x78c14389, 0xd95a537f, 0x207d5ba2, 0x02e5b9c5, 0x83260376, 0x6295cfa9, 0x11c81968, 0x4e734a41, 0xb3472dca, 0x7b14a94a, 0x1b510052, 0x9a532915, 0xd60f573f, 0xbc9bc6e4, 0x2b60a476, 0x81e67400, 0x08ba6fb5, 0x571be91f, 0xf296ec6b, 0x2a0dd915, 0xb6636521, 0xe7b9f9b6, 0xff34052e, 0xc5855664, 0x53b02d5d, 0xa99f8fa1, 0x08ba4799, 0x6e85076a], [0x4b7a70e9, 0xb5b32944, 0xdb75092e, 0xc4192623, 0xad6ea6b0, 0x49a7df7d, 0x9cee60b8, 0x8fedb266, 0xecaa8c71, 0x699a17ff, 0x5664526c, 0xc2b19ee1, 0x193602a5, 0x75094c29, 0xa0591340, 0xe4183a3e, 0x3f54989a, 0x5b429d65, 0x6b8fe4d6, 0x99f73fd6, 0xa1d29c07, 0xefe830f5, 0x4d2d38e6, 0xf0255dc1, 0x4cdd2086, 0x8470eb26, 0x6382e9c6, 0x021ecc5e, 0x09686b3f, 0x3ebaefc9, 0x3c971814, 0x6b6a70a1, 0x687f3584, 0x52a0e286, 0xb79c5305, 0xaa500737, 0x3e07841c, 0x7fdeae5c, 0x8e7d44ec, 0x5716f2b8, 0xb03ada37, 0xf0500c0d, 0xf01c1f04, 0x0200b3ff, 0xae0cf51a, 0x3cb574b2, 0x25837a58, 0xdc0921bd, 0xd19113f9, 0x7ca92ff6, 0x94324773, 0x22f54701, 0x3ae5e581, 0x37c2dadc, 0xc8b57634, 0x9af3dda7, 0xa9446146, 0x0fd0030e, 0xecc8c73e, 0xa4751e41, 0xe238cd99, 0x3bea0e2f, 0x3280bba1, 0x183eb331, 0x4e548b38, 0x4f6db908, 0x6f420d03, 0xf60a04bf, 0x2cb81290, 0x24977c79, 0x5679b072, 0xbcaf89af, 0xde9a771f, 0xd9930810, 0xb38bae12, 0xdccf3f2e, 0x5512721f, 0x2e6b7124, 0x501adde6, 0x9f84cd87, 0x7a584718, 0x7408da17, 0xbc9f9abc, 0xe94b7d8c, 0xec7aec3a, 0xdb851dfa, 0x63094366, 0xc464c3d2, 0xef1c1847, 0x3215d908, 0xdd433b37, 0x24c2ba16, 0x12a14d43, 0x2a65c451, 0x50940002, 0x133ae4dd, 0x71dff89e, 0x10314e55, 0x81ac77d6, 0x5f11199b, 0x043556f1, 0xd7a3c76b, 0x3c11183b, 0x5924a509, 0xf28fe6ed, 0x97f1fbfa, 0x9ebabf2c, 0x1e153c6e, 0x86e34570, 0xeae96fb1, 0x860e5e0a, 0x5a3e2ab3, 0x771fe71c, 0x4e3d06fa, 0x2965dcb9, 0x99e71d0f, 0x803e89d6, 0x5266c825, 0x2e4cc978, 0x9c10b36a, 0xc6150eba, 0x94e2ea78, 0xa5fc3c53, 0x1e0a2df4, 0xf2f74ea7, 0x361d2b3d, 0x1939260f, 0x19c27960, 0x5223a708, 0xf71312b6, 0xebadfe6e, 0xeac31f66, 0xe3bc4595, 0xa67bc883, 0xb17f37d1, 0x018cff28, 0xc332ddef, 0xbe6c5aa5, 0x65582185, 0x68ab9802, 0xeecea50f, 0xdb2f953b, 0x2aef7dad, 0x5b6e2f84, 0x1521b628, 0x29076170, 0xecdd4775, 0x619f1510, 0x13cca830, 0xeb61bd96, 0x0334fe1e, 0xaa0363cf, 0xb5735c90, 0x4c70a239, 0xd59e9e0b, 0xcbaade14, 0xeecc86bc, 0x60622ca7, 0x9cab5cab, 0xb2f3846e, 0x648b1eaf, 0x19bdf0ca, 0xa02369b9, 0x655abb50, 0x40685a32, 0x3c2ab4b3, 0x319ee9d5, 0xc021b8f7, 0x9b540b19, 0x875fa099, 0x95f7997e, 0x623d7da8, 0xf837889a, 0x97e32d77, 0x11ed935f, 0x16681281, 0x0e358829, 0xc7e61fd6, 0x96dedfa1, 0x7858ba99, 0x57f584a5, 0x1b227263, 0x9b83c3ff, 0x1ac24696, 0xcdb30aeb, 0x532e3054, 0x8fd948e4, 0x6dbc3128, 0x58ebf2ef, 0x34c6ffea, 0xfe28ed61, 0xee7c3c73, 0x5d4a14d9, 0xe864b7e3, 0x42105d14, 0x203e13e0, 0x45eee2b6, 0xa3aaabea, 0xdb6c4f15, 0xfacb4fd0, 0xc742f442, 0xef6abbb5, 0x654f3b1d, 0x41cd2105, 0xd81e799e, 0x86854dc7, 0xe44b476a, 0x3d816250, 0xcf62a1f2, 0x5b8d2646, 0xfc8883a0, 0xc1c7b6a3, 0x7f1524c3, 0x69cb7492, 0x47848a0b, 0x5692b285, 0x095bbf00, 0xad19489d, 0x1462b174, 0x23820e00, 0x58428d2a, 0x0c55f5ea, 0x1dadf43e, 0x233f7061, 0x3372f092, 0x8d937e41, 0xd65fecf1, 0x6c223bdb, 0x7cde3759, 0xcbee7460, 0x4085f2a7, 0xce77326e, 0xa6078084, 0x19f8509e, 0xe8efd855, 0x61d99735, 0xa969a7aa, 0xc50c06c2, 0x5a04abfc, 0x800bcadc, 0x9e447a2e, 0xc3453484, 0xfdd56705, 0x0e1e9ec9, 0xdb73dbd3, 0x105588cd, 0x675fda79, 0xe3674340, 0xc5c43465, 0x713e38d8, 0x3d28f89e, 0xf16dff20, 0x153e21e7, 0x8fb03d4a, 0xe6e39f2b, 0xdb83adf7], [0xe93d5a68, 0x948140f7, 0xf64c261c, 0x94692934, 0x411520f7, 0x7602d4f7, 0xbcf46b2e, 0xd4a20068, 0xd4082471, 0x3320f46a, 0x43b7d4b7, 0x500061af, 0x1e39f62e, 0x97244546, 0x14214f74, 0xbf8b8840, 0x4d95fc1d, 0x96b591af, 0x70f4ddd3, 0x66a02f45, 0xbfbc09ec, 0x03bd9785, 0x7fac6dd0, 0x31cb8504, 0x96eb27b3, 0x55fd3941, 0xda2547e6, 0xabca0a9a, 0x28507825, 0x530429f4, 0x0a2c86da, 0xe9b66dfb, 0x68dc1462, 0xd7486900, 0x680ec0a4, 0x27a18dee, 0x4f3ffea2, 0xe887ad8c, 0xb58ce006, 0x7af4d6b6, 0xaace1e7c, 0xd3375fec, 0xce78a399, 0x406b2a42, 0x20fe9e35, 0xd9f385b9, 0xee39d7ab, 0x3b124e8b, 0x1dc9faf7, 0x4b6d1856, 0x26a36631, 0xeae397b2, 0x3a6efa74, 0xdd5b4332, 0x6841e7f7, 0xca7820fb, 0xfb0af54e, 0xd8feb397, 0x454056ac, 0xba489527, 0x55533a3a, 0x20838d87, 0xfe6ba9b7, 0xd096954b, 0x55a867bc, 0xa1159a58, 0xcca92963, 0x99e1db33, 0xa62a4a56, 0x3f3125f9, 0x5ef47e1c, 0x9029317c, 0xfdf8e802, 0x04272f70, 0x80bb155c, 0x05282ce3, 0x95c11548, 0xe4c66d22, 0x48c1133f, 0xc70f86dc, 0x07f9c9ee, 0x41041f0f, 0x404779a4, 0x5d886e17, 0x325f51eb, 0xd59bc0d1, 0xf2bcc18f, 0x41113564, 0x257b7834, 0x602a9c60, 0xdff8e8a3, 0x1f636c1b, 0x0e12b4c2, 0x02e1329e, 0xaf664fd1, 0xcad18115, 0x6b2395e0, 0x333e92e1, 0x3b240b62, 0xeebeb922, 0x85b2a20e, 0xe6ba0d99, 0xde720c8c, 0x2da2f728, 0xd0127845, 0x95b794fd, 0x647d0862, 0xe7ccf5f0, 0x5449a36f, 0x877d48fa, 0xc39dfd27, 0xf33e8d1e, 0x0a476341, 0x992eff74, 0x3a6f6eab, 0xf4f8fd37, 0xa812dc60, 0xa1ebddf8, 0x991be14c, 0xdb6e6b0d, 0xc67b5510, 0x6d672c37, 0x2765d43b, 0xdcd0e804, 0xf1290dc7, 0xcc00ffa3, 0xb5390f92, 0x690fed0b, 0x667b9ffb, 0xcedb7d9c, 0xa091cf0b, 0xd9155ea3, 0xbb132f88, 0x515bad24, 0x7b9479bf, 0x763bd6eb, 0x37392eb3, 0xcc115979, 0x8026e297, 0xf42e312d, 0x6842ada7, 0xc66a2b3b, 0x12754ccc, 0x782ef11c, 0x6a124237, 0xb79251e7, 0x06a1bbe6, 0x4bfb6350, 0x1a6b1018, 0x11caedfa, 0x3d25bdd8, 0xe2e1c3c9, 0x44421659, 0x0a121386, 0xd90cec6e, 0xd5abea2a, 0x64af674e, 0xda86a85f, 0xbebfe988, 0x64e4c3fe, 0x9dbc8057, 0xf0f7c086, 0x60787bf8, 0x6003604d, 0xd1fd8346, 0xf6381fb0, 0x7745ae04, 0xd736fccc, 0x83426b33, 0xf01eab71, 0xb0804187, 0x3c005e5f, 0x77a057be, 0xbde8ae24, 0x55464299, 0xbf582e61, 0x4e58f48f, 0xf2ddfda2, 0xf474ef38, 0x8789bdc2, 0x5366f9c3, 0xc8b38e74, 0xb475f255, 0x46fcd9b9, 0x7aeb2661, 0x8b1ddf84, 0x846a0e79, 0x915f95e2, 0x466e598e, 0x20b45770, 0x8cd55591, 0xc902de4c, 0xb90bace1, 0xbb8205d0, 0x11a86248, 0x7574a99e, 0xb77f19b6, 0xe0a9dc09, 0x662d09a1, 0xc4324633, 0xe85a1f02, 0x09f0be8c, 0x4a99a025, 0x1d6efe10, 0x1ab93d1d, 0x0ba5a4df, 0xa186f20f, 0x2868f169, 0xdcb7da83, 0x573906fe, 0xa1e2ce9b, 0x4fcd7f52, 0x50115e01, 0xa70683fa, 0xa002b5c4, 0x0de6d027, 0x9af88c27, 0x773f8641, 0xc3604c06, 0x61a806b5, 0xf0177a28, 0xc0f586e0, 0x006058aa, 0x30dc7d62, 0x11e69ed7, 0x2338ea63, 0x53c2dd94, 0xc2c21634, 0xbbcbee56, 0x90bcb6de, 0xebfc7da1, 0xce591d76, 0x6f05e409, 0x4b7c0188, 0x39720a3d, 0x7c927c24, 0x86e3725f, 0x724d9db9, 0x1ac15bb4, 0xd39eb8fc, 0xed545578, 0x08fca5b5, 0xd83d7cd3, 0x4dad0fc4, 0x1e50ef5e, 0xb161e6f8, 0xa28514d9, 0x6c51133c, 0x6fd5c7e7, 0x56e14ec4, 0x362abfce, 0xddc6c837, 0xd79a3234, 0x92638212, 0x670efa8e, 0x406000e0], [0x3a39ce37, 0xd3faf5cf, 0xabc27737, 0x5ac52d1b, 0x5cb0679e, 0x4fa33742, 0xd3822740, 0x99bc9bbe, 0xd5118e9d, 0xbf0f7315, 0xd62d1c7e, 0xc700c47b, 0xb78c1b6b, 0x21a19045, 0xb26eb1be, 0x6a366eb4, 0x5748ab2f, 0xbc946e79, 0xc6a376d2, 0x6549c2c8, 0x530ff8ee, 0x468dde7d, 0xd5730a1d, 0x4cd04dc6, 0x2939bbdb, 0xa9ba4650, 0xac9526e8, 0xbe5ee304, 0xa1fad5f0, 0x6a2d519a, 0x63ef8ce2, 0x9a86ee22, 0xc089c2b8, 0x43242ef6, 0xa51e03aa, 0x9cf2d0a4, 0x83c061ba, 0x9be96a4d, 0x8fe51550, 0xba645bd6, 0x2826a2f9, 0xa73a3ae1, 0x4ba99586, 0xef5562e9, 0xc72fefd3, 0xf752f7da, 0x3f046f69, 0x77fa0a59, 0x80e4a915, 0x87b08601, 0x9b09e6ad, 0x3b3ee593, 0xe990fd5a, 0x9e34d797, 0x2cf0b7d9, 0x022b8b51, 0x96d5ac3a, 0x017da67d, 0xd1cf3ed6, 0x7c7d2d28, 0x1f9f25cf, 0xadf2b89b, 0x5ad6b472, 0x5a88f54c, 0xe029ac71, 0xe019a5e6, 0x47b0acfd, 0xed93fa9b, 0xe8d3c48d, 0x283b57cc, 0xf8d56629, 0x79132e28, 0x785f0191, 0xed756055, 0xf7960e44, 0xe3d35e8c, 0x15056dd4, 0x88f46dba, 0x03a16125, 0x0564f0bd, 0xc3eb9e15, 0x3c9057a2, 0x97271aec, 0xa93a072a, 0x1b3f6d9b, 0x1e6321f5, 0xf59c66fb, 0x26dcf319, 0x7533d928, 0xb155fdf5, 0x03563482, 0x8aba3cbb, 0x28517711, 0xc20ad9f8, 0xabcc5167, 0xccad925f, 0x4de81751, 0x3830dc8e, 0x379d5862, 0x9320f991, 0xea7a90c2, 0xfb3e7bce, 0x5121ce64, 0x774fbe32, 0xa8b6e37e, 0xc3293d46, 0x48de5369, 0x6413e680, 0xa2ae0810, 0xdd6db224, 0x69852dfd, 0x09072166, 0xb39a460a, 0x6445c0dd, 0x586cdecf, 0x1c20c8ae, 0x5bbef7dd, 0x1b588d40, 0xccd2017f, 0x6bb4e3bb, 0xdda26a7e, 0x3a59ff45, 0x3e350a44, 0xbcb4cdd5, 0x72eacea8, 0xfa6484bb, 0x8d6612ae, 0xbf3c6f47, 0xd29be463, 0x542f5d9e, 0xaec2771b, 0xf64e6370, 0x740e0d8d, 0xe75b1357, 0xf8721671, 0xaf537d5d, 0x4040cb08, 0x4eb4e2cc, 0x34d2466a, 0x0115af84, 0xe1b00428, 0x95983a1d, 0x06b89fb4, 0xce6ea048, 0x6f3f3b82, 0x3520ab82, 0x011a1d4b, 0x277227f8, 0x611560b1, 0xe7933fdc, 0xbb3a792b, 0x344525bd, 0xa08839e1, 0x51ce794b, 0x2f32c9b7, 0xa01fbac9, 0xe01cc87e, 0xbcc7d1f6, 0xcf0111c3, 0xa1e8aac7, 0x1a908749, 0xd44fbd9a, 0xd0dadecb, 0xd50ada38, 0x0339c32a, 0xc6913667, 0x8df9317c, 0xe0b12b4f, 0xf79e59b7, 0x43f5bb3a, 0xf2d519ff, 0x27d9459c, 0xbf97222c, 0x15e6fc2a, 0x0f91fc71, 0x9b941525, 0xfae59361, 0xceb69ceb, 0xc2a86459, 0x12baa8d1, 0xb6c1075e, 0xe3056a0c, 0x10d25065, 0xcb03a442, 0xe0ec6e0e, 0x1698db3b, 0x4c98a0be, 0x3278e964, 0x9f1f9532, 0xe0d392df, 0xd3a0342b, 0x8971f21e, 0x1b0a7441, 0x4ba3348c, 0xc5be7120, 0xc37632d8, 0xdf359f8d, 0x9b992f2e, 0xe60b6f47, 0x0fe3f11d, 0xe54cda54, 0x1edad891, 0xce6279cf, 0xcd3e7e6f, 0x1618b166, 0xfd2c1d05, 0x848fd2c5, 0xf6fb2299, 0xf523f357, 0xa6327623, 0x93a83531, 0x56cccd02, 0xacf08162, 0x5a75ebb5, 0x6e163697, 0x88d273cc, 0xde966292, 0x81b949d0, 0x4c50901b, 0x71c65614, 0xe6c6c7bd, 0x327a140a, 0x45e1d006, 0xc3f27b9a, 0xc9aa53fd, 0x62a80f00, 0xbb25bfe2, 0x35bdd2f6, 0x71126905, 0xb2040222, 0xb6cbcf7c, 0xcd769c2b, 0x53113ec0, 0x1640e3d3, 0x38abbd60, 0x2547adf0, 0xba38209c, 0xf746ce76, 0x77afa1c5, 0x20756060, 0x85cbfe4e, 0x8ae88dd8, 0x7aaaf9b0, 0x4cf9aa7e, 0x1948c25c, 0x02fb8a8c, 0x01c36ae4, 0xd6ebe1f9, 0x90d4f869, 0xa65cdea0, 0x3f09252d, 0xc208e69f, 0xb74e6132, 0xce77e25b, 0x578fdfe3, 0x3ac372e6]];
//*
//* This is the default PARRAY
//*
Blowfish.prototype.PARRAY = [0x243f6a88, 0x85a308d3, 0x13198a2e, 0x03707344, 0xa4093822, 0x299f31d0, 0x082efa98, 0xec4e6c89, 0x452821e6, 0x38d01377, 0xbe5466cf, 0x34e90c6c, 0xc0ac29b7, 0xc97c50dd, 0x3f84d5b5, 0xb5470917, 0x9216d5d9, 0x8979fb1b];
//*
//* This is the number of rounds the cipher will go
//*
Blowfish.prototype.NN = 16;
//*
//* This function is needed to get rid of problems
//* with the high-bit getting set. If we don't do
//* this, then sometimes ( aa & 0x00FFFFFFFF ) is not
//* equal to ( bb & 0x00FFFFFFFF ) even when they
//* agree bit-for-bit for the first 32 bits.
//*
Blowfish.prototype._clean = function (xx) {
if (xx < 0) {
const yy = xx & 0x7FFFFFFF;
xx = yy + 0x80000000;
}
return xx;
};
//*
//* This is the mixing function that uses the sboxes
//*
Blowfish.prototype._F = function (xx) {
let yy;
const dd = xx & 0x00FF;
xx >>>= 8;
const cc = xx & 0x00FF;
xx >>>= 8;
const bb = xx & 0x00FF;
xx >>>= 8;
const aa = xx & 0x00FF;
yy = this.sboxes[0][aa] + this.sboxes[1][bb];
yy ^= this.sboxes[2][cc];
yy += this.sboxes[3][dd];
return yy;
};
//*
//* This method takes an array with two values, left and right
//* and does NN rounds of Blowfish on them.
//*
Blowfish.prototype._encrypt_block = function (vals) {
let dataL = vals[0];
let dataR = vals[1];
let ii;
for (ii = 0; ii < this.NN; ++ii) {
dataL ^= this.parray[ii];
dataR = this._F(dataL) ^ dataR;
const tmp = dataL;
dataL = dataR;
dataR = tmp;
}
dataL ^= this.parray[this.NN + 0];
dataR ^= this.parray[this.NN + 1];
vals[0] = this._clean(dataR);
vals[1] = this._clean(dataL);
};
//*
//* This method takes a vector of numbers and turns them
//* into long words so that they can be processed by the
//* real algorithm.
//*
//* Maybe I should make the real algorithm above take a vector
//* instead. That will involve more looping, but it won't require
//* the F() method to deconstruct the vector.
//*
Blowfish.prototype.encrypt_block = function (vector) {
let ii;
const vals = [0, 0];
const off = this.BLOCKSIZE / 2;
for (ii = 0; ii < this.BLOCKSIZE / 2; ++ii) {
vals[0] = vals[0] << 8 | vector[ii + 0] & 0x00FF;
vals[1] = vals[1] << 8 | vector[ii + off] & 0x00FF;
}
this._encrypt_block(vals);
const ret = [];
for (ii = 0; ii < this.BLOCKSIZE / 2; ++ii) {
ret[ii + 0] = vals[0] >>> 24 - 8 * ii & 0x00FF;
ret[ii + off] = vals[1] >>> 24 - 8 * ii & 0x00FF;
// vals[ 0 ] = ( vals[ 0 ] >>> 8 );
// vals[ 1 ] = ( vals[ 1 ] >>> 8 );
}
return ret;
};
//*
//* This method takes an array with two values, left and right
//* and undoes NN rounds of Blowfish on them.
//*
Blowfish.prototype._decrypt_block = function (vals) {
let dataL = vals[0];
let dataR = vals[1];
let ii;
for (ii = this.NN + 1; ii > 1; --ii) {
dataL ^= this.parray[ii];
dataR = this._F(dataL) ^ dataR;
const tmp = dataL;
dataL = dataR;
dataR = tmp;
}
dataL ^= this.parray[1];
dataR ^= this.parray[0];
vals[0] = this._clean(dataR);
vals[1] = this._clean(dataL);
};
//*
//* This method takes a key array and initializes the
//* sboxes and parray for this encryption.
//*
Blowfish.prototype.init = function (key) {
let ii;
let jj = 0;
this.parray = [];
for (ii = 0; ii < this.NN + 2; ++ii) {
let data = 0x00000000;
for (let kk = 0; kk < 4; ++kk) {
data = data << 8 | key[jj] & 0x00FF;
if (++jj >= key.length) {
jj = 0;
}
}
this.parray[ii] = this.PARRAY[ii] ^ data;
}
this.sboxes = [];
for (ii = 0; ii < 4; ++ii) {
this.sboxes[ii] = [];
for (jj = 0; jj < 256; ++jj) {
this.sboxes[ii][jj] = this.SBOXES[ii][jj];
}
}
const vals = [0x00000000, 0x00000000];
for (ii = 0; ii < this.NN + 2; ii += 2) {
this._encrypt_block(vals);
this.parray[ii + 0] = vals[0];
this.parray[ii + 1] = vals[1];
}
for (ii = 0; ii < 4; ++ii) {
for (jj = 0; jj < 256; jj += 2) {
this._encrypt_block(vals);
this.sboxes[ii][jj + 0] = vals[0];
this.sboxes[ii][jj + 1] = vals[1];
}
}
};
// added by Recurity Labs
function BF(key) {
this.bf = new Blowfish();
this.bf.init(key);
this.encrypt = function (block) {
return this.bf.encrypt_block(block);
};
}
BF.keySize = BF.prototype.keySize = 16;
BF.blockSize = BF.prototype.blockSize = 16;
exports.default = BF;
},{}],85:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Copyright 2010 pjacobs@xeekr.com . All rights reserved.
// Modified by Recurity Labs GmbH
// fixed/modified by Herbert Hanewinkel, www.haneWIN.de
// check www.haneWIN.de for the latest version
// cast5.js is a Javascript implementation of CAST-128, as defined in RFC 2144.
// CAST-128 is a common OpenPGP cipher.
// CAST5 constructor
function OpenpgpSymencCast5() {
this.BlockSize = 8;
this.KeySize = 16;
this.setKey = function (key) {
this.masking = new Array(16);
this.rotate = new Array(16);
this.reset();
if (key.length === this.KeySize) {
this.keySchedule(key);
} else {
throw new Error('CAST-128: keys must be 16 bytes');
}
return true;
};
this.reset = function () {
for (let i = 0; i < 16; i++) {
this.masking[i] = 0;
this.rotate[i] = 0;
}
};
this.getBlockSize = function () {
return this.BlockSize;
};
this.encrypt = function (src) {
const dst = new Array(src.length);
for (let i = 0; i < src.length; i += 8) {
let l = src[i] << 24 | src[i + 1] << 16 | src[i + 2] << 8 | src[i + 3];
let r = src[i + 4] << 24 | src[i + 5] << 16 | src[i + 6] << 8 | src[i + 7];
let t;
t = r;
r = l ^ f1(r, this.masking[0], this.rotate[0]);
l = t;
t = r;
r = l ^ f2(r, this.masking[1], this.rotate[1]);
l = t;
t = r;
r = l ^ f3(r, this.masking[2], this.rotate[2]);
l = t;
t = r;
r = l ^ f1(r, this.masking[3], this.rotate[3]);
l = t;
t = r;
r = l ^ f2(r, this.masking[4], this.rotate[4]);
l = t;
t = r;
r = l ^ f3(r, this.masking[5], this.rotate[5]);
l = t;
t = r;
r = l ^ f1(r, this.masking[6], this.rotate[6]);
l = t;
t = r;
r = l ^ f2(r, this.masking[7], this.rotate[7]);
l = t;
t = r;
r = l ^ f3(r, this.masking[8], this.rotate[8]);
l = t;
t = r;
r = l ^ f1(r, this.masking[9], this.rotate[9]);
l = t;
t = r;
r = l ^ f2(r, this.masking[10], this.rotate[10]);
l = t;
t = r;
r = l ^ f3(r, this.masking[11], this.rotate[11]);
l = t;
t = r;
r = l ^ f1(r, this.masking[12], this.rotate[12]);
l = t;
t = r;
r = l ^ f2(r, this.masking[13], this.rotate[13]);
l = t;
t = r;
r = l ^ f3(r, this.masking[14], this.rotate[14]);
l = t;
t = r;
r = l ^ f1(r, this.masking[15], this.rotate[15]);
l = t;
dst[i] = r >>> 24 & 255;
dst[i + 1] = r >>> 16 & 255;
dst[i + 2] = r >>> 8 & 255;
dst[i + 3] = r & 255;
dst[i + 4] = l >>> 24 & 255;
dst[i + 5] = l >>> 16 & 255;
dst[i + 6] = l >>> 8 & 255;
dst[i + 7] = l & 255;
}
return dst;
};
this.decrypt = function (src) {
const dst = new Array(src.length);
for (let i = 0; i < src.length; i += 8) {
let l = src[i] << 24 | src[i + 1] << 16 | src[i + 2] << 8 | src[i + 3];
let r = src[i + 4] << 24 | src[i + 5] << 16 | src[i + 6] << 8 | src[i + 7];
let t;
t = r;
r = l ^ f1(r, this.masking[15], this.rotate[15]);
l = t;
t = r;
r = l ^ f3(r, this.masking[14], this.rotate[14]);
l = t;
t = r;
r = l ^ f2(r, this.masking[13], this.rotate[13]);
l = t;
t = r;
r = l ^ f1(r, this.masking[12], this.rotate[12]);
l = t;
t = r;
r = l ^ f3(r, this.masking[11], this.rotate[11]);
l = t;
t = r;
r = l ^ f2(r, this.masking[10], this.rotate[10]);
l = t;
t = r;
r = l ^ f1(r, this.masking[9], this.rotate[9]);
l = t;
t = r;
r = l ^ f3(r, this.masking[8], this.rotate[8]);
l = t;
t = r;
r = l ^ f2(r, this.masking[7], this.rotate[7]);
l = t;
t = r;
r = l ^ f1(r, this.masking[6], this.rotate[6]);
l = t;
t = r;
r = l ^ f3(r, this.masking[5], this.rotate[5]);
l = t;
t = r;
r = l ^ f2(r, this.masking[4], this.rotate[4]);
l = t;
t = r;
r = l ^ f1(r, this.masking[3], this.rotate[3]);
l = t;
t = r;
r = l ^ f3(r, this.masking[2], this.rotate[2]);
l = t;
t = r;
r = l ^ f2(r, this.masking[1], this.rotate[1]);
l = t;
t = r;
r = l ^ f1(r, this.masking[0], this.rotate[0]);
l = t;
dst[i] = r >>> 24 & 255;
dst[i + 1] = r >>> 16 & 255;
dst[i + 2] = r >>> 8 & 255;
dst[i + 3] = r & 255;
dst[i + 4] = l >>> 24 & 255;
dst[i + 5] = l >> 16 & 255;
dst[i + 6] = l >> 8 & 255;
dst[i + 7] = l & 255;
}
return dst;
};
const scheduleA = new Array(4);
scheduleA[0] = new Array(4);
scheduleA[0][0] = [4, 0, 0xd, 0xf, 0xc, 0xe, 0x8];
scheduleA[0][1] = [5, 2, 16 + 0, 16 + 2, 16 + 1, 16 + 3, 0xa];
scheduleA[0][2] = [6, 3, 16 + 7, 16 + 6, 16 + 5, 16 + 4, 9];
scheduleA[0][3] = [7, 1, 16 + 0xa, 16 + 9, 16 + 0xb, 16 + 8, 0xb];
scheduleA[1] = new Array(4);
scheduleA[1][0] = [0, 6, 16 + 5, 16 + 7, 16 + 4, 16 + 6, 16 + 0];
scheduleA[1][1] = [1, 4, 0, 2, 1, 3, 16 + 2];
scheduleA[1][2] = [2, 5, 7, 6, 5, 4, 16 + 1];
scheduleA[1][3] = [3, 7, 0xa, 9, 0xb, 8, 16 + 3];
scheduleA[2] = new Array(4);
scheduleA[2][0] = [4, 0, 0xd, 0xf, 0xc, 0xe, 8];
scheduleA[2][1] = [5, 2, 16 + 0, 16 + 2, 16 + 1, 16 + 3, 0xa];
scheduleA[2][2] = [6, 3, 16 + 7, 16 + 6, 16 + 5, 16 + 4, 9];
scheduleA[2][3] = [7, 1, 16 + 0xa, 16 + 9, 16 + 0xb, 16 + 8, 0xb];
scheduleA[3] = new Array(4);
scheduleA[3][0] = [0, 6, 16 + 5, 16 + 7, 16 + 4, 16 + 6, 16 + 0];
scheduleA[3][1] = [1, 4, 0, 2, 1, 3, 16 + 2];
scheduleA[3][2] = [2, 5, 7, 6, 5, 4, 16 + 1];
scheduleA[3][3] = [3, 7, 0xa, 9, 0xb, 8, 16 + 3];
const scheduleB = new Array(4);
scheduleB[0] = new Array(4);
scheduleB[0][0] = [16 + 8, 16 + 9, 16 + 7, 16 + 6, 16 + 2];
scheduleB[0][1] = [16 + 0xa, 16 + 0xb, 16 + 5, 16 + 4, 16 + 6];
scheduleB[0][2] = [16 + 0xc, 16 + 0xd, 16 + 3, 16 + 2, 16 + 9];
scheduleB[0][3] = [16 + 0xe, 16 + 0xf, 16 + 1, 16 + 0, 16 + 0xc];
scheduleB[1] = new Array(4);
scheduleB[1][0] = [3, 2, 0xc, 0xd, 8];
scheduleB[1][1] = [1, 0, 0xe, 0xf, 0xd];
scheduleB[1][2] = [7, 6, 8, 9, 3];
scheduleB[1][3] = [5, 4, 0xa, 0xb, 7];
scheduleB[2] = new Array(4);
scheduleB[2][0] = [16 + 3, 16 + 2, 16 + 0xc, 16 + 0xd, 16 + 9];
scheduleB[2][1] = [16 + 1, 16 + 0, 16 + 0xe, 16 + 0xf, 16 + 0xc];
scheduleB[2][2] = [16 + 7, 16 + 6, 16 + 8, 16 + 9, 16 + 2];
scheduleB[2][3] = [16 + 5, 16 + 4, 16 + 0xa, 16 + 0xb, 16 + 6];
scheduleB[3] = new Array(4);
scheduleB[3][0] = [8, 9, 7, 6, 3];
scheduleB[3][1] = [0xa, 0xb, 5, 4, 7];
scheduleB[3][2] = [0xc, 0xd, 3, 2, 8];
scheduleB[3][3] = [0xe, 0xf, 1, 0, 0xd];
// changed 'in' to 'inn' (in javascript 'in' is a reserved word)
this.keySchedule = function (inn) {
const t = new Array(8);
const k = new Array(32);
let j;
for (let i = 0; i < 4; i++) {
j = i * 4;
t[i] = inn[j] << 24 | inn[j + 1] << 16 | inn[j + 2] << 8 | inn[j + 3];
}
const x = [6, 7, 4, 5];
let ki = 0;
let w;
for (let half = 0; half < 2; half++) {
for (let round = 0; round < 4; round++) {
for (j = 0; j < 4; j++) {
const a = scheduleA[round][j];
w = t[a[1]];
w ^= sBox[4][t[a[2] >>> 2] >>> 24 - 8 * (a[2] & 3) & 0xff];
w ^= sBox[5][t[a[3] >>> 2] >>> 24 - 8 * (a[3] & 3) & 0xff];
w ^= sBox[6][t[a[4] >>> 2] >>> 24 - 8 * (a[4] & 3) & 0xff];
w ^= sBox[7][t[a[5] >>> 2] >>> 24 - 8 * (a[5] & 3) & 0xff];
w ^= sBox[x[j]][t[a[6] >>> 2] >>> 24 - 8 * (a[6] & 3) & 0xff];
t[a[0]] = w;
}
for (j = 0; j < 4; j++) {
const b = scheduleB[round][j];
w = sBox[4][t[b[0] >>> 2] >>> 24 - 8 * (b[0] & 3) & 0xff];
w ^= sBox[5][t[b[1] >>> 2] >>> 24 - 8 * (b[1] & 3) & 0xff];
w ^= sBox[6][t[b[2] >>> 2] >>> 24 - 8 * (b[2] & 3) & 0xff];
w ^= sBox[7][t[b[3] >>> 2] >>> 24 - 8 * (b[3] & 3) & 0xff];
w ^= sBox[4 + j][t[b[4] >>> 2] >>> 24 - 8 * (b[4] & 3) & 0xff];
k[ki] = w;
ki++;
}
}
}
for (let i = 0; i < 16; i++) {
this.masking[i] = k[i];
this.rotate[i] = k[16 + i] & 0x1f;
}
};
// These are the three 'f' functions. See RFC 2144, section 2.2.
function f1(d, m, r) {
const t = m + d;
const I = t << r | t >>> 32 - r;
return (sBox[0][I >>> 24] ^ sBox[1][I >>> 16 & 255]) - sBox[2][I >>> 8 & 255] + sBox[3][I & 255];
}
function f2(d, m, r) {
const t = m ^ d;
const I = t << r | t >>> 32 - r;
return sBox[0][I >>> 24] - sBox[1][I >>> 16 & 255] + sBox[2][I >>> 8 & 255] ^ sBox[3][I & 255];
}
function f3(d, m, r) {
const t = m - d;
const I = t << r | t >>> 32 - r;
return (sBox[0][I >>> 24] + sBox[1][I >>> 16 & 255] ^ sBox[2][I >>> 8 & 255]) - sBox[3][I & 255];
}
const sBox = new Array(8);
sBox[0] = [0x30fb40d4, 0x9fa0ff0b, 0x6beccd2f, 0x3f258c7a, 0x1e213f2f, 0x9c004dd3, 0x6003e540, 0xcf9fc949, 0xbfd4af27, 0x88bbbdb5, 0xe2034090, 0x98d09675, 0x6e63a0e0, 0x15c361d2, 0xc2e7661d, 0x22d4ff8e, 0x28683b6f, 0xc07fd059, 0xff2379c8, 0x775f50e2, 0x43c340d3, 0xdf2f8656, 0x887ca41a, 0xa2d2bd2d, 0xa1c9e0d6, 0x346c4819, 0x61b76d87, 0x22540f2f, 0x2abe32e1, 0xaa54166b, 0x22568e3a, 0xa2d341d0, 0x66db40c8, 0xa784392f, 0x004dff2f, 0x2db9d2de, 0x97943fac, 0x4a97c1d8, 0x527644b7, 0xb5f437a7, 0xb82cbaef, 0xd751d159, 0x6ff7f0ed, 0x5a097a1f, 0x827b68d0, 0x90ecf52e, 0x22b0c054, 0xbc8e5935, 0x4b6d2f7f, 0x50bb64a2, 0xd2664910, 0xbee5812d, 0xb7332290, 0xe93b159f, 0xb48ee411, 0x4bff345d, 0xfd45c240, 0xad31973f, 0xc4f6d02e, 0x55fc8165, 0xd5b1caad, 0xa1ac2dae, 0xa2d4b76d, 0xc19b0c50, 0x882240f2, 0x0c6e4f38, 0xa4e4bfd7, 0x4f5ba272, 0x564c1d2f, 0xc59c5319, 0xb949e354, 0xb04669fe, 0xb1b6ab8a, 0xc71358dd, 0x6385c545, 0x110f935d, 0x57538ad5, 0x6a390493, 0xe63d37e0, 0x2a54f6b3, 0x3a787d5f, 0x6276a0b5, 0x19a6fcdf, 0x7a42206a, 0x29f9d4d5, 0xf61b1891, 0xbb72275e, 0xaa508167, 0x38901091, 0xc6b505eb, 0x84c7cb8c, 0x2ad75a0f, 0x874a1427, 0xa2d1936b, 0x2ad286af, 0xaa56d291, 0xd7894360, 0x425c750d, 0x93b39e26, 0x187184c9, 0x6c00b32d, 0x73e2bb14, 0xa0bebc3c, 0x54623779, 0x64459eab, 0x3f328b82, 0x7718cf82, 0x59a2cea6, 0x04ee002e, 0x89fe78e6, 0x3fab0950, 0x325ff6c2, 0x81383f05, 0x6963c5c8, 0x76cb5ad6, 0xd49974c9, 0xca180dcf, 0x380782d5, 0xc7fa5cf6, 0x8ac31511, 0x35e79e13, 0x47da91d0, 0xf40f9086, 0xa7e2419e, 0x31366241, 0x051ef495, 0xaa573b04, 0x4a805d8d, 0x548300d0, 0x00322a3c, 0xbf64cddf, 0xba57a68e, 0x75c6372b, 0x50afd341, 0xa7c13275, 0x915a0bf5, 0x6b54bfab, 0x2b0b1426, 0xab4cc9d7, 0x449ccd82, 0xf7fbf265, 0xab85c5f3, 0x1b55db94, 0xaad4e324, 0xcfa4bd3f, 0x2deaa3e2, 0x9e204d02, 0xc8bd25ac, 0xeadf55b3, 0xd5bd9e98, 0xe31231b2, 0x2ad5ad6c, 0x954329de, 0xadbe4528, 0xd8710f69, 0xaa51c90f, 0xaa786bf6, 0x22513f1e, 0xaa51a79b, 0x2ad344cc, 0x7b5a41f0, 0xd37cfbad, 0x1b069505, 0x41ece491, 0xb4c332e6, 0x032268d4, 0xc9600acc, 0xce387e6d, 0xbf6bb16c, 0x6a70fb78, 0x0d03d9c9, 0xd4df39de, 0xe01063da, 0x4736f464, 0x5ad328d8, 0xb347cc96, 0x75bb0fc3, 0x98511bfb, 0x4ffbcc35, 0xb58bcf6a, 0xe11f0abc, 0xbfc5fe4a, 0xa70aec10, 0xac39570a, 0x3f04442f, 0x6188b153, 0xe0397a2e, 0x5727cb79, 0x9ceb418f, 0x1cacd68d, 0x2ad37c96, 0x0175cb9d, 0xc69dff09, 0xc75b65f0, 0xd9db40d8, 0xec0e7779, 0x4744ead4, 0xb11c3274, 0xdd24cb9e, 0x7e1c54bd, 0xf01144f9, 0xd2240eb1, 0x9675b3fd, 0xa3ac3755, 0xd47c27af, 0x51c85f4d, 0x56907596, 0xa5bb15e6, 0x580304f0, 0xca042cf1, 0x011a37ea, 0x8dbfaadb, 0x35ba3e4a, 0x3526ffa0, 0xc37b4d09, 0xbc306ed9, 0x98a52666, 0x5648f725, 0xff5e569d, 0x0ced63d0, 0x7c63b2cf, 0x700b45e1, 0xd5ea50f1, 0x85a92872, 0xaf1fbda7, 0xd4234870, 0xa7870bf3, 0x2d3b4d79, 0x42e04198, 0x0cd0ede7, 0x26470db8, 0xf881814c, 0x474d6ad7, 0x7c0c5e5c, 0xd1231959, 0x381b7298, 0xf5d2f4db, 0xab838653, 0x6e2f1e23, 0x83719c9e, 0xbd91e046, 0x9a56456e, 0xdc39200c, 0x20c8c571, 0x962bda1c, 0xe1e696ff, 0xb141ab08, 0x7cca89b9, 0x1a69e783, 0x02cc4843, 0xa2f7c579, 0x429ef47d, 0x427b169c, 0x5ac9f049, 0xdd8f0f00, 0x5c8165bf];
sBox[1] = [0x1f201094, 0xef0ba75b, 0x69e3cf7e, 0x393f4380, 0xfe61cf7a, 0xeec5207a, 0x55889c94, 0x72fc0651, 0xada7ef79, 0x4e1d7235, 0xd55a63ce, 0xde0436ba, 0x99c430ef, 0x5f0c0794, 0x18dcdb7d, 0xa1d6eff3, 0xa0b52f7b, 0x59e83605, 0xee15b094, 0xe9ffd909, 0xdc440086, 0xef944459, 0xba83ccb3, 0xe0c3cdfb, 0xd1da4181, 0x3b092ab1, 0xf997f1c1, 0xa5e6cf7b, 0x01420ddb, 0xe4e7ef5b, 0x25a1ff41, 0xe180f806, 0x1fc41080, 0x179bee7a, 0xd37ac6a9, 0xfe5830a4, 0x98de8b7f, 0x77e83f4e, 0x79929269, 0x24fa9f7b, 0xe113c85b, 0xacc40083, 0xd7503525, 0xf7ea615f, 0x62143154, 0x0d554b63, 0x5d681121, 0xc866c359, 0x3d63cf73, 0xcee234c0, 0xd4d87e87, 0x5c672b21, 0x071f6181, 0x39f7627f, 0x361e3084, 0xe4eb573b, 0x602f64a4, 0xd63acd9c, 0x1bbc4635, 0x9e81032d, 0x2701f50c, 0x99847ab4, 0xa0e3df79, 0xba6cf38c, 0x10843094, 0x2537a95e, 0xf46f6ffe, 0xa1ff3b1f, 0x208cfb6a, 0x8f458c74, 0xd9e0a227, 0x4ec73a34, 0xfc884f69, 0x3e4de8df, 0xef0e0088, 0x3559648d, 0x8a45388c, 0x1d804366, 0x721d9bfd, 0xa58684bb, 0xe8256333, 0x844e8212, 0x128d8098, 0xfed33fb4, 0xce280ae1, 0x27e19ba5, 0xd5a6c252, 0xe49754bd, 0xc5d655dd, 0xeb667064, 0x77840b4d, 0xa1b6a801, 0x84db26a9, 0xe0b56714, 0x21f043b7, 0xe5d05860, 0x54f03084, 0x066ff472, 0xa31aa153, 0xdadc4755, 0xb5625dbf, 0x68561be6, 0x83ca6b94, 0x2d6ed23b, 0xeccf01db, 0xa6d3d0ba, 0xb6803d5c, 0xaf77a709, 0x33b4a34c, 0x397bc8d6, 0x5ee22b95, 0x5f0e5304, 0x81ed6f61, 0x20e74364, 0xb45e1378, 0xde18639b, 0x881ca122, 0xb96726d1, 0x8049a7e8, 0x22b7da7b, 0x5e552d25, 0x5272d237, 0x79d2951c, 0xc60d894c, 0x488cb402, 0x1ba4fe5b, 0xa4b09f6b, 0x1ca815cf, 0xa20c3005, 0x8871df63, 0xb9de2fcb, 0x0cc6c9e9, 0x0beeff53, 0xe3214517, 0xb4542835, 0x9f63293c, 0xee41e729, 0x6e1d2d7c, 0x50045286, 0x1e6685f3, 0xf33401c6, 0x30a22c95, 0x31a70850, 0x60930f13, 0x73f98417, 0xa1269859, 0xec645c44, 0x52c877a9, 0xcdff33a6, 0xa02b1741, 0x7cbad9a2, 0x2180036f, 0x50d99c08, 0xcb3f4861, 0xc26bd765, 0x64a3f6ab, 0x80342676, 0x25a75e7b, 0xe4e6d1fc, 0x20c710e6, 0xcdf0b680, 0x17844d3b, 0x31eef84d, 0x7e0824e4, 0x2ccb49eb, 0x846a3bae, 0x8ff77888, 0xee5d60f6, 0x7af75673, 0x2fdd5cdb, 0xa11631c1, 0x30f66f43, 0xb3faec54, 0x157fd7fa, 0xef8579cc, 0xd152de58, 0xdb2ffd5e, 0x8f32ce19, 0x306af97a, 0x02f03ef8, 0x99319ad5, 0xc242fa0f, 0xa7e3ebb0, 0xc68e4906, 0xb8da230c, 0x80823028, 0xdcdef3c8, 0xd35fb171, 0x088a1bc8, 0xbec0c560, 0x61a3c9e8, 0xbca8f54d, 0xc72feffa, 0x22822e99, 0x82c570b4, 0xd8d94e89, 0x8b1c34bc, 0x301e16e6, 0x273be979, 0xb0ffeaa6, 0x61d9b8c6, 0x00b24869, 0xb7ffce3f, 0x08dc283b, 0x43daf65a, 0xf7e19798, 0x7619b72f, 0x8f1c9ba4, 0xdc8637a0, 0x16a7d3b1, 0x9fc393b7, 0xa7136eeb, 0xc6bcc63e, 0x1a513742, 0xef6828bc, 0x520365d6, 0x2d6a77ab, 0x3527ed4b, 0x821fd216, 0x095c6e2e, 0xdb92f2fb, 0x5eea29cb, 0x145892f5, 0x91584f7f, 0x5483697b, 0x2667a8cc, 0x85196048, 0x8c4bacea, 0x833860d4, 0x0d23e0f9, 0x6c387e8a, 0x0ae6d249, 0xb284600c, 0xd835731d, 0xdcb1c647, 0xac4c56ea, 0x3ebd81b3, 0x230eabb0, 0x6438bc87, 0xf0b5b1fa, 0x8f5ea2b3, 0xfc184642, 0x0a036b7a, 0x4fb089bd, 0x649da589, 0xa345415e, 0x5c038323, 0x3e5d3bb9, 0x43d79572, 0x7e6dd07c, 0x06dfdf1e, 0x6c6cc4ef, 0x7160a539, 0x73bfbe70, 0x83877605, 0x4523ecf1];
sBox[2] = [0x8defc240, 0x25fa5d9f, 0xeb903dbf, 0xe810c907, 0x47607fff, 0x369fe44b, 0x8c1fc644, 0xaececa90, 0xbeb1f9bf, 0xeefbcaea, 0xe8cf1950, 0x51df07ae, 0x920e8806, 0xf0ad0548, 0xe13c8d83, 0x927010d5, 0x11107d9f, 0x07647db9, 0xb2e3e4d4, 0x3d4f285e, 0xb9afa820, 0xfade82e0, 0xa067268b, 0x8272792e, 0x553fb2c0, 0x489ae22b, 0xd4ef9794, 0x125e3fbc, 0x21fffcee, 0x825b1bfd, 0x9255c5ed, 0x1257a240, 0x4e1a8302, 0xbae07fff, 0x528246e7, 0x8e57140e, 0x3373f7bf, 0x8c9f8188, 0xa6fc4ee8, 0xc982b5a5, 0xa8c01db7, 0x579fc264, 0x67094f31, 0xf2bd3f5f, 0x40fff7c1, 0x1fb78dfc, 0x8e6bd2c1, 0x437be59b, 0x99b03dbf, 0xb5dbc64b, 0x638dc0e6, 0x55819d99, 0xa197c81c, 0x4a012d6e, 0xc5884a28, 0xccc36f71, 0xb843c213, 0x6c0743f1, 0x8309893c, 0x0feddd5f, 0x2f7fe850, 0xd7c07f7e, 0x02507fbf, 0x5afb9a04, 0xa747d2d0, 0x1651192e, 0xaf70bf3e, 0x58c31380, 0x5f98302e, 0x727cc3c4, 0x0a0fb402, 0x0f7fef82, 0x8c96fdad, 0x5d2c2aae, 0x8ee99a49, 0x50da88b8, 0x8427f4a0, 0x1eac5790, 0x796fb449, 0x8252dc15, 0xefbd7d9b, 0xa672597d, 0xada840d8, 0x45f54504, 0xfa5d7403, 0xe83ec305, 0x4f91751a, 0x925669c2, 0x23efe941, 0xa903f12e, 0x60270df2, 0x0276e4b6, 0x94fd6574, 0x927985b2, 0x8276dbcb, 0x02778176, 0xf8af918d, 0x4e48f79e, 0x8f616ddf, 0xe29d840e, 0x842f7d83, 0x340ce5c8, 0x96bbb682, 0x93b4b148, 0xef303cab, 0x984faf28, 0x779faf9b, 0x92dc560d, 0x224d1e20, 0x8437aa88, 0x7d29dc96, 0x2756d3dc, 0x8b907cee, 0xb51fd240, 0xe7c07ce3, 0xe566b4a1, 0xc3e9615e, 0x3cf8209d, 0x6094d1e3, 0xcd9ca341, 0x5c76460e, 0x00ea983b, 0xd4d67881, 0xfd47572c, 0xf76cedd9, 0xbda8229c, 0x127dadaa, 0x438a074e, 0x1f97c090, 0x081bdb8a, 0x93a07ebe, 0xb938ca15, 0x97b03cff, 0x3dc2c0f8, 0x8d1ab2ec, 0x64380e51, 0x68cc7bfb, 0xd90f2788, 0x12490181, 0x5de5ffd4, 0xdd7ef86a, 0x76a2e214, 0xb9a40368, 0x925d958f, 0x4b39fffa, 0xba39aee9, 0xa4ffd30b, 0xfaf7933b, 0x6d498623, 0x193cbcfa, 0x27627545, 0x825cf47a, 0x61bd8ba0, 0xd11e42d1, 0xcead04f4, 0x127ea392, 0x10428db7, 0x8272a972, 0x9270c4a8, 0x127de50b, 0x285ba1c8, 0x3c62f44f, 0x35c0eaa5, 0xe805d231, 0x428929fb, 0xb4fcdf82, 0x4fb66a53, 0x0e7dc15b, 0x1f081fab, 0x108618ae, 0xfcfd086d, 0xf9ff2889, 0x694bcc11, 0x236a5cae, 0x12deca4d, 0x2c3f8cc5, 0xd2d02dfe, 0xf8ef5896, 0xe4cf52da, 0x95155b67, 0x494a488c, 0xb9b6a80c, 0x5c8f82bc, 0x89d36b45, 0x3a609437, 0xec00c9a9, 0x44715253, 0x0a874b49, 0xd773bc40, 0x7c34671c, 0x02717ef6, 0x4feb5536, 0xa2d02fff, 0xd2bf60c4, 0xd43f03c0, 0x50b4ef6d, 0x07478cd1, 0x006e1888, 0xa2e53f55, 0xb9e6d4bc, 0xa2048016, 0x97573833, 0xd7207d67, 0xde0f8f3d, 0x72f87b33, 0xabcc4f33, 0x7688c55d, 0x7b00a6b0, 0x947b0001, 0x570075d2, 0xf9bb88f8, 0x8942019e, 0x4264a5ff, 0x856302e0, 0x72dbd92b, 0xee971b69, 0x6ea22fde, 0x5f08ae2b, 0xaf7a616d, 0xe5c98767, 0xcf1febd2, 0x61efc8c2, 0xf1ac2571, 0xcc8239c2, 0x67214cb8, 0xb1e583d1, 0xb7dc3e62, 0x7f10bdce, 0xf90a5c38, 0x0ff0443d, 0x606e6dc6, 0x60543a49, 0x5727c148, 0x2be98a1d, 0x8ab41738, 0x20e1be24, 0xaf96da0f, 0x68458425, 0x99833be5, 0x600d457d, 0x282f9350, 0x8334b362, 0xd91d1120, 0x2b6d8da0, 0x642b1e31, 0x9c305a00, 0x52bce688, 0x1b03588a, 0xf7baefd5, 0x4142ed9c, 0xa4315c11, 0x83323ec5, 0xdfef4636, 0xa133c501, 0xe9d3531c, 0xee353783];
sBox[3] = [0x9db30420, 0x1fb6e9de, 0xa7be7bef, 0xd273a298, 0x4a4f7bdb, 0x64ad8c57, 0x85510443, 0xfa020ed1, 0x7e287aff, 0xe60fb663, 0x095f35a1, 0x79ebf120, 0xfd059d43, 0x6497b7b1, 0xf3641f63, 0x241e4adf, 0x28147f5f, 0x4fa2b8cd, 0xc9430040, 0x0cc32220, 0xfdd30b30, 0xc0a5374f, 0x1d2d00d9, 0x24147b15, 0xee4d111a, 0x0fca5167, 0x71ff904c, 0x2d195ffe, 0x1a05645f, 0x0c13fefe, 0x081b08ca, 0x05170121, 0x80530100, 0xe83e5efe, 0xac9af4f8, 0x7fe72701, 0xd2b8ee5f, 0x06df4261, 0xbb9e9b8a, 0x7293ea25, 0xce84ffdf, 0xf5718801, 0x3dd64b04, 0xa26f263b, 0x7ed48400, 0x547eebe6, 0x446d4ca0, 0x6cf3d6f5, 0x2649abdf, 0xaea0c7f5, 0x36338cc1, 0x503f7e93, 0xd3772061, 0x11b638e1, 0x72500e03, 0xf80eb2bb, 0xabe0502e, 0xec8d77de, 0x57971e81, 0xe14f6746, 0xc9335400, 0x6920318f, 0x081dbb99, 0xffc304a5, 0x4d351805, 0x7f3d5ce3, 0xa6c866c6, 0x5d5bcca9, 0xdaec6fea, 0x9f926f91, 0x9f46222f, 0x3991467d, 0xa5bf6d8e, 0x1143c44f, 0x43958302, 0xd0214eeb, 0x022083b8, 0x3fb6180c, 0x18f8931e, 0x281658e6, 0x26486e3e, 0x8bd78a70, 0x7477e4c1, 0xb506e07c, 0xf32d0a25, 0x79098b02, 0xe4eabb81, 0x28123b23, 0x69dead38, 0x1574ca16, 0xdf871b62, 0x211c40b7, 0xa51a9ef9, 0x0014377b, 0x041e8ac8, 0x09114003, 0xbd59e4d2, 0xe3d156d5, 0x4fe876d5, 0x2f91a340, 0x557be8de, 0x00eae4a7, 0x0ce5c2ec, 0x4db4bba6, 0xe756bdff, 0xdd3369ac, 0xec17b035, 0x06572327, 0x99afc8b0, 0x56c8c391, 0x6b65811c, 0x5e146119, 0x6e85cb75, 0xbe07c002, 0xc2325577, 0x893ff4ec, 0x5bbfc92d, 0xd0ec3b25, 0xb7801ab7, 0x8d6d3b24, 0x20c763ef, 0xc366a5fc, 0x9c382880, 0x0ace3205, 0xaac9548a, 0xeca1d7c7, 0x041afa32, 0x1d16625a, 0x6701902c, 0x9b757a54, 0x31d477f7, 0x9126b031, 0x36cc6fdb, 0xc70b8b46, 0xd9e66a48, 0x56e55a79, 0x026a4ceb, 0x52437eff, 0x2f8f76b4, 0x0df980a5, 0x8674cde3, 0xedda04eb, 0x17a9be04, 0x2c18f4df, 0xb7747f9d, 0xab2af7b4, 0xefc34d20, 0x2e096b7c, 0x1741a254, 0xe5b6a035, 0x213d42f6, 0x2c1c7c26, 0x61c2f50f, 0x6552daf9, 0xd2c231f8, 0x25130f69, 0xd8167fa2, 0x0418f2c8, 0x001a96a6, 0x0d1526ab, 0x63315c21, 0x5e0a72ec, 0x49bafefd, 0x187908d9, 0x8d0dbd86, 0x311170a7, 0x3e9b640c, 0xcc3e10d7, 0xd5cad3b6, 0x0caec388, 0xf73001e1, 0x6c728aff, 0x71eae2a1, 0x1f9af36e, 0xcfcbd12f, 0xc1de8417, 0xac07be6b, 0xcb44a1d8, 0x8b9b0f56, 0x013988c3, 0xb1c52fca, 0xb4be31cd, 0xd8782806, 0x12a3a4e2, 0x6f7de532, 0x58fd7eb6, 0xd01ee900, 0x24adffc2, 0xf4990fc5, 0x9711aac5, 0x001d7b95, 0x82e5e7d2, 0x109873f6, 0x00613096, 0xc32d9521, 0xada121ff, 0x29908415, 0x7fbb977f, 0xaf9eb3db, 0x29c9ed2a, 0x5ce2a465, 0xa730f32c, 0xd0aa3fe8, 0x8a5cc091, 0xd49e2ce7, 0x0ce454a9, 0xd60acd86, 0x015f1919, 0x77079103, 0xdea03af6, 0x78a8565e, 0xdee356df, 0x21f05cbe, 0x8b75e387, 0xb3c50651, 0xb8a5c3ef, 0xd8eeb6d2, 0xe523be77, 0xc2154529, 0x2f69efdf, 0xafe67afb, 0xf470c4b2, 0xf3e0eb5b, 0xd6cc9876, 0x39e4460c, 0x1fda8538, 0x1987832f, 0xca007367, 0xa99144f8, 0x296b299e, 0x492fc295, 0x9266beab, 0xb5676e69, 0x9bd3ddda, 0xdf7e052f, 0xdb25701c, 0x1b5e51ee, 0xf65324e6, 0x6afce36c, 0x0316cc04, 0x8644213e, 0xb7dc59d0, 0x7965291f, 0xccd6fd43, 0x41823979, 0x932bcdf6, 0xb657c34d, 0x4edfd282, 0x7ae5290c, 0x3cb9536b, 0x851e20fe, 0x9833557e, 0x13ecf0b0, 0xd3ffb372, 0x3f85c5c1, 0x0aef7ed2];
sBox[4] = [0x7ec90c04, 0x2c6e74b9, 0x9b0e66df, 0xa6337911, 0xb86a7fff, 0x1dd358f5, 0x44dd9d44, 0x1731167f, 0x08fbf1fa, 0xe7f511cc, 0xd2051b00, 0x735aba00, 0x2ab722d8, 0x386381cb, 0xacf6243a, 0x69befd7a, 0xe6a2e77f, 0xf0c720cd, 0xc4494816, 0xccf5c180, 0x38851640, 0x15b0a848, 0xe68b18cb, 0x4caadeff, 0x5f480a01, 0x0412b2aa, 0x259814fc, 0x41d0efe2, 0x4e40b48d, 0x248eb6fb, 0x8dba1cfe, 0x41a99b02, 0x1a550a04, 0xba8f65cb, 0x7251f4e7, 0x95a51725, 0xc106ecd7, 0x97a5980a, 0xc539b9aa, 0x4d79fe6a, 0xf2f3f763, 0x68af8040, 0xed0c9e56, 0x11b4958b, 0xe1eb5a88, 0x8709e6b0, 0xd7e07156, 0x4e29fea7, 0x6366e52d, 0x02d1c000, 0xc4ac8e05, 0x9377f571, 0x0c05372a, 0x578535f2, 0x2261be02, 0xd642a0c9, 0xdf13a280, 0x74b55bd2, 0x682199c0, 0xd421e5ec, 0x53fb3ce8, 0xc8adedb3, 0x28a87fc9, 0x3d959981, 0x5c1ff900, 0xfe38d399, 0x0c4eff0b, 0x062407ea, 0xaa2f4fb1, 0x4fb96976, 0x90c79505, 0xb0a8a774, 0xef55a1ff, 0xe59ca2c2, 0xa6b62d27, 0xe66a4263, 0xdf65001f, 0x0ec50966, 0xdfdd55bc, 0x29de0655, 0x911e739a, 0x17af8975, 0x32c7911c, 0x89f89468, 0x0d01e980, 0x524755f4, 0x03b63cc9, 0x0cc844b2, 0xbcf3f0aa, 0x87ac36e9, 0xe53a7426, 0x01b3d82b, 0x1a9e7449, 0x64ee2d7e, 0xcddbb1da, 0x01c94910, 0xb868bf80, 0x0d26f3fd, 0x9342ede7, 0x04a5c284, 0x636737b6, 0x50f5b616, 0xf24766e3, 0x8eca36c1, 0x136e05db, 0xfef18391, 0xfb887a37, 0xd6e7f7d4, 0xc7fb7dc9, 0x3063fcdf, 0xb6f589de, 0xec2941da, 0x26e46695, 0xb7566419, 0xf654efc5, 0xd08d58b7, 0x48925401, 0xc1bacb7f, 0xe5ff550f, 0xb6083049, 0x5bb5d0e8, 0x87d72e5a, 0xab6a6ee1, 0x223a66ce, 0xc62bf3cd, 0x9e0885f9, 0x68cb3e47, 0x086c010f, 0xa21de820, 0xd18b69de, 0xf3f65777, 0xfa02c3f6, 0x407edac3, 0xcbb3d550, 0x1793084d, 0xb0d70eba, 0x0ab378d5, 0xd951fb0c, 0xded7da56, 0x4124bbe4, 0x94ca0b56, 0x0f5755d1, 0xe0e1e56e, 0x6184b5be, 0x580a249f, 0x94f74bc0, 0xe327888e, 0x9f7b5561, 0xc3dc0280, 0x05687715, 0x646c6bd7, 0x44904db3, 0x66b4f0a3, 0xc0f1648a, 0x697ed5af, 0x49e92ff6, 0x309e374f, 0x2cb6356a, 0x85808573, 0x4991f840, 0x76f0ae02, 0x083be84d, 0x28421c9a, 0x44489406, 0x736e4cb8, 0xc1092910, 0x8bc95fc6, 0x7d869cf4, 0x134f616f, 0x2e77118d, 0xb31b2be1, 0xaa90b472, 0x3ca5d717, 0x7d161bba, 0x9cad9010, 0xaf462ba2, 0x9fe459d2, 0x45d34559, 0xd9f2da13, 0xdbc65487, 0xf3e4f94e, 0x176d486f, 0x097c13ea, 0x631da5c7, 0x445f7382, 0x175683f4, 0xcdc66a97, 0x70be0288, 0xb3cdcf72, 0x6e5dd2f3, 0x20936079, 0x459b80a5, 0xbe60e2db, 0xa9c23101, 0xeba5315c, 0x224e42f2, 0x1c5c1572, 0xf6721b2c, 0x1ad2fff3, 0x8c25404e, 0x324ed72f, 0x4067b7fd, 0x0523138e, 0x5ca3bc78, 0xdc0fd66e, 0x75922283, 0x784d6b17, 0x58ebb16e, 0x44094f85, 0x3f481d87, 0xfcfeae7b, 0x77b5ff76, 0x8c2302bf, 0xaaf47556, 0x5f46b02a, 0x2b092801, 0x3d38f5f7, 0x0ca81f36, 0x52af4a8a, 0x66d5e7c0, 0xdf3b0874, 0x95055110, 0x1b5ad7a8, 0xf61ed5ad, 0x6cf6e479, 0x20758184, 0xd0cefa65, 0x88f7be58, 0x4a046826, 0x0ff6f8f3, 0xa09c7f70, 0x5346aba0, 0x5ce96c28, 0xe176eda3, 0x6bac307f, 0x376829d2, 0x85360fa9, 0x17e3fe2a, 0x24b79767, 0xf5a96b20, 0xd6cd2595, 0x68ff1ebf, 0x7555442c, 0xf19f06be, 0xf9e0659a, 0xeeb9491d, 0x34010718, 0xbb30cab8, 0xe822fe15, 0x88570983, 0x750e6249, 0xda627e55, 0x5e76ffa8, 0xb1534546, 0x6d47de08, 0xefe9e7d4];
sBox[5] = [0xf6fa8f9d, 0x2cac6ce1, 0x4ca34867, 0xe2337f7c, 0x95db08e7, 0x016843b4, 0xeced5cbc, 0x325553ac, 0xbf9f0960, 0xdfa1e2ed, 0x83f0579d, 0x63ed86b9, 0x1ab6a6b8, 0xde5ebe39, 0xf38ff732, 0x8989b138, 0x33f14961, 0xc01937bd, 0xf506c6da, 0xe4625e7e, 0xa308ea99, 0x4e23e33c, 0x79cbd7cc, 0x48a14367, 0xa3149619, 0xfec94bd5, 0xa114174a, 0xeaa01866, 0xa084db2d, 0x09a8486f, 0xa888614a, 0x2900af98, 0x01665991, 0xe1992863, 0xc8f30c60, 0x2e78ef3c, 0xd0d51932, 0xcf0fec14, 0xf7ca07d2, 0xd0a82072, 0xfd41197e, 0x9305a6b0, 0xe86be3da, 0x74bed3cd, 0x372da53c, 0x4c7f4448, 0xdab5d440, 0x6dba0ec3, 0x083919a7, 0x9fbaeed9, 0x49dbcfb0, 0x4e670c53, 0x5c3d9c01, 0x64bdb941, 0x2c0e636a, 0xba7dd9cd, 0xea6f7388, 0xe70bc762, 0x35f29adb, 0x5c4cdd8d, 0xf0d48d8c, 0xb88153e2, 0x08a19866, 0x1ae2eac8, 0x284caf89, 0xaa928223, 0x9334be53, 0x3b3a21bf, 0x16434be3, 0x9aea3906, 0xefe8c36e, 0xf890cdd9, 0x80226dae, 0xc340a4a3, 0xdf7e9c09, 0xa694a807, 0x5b7c5ecc, 0x221db3a6, 0x9a69a02f, 0x68818a54, 0xceb2296f, 0x53c0843a, 0xfe893655, 0x25bfe68a, 0xb4628abc, 0xcf222ebf, 0x25ac6f48, 0xa9a99387, 0x53bddb65, 0xe76ffbe7, 0xe967fd78, 0x0ba93563, 0x8e342bc1, 0xe8a11be9, 0x4980740d, 0xc8087dfc, 0x8de4bf99, 0xa11101a0, 0x7fd37975, 0xda5a26c0, 0xe81f994f, 0x9528cd89, 0xfd339fed, 0xb87834bf, 0x5f04456d, 0x22258698, 0xc9c4c83b, 0x2dc156be, 0x4f628daa, 0x57f55ec5, 0xe2220abe, 0xd2916ebf, 0x4ec75b95, 0x24f2c3c0, 0x42d15d99, 0xcd0d7fa0, 0x7b6e27ff, 0xa8dc8af0, 0x7345c106, 0xf41e232f, 0x35162386, 0xe6ea8926, 0x3333b094, 0x157ec6f2, 0x372b74af, 0x692573e4, 0xe9a9d848, 0xf3160289, 0x3a62ef1d, 0xa787e238, 0xf3a5f676, 0x74364853, 0x20951063, 0x4576698d, 0xb6fad407, 0x592af950, 0x36f73523, 0x4cfb6e87, 0x7da4cec0, 0x6c152daa, 0xcb0396a8, 0xc50dfe5d, 0xfcd707ab, 0x0921c42f, 0x89dff0bb, 0x5fe2be78, 0x448f4f33, 0x754613c9, 0x2b05d08d, 0x48b9d585, 0xdc049441, 0xc8098f9b, 0x7dede786, 0xc39a3373, 0x42410005, 0x6a091751, 0x0ef3c8a6, 0x890072d6, 0x28207682, 0xa9a9f7be, 0xbf32679d, 0xd45b5b75, 0xb353fd00, 0xcbb0e358, 0x830f220a, 0x1f8fb214, 0xd372cf08, 0xcc3c4a13, 0x8cf63166, 0x061c87be, 0x88c98f88, 0x6062e397, 0x47cf8e7a, 0xb6c85283, 0x3cc2acfb, 0x3fc06976, 0x4e8f0252, 0x64d8314d, 0xda3870e3, 0x1e665459, 0xc10908f0, 0x513021a5, 0x6c5b68b7, 0x822f8aa0, 0x3007cd3e, 0x74719eef, 0xdc872681, 0x073340d4, 0x7e432fd9, 0x0c5ec241, 0x8809286c, 0xf592d891, 0x08a930f6, 0x957ef305, 0xb7fbffbd, 0xc266e96f, 0x6fe4ac98, 0xb173ecc0, 0xbc60b42a, 0x953498da, 0xfba1ae12, 0x2d4bd736, 0x0f25faab, 0xa4f3fceb, 0xe2969123, 0x257f0c3d, 0x9348af49, 0x361400bc, 0xe8816f4a, 0x3814f200, 0xa3f94043, 0x9c7a54c2, 0xbc704f57, 0xda41e7f9, 0xc25ad33a, 0x54f4a084, 0xb17f5505, 0x59357cbe, 0xedbd15c8, 0x7f97c5ab, 0xba5ac7b5, 0xb6f6deaf, 0x3a479c3a, 0x5302da25, 0x653d7e6a, 0x54268d49, 0x51a477ea, 0x5017d55b, 0xd7d25d88, 0x44136c76, 0x0404a8c8, 0xb8e5a121, 0xb81a928a, 0x60ed5869, 0x97c55b96, 0xeaec991b, 0x29935913, 0x01fdb7f1, 0x088e8dfa, 0x9ab6f6f5, 0x3b4cbf9f, 0x4a5de3ab, 0xe6051d35, 0xa0e1d855, 0xd36b4cf1, 0xf544edeb, 0xb0e93524, 0xbebb8fbd, 0xa2d762cf, 0x49c92f54, 0x38b5f331, 0x7128a454, 0x48392905, 0xa65b1db8, 0x851c97bd, 0xd675cf2f];
sBox[6] = [0x85e04019, 0x332bf567, 0x662dbfff, 0xcfc65693, 0x2a8d7f6f, 0xab9bc912, 0xde6008a1, 0x2028da1f, 0x0227bce7, 0x4d642916, 0x18fac300, 0x50f18b82, 0x2cb2cb11, 0xb232e75c, 0x4b3695f2, 0xb28707de, 0xa05fbcf6, 0xcd4181e9, 0xe150210c, 0xe24ef1bd, 0xb168c381, 0xfde4e789, 0x5c79b0d8, 0x1e8bfd43, 0x4d495001, 0x38be4341, 0x913cee1d, 0x92a79c3f, 0x089766be, 0xbaeeadf4, 0x1286becf, 0xb6eacb19, 0x2660c200, 0x7565bde4, 0x64241f7a, 0x8248dca9, 0xc3b3ad66, 0x28136086, 0x0bd8dfa8, 0x356d1cf2, 0x107789be, 0xb3b2e9ce, 0x0502aa8f, 0x0bc0351e, 0x166bf52a, 0xeb12ff82, 0xe3486911, 0xd34d7516, 0x4e7b3aff, 0x5f43671b, 0x9cf6e037, 0x4981ac83, 0x334266ce, 0x8c9341b7, 0xd0d854c0, 0xcb3a6c88, 0x47bc2829, 0x4725ba37, 0xa66ad22b, 0x7ad61f1e, 0x0c5cbafa, 0x4437f107, 0xb6e79962, 0x42d2d816, 0x0a961288, 0xe1a5c06e, 0x13749e67, 0x72fc081a, 0xb1d139f7, 0xf9583745, 0xcf19df58, 0xbec3f756, 0xc06eba30, 0x07211b24, 0x45c28829, 0xc95e317f, 0xbc8ec511, 0x38bc46e9, 0xc6e6fa14, 0xbae8584a, 0xad4ebc46, 0x468f508b, 0x7829435f, 0xf124183b, 0x821dba9f, 0xaff60ff4, 0xea2c4e6d, 0x16e39264, 0x92544a8b, 0x009b4fc3, 0xaba68ced, 0x9ac96f78, 0x06a5b79a, 0xb2856e6e, 0x1aec3ca9, 0xbe838688, 0x0e0804e9, 0x55f1be56, 0xe7e5363b, 0xb3a1f25d, 0xf7debb85, 0x61fe033c, 0x16746233, 0x3c034c28, 0xda6d0c74, 0x79aac56c, 0x3ce4e1ad, 0x51f0c802, 0x98f8f35a, 0x1626a49f, 0xeed82b29, 0x1d382fe3, 0x0c4fb99a, 0xbb325778, 0x3ec6d97b, 0x6e77a6a9, 0xcb658b5c, 0xd45230c7, 0x2bd1408b, 0x60c03eb7, 0xb9068d78, 0xa33754f4, 0xf430c87d, 0xc8a71302, 0xb96d8c32, 0xebd4e7be, 0xbe8b9d2d, 0x7979fb06, 0xe7225308, 0x8b75cf77, 0x11ef8da4, 0xe083c858, 0x8d6b786f, 0x5a6317a6, 0xfa5cf7a0, 0x5dda0033, 0xf28ebfb0, 0xf5b9c310, 0xa0eac280, 0x08b9767a, 0xa3d9d2b0, 0x79d34217, 0x021a718d, 0x9ac6336a, 0x2711fd60, 0x438050e3, 0x069908a8, 0x3d7fedc4, 0x826d2bef, 0x4eeb8476, 0x488dcf25, 0x36c9d566, 0x28e74e41, 0xc2610aca, 0x3d49a9cf, 0xbae3b9df, 0xb65f8de6, 0x92aeaf64, 0x3ac7d5e6, 0x9ea80509, 0xf22b017d, 0xa4173f70, 0xdd1e16c3, 0x15e0d7f9, 0x50b1b887, 0x2b9f4fd5, 0x625aba82, 0x6a017962, 0x2ec01b9c, 0x15488aa9, 0xd716e740, 0x40055a2c, 0x93d29a22, 0xe32dbf9a, 0x058745b9, 0x3453dc1e, 0xd699296e, 0x496cff6f, 0x1c9f4986, 0xdfe2ed07, 0xb87242d1, 0x19de7eae, 0x053e561a, 0x15ad6f8c, 0x66626c1c, 0x7154c24c, 0xea082b2a, 0x93eb2939, 0x17dcb0f0, 0x58d4f2ae, 0x9ea294fb, 0x52cf564c, 0x9883fe66, 0x2ec40581, 0x763953c3, 0x01d6692e, 0xd3a0c108, 0xa1e7160e, 0xe4f2dfa6, 0x693ed285, 0x74904698, 0x4c2b0edd, 0x4f757656, 0x5d393378, 0xa132234f, 0x3d321c5d, 0xc3f5e194, 0x4b269301, 0xc79f022f, 0x3c997e7e, 0x5e4f9504, 0x3ffafbbd, 0x76f7ad0e, 0x296693f4, 0x3d1fce6f, 0xc61e45be, 0xd3b5ab34, 0xf72bf9b7, 0x1b0434c0, 0x4e72b567, 0x5592a33d, 0xb5229301, 0xcfd2a87f, 0x60aeb767, 0x1814386b, 0x30bcc33d, 0x38a0c07d, 0xfd1606f2, 0xc363519b, 0x589dd390, 0x5479f8e6, 0x1cb8d647, 0x97fd61a9, 0xea7759f4, 0x2d57539d, 0x569a58cf, 0xe84e63ad, 0x462e1b78, 0x6580f87e, 0xf3817914, 0x91da55f4, 0x40a230f3, 0xd1988f35, 0xb6e318d2, 0x3ffa50bc, 0x3d40f021, 0xc3c0bdae, 0x4958c24c, 0x518f36b2, 0x84b1d370, 0x0fedce83, 0x878ddada, 0xf2a279c7, 0x94e01be8, 0x90716f4b, 0x954b8aa3];
sBox[7] = [0xe216300d, 0xbbddfffc, 0xa7ebdabd, 0x35648095, 0x7789f8b7, 0xe6c1121b, 0x0e241600, 0x052ce8b5, 0x11a9cfb0, 0xe5952f11, 0xece7990a, 0x9386d174, 0x2a42931c, 0x76e38111, 0xb12def3a, 0x37ddddfc, 0xde9adeb1, 0x0a0cc32c, 0xbe197029, 0x84a00940, 0xbb243a0f, 0xb4d137cf, 0xb44e79f0, 0x049eedfd, 0x0b15a15d, 0x480d3168, 0x8bbbde5a, 0x669ded42, 0xc7ece831, 0x3f8f95e7, 0x72df191b, 0x7580330d, 0x94074251, 0x5c7dcdfa, 0xabbe6d63, 0xaa402164, 0xb301d40a, 0x02e7d1ca, 0x53571dae, 0x7a3182a2, 0x12a8ddec, 0xfdaa335d, 0x176f43e8, 0x71fb46d4, 0x38129022, 0xce949ad4, 0xb84769ad, 0x965bd862, 0x82f3d055, 0x66fb9767, 0x15b80b4e, 0x1d5b47a0, 0x4cfde06f, 0xc28ec4b8, 0x57e8726e, 0x647a78fc, 0x99865d44, 0x608bd593, 0x6c200e03, 0x39dc5ff6, 0x5d0b00a3, 0xae63aff2, 0x7e8bd632, 0x70108c0c, 0xbbd35049, 0x2998df04, 0x980cf42a, 0x9b6df491, 0x9e7edd53, 0x06918548, 0x58cb7e07, 0x3b74ef2e, 0x522fffb1, 0xd24708cc, 0x1c7e27cd, 0xa4eb215b, 0x3cf1d2e2, 0x19b47a38, 0x424f7618, 0x35856039, 0x9d17dee7, 0x27eb35e6, 0xc9aff67b, 0x36baf5b8, 0x09c467cd, 0xc18910b1, 0xe11dbf7b, 0x06cd1af8, 0x7170c608, 0x2d5e3354, 0xd4de495a, 0x64c6d006, 0xbcc0c62c, 0x3dd00db3, 0x708f8f34, 0x77d51b42, 0x264f620f, 0x24b8d2bf, 0x15c1b79e, 0x46a52564, 0xf8d7e54e, 0x3e378160, 0x7895cda5, 0x859c15a5, 0xe6459788, 0xc37bc75f, 0xdb07ba0c, 0x0676a3ab, 0x7f229b1e, 0x31842e7b, 0x24259fd7, 0xf8bef472, 0x835ffcb8, 0x6df4c1f2, 0x96f5b195, 0xfd0af0fc, 0xb0fe134c, 0xe2506d3d, 0x4f9b12ea, 0xf215f225, 0xa223736f, 0x9fb4c428, 0x25d04979, 0x34c713f8, 0xc4618187, 0xea7a6e98, 0x7cd16efc, 0x1436876c, 0xf1544107, 0xbedeee14, 0x56e9af27, 0xa04aa441, 0x3cf7c899, 0x92ecbae6, 0xdd67016d, 0x151682eb, 0xa842eedf, 0xfdba60b4, 0xf1907b75, 0x20e3030f, 0x24d8c29e, 0xe139673b, 0xefa63fb8, 0x71873054, 0xb6f2cf3b, 0x9f326442, 0xcb15a4cc, 0xb01a4504, 0xf1e47d8d, 0x844a1be5, 0xbae7dfdc, 0x42cbda70, 0xcd7dae0a, 0x57e85b7a, 0xd53f5af6, 0x20cf4d8c, 0xcea4d428, 0x79d130a4, 0x3486ebfb, 0x33d3cddc, 0x77853b53, 0x37effcb5, 0xc5068778, 0xe580b3e6, 0x4e68b8f4, 0xc5c8b37e, 0x0d809ea2, 0x398feb7c, 0x132a4f94, 0x43b7950e, 0x2fee7d1c, 0x223613bd, 0xdd06caa2, 0x37df932b, 0xc4248289, 0xacf3ebc3, 0x5715f6b7, 0xef3478dd, 0xf267616f, 0xc148cbe4, 0x9052815e, 0x5e410fab, 0xb48a2465, 0x2eda7fa4, 0xe87b40e4, 0xe98ea084, 0x5889e9e1, 0xefd390fc, 0xdd07d35b, 0xdb485694, 0x38d7e5b2, 0x57720101, 0x730edebc, 0x5b643113, 0x94917e4f, 0x503c2fba, 0x646f1282, 0x7523d24a, 0xe0779695, 0xf9c17a8f, 0x7a5b2121, 0xd187b896, 0x29263a4d, 0xba510cdf, 0x81f47c9f, 0xad1163ed, 0xea7b5965, 0x1a00726e, 0x11403092, 0x00da6d77, 0x4a0cdd61, 0xad1f4603, 0x605bdfb0, 0x9eedc364, 0x22ebe6a8, 0xcee7d28a, 0xa0e736a0, 0x5564a6b9, 0x10853209, 0xc7eb8f37, 0x2de705ca, 0x8951570f, 0xdf09822b, 0xbd691a6c, 0xaa12e4f2, 0x87451c0f, 0xe0f6a27a, 0x3ada4819, 0x4cf1764f, 0x0d771c2b, 0x67cdb156, 0x350d8384, 0x5938fa0f, 0x42399ef3, 0x36997b07, 0x0e84093d, 0x4aa93e61, 0x8360d87b, 0x1fa98b0c, 0x1149382c, 0xe97625a5, 0x0614d1b7, 0x0e25244b, 0x0c768347, 0x589e8d82, 0x0d2059d1, 0xa466bb1e, 0xf8da0a82, 0x04f19130, 0xba6e4ec0, 0x99265164, 0x1ee7230d, 0x50b2ad80, 0xeaee6801, 0x8db2a283, 0xea8bf59e];
}
function Cast5(key) {
this.cast5 = new OpenpgpSymencCast5();
this.cast5.setKey(key);
this.encrypt = function (block) {
return this.cast5.encrypt(block);
};
}
Cast5.blockSize = Cast5.prototype.blockSize = 8;
Cast5.keySize = Cast5.prototype.keySize = 16;
exports.default = Cast5;
},{}],86:[function(require,module,exports){
"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
//Paul Tero, July 2001
//http://www.tero.co.uk/des/
//
//Optimised for performance with large blocks by Michael Hayworth, November 2001
//http://www.netdealing.com
//
// Modified by Recurity Labs GmbH
//THIS SOFTWARE IS PROVIDED "AS IS" AND
//ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
//IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
//ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
//FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
//DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
//OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
//HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
//OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
//SUCH DAMAGE.
//des
//this takes the key, the message, and whether to encrypt or decrypt
function des(keys, message, encrypt, mode, iv, padding) {
//declaring this locally speeds things up a bit
const spfunction1 = [0x1010400, 0, 0x10000, 0x1010404, 0x1010004, 0x10404, 0x4, 0x10000, 0x400, 0x1010400, 0x1010404, 0x400, 0x1000404, 0x1010004, 0x1000000, 0x4, 0x404, 0x1000400, 0x1000400, 0x10400, 0x10400, 0x1010000, 0x1010000, 0x1000404, 0x10004, 0x1000004, 0x1000004, 0x10004, 0, 0x404, 0x10404, 0x1000000, 0x10000, 0x1010404, 0x4, 0x1010000, 0x1010400, 0x1000000, 0x1000000, 0x400, 0x1010004, 0x10000, 0x10400, 0x1000004, 0x400, 0x4, 0x1000404, 0x10404, 0x1010404, 0x10004, 0x1010000, 0x1000404, 0x1000004, 0x404, 0x10404, 0x1010400, 0x404, 0x1000400, 0x1000400, 0, 0x10004, 0x10400, 0, 0x1010004];
const spfunction2 = [-0x7fef7fe0, -0x7fff8000, 0x8000, 0x108020, 0x100000, 0x20, -0x7fefffe0, -0x7fff7fe0, -0x7fffffe0, -0x7fef7fe0, -0x7fef8000, -0x80000000, -0x7fff8000, 0x100000, 0x20, -0x7fefffe0, 0x108000, 0x100020, -0x7fff7fe0, 0, -0x80000000, 0x8000, 0x108020, -0x7ff00000, 0x100020, -0x7fffffe0, 0, 0x108000, 0x8020, -0x7fef8000, -0x7ff00000, 0x8020, 0, 0x108020, -0x7fefffe0, 0x100000, -0x7fff7fe0, -0x7ff00000, -0x7fef8000, 0x8000, -0x7ff00000, -0x7fff8000, 0x20, -0x7fef7fe0, 0x108020, 0x20, 0x8000, -0x80000000, 0x8020, -0x7fef8000, 0x100000, -0x7fffffe0, 0x100020, -0x7fff7fe0, -0x7fffffe0, 0x100020, 0x108000, 0, -0x7fff8000, 0x8020, -0x80000000, -0x7fefffe0, -0x7fef7fe0, 0x108000];
const spfunction3 = [0x208, 0x8020200, 0, 0x8020008, 0x8000200, 0, 0x20208, 0x8000200, 0x20008, 0x8000008, 0x8000008, 0x20000, 0x8020208, 0x20008, 0x8020000, 0x208, 0x8000000, 0x8, 0x8020200, 0x200, 0x20200, 0x8020000, 0x8020008, 0x20208, 0x8000208, 0x20200, 0x20000, 0x8000208, 0x8, 0x8020208, 0x200, 0x8000000, 0x8020200, 0x8000000, 0x20008, 0x208, 0x20000, 0x8020200, 0x8000200, 0, 0x200, 0x20008, 0x8020208, 0x8000200, 0x8000008, 0x200, 0, 0x8020008, 0x8000208, 0x20000, 0x8000000, 0x8020208, 0x8, 0x20208, 0x20200, 0x8000008, 0x8020000, 0x8000208, 0x208, 0x8020000, 0x20208, 0x8, 0x8020008, 0x20200];
const spfunction4 = [0x802001, 0x2081, 0x2081, 0x80, 0x802080, 0x800081, 0x800001, 0x2001, 0, 0x802000, 0x802000, 0x802081, 0x81, 0, 0x800080, 0x800001, 0x1, 0x2000, 0x800000, 0x802001, 0x80, 0x800000, 0x2001, 0x2080, 0x800081, 0x1, 0x2080, 0x800080, 0x2000, 0x802080, 0x802081, 0x81, 0x800080, 0x800001, 0x802000, 0x802081, 0x81, 0, 0, 0x802000, 0x2080, 0x800080, 0x800081, 0x1, 0x802001, 0x2081, 0x2081, 0x80, 0x802081, 0x81, 0x1, 0x2000, 0x800001, 0x2001, 0x802080, 0x800081, 0x2001, 0x2080, 0x800000, 0x802001, 0x80, 0x800000, 0x2000, 0x802080];
const spfunction5 = [0x100, 0x2080100, 0x2080000, 0x42000100, 0x80000, 0x100, 0x40000000, 0x2080000, 0x40080100, 0x80000, 0x2000100, 0x40080100, 0x42000100, 0x42080000, 0x80100, 0x40000000, 0x2000000, 0x40080000, 0x40080000, 0, 0x40000100, 0x42080100, 0x42080100, 0x2000100, 0x42080000, 0x40000100, 0, 0x42000000, 0x2080100, 0x2000000, 0x42000000, 0x80100, 0x80000, 0x42000100, 0x100, 0x2000000, 0x40000000, 0x2080000, 0x42000100, 0x40080100, 0x2000100, 0x40000000, 0x42080000, 0x2080100, 0x40080100, 0x100, 0x2000000, 0x42080000, 0x42080100, 0x80100, 0x42000000, 0x42080100, 0x2080000, 0, 0x40080000, 0x42000000, 0x80100, 0x2000100, 0x40000100, 0x80000, 0, 0x40080000, 0x2080100, 0x40000100];
const spfunction6 = [0x20000010, 0x20400000, 0x4000, 0x20404010, 0x20400000, 0x10, 0x20404010, 0x400000, 0x20004000, 0x404010, 0x400000, 0x20000010, 0x400010, 0x20004000, 0x20000000, 0x4010, 0, 0x400010, 0x20004010, 0x4000, 0x404000, 0x20004010, 0x10, 0x20400010, 0x20400010, 0, 0x404010, 0x20404000, 0x4010, 0x404000, 0x20404000, 0x20000000, 0x20004000, 0x10, 0x20400010, 0x404000, 0x20404010, 0x400000, 0x4010, 0x20000010, 0x400000, 0x20004000, 0x20000000, 0x4010, 0x20000010, 0x20404010, 0x404000, 0x20400000, 0x404010, 0x20404000, 0, 0x20400010, 0x10, 0x4000, 0x20400000, 0x404010, 0x4000, 0x400010, 0x20004010, 0, 0x20404000, 0x20000000, 0x400010, 0x20004010];
const spfunction7 = [0x200000, 0x4200002, 0x4000802, 0, 0x800, 0x4000802, 0x200802, 0x4200800, 0x4200802, 0x200000, 0, 0x4000002, 0x2, 0x4000000, 0x4200002, 0x802, 0x4000800, 0x200802, 0x200002, 0x4000800, 0x4000002, 0x4200000, 0x4200800, 0x200002, 0x4200000, 0x800, 0x802, 0x4200802, 0x200800, 0x2, 0x4000000, 0x200800, 0x4000000, 0x200800, 0x200000, 0x4000802, 0x4000802, 0x4200002, 0x4200002, 0x2, 0x200002, 0x4000000, 0x4000800, 0x200000, 0x4200800, 0x802, 0x200802, 0x4200800, 0x802, 0x4000002, 0x4200802, 0x4200000, 0x200800, 0, 0x2, 0x4200802, 0, 0x200802, 0x4200000, 0x800, 0x4000002, 0x4000800, 0x800, 0x200002];
const spfunction8 = [0x10001040, 0x1000, 0x40000, 0x10041040, 0x10000000, 0x10001040, 0x40, 0x10000000, 0x40040, 0x10040000, 0x10041040, 0x41000, 0x10041000, 0x41040, 0x1000, 0x40, 0x10040000, 0x10000040, 0x10001000, 0x1040, 0x41000, 0x40040, 0x10040040, 0x10041000, 0x1040, 0, 0, 0x10040040, 0x10000040, 0x10001000, 0x41040, 0x40000, 0x41040, 0x40000, 0x10041000, 0x1000, 0x40, 0x10040040, 0x1000, 0x41040, 0x10001000, 0x40, 0x10000040, 0x10040000, 0x10040040, 0x10000000, 0x40000, 0x10001040, 0, 0x10041040, 0x40040, 0x10000040, 0x10040000, 0x10001000, 0x10001040, 0, 0x10041040, 0x41000, 0x41000, 0x1040, 0x1040, 0x40040, 0x10000000, 0x10041000];
//create the 16 or 48 subkeys we will need
let m = 0;
let i;
let j;
let temp;
let right1;
let right2;
let left;
let right;
let looping;
let cbcleft;
let cbcleft2;
let cbcright;
let cbcright2;
let endloop;
let loopinc;
let len = message.length;
//set up the loops for single and triple des
const iterations = keys.length === 32 ? 3 : 9; //single or triple des
if (iterations === 3) {
looping = encrypt ? [0, 32, 2] : [30, -2, -2];
} else {
looping = encrypt ? [0, 32, 2, 62, 30, -2, 64, 96, 2] : [94, 62, -2, 32, 64, 2, 30, -2, -2];
}
//pad the message depending on the padding parameter
//only add padding if encrypting - note that you need to use the same padding option for both encrypt and decrypt
if (encrypt) {
message = des_addPadding(message, padding);
len = message.length;
}
//store the result here
let result = new Uint8Array(len);
let k = 0;
if (mode === 1) {
//CBC mode
cbcleft = iv[m++] << 24 | iv[m++] << 16 | iv[m++] << 8 | iv[m++];
cbcright = iv[m++] << 24 | iv[m++] << 16 | iv[m++] << 8 | iv[m++];
m = 0;
}
//loop through each 64 bit chunk of the message
while (m < len) {
left = message[m++] << 24 | message[m++] << 16 | message[m++] << 8 | message[m++];
right = message[m++] << 24 | message[m++] << 16 | message[m++] << 8 | message[m++];
//for Cipher Block Chaining mode, xor the message with the previous result
if (mode === 1) {
if (encrypt) {
left ^= cbcleft;
right ^= cbcright;
} else {
cbcleft2 = cbcleft;
cbcright2 = cbcright;
cbcleft = left;
cbcright = right;
}
}
//first each 64 but chunk of the message must be permuted according to IP
temp = (left >>> 4 ^ right) & 0x0f0f0f0f;
right ^= temp;
left ^= temp << 4;
temp = (left >>> 16 ^ right) & 0x0000ffff;
right ^= temp;
left ^= temp << 16;
temp = (right >>> 2 ^ left) & 0x33333333;
left ^= temp;
right ^= temp << 2;
temp = (right >>> 8 ^ left) & 0x00ff00ff;
left ^= temp;
right ^= temp << 8;
temp = (left >>> 1 ^ right) & 0x55555555;
right ^= temp;
left ^= temp << 1;
left = left << 1 | left >>> 31;
right = right << 1 | right >>> 31;
//do this either 1 or 3 times for each chunk of the message
for (j = 0; j < iterations; j += 3) {
endloop = looping[j + 1];
loopinc = looping[j + 2];
//now go through and perform the encryption or decryption
for (i = looping[j]; i !== endloop; i += loopinc) {
//for efficiency
right1 = right ^ keys[i];
right2 = (right >>> 4 | right << 28) ^ keys[i + 1];
//the result is attained by passing these bytes through the S selection functions
temp = left;
left = right;
right = temp ^ (spfunction2[right1 >>> 24 & 0x3f] | spfunction4[right1 >>> 16 & 0x3f] | spfunction6[right1 >>> 8 & 0x3f] | spfunction8[right1 & 0x3f] | spfunction1[right2 >>> 24 & 0x3f] | spfunction3[right2 >>> 16 & 0x3f] | spfunction5[right2 >>> 8 & 0x3f] | spfunction7[right2 & 0x3f]);
}
temp = left;
left = right;
right = temp; //unreverse left and right
} //for either 1 or 3 iterations
//move then each one bit to the right
left = left >>> 1 | left << 31;
right = right >>> 1 | right << 31;
//now perform IP-1, which is IP in the opposite direction
temp = (left >>> 1 ^ right) & 0x55555555;
right ^= temp;
left ^= temp << 1;
temp = (right >>> 8 ^ left) & 0x00ff00ff;
left ^= temp;
right ^= temp << 8;
temp = (right >>> 2 ^ left) & 0x33333333;
left ^= temp;
right ^= temp << 2;
temp = (left >>> 16 ^ right) & 0x0000ffff;
right ^= temp;
left ^= temp << 16;
temp = (left >>> 4 ^ right) & 0x0f0f0f0f;
right ^= temp;
left ^= temp << 4;
//for Cipher Block Chaining mode, xor the message with the previous result
if (mode === 1) {
if (encrypt) {
cbcleft = left;
cbcright = right;
} else {
left ^= cbcleft2;
right ^= cbcright2;
}
}
result[k++] = left >>> 24;
result[k++] = left >>> 16 & 0xff;
result[k++] = left >>> 8 & 0xff;
result[k++] = left & 0xff;
result[k++] = right >>> 24;
result[k++] = right >>> 16 & 0xff;
result[k++] = right >>> 8 & 0xff;
result[k++] = right & 0xff;
} //for every 8 characters, or 64 bits in the message
//only remove padding if decrypting - note that you need to use the same padding option for both encrypt and decrypt
if (!encrypt) {
result = des_removePadding(result, padding);
}
return result;
} //end of des
//des_createKeys
//this takes as input a 64 bit key (even though only 56 bits are used)
//as an array of 2 integers, and returns 16 48 bit keys
function des_createKeys(key) {
//declaring this locally speeds things up a bit
const pc2bytes0 = [0, 0x4, 0x20000000, 0x20000004, 0x10000, 0x10004, 0x20010000, 0x20010004, 0x200, 0x204, 0x20000200, 0x20000204, 0x10200, 0x10204, 0x20010200, 0x20010204];
const pc2bytes1 = [0, 0x1, 0x100000, 0x100001, 0x4000000, 0x4000001, 0x4100000, 0x4100001, 0x100, 0x101, 0x100100, 0x100101, 0x4000100, 0x4000101, 0x4100100, 0x4100101];
const pc2bytes2 = [0, 0x8, 0x800, 0x808, 0x1000000, 0x1000008, 0x1000800, 0x1000808, 0, 0x8, 0x800, 0x808, 0x1000000, 0x1000008, 0x1000800, 0x1000808];
const pc2bytes3 = [0, 0x200000, 0x8000000, 0x8200000, 0x2000, 0x202000, 0x8002000, 0x8202000, 0x20000, 0x220000, 0x8020000, 0x8220000, 0x22000, 0x222000, 0x8022000, 0x8222000];
const pc2bytes4 = [0, 0x40000, 0x10, 0x40010, 0, 0x40000, 0x10, 0x40010, 0x1000, 0x41000, 0x1010, 0x41010, 0x1000, 0x41000, 0x1010, 0x41010];
const pc2bytes5 = [0, 0x400, 0x20, 0x420, 0, 0x400, 0x20, 0x420, 0x2000000, 0x2000400, 0x2000020, 0x2000420, 0x2000000, 0x2000400, 0x2000020, 0x2000420];
const pc2bytes6 = [0, 0x10000000, 0x80000, 0x10080000, 0x2, 0x10000002, 0x80002, 0x10080002, 0, 0x10000000, 0x80000, 0x10080000, 0x2, 0x10000002, 0x80002, 0x10080002];
const pc2bytes7 = [0, 0x10000, 0x800, 0x10800, 0x20000000, 0x20010000, 0x20000800, 0x20010800, 0x20000, 0x30000, 0x20800, 0x30800, 0x20020000, 0x20030000, 0x20020800, 0x20030800];
const pc2bytes8 = [0, 0x40000, 0, 0x40000, 0x2, 0x40002, 0x2, 0x40002, 0x2000000, 0x2040000, 0x2000000, 0x2040000, 0x2000002, 0x2040002, 0x2000002, 0x2040002];
const pc2bytes9 = [0, 0x10000000, 0x8, 0x10000008, 0, 0x10000000, 0x8, 0x10000008, 0x400, 0x10000400, 0x408, 0x10000408, 0x400, 0x10000400, 0x408, 0x10000408];
const pc2bytes10 = [0, 0x20, 0, 0x20, 0x100000, 0x100020, 0x100000, 0x100020, 0x2000, 0x2020, 0x2000, 0x2020, 0x102000, 0x102020, 0x102000, 0x102020];
const pc2bytes11 = [0, 0x1000000, 0x200, 0x1000200, 0x200000, 0x1200000, 0x200200, 0x1200200, 0x4000000, 0x5000000, 0x4000200, 0x5000200, 0x4200000, 0x5200000, 0x4200200, 0x5200200];
const pc2bytes12 = [0, 0x1000, 0x8000000, 0x8001000, 0x80000, 0x81000, 0x8080000, 0x8081000, 0x10, 0x1010, 0x8000010, 0x8001010, 0x80010, 0x81010, 0x8080010, 0x8081010];
const pc2bytes13 = [0, 0x4, 0x100, 0x104, 0, 0x4, 0x100, 0x104, 0x1, 0x5, 0x101, 0x105, 0x1, 0x5, 0x101, 0x105];
//how many iterations (1 for des, 3 for triple des)
const iterations = key.length > 8 ? 3 : 1; //changed by Paul 16/6/2007 to use Triple DES for 9+ byte keys
//stores the return keys
const keys = new Array(32 * iterations);
//now define the left shifts which need to be done
const shifts = [0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0];
//other variables
let lefttemp;
let righttemp;
let m = 0;
let n = 0;
let temp;
for (let j = 0; j < iterations; j++) {
//either 1 or 3 iterations
let left = key[m++] << 24 | key[m++] << 16 | key[m++] << 8 | key[m++];
let right = key[m++] << 24 | key[m++] << 16 | key[m++] << 8 | key[m++];
temp = (left >>> 4 ^ right) & 0x0f0f0f0f;
right ^= temp;
left ^= temp << 4;
temp = (right >>> -16 ^ left) & 0x0000ffff;
left ^= temp;
right ^= temp << -16;
temp = (left >>> 2 ^ right) & 0x33333333;
right ^= temp;
left ^= temp << 2;
temp = (right >>> -16 ^ left) & 0x0000ffff;
left ^= temp;
right ^= temp << -16;
temp = (left >>> 1 ^ right) & 0x55555555;
right ^= temp;
left ^= temp << 1;
temp = (right >>> 8 ^ left) & 0x00ff00ff;
left ^= temp;
right ^= temp << 8;
temp = (left >>> 1 ^ right) & 0x55555555;
right ^= temp;
left ^= temp << 1;
//the right side needs to be shifted and to get the last four bits of the left side
temp = left << 8 | right >>> 20 & 0x000000f0;
//left needs to be put upside down
left = right << 24 | right << 8 & 0xff0000 | right >>> 8 & 0xff00 | right >>> 24 & 0xf0;
right = temp;
//now go through and perform these shifts on the left and right keys
for (let i = 0; i < shifts.length; i++) {
//shift the keys either one or two bits to the left
if (shifts[i]) {
left = left << 2 | left >>> 26;
right = right << 2 | right >>> 26;
} else {
left = left << 1 | left >>> 27;
right = right << 1 | right >>> 27;
}
left &= -0xf;
right &= -0xf;
//now apply PC-2, in such a way that E is easier when encrypting or decrypting
//this conversion will look like PC-2 except only the last 6 bits of each byte are used
//rather than 48 consecutive bits and the order of lines will be according to
//how the S selection functions will be applied: S2, S4, S6, S8, S1, S3, S5, S7
lefttemp = pc2bytes0[left >>> 28] | pc2bytes1[left >>> 24 & 0xf] | pc2bytes2[left >>> 20 & 0xf] | pc2bytes3[left >>> 16 & 0xf] | pc2bytes4[left >>> 12 & 0xf] | pc2bytes5[left >>> 8 & 0xf] | pc2bytes6[left >>> 4 & 0xf];
righttemp = pc2bytes7[right >>> 28] | pc2bytes8[right >>> 24 & 0xf] | pc2bytes9[right >>> 20 & 0xf] | pc2bytes10[right >>> 16 & 0xf] | pc2bytes11[right >>> 12 & 0xf] | pc2bytes12[right >>> 8 & 0xf] | pc2bytes13[right >>> 4 & 0xf];
temp = (righttemp >>> 16 ^ lefttemp) & 0x0000ffff;
keys[n++] = lefttemp ^ temp;
keys[n++] = righttemp ^ temp << 16;
}
} //for each iterations
//return the keys we've created
return keys;
} //end of des_createKeys
function des_addPadding(message, padding) {
const padLength = 8 - message.length % 8;
let pad;
if (padding === 2 && padLength < 8) {
//pad the message with spaces
pad = " ".charCodeAt(0);
} else if (padding === 1) {
//PKCS7 padding
pad = padLength;
} else if (!padding && padLength < 8) {
//pad the message out with null bytes
pad = 0;
} else if (padLength === 8) {
return message;
} else {
throw new Error('des: invalid padding');
}
const paddedMessage = new Uint8Array(message.length + padLength);
for (let i = 0; i < message.length; i++) {
paddedMessage[i] = message[i];
}
for (let j = 0; j < padLength; j++) {
paddedMessage[message.length + j] = pad;
}
return paddedMessage;
}
function des_removePadding(message, padding) {
let padLength = null;
let pad;
if (padding === 2) {
// space padded
pad = " ".charCodeAt(0);
} else if (padding === 1) {
// PKCS7
padLength = message[message.length - 1];
} else if (!padding) {
// null padding
pad = 0;
} else {
throw new Error('des: invalid padding');
}
if (!padLength) {
padLength = 1;
while (message[message.length - padLength] === pad) {
padLength++;
}
padLength--;
}
return message.subarray(0, message.length - padLength);
}
// added by Recurity Labs
function TripleDES(key) {
this.key = [];
for (let i = 0; i < 3; i++) {
this.key.push(new Uint8Array(key.subarray(i * 8, i * 8 + 8)));
}
this.encrypt = function (block) {
return des(des_createKeys(this.key[2]), des(des_createKeys(this.key[1]), des(des_createKeys(this.key[0]), block, true, 0, null, null), false, 0, null, null), true, 0, null, null);
};
}
TripleDES.keySize = TripleDES.prototype.keySize = 24;
TripleDES.blockSize = TripleDES.prototype.blockSize = 8;
// This is "original" DES
function DES(key) {
this.key = key;
this.encrypt = function (block, padding) {
const keys = des_createKeys(this.key);
return des(keys, block, true, 0, null, padding);
};
this.decrypt = function (block, padding) {
const keys = des_createKeys(this.key);
return des(keys, block, false, 0, null, padding);
};
}
exports.default = { DES, TripleDES };
},{}],87:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _aes = require('./aes');
var _aes2 = _interopRequireDefault(_aes);
var _des = require('./des.js');
var _des2 = _interopRequireDefault(_des);
var _cast = require('./cast5');
var _cast2 = _interopRequireDefault(_cast);
var _twofish = require('./twofish');
var _twofish2 = _interopRequireDefault(_twofish);
var _blowfish = require('./blowfish');
var _blowfish2 = _interopRequireDefault(_blowfish);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
exports.default = {
/**
* AES-128 encryption and decryption (ID 7)
* @function
* @param {String} key 128-bit key
* @see {@link https://github.com/asmcrypto/asmcrypto.js|asmCrypto}
* @see {@link https://csrc.nist.gov/publications/fips/fips197/fips-197.pdf|NIST FIPS-197}
* @returns {Object}
* @requires asmcrypto.js
*/
aes128: (0, _aes2.default)(128),
/**
* AES-128 Block Cipher (ID 8)
* @function
* @param {String} key 192-bit key
* @see {@link https://github.com/asmcrypto/asmcrypto.js|asmCrypto}
* @see {@link https://csrc.nist.gov/publications/fips/fips197/fips-197.pdf|NIST FIPS-197}
* @returns {Object}
* @requires asmcrypto.js
*/
aes192: (0, _aes2.default)(192),
/**
* AES-128 Block Cipher (ID 9)
* @function
* @param {String} key 256-bit key
* @see {@link https://github.com/asmcrypto/asmcrypto.js|asmCrypto}
* @see {@link https://csrc.nist.gov/publications/fips/fips197/fips-197.pdf|NIST FIPS-197}
* @returns {Object}
* @requires asmcrypto.js
*/
aes256: (0, _aes2.default)(256),
// Not in OpenPGP specifications
des: _des2.default.DES,
/**
* Triple DES Block Cipher (ID 2)
* @function
* @param {String} key 192-bit key
* @see {@link https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-67r2.pdf|NIST SP 800-67}
* @returns {Object}
*/
tripledes: _des2.default.TripleDES,
'3des': _des2.default.TripleDES,
/**
* CAST-128 Block Cipher (ID 3)
* @function
* @param {String} key 128-bit key
* @see {@link https://tools.ietf.org/html/rfc2144|The CAST-128 Encryption Algorithm}
* @returns {Object}
*/
cast5: _cast2.default,
/**
* Twofish Block Cipher (ID 10)
* @function
* @param {String} key 256-bit key
* @see {@link https://tools.ietf.org/html/rfc4880#ref-TWOFISH|TWOFISH}
* @returns {Object}
*/
twofish: _twofish2.default,
/**
* Blowfish Block Cipher (ID 4)
* @function
* @param {String} key 128-bit key
* @see {@link https://tools.ietf.org/html/rfc4880#ref-BLOWFISH|BLOWFISH}
* @returns {Object}
*/
blowfish: _blowfish2.default,
/**
* Not implemented
* @function
* @throws {Error}
*/
idea: function idea() {
throw new Error('IDEA symmetric-key algorithm not implemented');
}
}; /**
* @fileoverview Symmetric cryptography functions
* @requires crypto/cipher/aes
* @requires crypto/cipher/des
* @requires crypto/cipher/cast5
* @requires crypto/cipher/twofish
* @requires crypto/cipher/blowfish
* @module crypto/cipher
*/
},{"./aes":83,"./blowfish":84,"./cast5":85,"./des.js":86,"./twofish":88}],88:[function(require,module,exports){
"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
/* eslint-disable no-mixed-operators, no-fallthrough */
/* Modified by Recurity Labs GmbH
*
* Cipher.js
* A block-cipher algorithm implementation on JavaScript
* See Cipher.readme.txt for further information.
*
* Copyright(c) 2009 Atsushi Oka [ http://oka.nu/ ]
* This script file is distributed under the LGPL
*
* ACKNOWLEDGMENT
*
* The main subroutines are written by Michiel van Everdingen.
*
* Michiel van Everdingen
* http://home.versatel.nl/MAvanEverdingen/index.html
*
* All rights for these routines are reserved to Michiel van Everdingen.
*
*/
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//Math
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
const MAXINT = 0xFFFFFFFF;
function rotw(w, n) {
return (w << n | w >>> 32 - n) & MAXINT;
}
function getW(a, i) {
return a[i] | a[i + 1] << 8 | a[i + 2] << 16 | a[i + 3] << 24;
}
function setW(a, i, w) {
a.splice(i, 4, w & 0xFF, w >>> 8 & 0xFF, w >>> 16 & 0xFF, w >>> 24 & 0xFF);
}
function getB(x, n) {
return x >>> n * 8 & 0xFF;
}
// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Twofish
// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
function createTwofish() {
//
let keyBytes = null;
let dataBytes = null;
let dataOffset = -1;
// var dataLength = -1;
// var idx2 = -1;
//
let tfsKey = [];
let tfsM = [[], [], [], []];
function tfsInit(key) {
keyBytes = key;
let i;
let a;
let b;
let c;
let d;
const meKey = [];
const moKey = [];
const inKey = [];
let kLen;
const sKey = [];
let f01;
let f5b;
let fef;
const q0 = [[8, 1, 7, 13, 6, 15, 3, 2, 0, 11, 5, 9, 14, 12, 10, 4], [2, 8, 11, 13, 15, 7, 6, 14, 3, 1, 9, 4, 0, 10, 12, 5]];
const q1 = [[14, 12, 11, 8, 1, 2, 3, 5, 15, 4, 10, 6, 7, 0, 9, 13], [1, 14, 2, 11, 4, 12, 3, 7, 6, 13, 10, 5, 15, 9, 0, 8]];
const q2 = [[11, 10, 5, 14, 6, 13, 9, 0, 12, 8, 15, 3, 2, 4, 7, 1], [4, 12, 7, 5, 1, 6, 9, 10, 0, 14, 13, 8, 2, 11, 3, 15]];
const q3 = [[13, 7, 15, 4, 1, 2, 6, 14, 9, 11, 3, 0, 8, 5, 12, 10], [11, 9, 5, 1, 12, 3, 13, 14, 6, 4, 7, 15, 2, 0, 8, 10]];
const ror4 = [0, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15];
const ashx = [0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12, 5, 14, 7];
const q = [[], []];
const m = [[], [], [], []];
function ffm5b(x) {
return x ^ x >> 2 ^ [0, 90, 180, 238][x & 3];
}
function ffmEf(x) {
return x ^ x >> 1 ^ x >> 2 ^ [0, 238, 180, 90][x & 3];
}
function mdsRem(p, q) {
let i;
let t;
let u;
for (i = 0; i < 8; i++) {
t = q >>> 24;
q = q << 8 & MAXINT | p >>> 24;
p = p << 8 & MAXINT;
u = t << 1;
if (t & 128) {
u ^= 333;
}
q ^= t ^ u << 16;
u ^= t >>> 1;
if (t & 1) {
u ^= 166;
}
q ^= u << 24 | u << 8;
}
return q;
}
function qp(n, x) {
const a = x >> 4;
const b = x & 15;
const c = q0[n][a ^ b];
const d = q1[n][ror4[b] ^ ashx[a]];
return q3[n][ror4[d] ^ ashx[c]] << 4 | q2[n][c ^ d];
}
function hFun(x, key) {
let a = getB(x, 0);
let b = getB(x, 1);
let c = getB(x, 2);
let d = getB(x, 3);
switch (kLen) {
case 4:
a = q[1][a] ^ getB(key[3], 0);
b = q[0][b] ^ getB(key[3], 1);
c = q[0][c] ^ getB(key[3], 2);
d = q[1][d] ^ getB(key[3], 3);
case 3:
a = q[1][a] ^ getB(key[2], 0);
b = q[1][b] ^ getB(key[2], 1);
c = q[0][c] ^ getB(key[2], 2);
d = q[0][d] ^ getB(key[2], 3);
case 2:
a = q[0][q[0][a] ^ getB(key[1], 0)] ^ getB(key[0], 0);
b = q[0][q[1][b] ^ getB(key[1], 1)] ^ getB(key[0], 1);
c = q[1][q[0][c] ^ getB(key[1], 2)] ^ getB(key[0], 2);
d = q[1][q[1][d] ^ getB(key[1], 3)] ^ getB(key[0], 3);
}
return m[0][a] ^ m[1][b] ^ m[2][c] ^ m[3][d];
}
keyBytes = keyBytes.slice(0, 32);
i = keyBytes.length;
while (i !== 16 && i !== 24 && i !== 32) {
keyBytes[i++] = 0;
}
for (i = 0; i < keyBytes.length; i += 4) {
inKey[i >> 2] = getW(keyBytes, i);
}
for (i = 0; i < 256; i++) {
q[0][i] = qp(0, i);
q[1][i] = qp(1, i);
}
for (i = 0; i < 256; i++) {
f01 = q[1][i];
f5b = ffm5b(f01);
fef = ffmEf(f01);
m[0][i] = f01 + (f5b << 8) + (fef << 16) + (fef << 24);
m[2][i] = f5b + (fef << 8) + (f01 << 16) + (fef << 24);
f01 = q[0][i];
f5b = ffm5b(f01);
fef = ffmEf(f01);
m[1][i] = fef + (fef << 8) + (f5b << 16) + (f01 << 24);
m[3][i] = f5b + (f01 << 8) + (fef << 16) + (f5b << 24);
}
kLen = inKey.length / 2;
for (i = 0; i < kLen; i++) {
a = inKey[i + i];
meKey[i] = a;
b = inKey[i + i + 1];
moKey[i] = b;
sKey[kLen - i - 1] = mdsRem(a, b);
}
for (i = 0; i < 40; i += 2) {
a = 0x1010101 * i;
b = a + 0x1010101;
a = hFun(a, meKey);
b = rotw(hFun(b, moKey), 8);
tfsKey[i] = a + b & MAXINT;
tfsKey[i + 1] = rotw(a + 2 * b, 9);
}
for (i = 0; i < 256; i++) {
a = b = c = d = i;
switch (kLen) {
case 4:
a = q[1][a] ^ getB(sKey[3], 0);
b = q[0][b] ^ getB(sKey[3], 1);
c = q[0][c] ^ getB(sKey[3], 2);
d = q[1][d] ^ getB(sKey[3], 3);
case 3:
a = q[1][a] ^ getB(sKey[2], 0);
b = q[1][b] ^ getB(sKey[2], 1);
c = q[0][c] ^ getB(sKey[2], 2);
d = q[0][d] ^ getB(sKey[2], 3);
case 2:
tfsM[0][i] = m[0][q[0][q[0][a] ^ getB(sKey[1], 0)] ^ getB(sKey[0], 0)];
tfsM[1][i] = m[1][q[0][q[1][b] ^ getB(sKey[1], 1)] ^ getB(sKey[0], 1)];
tfsM[2][i] = m[2][q[1][q[0][c] ^ getB(sKey[1], 2)] ^ getB(sKey[0], 2)];
tfsM[3][i] = m[3][q[1][q[1][d] ^ getB(sKey[1], 3)] ^ getB(sKey[0], 3)];
}
}
}
function tfsG0(x) {
return tfsM[0][getB(x, 0)] ^ tfsM[1][getB(x, 1)] ^ tfsM[2][getB(x, 2)] ^ tfsM[3][getB(x, 3)];
}
function tfsG1(x) {
return tfsM[0][getB(x, 3)] ^ tfsM[1][getB(x, 0)] ^ tfsM[2][getB(x, 1)] ^ tfsM[3][getB(x, 2)];
}
function tfsFrnd(r, blk) {
let a = tfsG0(blk[0]);
let b = tfsG1(blk[1]);
blk[2] = rotw(blk[2] ^ a + b + tfsKey[4 * r + 8] & MAXINT, 31);
blk[3] = rotw(blk[3], 1) ^ a + 2 * b + tfsKey[4 * r + 9] & MAXINT;
a = tfsG0(blk[2]);
b = tfsG1(blk[3]);
blk[0] = rotw(blk[0] ^ a + b + tfsKey[4 * r + 10] & MAXINT, 31);
blk[1] = rotw(blk[1], 1) ^ a + 2 * b + tfsKey[4 * r + 11] & MAXINT;
}
function tfsIrnd(i, blk) {
let a = tfsG0(blk[0]);
let b = tfsG1(blk[1]);
blk[2] = rotw(blk[2], 1) ^ a + b + tfsKey[4 * i + 10] & MAXINT;
blk[3] = rotw(blk[3] ^ a + 2 * b + tfsKey[4 * i + 11] & MAXINT, 31);
a = tfsG0(blk[2]);
b = tfsG1(blk[3]);
blk[0] = rotw(blk[0], 1) ^ a + b + tfsKey[4 * i + 8] & MAXINT;
blk[1] = rotw(blk[1] ^ a + 2 * b + tfsKey[4 * i + 9] & MAXINT, 31);
}
function tfsClose() {
tfsKey = [];
tfsM = [[], [], [], []];
}
function tfsEncrypt(data, offset) {
dataBytes = data;
dataOffset = offset;
const blk = [getW(dataBytes, dataOffset) ^ tfsKey[0], getW(dataBytes, dataOffset + 4) ^ tfsKey[1], getW(dataBytes, dataOffset + 8) ^ tfsKey[2], getW(dataBytes, dataOffset + 12) ^ tfsKey[3]];
for (let j = 0; j < 8; j++) {
tfsFrnd(j, blk);
}
setW(dataBytes, dataOffset, blk[2] ^ tfsKey[4]);
setW(dataBytes, dataOffset + 4, blk[3] ^ tfsKey[5]);
setW(dataBytes, dataOffset + 8, blk[0] ^ tfsKey[6]);
setW(dataBytes, dataOffset + 12, blk[1] ^ tfsKey[7]);
dataOffset += 16;
return dataBytes;
}
function tfsDecrypt(data, offset) {
dataBytes = data;
dataOffset = offset;
const blk = [getW(dataBytes, dataOffset) ^ tfsKey[4], getW(dataBytes, dataOffset + 4) ^ tfsKey[5], getW(dataBytes, dataOffset + 8) ^ tfsKey[6], getW(dataBytes, dataOffset + 12) ^ tfsKey[7]];
for (let j = 7; j >= 0; j--) {
tfsIrnd(j, blk);
}
setW(dataBytes, dataOffset, blk[2] ^ tfsKey[0]);
setW(dataBytes, dataOffset + 4, blk[3] ^ tfsKey[1]);
setW(dataBytes, dataOffset + 8, blk[0] ^ tfsKey[2]);
setW(dataBytes, dataOffset + 12, blk[1] ^ tfsKey[3]);
dataOffset += 16;
}
// added by Recurity Labs
function tfsFinal() {
return dataBytes;
}
return {
name: "twofish",
blocksize: 128 / 8,
open: tfsInit,
close: tfsClose,
encrypt: tfsEncrypt,
decrypt: tfsDecrypt,
// added by Recurity Labs
finalize: tfsFinal
};
}
// added by Recurity Labs
function TF(key) {
this.tf = createTwofish();
this.tf.open(Array.from(key), 0);
this.encrypt = function (block) {
return this.tf.encrypt(Array.from(block), 0);
};
}
TF.keySize = TF.prototype.keySize = 32;
TF.blockSize = TF.prototype.blockSize = 16;
exports.default = TF;
},{}],89:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _cbc = require('asmcrypto.js/dist_es5/aes/cbc');
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* @fileoverview This module implements AES-CMAC on top of
* native AES-CBC using either the WebCrypto API or Node.js' crypto API.
* @requires asmcrypto.js
* @requires util
* @module crypto/cmac
*/
const webCrypto = _util2.default.getWebCrypto();
const nodeCrypto = _util2.default.getNodeCrypto();
const Buffer = _util2.default.getNodeBuffer();
/**
* This implementation of CMAC is based on the description of OMAC in
* http://web.cs.ucdavis.edu/~rogaway/papers/eax.pdf. As per that
* document:
*
* We have made a small modification to the OMAC algorithm as it was
* originally presented, changing one of its two constants.
* Specifically, the constant 4 at line 85 was the constant 1/2 (the
* multiplicative inverse of 2) in the original definition of OMAC [14].
* The OMAC authors indicate that they will promulgate this modification
* [15], which slightly simplifies implementations.
*/
const blockLength = 16;
/**
* xor `padding` into the end of `data`. This function implements "the
* operation xor→ [which] xors the shorter string into the end of longer
* one". Since data is always as least as long as padding, we can
* simplify the implementation.
* @param {Uint8Array} data
* @param {Uint8Array} padding
*/
function rightXorMut(data, padding) {
const offset = data.length - blockLength;
for (let i = 0; i < blockLength; i++) {
data[i + offset] ^= padding[i];
}
return data;
}
function pad(data, padding, padding2) {
// if |M| in {n, 2n, 3n, ...}
if (data.length && data.length % blockLength === 0) {
// then return M xor→ B,
return rightXorMut(data, padding);
}
// else return (M || 10^(n1(|M| mod n))) xor→ P
const padded = new Uint8Array(data.length + (blockLength - data.length % blockLength));
padded.set(data);
padded[data.length] = 0b10000000;
return rightXorMut(padded, padding2);
}
const zeroBlock = new Uint8Array(blockLength);
exports.default = async function CMAC(key) {
const cbc = await CBC(key);
// L ← E_K(0^n); B ← 2L; P ← 4L
const padding = _util2.default.double((await cbc(zeroBlock)));
const padding2 = _util2.default.double(padding);
return async function (data) {
// return CBC_K(pad(M; B, P))
return (await cbc(pad(data, padding, padding2))).subarray(-blockLength);
};
};
async function CBC(key) {
if (_util2.default.getWebCrypto() && key.length !== 24) {
// WebCrypto (no 192 bit support) see: https://www.chromium.org/blink/webcrypto#TOC-AES-support
key = await webCrypto.importKey('raw', key, { name: 'AES-CBC', length: key.length * 8 }, false, ['encrypt']);
return async function (pt) {
const ct = await webCrypto.encrypt({ name: 'AES-CBC', iv: zeroBlock, length: blockLength * 8 }, key, pt);
return new Uint8Array(ct).subarray(0, ct.byteLength - blockLength);
};
}
if (_util2.default.getNodeCrypto()) {
// Node crypto library
key = new Buffer(key);
return async function (pt) {
pt = new Buffer(pt);
const en = new nodeCrypto.createCipheriv('aes-' + key.length * 8 + '-cbc', key, zeroBlock);
const ct = en.update(pt);
return new Uint8Array(ct);
};
}
// asm.js fallback
return async function (pt) {
return _cbc.AES_CBC.encrypt(pt, key, false, zeroBlock);
};
}
},{"../util":153,"asmcrypto.js/dist_es5/aes/cbc":5}],90:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _bn = require('bn.js');
var _bn2 = _interopRequireDefault(_bn);
var _public_key = require('./public_key');
var _public_key2 = _interopRequireDefault(_public_key);
var _cipher = require('./cipher');
var _cipher2 = _interopRequireDefault(_cipher);
var _random = require('./random');
var _random2 = _interopRequireDefault(_random);
var _ecdh_symkey = require('../type/ecdh_symkey');
var _ecdh_symkey2 = _interopRequireDefault(_ecdh_symkey);
var _kdf_params = require('../type/kdf_params');
var _kdf_params2 = _interopRequireDefault(_kdf_params);
var _mpi = require('../type/mpi');
var _mpi2 = _interopRequireDefault(_mpi);
var _oid = require('../type/oid');
var _oid2 = _interopRequireDefault(_oid);
var _enums = require('../enums');
var _enums2 = _interopRequireDefault(_enums);
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
// The GPG4Browsers crypto interface
/**
* @fileoverview Provides functions for asymmetric encryption and decryption as
* well as key generation and parameter handling for all public-key cryptosystems.
* @requires bn.js
* @requires crypto/public_key
* @requires crypto/cipher
* @requires crypto/random
* @requires type/ecdh_symkey
* @requires type/kdf_params
* @requires type/mpi
* @requires type/oid
* @requires enums
* @requires util
* @module crypto/crypto
*/
function constructParams(types, data) {
return types.map(function (type, i) {
if (data && data[i]) {
return new type(data[i]);
}
return new type();
});
}
exports.default = {
/**
* Encrypts data using specified algorithm and public key parameters.
* See {@link https://tools.ietf.org/html/rfc4880#section-9.1|RFC 4880 9.1} for public key algorithms.
* @param {module:enums.publicKey} algo Public key algorithm
* @param {Array<module:type/mpi|
module:type/oid|
module:type/kdf_params>} pub_params Algorithm-specific public key parameters
* @param {module:type/mpi} data Data to be encrypted as MPI
* @param {String} fingerprint Recipient fingerprint
* @returns {Array<module:type/mpi|
* module:type/ecdh_symkey>} encrypted session key parameters
* @async
*/
publicKeyEncrypt: async function publicKeyEncrypt(algo, pub_params, data, fingerprint) {
const types = this.getEncSessionKeyParamTypes(algo);
switch (algo) {
case _enums2.default.publicKey.rsa_encrypt:
case _enums2.default.publicKey.rsa_encrypt_sign:
{
const m = data.toBN();
const n = pub_params[0].toBN();
const e = pub_params[1].toBN();
const res = await _public_key2.default.rsa.encrypt(m, n, e);
return constructParams(types, [res]);
}
case _enums2.default.publicKey.elgamal:
{
const m = data.toBN();
const p = pub_params[0].toBN();
const g = pub_params[1].toBN();
const y = pub_params[2].toBN();
const res = await _public_key2.default.elgamal.encrypt(m, p, g, y);
return constructParams(types, [res.c1, res.c2]);
}
case _enums2.default.publicKey.ecdh:
{
const oid = pub_params[0];
const Q = pub_params[1].toUint8Array();
const kdf_params = pub_params[2];
var _ref = await _public_key2.default.elliptic.ecdh.encrypt(oid, kdf_params.cipher, kdf_params.hash, data, Q, fingerprint);
const V = _ref.publicKey,
C = _ref.wrappedKey;
return constructParams(types, [new _bn2.default(V), C]);
}
default:
return [];
}
},
/**
* Decrypts data using specified algorithm and private key parameters.
* See {@link https://tools.ietf.org/html/rfc4880#section-9.1|RFC 4880 9.1} for public key algorithms.
* @param {module:enums.publicKey} algo Public key algorithm
* @param {Array<module:type/mpi|
module:type/oid|
module:type/kdf_params>} key_params Algorithm-specific public, private key parameters
* @param {Array<module:type/mpi|
module:type/ecdh_symkey>}
data_params encrypted session key parameters
* @param {String} fingerprint Recipient fingerprint
* @returns {BN} A BN containing the decrypted data
* @async
*/
publicKeyDecrypt: async function publicKeyDecrypt(algo, key_params, data_params, fingerprint) {
switch (algo) {
case _enums2.default.publicKey.rsa_encrypt_sign:
case _enums2.default.publicKey.rsa_encrypt:
{
const c = data_params[0].toBN();
const n = key_params[0].toBN(); // n = pq
const e = key_params[1].toBN();
const d = key_params[2].toBN(); // de = 1 mod (p-1)(q-1)
const p = key_params[3].toBN();
const q = key_params[4].toBN();
const u = key_params[5].toBN(); // q^-1 mod p
return _public_key2.default.rsa.decrypt(c, n, e, d, p, q, u);
}
case _enums2.default.publicKey.elgamal:
{
const c1 = data_params[0].toBN();
const c2 = data_params[1].toBN();
const p = key_params[0].toBN();
const x = key_params[3].toBN();
return _public_key2.default.elgamal.decrypt(c1, c2, p, x);
}
case _enums2.default.publicKey.ecdh:
{
const oid = key_params[0];
const kdf_params = key_params[2];
const V = data_params[0].toUint8Array();
const C = data_params[1].data;
const d = key_params[3].toUint8Array();
return _public_key2.default.elliptic.ecdh.decrypt(oid, kdf_params.cipher, kdf_params.hash, V, C, d, fingerprint);
}
default:
throw new Error('Invalid public key encryption algorithm.');
}
},
/** Returns the types comprising the private key of an algorithm
* @param {String} algo The public key algorithm
* @returns {Array<String>} The array of types
*/
getPrivKeyParamTypes: function getPrivKeyParamTypes(algo) {
switch (algo) {
// Algorithm-Specific Fields for RSA secret keys:
// - multiprecision integer (MPI) of RSA secret exponent d.
// - MPI of RSA secret prime value p.
// - MPI of RSA secret prime value q (p < q).
// - MPI of u, the multiplicative inverse of p, mod q.
case _enums2.default.publicKey.rsa_encrypt:
case _enums2.default.publicKey.rsa_encrypt_sign:
case _enums2.default.publicKey.rsa_sign:
return [_mpi2.default, _mpi2.default, _mpi2.default, _mpi2.default];
// Algorithm-Specific Fields for Elgamal secret keys:
// - MPI of Elgamal secret exponent x.
case _enums2.default.publicKey.elgamal:
return [_mpi2.default];
// Algorithm-Specific Fields for DSA secret keys:
// - MPI of DSA secret exponent x.
case _enums2.default.publicKey.dsa:
return [_mpi2.default];
// Algorithm-Specific Fields for ECDSA or ECDH secret keys:
// - MPI of an integer representing the secret key.
case _enums2.default.publicKey.ecdh:
case _enums2.default.publicKey.ecdsa:
case _enums2.default.publicKey.eddsa:
return [_mpi2.default];
default:
throw new Error('Invalid public key encryption algorithm.');
}
},
/** Returns the types comprising the public key of an algorithm
* @param {String} algo The public key algorithm
* @returns {Array<String>} The array of types
*/
getPubKeyParamTypes: function getPubKeyParamTypes(algo) {
switch (algo) {
// Algorithm-Specific Fields for RSA public keys:
// - a multiprecision integer (MPI) of RSA public modulus n;
// - an MPI of RSA public encryption exponent e.
case _enums2.default.publicKey.rsa_encrypt:
case _enums2.default.publicKey.rsa_encrypt_sign:
case _enums2.default.publicKey.rsa_sign:
return [_mpi2.default, _mpi2.default];
// Algorithm-Specific Fields for Elgamal public keys:
// - MPI of Elgamal prime p;
// - MPI of Elgamal group generator g;
// - MPI of Elgamal public key value y (= g**x mod p where x is secret).
case _enums2.default.publicKey.elgamal:
return [_mpi2.default, _mpi2.default, _mpi2.default];
// Algorithm-Specific Fields for DSA public keys:
// - MPI of DSA prime p;
// - MPI of DSA group order q (q is a prime divisor of p-1);
// - MPI of DSA group generator g;
// - MPI of DSA public-key value y (= g**x mod p where x is secret).
case _enums2.default.publicKey.dsa:
return [_mpi2.default, _mpi2.default, _mpi2.default, _mpi2.default];
// Algorithm-Specific Fields for ECDSA/EdDSA public keys:
// - OID of curve;
// - MPI of EC point representing public key.
case _enums2.default.publicKey.ecdsa:
case _enums2.default.publicKey.eddsa:
return [_oid2.default, _mpi2.default];
// Algorithm-Specific Fields for ECDH public keys:
// - OID of curve;
// - MPI of EC point representing public key.
// - KDF: variable-length field containing KDF parameters.
case _enums2.default.publicKey.ecdh:
return [_oid2.default, _mpi2.default, _kdf_params2.default];
default:
throw new Error('Invalid public key encryption algorithm.');
}
},
/** Returns the types comprising the encrypted session key of an algorithm
* @param {String} algo The public key algorithm
* @returns {Array<String>} The array of types
*/
getEncSessionKeyParamTypes: function getEncSessionKeyParamTypes(algo) {
switch (algo) {
// Algorithm-Specific Fields for RSA encrypted session keys:
// - MPI of RSA encrypted value m**e mod n.
case _enums2.default.publicKey.rsa_encrypt:
case _enums2.default.publicKey.rsa_encrypt_sign:
return [_mpi2.default];
// Algorithm-Specific Fields for Elgamal encrypted session keys:
// - MPI of Elgamal value g**k mod p
// - MPI of Elgamal value m * y**k mod p
case _enums2.default.publicKey.elgamal:
return [_mpi2.default, _mpi2.default];
// Algorithm-Specific Fields for ECDH encrypted session keys:
// - MPI containing the ephemeral key used to establish the shared secret
// - ECDH Symmetric Key
case _enums2.default.publicKey.ecdh:
return [_mpi2.default, _ecdh_symkey2.default];
default:
throw new Error('Invalid public key encryption algorithm.');
}
},
/** Generate algorithm-specific key parameters
* @param {String} algo The public key algorithm
* @param {Integer} bits Bit length for RSA keys
* @param {module:type/oid} oid Object identifier for ECC keys
* @returns {Array} The array of parameters
* @async
*/
generateParams: function generateParams(algo, bits, oid) {
const types = [].concat(this.getPubKeyParamTypes(algo), this.getPrivKeyParamTypes(algo));
switch (algo) {
case _enums2.default.publicKey.rsa_encrypt:
case _enums2.default.publicKey.rsa_encrypt_sign:
case _enums2.default.publicKey.rsa_sign:
{
return _public_key2.default.rsa.generate(bits, "10001").then(function (keyObject) {
return constructParams(types, [keyObject.n, keyObject.e, keyObject.d, keyObject.p, keyObject.q, keyObject.u]);
});
}
case _enums2.default.publicKey.dsa:
case _enums2.default.publicKey.elgamal:
throw new Error('Unsupported algorithm for key generation.');
case _enums2.default.publicKey.ecdsa:
case _enums2.default.publicKey.eddsa:
return _public_key2.default.elliptic.generate(oid).then(function (keyObject) {
return constructParams(types, [keyObject.oid, keyObject.Q, keyObject.d]);
});
case _enums2.default.publicKey.ecdh:
return _public_key2.default.elliptic.generate(oid).then(function (keyObject) {
return constructParams(types, [keyObject.oid, keyObject.Q, [keyObject.hash, keyObject.cipher], keyObject.d]);
});
default:
throw new Error('Invalid public key algorithm.');
}
},
/**
* Generates a random byte prefix for the specified algorithm
* See {@link https://tools.ietf.org/html/rfc4880#section-9.2|RFC 4880 9.2} for algorithms.
* @param {module:enums.symmetric} algo Symmetric encryption algorithm
* @returns {Uint8Array} Random bytes with length equal to the block size of the cipher, plus the last two bytes repeated.
* @async
*/
getPrefixRandom: async function getPrefixRandom(algo) {
const prefixrandom = await _random2.default.getRandomBytes(_cipher2.default[algo].blockSize);
const repeat = new Uint8Array([prefixrandom[prefixrandom.length - 2], prefixrandom[prefixrandom.length - 1]]);
return _util2.default.concat([prefixrandom, repeat]);
},
/**
* Generating a session key for the specified symmetric algorithm
* See {@link https://tools.ietf.org/html/rfc4880#section-9.2|RFC 4880 9.2} for algorithms.
* @param {module:enums.symmetric} algo Symmetric encryption algorithm
* @returns {Uint8Array} Random bytes as a string to be used as a key
* @async
*/
generateSessionKey: function generateSessionKey(algo) {
return _random2.default.getRandomBytes(_cipher2.default[algo].keySize);
},
constructParams: constructParams
};
},{"../enums":114,"../type/ecdh_symkey":147,"../type/kdf_params":148,"../type/mpi":150,"../type/oid":151,"../util":153,"./cipher":87,"./public_key":107,"./random":110,"bn.js":17}],91:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _slicedToArray = function () { function sliceIterator(arr, i) { var _arr = []; var _n = true; var _d = false; var _e = undefined; try { for (var _i = arr[Symbol.iterator](), _s; !(_n = (_s = _i.next()).done); _n = true) { _arr.push(_s.value); if (i && _arr.length === i) break; } } catch (err) { _d = true; _e = err; } finally { try { if (!_n && _i["return"]) _i["return"](); } finally { if (_d) throw _e; } } return _arr; } return function (arr, i) { if (Array.isArray(arr)) { return arr; } else if (Symbol.iterator in Object(arr)) { return sliceIterator(arr, i); } else { throw new TypeError("Invalid attempt to destructure non-iterable instance"); } }; }(); // OpenPGP.js - An OpenPGP implementation in javascript
// Copyright (C) 2018 ProtonTech AG
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @fileoverview This module implements AES-EAX en/decryption on top of
* native AES-CTR using either the WebCrypto API or Node.js' crypto API.
* @requires asmcrypto.js
* @requires crypto/cmac
* @requires util
* @module crypto/eax
*/
var _ctr = require('asmcrypto.js/dist_es5/aes/ctr');
var _cmac = require('./cmac');
var _cmac2 = _interopRequireDefault(_cmac);
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
const webCrypto = _util2.default.getWebCrypto();
const nodeCrypto = _util2.default.getNodeCrypto();
const Buffer = _util2.default.getNodeBuffer();
const blockLength = 16;
const ivLength = blockLength;
const tagLength = blockLength;
const zero = new Uint8Array(blockLength);
const one = new Uint8Array(blockLength);one[blockLength - 1] = 1;
const two = new Uint8Array(blockLength);two[blockLength - 1] = 2;
async function OMAC(key) {
const cmac = await (0, _cmac2.default)(key);
return function (t, message) {
return cmac(_util2.default.concatUint8Array([t, message]));
};
}
async function CTR(key) {
if (_util2.default.getWebCrypto() && key.length !== 24 && // WebCrypto (no 192 bit support) see: https://www.chromium.org/blink/webcrypto#TOC-AES-support
navigator.userAgent.indexOf('Edge') === -1) {
key = await webCrypto.importKey('raw', key, { name: 'AES-CTR', length: key.length * 8 }, false, ['encrypt']);
return async function (pt, iv) {
const ct = await webCrypto.encrypt({ name: 'AES-CTR', counter: iv, length: blockLength * 8 }, key, pt);
return new Uint8Array(ct);
};
}
if (_util2.default.getNodeCrypto()) {
// Node crypto library
key = new Buffer(key);
return async function (pt, iv) {
pt = new Buffer(pt);
iv = new Buffer(iv);
const en = new nodeCrypto.createCipheriv('aes-' + key.length * 8 + '-ctr', key, iv);
const ct = Buffer.concat([en.update(pt), en.final()]);
return new Uint8Array(ct);
};
}
// asm.js fallback
return async function (pt, iv) {
return _ctr.AES_CTR.encrypt(pt, key, iv);
};
}
/**
* Class to en/decrypt using EAX mode.
* @param {String} cipher The symmetric cipher algorithm to use e.g. 'aes128'
* @param {Uint8Array} key The encryption key
*/
async function EAX(cipher, key) {
if (cipher.substr(0, 3) !== 'aes') {
throw new Error('EAX mode supports only AES cipher');
}
var _ref = await Promise.all([OMAC(key), CTR(key)]),
_ref2 = _slicedToArray(_ref, 2);
const omac = _ref2[0],
ctr = _ref2[1];
return {
/**
* Encrypt plaintext input.
* @param {Uint8Array} plaintext The cleartext input to be encrypted
* @param {Uint8Array} nonce The nonce (16 bytes)
* @param {Uint8Array} adata Associated data to sign
* @returns {Promise<Uint8Array>} The ciphertext output
*/
encrypt: async function encrypt(plaintext, nonce, adata) {
var _ref3 = await Promise.all([omac(zero, nonce), omac(one, adata)]),
_ref4 = _slicedToArray(_ref3, 2);
const omacNonce = _ref4[0],
omacAdata = _ref4[1];
const ciphered = await ctr(plaintext, omacNonce);
const omacCiphered = await omac(two, ciphered);
const tag = omacCiphered; // Assumes that omac(*).length === tagLength.
for (let i = 0; i < tagLength; i++) {
tag[i] ^= omacAdata[i] ^ omacNonce[i];
}
return _util2.default.concatUint8Array([ciphered, tag]);
},
/**
* Decrypt ciphertext input.
* @param {Uint8Array} ciphertext The ciphertext input to be decrypted
* @param {Uint8Array} nonce The nonce (16 bytes)
* @param {Uint8Array} adata Associated data to verify
* @returns {Promise<Uint8Array>} The plaintext output
*/
decrypt: async function decrypt(ciphertext, nonce, adata) {
if (ciphertext.length < tagLength) throw new Error('Invalid EAX ciphertext');
const ciphered = ciphertext.subarray(0, -tagLength);
const ctTag = ciphertext.subarray(-tagLength);
var _ref5 = await Promise.all([omac(zero, nonce), omac(one, adata), omac(two, ciphered)]),
_ref6 = _slicedToArray(_ref5, 3);
const omacNonce = _ref6[0],
omacAdata = _ref6[1],
omacCiphered = _ref6[2];
const tag = omacCiphered; // Assumes that omac(*).length === tagLength.
for (let i = 0; i < tagLength; i++) {
tag[i] ^= omacAdata[i] ^ omacNonce[i];
}
if (!_util2.default.equalsUint8Array(ctTag, tag)) throw new Error('Authentication tag mismatch');
const plaintext = await ctr(ciphered, omacNonce);
return plaintext;
}
};
}
/**
* Get EAX nonce as defined by {@link https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-04#section-5.16.1|RFC4880bis-04, section 5.16.1}.
* @param {Uint8Array} iv The initialization vector (16 bytes)
* @param {Uint8Array} chunkIndex The chunk index (8 bytes)
*/
EAX.getNonce = function (iv, chunkIndex) {
const nonce = iv.slice();
for (let i = 0; i < chunkIndex.length; i++) {
nonce[8 + i] ^= chunkIndex[i];
}
return nonce;
};
EAX.blockLength = blockLength;
EAX.ivLength = ivLength;
EAX.tagLength = tagLength;
exports.default = EAX;
},{"../util":153,"./cmac":89,"asmcrypto.js/dist_es5/aes/ctr":7}],92:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _gcm = require('asmcrypto.js/dist_es5/aes/gcm');
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
// OpenPGP.js - An OpenPGP implementation in javascript
// Copyright (C) 2016 Tankred Hase
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @fileoverview This module wraps native AES-GCM en/decryption for both
* the WebCrypto api as well as node.js' crypto api.
* @requires asmcrypto.js
* @requires util
* @module crypto/gcm
*/
const webCrypto = _util2.default.getWebCrypto(); // no GCM support in IE11, Safari 9
const nodeCrypto = _util2.default.getNodeCrypto();
const Buffer = _util2.default.getNodeBuffer();
const blockLength = 16;
const ivLength = 12; // size of the IV in bytes
const tagLength = 16; // size of the tag in bytes
const ALGO = 'AES-GCM';
/**
* Class to en/decrypt using GCM mode.
* @param {String} cipher The symmetric cipher algorithm to use e.g. 'aes128'
* @param {Uint8Array} key The encryption key
*/
async function GCM(cipher, key) {
if (cipher.substr(0, 3) !== 'aes') {
throw new Error('GCM mode supports only AES cipher');
}
if (_util2.default.getWebCrypto() && key.length !== 24) {
// WebCrypto (no 192 bit support) see: https://www.chromium.org/blink/webcrypto#TOC-AES-support
const _key = await webCrypto.importKey('raw', key, { name: ALGO }, false, ['encrypt', 'decrypt']);
return {
encrypt: async function encrypt(pt, iv, adata = new Uint8Array()) {
if (!pt.length ||
// iOS does not support GCM-en/decrypting empty messages
// Also, synchronous en/decryption might be faster in this case.
!adata.length && navigator.userAgent.indexOf('Edge') !== -1
// Edge does not support GCM-en/decrypting without ADATA
) {
return _gcm.AES_GCM.encrypt(pt, key, iv, adata);
}
const ct = await webCrypto.encrypt({ name: ALGO, iv, additionalData: adata, tagLength: tagLength * 8 }, _key, pt);
return new Uint8Array(ct);
},
decrypt: async function decrypt(ct, iv, adata = new Uint8Array()) {
if (ct.length === tagLength ||
// iOS does not support GCM-en/decrypting empty messages
// Also, synchronous en/decryption might be faster in this case.
!adata.length && navigator.userAgent.indexOf('Edge') !== -1
// Edge does not support GCM-en/decrypting without ADATA
) {
return _gcm.AES_GCM.decrypt(ct, key, iv, adata);
}
const pt = await webCrypto.decrypt({ name: ALGO, iv, additionalData: adata, tagLength: tagLength * 8 }, _key, ct);
return new Uint8Array(pt);
}
};
}
if (_util2.default.getNodeCrypto()) {
// Node crypto library
key = new Buffer(key);
return {
encrypt: async function encrypt(pt, iv, adata = new Uint8Array()) {
pt = new Buffer(pt);
iv = new Buffer(iv);
adata = new Buffer(adata);
const en = new nodeCrypto.createCipheriv('aes-' + key.length * 8 + '-gcm', key, iv);
en.setAAD(adata);
const ct = Buffer.concat([en.update(pt), en.final(), en.getAuthTag()]); // append auth tag to ciphertext
return new Uint8Array(ct);
},
decrypt: async function decrypt(ct, iv, adata = new Uint8Array()) {
ct = new Buffer(ct);
iv = new Buffer(iv);
adata = new Buffer(adata);
const de = new nodeCrypto.createDecipheriv('aes-' + key.length * 8 + '-gcm', key, iv);
de.setAAD(adata);
de.setAuthTag(ct.slice(ct.length - tagLength, ct.length)); // read auth tag at end of ciphertext
const pt = Buffer.concat([de.update(ct.slice(0, ct.length - tagLength)), de.final()]);
return new Uint8Array(pt);
}
};
}
return {
encrypt: async function encrypt(pt, iv, adata) {
return _gcm.AES_GCM.encrypt(pt, key, iv, adata);
},
decrypt: async function decrypt(ct, iv, adata) {
return _gcm.AES_GCM.decrypt(ct, key, iv, adata);
}
};
}
/**
* Get GCM nonce. Note: this operation is not defined by the standard.
* A future version of the standard may define GCM mode differently,
* hopefully under a different ID (we use Private/Experimental algorithm
* ID 100) so that we can maintain backwards compatibility.
* @param {Uint8Array} iv The initialization vector (12 bytes)
* @param {Uint8Array} chunkIndex The chunk index (8 bytes)
*/
GCM.getNonce = function (iv, chunkIndex) {
const nonce = iv.slice();
for (let i = 0; i < chunkIndex.length; i++) {
nonce[4 + i] ^= chunkIndex[i];
}
return nonce;
};
GCM.blockLength = blockLength;
GCM.ivLength = ivLength;
GCM.tagLength = tagLength;
exports.default = GCM;
},{"../util":153,"asmcrypto.js/dist_es5/aes/gcm":9}],93:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _sha = require('asmcrypto.js/dist_es5/hash/sha1/sha1');
var _sha2 = require('asmcrypto.js/dist_es5/hash/sha256/sha256');
var _ = require('hash.js/lib/hash/sha/224');
var _2 = _interopRequireDefault(_);
var _3 = require('hash.js/lib/hash/sha/384');
var _4 = _interopRequireDefault(_3);
var _5 = require('hash.js/lib/hash/sha/512');
var _6 = _interopRequireDefault(_5);
var _ripemd = require('hash.js/lib/hash/ripemd');
var _webStreamTools = require('web-stream-tools');
var _webStreamTools2 = _interopRequireDefault(_webStreamTools);
var _md = require('./md5');
var _md2 = _interopRequireDefault(_md);
var _config = require('../../config');
var _config2 = _interopRequireDefault(_config);
var _util = require('../../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* @fileoverview Provides an interface to hashing functions available in Node.js or external libraries.
* @see {@link https://github.com/asmcrypto/asmcrypto.js|asmCrypto}
* @see {@link https://github.com/indutny/hash.js|hash.js}
* @requires asmcrypto.js
* @requires hash.js
* @requires web-stream-tools
* @requires crypto/hash/md5
* @requires config
* @requires util
* @module crypto/hash
*/
const webCrypto = _util2.default.getWebCrypto();
const nodeCrypto = _util2.default.getNodeCrypto();
const Buffer = _util2.default.getNodeBuffer();
function node_hash(type) {
return async function (data) {
const shasum = nodeCrypto.createHash(type);
return _webStreamTools2.default.transform(data, value => {
shasum.update(new Buffer(value));
}, () => new Uint8Array(shasum.digest()));
};
}
function hashjs_hash(hash, webCryptoHash) {
return async function (data) {
if (!_util2.default.isStream(data) && webCrypto && webCryptoHash && data.length >= _config2.default.min_bytes_for_web_crypto) {
return new Uint8Array((await webCrypto.digest(webCryptoHash, data)));
}
const hashInstance = hash();
return _webStreamTools2.default.transform(data, value => {
hashInstance.update(value);
}, () => new Uint8Array(hashInstance.digest()));
};
}
function asmcrypto_hash(hash, webCryptoHash) {
return async function (data) {
if (_util2.default.isStream(data)) {
const hashInstance = new hash();
return _webStreamTools2.default.transform(data, value => {
hashInstance.process(value);
}, () => hashInstance.finish().result);
} else if (webCrypto && webCryptoHash && data.length >= _config2.default.min_bytes_for_web_crypto) {
return new Uint8Array((await webCrypto.digest(webCryptoHash, data)));
} else {
return hash.bytes(data);
}
};
}
let hash_fns;
if (nodeCrypto) {
// Use Node native crypto for all hash functions
hash_fns = {
md5: node_hash('md5'),
sha1: node_hash('sha1'),
sha224: node_hash('sha224'),
sha256: node_hash('sha256'),
sha384: node_hash('sha384'),
sha512: node_hash('sha512'),
ripemd: node_hash('ripemd160')
};
} else {
// Use JS fallbacks
hash_fns = {
md5: _md2.default,
sha1: asmcrypto_hash(_sha.Sha1, navigator.userAgent.indexOf('Edge') === -1 && 'SHA-1'),
sha224: hashjs_hash(_2.default),
sha256: asmcrypto_hash(_sha2.Sha256, 'SHA-256'),
sha384: hashjs_hash(_4.default, 'SHA-384'),
sha512: hashjs_hash(_6.default, 'SHA-512'), // asmcrypto sha512 is huge.
ripemd: hashjs_hash(_ripemd.ripemd160)
};
}
exports.default = {
/** @see module:md5 */
md5: hash_fns.md5,
/** @see asmCrypto */
sha1: hash_fns.sha1,
/** @see hash.js */
sha224: hash_fns.sha224,
/** @see asmCrypto */
sha256: hash_fns.sha256,
/** @see hash.js */
sha384: hash_fns.sha384,
/** @see asmCrypto */
sha512: hash_fns.sha512,
/** @see hash.js */
ripemd: hash_fns.ripemd,
/**
* Create a hash on the specified data using the specified algorithm
* @param {module:enums.hash} algo Hash algorithm type (see {@link https://tools.ietf.org/html/rfc4880#section-9.4|RFC 4880 9.4})
* @param {Uint8Array} data Data to be hashed
* @returns {Promise<Uint8Array>} hash value
*/
digest: function digest(algo, data) {
switch (algo) {
case 1:
// - MD5 [HAC]
return this.md5(data);
case 2:
// - SHA-1 [FIPS180]
return this.sha1(data);
case 3:
// - RIPE-MD/160 [HAC]
return this.ripemd(data);
case 8:
// - SHA256 [FIPS180]
return this.sha256(data);
case 9:
// - SHA384 [FIPS180]
return this.sha384(data);
case 10:
// - SHA512 [FIPS180]
return this.sha512(data);
case 11:
// - SHA224 [FIPS180]
return this.sha224(data);
default:
throw new Error('Invalid hash function.');
}
},
/**
* Returns the hash size in bytes of the specified hash algorithm type
* @param {module:enums.hash} algo Hash algorithm type (See {@link https://tools.ietf.org/html/rfc4880#section-9.4|RFC 4880 9.4})
* @returns {Integer} Size in bytes of the resulting hash
*/
getHashByteLength: function getHashByteLength(algo) {
switch (algo) {
case 1:
// - MD5 [HAC]
return 16;
case 2: // - SHA-1 [FIPS180]
case 3:
// - RIPE-MD/160 [HAC]
return 20;
case 8:
// - SHA256 [FIPS180]
return 32;
case 9:
// - SHA384 [FIPS180]
return 48;
case 10:
// - SHA512 [FIPS180]
return 64;
case 11:
// - SHA224 [FIPS180]
return 28;
default:
throw new Error('Invalid hash algorithm.');
}
}
};
},{"../../config":80,"../../util":153,"./md5":94,"asmcrypto.js/dist_es5/hash/sha1/sha1":12,"asmcrypto.js/dist_es5/hash/sha256/sha256":14,"hash.js/lib/hash/ripemd":38,"hash.js/lib/hash/sha/224":41,"hash.js/lib/hash/sha/384":43,"hash.js/lib/hash/sha/512":44,"web-stream-tools":76}],94:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _util = require('../../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
// MD5 Digest
async function md5(entree) {
const digest = md51(_util2.default.Uint8Array_to_str(entree));
return _util2.default.hex_to_Uint8Array(hex(digest));
} /**
* A fast MD5 JavaScript implementation
* Copyright (c) 2012 Joseph Myers
* http://www.myersdaily.org/joseph/javascript/md5-text.html
*
* Permission to use, copy, modify, and distribute this software
* and its documentation for any purposes and without
* fee is hereby granted provided that this copyright notice
* appears in all copies.
*
* Of course, this soft is provided "as is" without express or implied
* warranty of any kind.
*/
/**
* @requires util
*/
function md5cycle(x, k) {
let a = x[0];
let b = x[1];
let c = x[2];
let d = x[3];
a = ff(a, b, c, d, k[0], 7, -680876936);
d = ff(d, a, b, c, k[1], 12, -389564586);
c = ff(c, d, a, b, k[2], 17, 606105819);
b = ff(b, c, d, a, k[3], 22, -1044525330);
a = ff(a, b, c, d, k[4], 7, -176418897);
d = ff(d, a, b, c, k[5], 12, 1200080426);
c = ff(c, d, a, b, k[6], 17, -1473231341);
b = ff(b, c, d, a, k[7], 22, -45705983);
a = ff(a, b, c, d, k[8], 7, 1770035416);
d = ff(d, a, b, c, k[9], 12, -1958414417);
c = ff(c, d, a, b, k[10], 17, -42063);
b = ff(b, c, d, a, k[11], 22, -1990404162);
a = ff(a, b, c, d, k[12], 7, 1804603682);
d = ff(d, a, b, c, k[13], 12, -40341101);
c = ff(c, d, a, b, k[14], 17, -1502002290);
b = ff(b, c, d, a, k[15], 22, 1236535329);
a = gg(a, b, c, d, k[1], 5, -165796510);
d = gg(d, a, b, c, k[6], 9, -1069501632);
c = gg(c, d, a, b, k[11], 14, 643717713);
b = gg(b, c, d, a, k[0], 20, -373897302);
a = gg(a, b, c, d, k[5], 5, -701558691);
d = gg(d, a, b, c, k[10], 9, 38016083);
c = gg(c, d, a, b, k[15], 14, -660478335);
b = gg(b, c, d, a, k[4], 20, -405537848);
a = gg(a, b, c, d, k[9], 5, 568446438);
d = gg(d, a, b, c, k[14], 9, -1019803690);
c = gg(c, d, a, b, k[3], 14, -187363961);
b = gg(b, c, d, a, k[8], 20, 1163531501);
a = gg(a, b, c, d, k[13], 5, -1444681467);
d = gg(d, a, b, c, k[2], 9, -51403784);
c = gg(c, d, a, b, k[7], 14, 1735328473);
b = gg(b, c, d, a, k[12], 20, -1926607734);
a = hh(a, b, c, d, k[5], 4, -378558);
d = hh(d, a, b, c, k[8], 11, -2022574463);
c = hh(c, d, a, b, k[11], 16, 1839030562);
b = hh(b, c, d, a, k[14], 23, -35309556);
a = hh(a, b, c, d, k[1], 4, -1530992060);
d = hh(d, a, b, c, k[4], 11, 1272893353);
c = hh(c, d, a, b, k[7], 16, -155497632);
b = hh(b, c, d, a, k[10], 23, -1094730640);
a = hh(a, b, c, d, k[13], 4, 681279174);
d = hh(d, a, b, c, k[0], 11, -358537222);
c = hh(c, d, a, b, k[3], 16, -722521979);
b = hh(b, c, d, a, k[6], 23, 76029189);
a = hh(a, b, c, d, k[9], 4, -640364487);
d = hh(d, a, b, c, k[12], 11, -421815835);
c = hh(c, d, a, b, k[15], 16, 530742520);
b = hh(b, c, d, a, k[2], 23, -995338651);
a = ii(a, b, c, d, k[0], 6, -198630844);
d = ii(d, a, b, c, k[7], 10, 1126891415);
c = ii(c, d, a, b, k[14], 15, -1416354905);
b = ii(b, c, d, a, k[5], 21, -57434055);
a = ii(a, b, c, d, k[12], 6, 1700485571);
d = ii(d, a, b, c, k[3], 10, -1894986606);
c = ii(c, d, a, b, k[10], 15, -1051523);
b = ii(b, c, d, a, k[1], 21, -2054922799);
a = ii(a, b, c, d, k[8], 6, 1873313359);
d = ii(d, a, b, c, k[15], 10, -30611744);
c = ii(c, d, a, b, k[6], 15, -1560198380);
b = ii(b, c, d, a, k[13], 21, 1309151649);
a = ii(a, b, c, d, k[4], 6, -145523070);
d = ii(d, a, b, c, k[11], 10, -1120210379);
c = ii(c, d, a, b, k[2], 15, 718787259);
b = ii(b, c, d, a, k[9], 21, -343485551);
x[0] = add32(a, x[0]);
x[1] = add32(b, x[1]);
x[2] = add32(c, x[2]);
x[3] = add32(d, x[3]);
}
function cmn(q, a, b, x, s, t) {
a = add32(add32(a, q), add32(x, t));
return add32(a << s | a >>> 32 - s, b);
}
function ff(a, b, c, d, x, s, t) {
return cmn(b & c | ~b & d, a, b, x, s, t);
}
function gg(a, b, c, d, x, s, t) {
return cmn(b & d | c & ~d, a, b, x, s, t);
}
function hh(a, b, c, d, x, s, t) {
return cmn(b ^ c ^ d, a, b, x, s, t);
}
function ii(a, b, c, d, x, s, t) {
return cmn(c ^ (b | ~d), a, b, x, s, t);
}
function md51(s) {
const n = s.length;
const state = [1732584193, -271733879, -1732584194, 271733878];
let i;
for (i = 64; i <= s.length; i += 64) {
md5cycle(state, md5blk(s.substring(i - 64, i)));
}
s = s.substring(i - 64);
const tail = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
for (i = 0; i < s.length; i++) {
tail[i >> 2] |= s.charCodeAt(i) << (i % 4 << 3);
}
tail[i >> 2] |= 0x80 << (i % 4 << 3);
if (i > 55) {
md5cycle(state, tail);
for (i = 0; i < 16; i++) {
tail[i] = 0;
}
}
tail[14] = n * 8;
md5cycle(state, tail);
return state;
}
/* there needs to be support for Unicode here,
* unless we pretend that we can redefine the MD-5
* algorithm for multi-byte characters (perhaps
* by adding every four 16-bit characters and
* shortening the sum to 32 bits). Otherwise
* I suggest performing MD-5 as if every character
* was two bytes--e.g., 0040 0025 = @%--but then
* how will an ordinary MD-5 sum be matched?
* There is no way to standardize text to something
* like UTF-8 before transformation; speed cost is
* utterly prohibitive. The JavaScript standard
* itself needs to look at this: it should start
* providing access to strings as preformed UTF-8
* 8-bit unsigned value arrays.
*/
function md5blk(s) {
/* I figured global was faster. */
const md5blks = [];
let i; /* Andy King said do it this way. */
for (i = 0; i < 64; i += 4) {
md5blks[i >> 2] = s.charCodeAt(i) + (s.charCodeAt(i + 1) << 8) + (s.charCodeAt(i + 2) << 16) + (s.charCodeAt(i + 3) << 24);
}
return md5blks;
}
const hex_chr = '0123456789abcdef'.split('');
function rhex(n) {
let s = '';
let j = 0;
for (; j < 4; j++) {
s += hex_chr[n >> j * 8 + 4 & 0x0F] + hex_chr[n >> j * 8 & 0x0F];
}
return s;
}
function hex(x) {
for (let i = 0; i < x.length; i++) {
x[i] = rhex(x[i]);
}
return x.join('');
}
/* this function is much faster,
so if possible we use it. Some IEs
are the only ones I know of that
need the idiotic second function,
generated by an if clause. */
function add32(a, b) {
return a + b & 0xFFFFFFFF;
}
exports.default = md5;
},{"../../util":153}],95:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _cipher = require('./cipher');
var _cipher2 = _interopRequireDefault(_cipher);
var _hash = require('./hash');
var _hash2 = _interopRequireDefault(_hash);
var _cfb = require('./cfb');
var _cfb2 = _interopRequireDefault(_cfb);
var _gcm = require('./gcm');
var _gcm2 = _interopRequireDefault(_gcm);
var _eax = require('./eax');
var _eax2 = _interopRequireDefault(_eax);
var _ocb = require('./ocb');
var _ocb2 = _interopRequireDefault(_ocb);
var _public_key = require('./public_key');
var _public_key2 = _interopRequireDefault(_public_key);
var _signature = require('./signature');
var _signature2 = _interopRequireDefault(_signature);
var _random = require('./random');
var _random2 = _interopRequireDefault(_random);
var _pkcs = require('./pkcs1');
var _pkcs2 = _interopRequireDefault(_pkcs);
var _pkcs3 = require('./pkcs5');
var _pkcs4 = _interopRequireDefault(_pkcs3);
var _crypto = require('./crypto');
var _crypto2 = _interopRequireDefault(_crypto);
var _aes_kw = require('./aes_kw');
var _aes_kw2 = _interopRequireDefault(_aes_kw);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
// TODO move cfb and gcm to cipher
const mod = {
/** @see module:crypto/cipher */
cipher: _cipher2.default,
/** @see module:crypto/hash */
hash: _hash2.default,
/** @see module:crypto/cfb */
cfb: _cfb2.default,
/** @see module:crypto/gcm */
gcm: _gcm2.default,
experimental_gcm: _gcm2.default,
/** @see module:crypto/eax */
eax: _eax2.default,
/** @see module:crypto/ocb */
ocb: _ocb2.default,
/** @see module:crypto/public_key */
publicKey: _public_key2.default,
/** @see module:crypto/signature */
signature: _signature2.default,
/** @see module:crypto/random */
random: _random2.default,
/** @see module:crypto/pkcs1 */
pkcs1: _pkcs2.default,
/** @see module:crypto/pkcs5 */
pkcs5: _pkcs4.default,
/** @see module:crypto/aes_kw */
aes_kw: _aes_kw2.default
}; /**
* @fileoverview Provides access to all cryptographic primitives used in OpenPGP.js
* @see module:crypto/crypto
* @see module:crypto/signature
* @see module:crypto/public_key
* @see module:crypto/cipher
* @see module:crypto/random
* @see module:crypto/hash
* @module crypto
*/
Object.assign(mod, _crypto2.default);
exports.default = mod;
},{"./aes_kw":81,"./cfb":82,"./cipher":87,"./crypto":90,"./eax":91,"./gcm":92,"./hash":93,"./ocb":96,"./pkcs1":97,"./pkcs5":98,"./public_key":107,"./random":110,"./signature":111}],96:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _cipher = require('./cipher');
var _cipher2 = _interopRequireDefault(_cipher);
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
// OpenPGP.js - An OpenPGP implementation in javascript
// Copyright (C) 2018 ProtonTech AG
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @fileoverview This module implements AES-OCB en/decryption.
* @requires crypto/cipher
* @requires util
* @module crypto/ocb
*/
const blockLength = 16;
const ivLength = 15;
// https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-04#section-5.16.2:
// While OCB [RFC7253] allows the authentication tag length to be of any
// number up to 128 bits long, this document requires a fixed
// authentication tag length of 128 bits (16 octets) for simplicity.
const tagLength = 16;
function ntz(n) {
let ntz = 0;
for (let i = 1; (n & i) === 0; i <<= 1) {
ntz++;
}
return ntz;
}
function xorMut(S, T) {
for (let i = 0; i < S.length; i++) {
S[i] ^= T[i];
}
return S;
}
function xor(S, T) {
return xorMut(S.slice(), T);
}
const zeroBlock = new Uint8Array(blockLength);
const one = new Uint8Array([1]);
/**
* Class to en/decrypt using OCB mode.
* @param {String} cipher The symmetric cipher algorithm to use e.g. 'aes128'
* @param {Uint8Array} key The encryption key
*/
async function OCB(cipher, key) {
let maxNtz = 0;
let encipher;
let decipher;
let mask;
constructKeyVariables(cipher, key);
function constructKeyVariables(cipher, key) {
const aes = new _cipher2.default[cipher](key);
encipher = aes.encrypt.bind(aes);
decipher = aes.decrypt.bind(aes);
const mask_x = encipher(zeroBlock);
const mask_$ = _util2.default.double(mask_x);
mask = [];
mask[0] = _util2.default.double(mask_$);
mask.x = mask_x;
mask.$ = mask_$;
}
function extendKeyVariables(text, adata) {
const newMaxNtz = _util2.default.nbits(Math.max(text.length, adata.length) / blockLength | 0) - 1;
for (let i = maxNtz + 1; i <= newMaxNtz; i++) {
mask[i] = _util2.default.double(mask[i - 1]);
}
maxNtz = newMaxNtz;
}
function hash(adata) {
if (!adata.length) {
// Fast path
return zeroBlock;
}
//
// Consider A as a sequence of 128-bit blocks
//
const m = adata.length / blockLength | 0;
const offset = new Uint8Array(blockLength);
const sum = new Uint8Array(blockLength);
for (let i = 0; i < m; i++) {
xorMut(offset, mask[ntz(i + 1)]);
xorMut(sum, encipher(xor(offset, adata)));
adata = adata.subarray(blockLength);
}
//
// Process any final partial block; compute final hash value
//
if (adata.length) {
xorMut(offset, mask.x);
const cipherInput = new Uint8Array(blockLength);
cipherInput.set(adata, 0);
cipherInput[adata.length] = 0b10000000;
xorMut(cipherInput, offset);
xorMut(sum, encipher(cipherInput));
}
return sum;
}
/**
* Encrypt/decrypt data.
* @param {encipher|decipher} fn Encryption/decryption block cipher function
* @param {Uint8Array} text The cleartext or ciphertext (without tag) input
* @param {Uint8Array} nonce The nonce (15 bytes)
* @param {Uint8Array} adata Associated data to sign
* @returns {Promise<Uint8Array>} The ciphertext or plaintext output, with tag appended in both cases
*/
function crypt(fn, text, nonce, adata) {
//
// Consider P as a sequence of 128-bit blocks
//
const m = text.length / blockLength | 0;
//
// Key-dependent variables
//
extendKeyVariables(text, adata);
//
// Nonce-dependent and per-encryption variables
//
// Nonce = num2str(TAGLEN mod 128,7) || zeros(120-bitlen(N)) || 1 || N
// Note: We assume here that tagLength mod 16 == 0.
const paddedNonce = _util2.default.concatUint8Array([zeroBlock.subarray(0, ivLength - nonce.length), one, nonce]);
// bottom = str2num(Nonce[123..128])
const bottom = paddedNonce[blockLength - 1] & 0b111111;
// Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6))
paddedNonce[blockLength - 1] &= 0b11000000;
const kTop = encipher(paddedNonce);
// Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72])
const stretched = _util2.default.concatUint8Array([kTop, xor(kTop.subarray(0, 8), kTop.subarray(1, 9))]);
// Offset_0 = Stretch[1+bottom..128+bottom]
const offset = _util2.default.shiftRight(stretched.subarray(0 + (bottom >> 3), 17 + (bottom >> 3)), 8 - (bottom & 7)).subarray(1);
// Checksum_0 = zeros(128)
const checksum = new Uint8Array(blockLength);
const ct = new Uint8Array(text.length + tagLength);
//
// Process any whole blocks
//
let i;
let pos = 0;
for (i = 0; i < m; i++) {
// Offset_i = Offset_{i-1} xor L_{ntz(i)}
xorMut(offset, mask[ntz(i + 1)]);
// C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i)
// P_i = Offset_i xor DECIPHER(K, C_i xor Offset_i)
ct.set(xorMut(fn(xor(offset, text)), offset), pos);
// Checksum_i = Checksum_{i-1} xor P_i
xorMut(checksum, fn === encipher ? text : ct.subarray(pos));
text = text.subarray(blockLength);
pos += blockLength;
}
//
// Process any final partial block and compute raw tag
//
if (text.length) {
// Offset_* = Offset_m xor L_*
xorMut(offset, mask.x);
// Pad = ENCIPHER(K, Offset_*)
const padding = encipher(offset);
// C_* = P_* xor Pad[1..bitlen(P_*)]
ct.set(xor(text, padding), pos);
// Checksum_* = Checksum_m xor (P_* || 1 || new Uint8Array(127-bitlen(P_*)))
const xorInput = new Uint8Array(blockLength);
xorInput.set(fn === encipher ? text : ct.subarray(pos, -tagLength), 0);
xorInput[text.length] = 0b10000000;
xorMut(checksum, xorInput);
pos += text.length;
}
// Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A)
const tag = xorMut(encipher(xorMut(xorMut(checksum, offset), mask.$)), hash(adata));
//
// Assemble ciphertext
//
// C = C_1 || C_2 || ... || C_m || C_* || Tag[1..TAGLEN]
ct.set(tag, pos);
return ct;
}
return {
/**
* Encrypt plaintext input.
* @param {Uint8Array} plaintext The cleartext input to be encrypted
* @param {Uint8Array} nonce The nonce (15 bytes)
* @param {Uint8Array} adata Associated data to sign
* @returns {Promise<Uint8Array>} The ciphertext output
*/
encrypt: async function encrypt(plaintext, nonce, adata) {
return crypt(encipher, plaintext, nonce, adata);
},
/**
* Decrypt ciphertext input.
* @param {Uint8Array} ciphertext The ciphertext input to be decrypted
* @param {Uint8Array} nonce The nonce (15 bytes)
* @param {Uint8Array} adata Associated data to sign
* @returns {Promise<Uint8Array>} The ciphertext output
*/
decrypt: async function decrypt(ciphertext, nonce, adata) {
if (ciphertext.length < tagLength) throw new Error('Invalid OCB ciphertext');
const tag = ciphertext.subarray(-tagLength);
ciphertext = ciphertext.subarray(0, -tagLength);
const crypted = crypt(decipher, ciphertext, nonce, adata);
// if (Tag[1..TAGLEN] == T)
if (_util2.default.equalsUint8Array(tag, crypted.subarray(-tagLength))) {
return crypted.subarray(0, -tagLength);
}
throw new Error('Authentication tag mismatch');
}
};
}
/**
* Get OCB nonce as defined by {@link https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-04#section-5.16.2|RFC4880bis-04, section 5.16.2}.
* @param {Uint8Array} iv The initialization vector (15 bytes)
* @param {Uint8Array} chunkIndex The chunk index (8 bytes)
*/
OCB.getNonce = function (iv, chunkIndex) {
const nonce = iv.slice();
for (let i = 0; i < chunkIndex.length; i++) {
nonce[7 + i] ^= chunkIndex[i];
}
return nonce;
};
OCB.blockLength = blockLength;
OCB.ivLength = ivLength;
OCB.tagLength = tagLength;
exports.default = OCB;
},{"../util":153,"./cipher":87}],97:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _random = require('./random');
var _random2 = _interopRequireDefault(_random);
var _hash = require('./hash');
var _hash2 = _interopRequireDefault(_hash);
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/** @namespace */
const eme = {};
/** @namespace */
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @fileoverview Provides EME-PKCS1-v1_5 encoding and decoding and EMSA-PKCS1-v1_5 encoding function
* @see module:crypto/public_key/rsa
* @see module:crypto/public_key/elliptic/ecdh
* @see module:packet.PublicKeyEncryptedSessionKey
* @requires crypto/random
* @requires crypto/hash
* @requires util
* @module crypto/pkcs1
*/
const emsa = {};
/**
* ASN1 object identifiers for hashes
* @see {@link https://tools.ietf.org/html/rfc4880#section-5.2.2}
*/
const hash_headers = [];
hash_headers[1] = [0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10];
hash_headers[2] = [0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14];
hash_headers[3] = [0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B, 0x24, 0x03, 0x02, 0x01, 0x05, 0x00, 0x04, 0x14];
hash_headers[8] = [0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20];
hash_headers[9] = [0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30];
hash_headers[10] = [0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40];
hash_headers[11] = [0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1C];
/**
* Create padding with secure random data
* @private
* @param {Integer} length Length of the padding in bytes
* @returns {String} Padding as string
* @async
*/
async function getPkcs1Padding(length) {
let result = '';
while (result.length < length) {
const randomBytes = await _random2.default.getRandomBytes(length - result.length);
for (let i = 0; i < randomBytes.length; i++) {
if (randomBytes[i] !== 0) {
result += String.fromCharCode(randomBytes[i]);
}
}
}
return result;
}
/**
* Create a EME-PKCS1-v1_5 padded message
* @see {@link https://tools.ietf.org/html/rfc4880#section-13.1.1|RFC 4880 13.1.1}
* @param {String} M message to be encoded
* @param {Integer} k the length in octets of the key modulus
* @returns {Promise<String>} EME-PKCS1 padded message
* @async
*/
eme.encode = async function (M, k) {
const mLen = M.length;
// length checking
if (mLen > k - 11) {
throw new Error('Message too long');
}
// Generate an octet string PS of length k - mLen - 3 consisting of
// pseudo-randomly generated nonzero octets
const PS = await getPkcs1Padding(k - mLen - 3);
// Concatenate PS, the message M, and other padding to form an
// encoded message EM of length k octets as EM = 0x00 || 0x02 || PS || 0x00 || M.
return String.fromCharCode(0) + String.fromCharCode(2) + PS + String.fromCharCode(0) + M;
};
/**
* Decode a EME-PKCS1-v1_5 padded message
* @see {@link https://tools.ietf.org/html/rfc4880#section-13.1.2|RFC 4880 13.1.2}
* @param {String} EM encoded message, an octet string
* @returns {String} message, an octet string
*/
eme.decode = function (EM) {
// leading zeros truncated by bn.js
if (EM.charCodeAt(0) !== 0) {
EM = String.fromCharCode(0) + EM;
}
const firstOct = EM.charCodeAt(0);
const secondOct = EM.charCodeAt(1);
let i = 2;
while (EM.charCodeAt(i) !== 0 && i < EM.length) {
i++;
}
const psLen = i - 2;
const separator = EM.charCodeAt(i++);
if (firstOct === 0 && secondOct === 2 && psLen >= 8 && separator === 0) {
return EM.substr(i);
}
throw new Error('Decryption error');
};
/**
* Create a EMSA-PKCS1-v1_5 padded message
* @see {@link https://tools.ietf.org/html/rfc4880#section-13.1.3|RFC 4880 13.1.3}
* @param {Integer} algo Hash algorithm type used
* @param {Uint8Array} hashed message to be encoded
* @param {Integer} emLen intended length in octets of the encoded message
* @returns {String} encoded message
*/
emsa.encode = async function (algo, hashed, emLen) {
let i;
const H = _util2.default.Uint8Array_to_str(hashed);
if (H.length !== _hash2.default.getHashByteLength(algo)) {
throw new Error('Invalid hash length');
}
// produce an ASN.1 DER value for the hash function used.
// Let T be the full hash prefix
let T = '';
for (i = 0; i < hash_headers[algo].length; i++) {
T += String.fromCharCode(hash_headers[algo][i]);
}
// add hash value to prefix
T += H;
// and let tLen be the length in octets of T
const tLen = T.length;
if (emLen < tLen + 11) {
throw new Error('Intended encoded message length too short');
}
// an octet string PS consisting of emLen - tLen - 3 octets with hexadecimal value 0xFF
// The length of PS will be at least 8 octets
let PS = '';
for (i = 0; i < emLen - tLen - 3; i++) {
PS += String.fromCharCode(0xff);
}
// Concatenate PS, the hash prefix T, and other padding to form the
// encoded message EM as EM = 0x00 || 0x01 || PS || 0x00 || T.
const EM = String.fromCharCode(0x00) + String.fromCharCode(0x01) + PS + String.fromCharCode(0x00) + T;
return _util2.default.str_to_hex(EM);
};
exports.default = { eme, emsa };
},{"../util":153,"./hash":93,"./random":110}],98:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
// OpenPGP.js - An OpenPGP implementation in javascript
// Copyright (C) 2015-2016 Decentral
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @fileoverview Functions to add and remove PKCS5 padding
* @see module:packet.PublicKeyEncryptedSessionKey
* @module crypto/pkcs5
*/
/**
* Add pkcs5 padding to a text.
* @param {String} msg Text to add padding
* @returns {String} Text with padding added
*/
function encode(msg) {
const c = 8 - msg.length % 8;
const padding = String.fromCharCode(c).repeat(c);
return msg + padding;
}
/**
* Remove pkcs5 padding from a string.
* @param {String} msg Text to remove padding from
* @returns {String} Text with padding removed
*/
function decode(msg) {
const len = msg.length;
if (len > 0) {
const c = msg.charCodeAt(len - 1);
if (c >= 1 && c <= 8) {
const provided = msg.substr(len - c);
const computed = String.fromCharCode(c).repeat(c);
if (provided === computed) {
return msg.substr(0, len - c);
}
}
}
throw new Error('Invalid padding');
}
exports.default = { encode, decode };
},{}],99:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _bn = require('bn.js');
var _bn2 = _interopRequireDefault(_bn);
var _random = require('../random');
var _random2 = _interopRequireDefault(_random);
var _util = require('../../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
const one = new _bn2.default(1); // GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @fileoverview A Digital signature algorithm implementation
* @requires bn.js
* @requires crypto/random
* @requires util
* @module crypto/public_key/dsa
*/
const zero = new _bn2.default(0);
/*
TODO regarding the hash function, read:
https://tools.ietf.org/html/rfc4880#section-13.6
https://tools.ietf.org/html/rfc4880#section-14
*/
exports.default = {
/**
* DSA Sign function
* @param {Integer} hash_algo
* @param {Uint8Array} hashed
* @param {BN} g
* @param {BN} p
* @param {BN} q
* @param {BN} x
* @returns {{ r: BN, s: BN }}
* @async
*/
sign: async function sign(hash_algo, hashed, g, p, q, x) {
let k;
let r;
let s;
let t;
const redp = new _bn2.default.red(p);
const redq = new _bn2.default.red(q);
const gred = g.toRed(redp);
const xred = x.toRed(redq);
// If the output size of the chosen hash is larger than the number of
// bits of q, the hash result is truncated to fit by taking the number
// of leftmost bits equal to the number of bits of q. This (possibly
// truncated) hash function result is treated as a number and used
// directly in the DSA signature algorithm.
const h = new _bn2.default(_util2.default.getLeftNBits(hashed, q.bitLength())).toRed(redq);
// FIPS-186-4, section 4.6:
// The values of r and s shall be checked to determine if r = 0 or s = 0.
// If either r = 0 or s = 0, a new value of k shall be generated, and the
// signature shall be recalculated. It is extremely unlikely that r = 0
// or s = 0 if signatures are generated properly.
while (true) {
// See Appendix B here: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
k = await _random2.default.getRandomBN(one, q); // returns in [1, q-1]
r = gred.redPow(k).fromRed().toRed(redq); // (g**k mod p) mod q
if (zero.cmp(r) === 0) {
continue;
}
t = h.redAdd(xred.redMul(r)); // H(m) + x*r mod q
s = k.toRed(redq).redInvm().redMul(t); // k**-1 * (H(m) + x*r) mod q
if (zero.cmp(s) === 0) {
continue;
}
break;
}
return { r: r.toArrayLike(Uint8Array),
s: s.toArrayLike(Uint8Array) };
},
/**
* DSA Verify function
* @param {Integer} hash_algo
* @param {BN} r
* @param {BN} s
* @param {Uint8Array} hashed
* @param {BN} g
* @param {BN} p
* @param {BN} q
* @param {BN} y
* @returns BN
* @async
*/
verify: async function verify(hash_algo, r, s, hashed, g, p, q, y) {
if (zero.ucmp(r) >= 0 || r.ucmp(q) >= 0 || zero.ucmp(s) >= 0 || s.ucmp(q) >= 0) {
_util2.default.print_debug("invalid DSA Signature");
return null;
}
const redp = new _bn2.default.red(p);
const redq = new _bn2.default.red(q);
const h = new _bn2.default(_util2.default.getLeftNBits(hashed, q.bitLength()));
const w = s.toRed(redq).redInvm(); // s**-1 mod q
if (zero.cmp(w) === 0) {
_util2.default.print_debug("invalid DSA Signature");
return null;
}
const u1 = h.toRed(redq).redMul(w); // H(m) * w mod q
const u2 = r.toRed(redq).redMul(w); // r * w mod q
const t1 = g.toRed(redp).redPow(u1.fromRed()); // g**u1 mod p
const t2 = y.toRed(redp).redPow(u2.fromRed()); // y**u2 mod p
const v = t1.redMul(t2).fromRed().mod(q); // (g**u1 * y**u2 mod p) mod q
return v.cmp(r) === 0;
}
};
},{"../../util":153,"../random":110,"bn.js":17}],100:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _bn = require('bn.js');
var _bn2 = _interopRequireDefault(_bn);
var _random = require('../random');
var _random2 = _interopRequireDefault(_random);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @fileoverview ElGamal implementation
* @requires bn.js
* @requires crypto/random
* @module crypto/public_key/elgamal
*/
const zero = new _bn2.default(0);
exports.default = {
/**
* ElGamal Encryption function
* @param {BN} m
* @param {BN} p
* @param {BN} g
* @param {BN} y
* @returns {{ c1: BN, c2: BN }}
* @async
*/
encrypt: async function encrypt(m, p, g, y) {
const redp = new _bn2.default.red(p);
const mred = m.toRed(redp);
const gred = g.toRed(redp);
const yred = y.toRed(redp);
// See Section 11.5 here: https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_4.pdf
const k = await _random2.default.getRandomBN(zero, p); // returns in [0, p-1]
return {
c1: gred.redPow(k).fromRed(),
c2: yred.redPow(k).redMul(mred).fromRed()
};
},
/**
* ElGamal Encryption function
* @param {BN} c1
* @param {BN} c2
* @param {BN} p
* @param {BN} x
* @returns BN
* @async
*/
decrypt: async function decrypt(c1, c2, p, x) {
const redp = new _bn2.default.red(p);
const c1red = c1.toRed(redp);
const c2red = c2.toRed(redp);
return c1red.redPow(x).redInvm().redMul(c2red).fromRed();
}
};
},{"../random":110,"bn.js":17}],101:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.getPreferredHashAlgo = exports.generate = exports.nodeCurves = exports.webCurves = exports.curves = undefined;
var _bn = require('bn.js');
var _bn2 = _interopRequireDefault(_bn);
var _elliptic = require('elliptic');
var _key = require('./key');
var _key2 = _interopRequireDefault(_key);
var _random = require('../../random');
var _random2 = _interopRequireDefault(_random);
var _enums = require('../../../enums');
var _enums2 = _interopRequireDefault(_enums);
var _util = require('../../../util');
var _util2 = _interopRequireDefault(_util);
var _oid = require('../../../type/oid');
var _oid2 = _interopRequireDefault(_oid);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
const webCrypto = _util2.default.getWebCrypto(); // OpenPGP.js - An OpenPGP implementation in javascript
// Copyright (C) 2015-2016 Decentral
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @fileoverview Wrapper of an instance of an Elliptic Curve
* @requires bn.js
* @requires elliptic
* @requires crypto/public_key/elliptic/key
* @requires crypto/random
* @requires enums
* @requires util
* @requires type/oid
* @module crypto/public_key/elliptic/curve
*/
const nodeCrypto = _util2.default.getNodeCrypto();
const webCurves = {
'p256': 'P-256',
'p384': 'P-384',
'p521': 'P-521'
};
const knownCurves = nodeCrypto ? nodeCrypto.getCurves() : [];
const nodeCurves = nodeCrypto ? {
secp256k1: knownCurves.includes('secp256k1') ? 'secp256k1' : undefined,
p256: knownCurves.includes('prime256v1') ? 'prime256v1' : undefined,
p384: knownCurves.includes('secp384r1') ? 'secp384r1' : undefined,
p521: knownCurves.includes('secp521r1') ? 'secp521r1' : undefined,
ed25519: knownCurves.includes('ED25519') ? 'ED25519' : undefined,
curve25519: knownCurves.includes('X25519') ? 'X25519' : undefined,
brainpoolP256r1: knownCurves.includes('brainpoolP256r1') ? 'brainpoolP256r1' : undefined,
brainpoolP384r1: knownCurves.includes('brainpoolP384r1') ? 'brainpoolP384r1' : undefined,
brainpoolP512r1: knownCurves.includes('brainpoolP512r1') ? 'brainpoolP512r1' : undefined
} : {};
const curves = {
p256: {
oid: [0x06, 0x08, 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x03, 0x01, 0x07],
keyType: _enums2.default.publicKey.ecdsa,
hash: _enums2.default.hash.sha256,
cipher: _enums2.default.symmetric.aes128,
node: nodeCurves.p256,
web: webCurves.p256,
payloadSize: 32
},
p384: {
oid: [0x06, 0x05, 0x2B, 0x81, 0x04, 0x00, 0x22],
keyType: _enums2.default.publicKey.ecdsa,
hash: _enums2.default.hash.sha384,
cipher: _enums2.default.symmetric.aes192,
node: nodeCurves.p384,
web: webCurves.p384,
payloadSize: 48
},
p521: {
oid: [0x06, 0x05, 0x2B, 0x81, 0x04, 0x00, 0x23],
keyType: _enums2.default.publicKey.ecdsa,
hash: _enums2.default.hash.sha512,
cipher: _enums2.default.symmetric.aes256,
node: nodeCurves.p521,
web: webCurves.p521,
payloadSize: 66
},
secp256k1: {
oid: [0x06, 0x05, 0x2B, 0x81, 0x04, 0x00, 0x0A],
keyType: _enums2.default.publicKey.ecdsa,
hash: _enums2.default.hash.sha256,
cipher: _enums2.default.symmetric.aes128,
node: nodeCurves.secp256k1
},
ed25519: {
oid: [0x06, 0x09, 0x2B, 0x06, 0x01, 0x04, 0x01, 0xDA, 0x47, 0x0F, 0x01],
keyType: _enums2.default.publicKey.eddsa,
hash: _enums2.default.hash.sha512,
node: false // nodeCurves.ed25519 TODO
},
curve25519: {
oid: [0x06, 0x0A, 0x2B, 0x06, 0x01, 0x04, 0x01, 0x97, 0x55, 0x01, 0x05, 0x01],
keyType: _enums2.default.publicKey.ecdsa,
hash: _enums2.default.hash.sha256,
cipher: _enums2.default.symmetric.aes128,
node: false // nodeCurves.curve25519 TODO
},
brainpoolP256r1: {
oid: [0x06, 0x09, 0x2B, 0x24, 0x03, 0x03, 0x02, 0x08, 0x01, 0x01, 0x07],
keyType: _enums2.default.publicKey.ecdsa,
hash: _enums2.default.hash.sha256,
cipher: _enums2.default.symmetric.aes128,
node: nodeCurves.brainpoolP256r1
},
brainpoolP384r1: {
oid: [0x06, 0x09, 0x2B, 0x24, 0x03, 0x03, 0x02, 0x08, 0x01, 0x01, 0x0B],
keyType: _enums2.default.publicKey.ecdsa,
hash: _enums2.default.hash.sha384,
cipher: _enums2.default.symmetric.aes192,
node: nodeCurves.brainpoolP384r1
},
brainpoolP512r1: {
oid: [0x06, 0x09, 0x2B, 0x24, 0x03, 0x03, 0x02, 0x08, 0x01, 0x01, 0x0D],
keyType: _enums2.default.publicKey.ecdsa,
hash: _enums2.default.hash.sha512,
cipher: _enums2.default.symmetric.aes256,
node: nodeCurves.brainpoolP512r1
}
};
/**
* @constructor
*/
function Curve(oid_or_name, params) {
try {
if (_util2.default.isArray(oid_or_name) || _util2.default.isUint8Array(oid_or_name)) {
// by oid byte array
oid_or_name = new _oid2.default(oid_or_name);
}
if (oid_or_name instanceof _oid2.default) {
// by curve OID
oid_or_name = oid_or_name.getName();
}
// by curve name or oid string
this.name = _enums2.default.write(_enums2.default.curve, oid_or_name);
} catch (err) {
throw new Error('Not valid curve');
}
params = params || curves[this.name];
this.keyType = params.keyType;
switch (this.keyType) {
case _enums2.default.publicKey.ecdsa:
this.curve = new _elliptic.ec(this.name);
break;
case _enums2.default.publicKey.eddsa:
this.curve = new _elliptic.eddsa(this.name);
break;
default:
throw new Error('Unknown elliptic key type;');
}
this.oid = params.oid;
this.hash = params.hash;
this.cipher = params.cipher;
this.node = params.node && curves[this.name];
this.web = params.web && curves[this.name];
this.payloadSize = params.payloadSize;
}
Curve.prototype.keyFromPrivate = function (priv) {
// Not for ed25519
return new _key2.default(this, { priv: priv });
};
Curve.prototype.keyFromPublic = function (pub) {
const keyPair = new _key2.default(this, { pub: pub });
if (this.keyType === _enums2.default.publicKey.ecdsa && keyPair.keyPair.validate().result !== true) {
throw new Error('Invalid elliptic public key');
}
return keyPair;
};
Curve.prototype.genKeyPair = async function () {
let keyPair;
if (this.web && _util2.default.getWebCrypto()) {
// If browser doesn't support a curve, we'll catch it
try {
keyPair = await webGenKeyPair(this.name);
} catch (err) {
_util2.default.print_debug("Browser did not support signing: " + err.message);
}
} else if (this.node && _util2.default.getNodeCrypto()) {
keyPair = await nodeGenKeyPair(this.name);
}
if (!keyPair || !keyPair.priv) {
// elliptic fallback
const r = await this.curve.genKeyPair({
entropy: _util2.default.Uint8Array_to_str((await _random2.default.getRandomBytes(32)))
});
const compact = this.curve.curve.type === 'edwards' || this.curve.curve.type === 'mont';
if (this.keyType === _enums2.default.publicKey.eddsa) {
keyPair = { secret: r.getSecret() };
} else {
keyPair = { pub: r.getPublic('array', compact), priv: r.getPrivate().toArray() };
}
}
return new _key2.default(this, keyPair);
};
async function generate(curve) {
curve = new Curve(curve);
const keyPair = await curve.genKeyPair();
return {
oid: curve.oid,
Q: new _bn2.default(keyPair.getPublic()),
d: new _bn2.default(keyPair.getPrivate()),
hash: curve.hash,
cipher: curve.cipher
};
}
function getPreferredHashAlgo(oid) {
return curves[_enums2.default.write(_enums2.default.curve, oid.toHex())].hash;
}
exports.default = Curve;
exports.curves = curves;
exports.webCurves = webCurves;
exports.nodeCurves = nodeCurves;
exports.generate = generate;
exports.getPreferredHashAlgo = getPreferredHashAlgo;
//////////////////////////
// //
// Helper functions //
// //
//////////////////////////
async function webGenKeyPair(name) {
// Note: keys generated with ECDSA and ECDH are structurally equivalent
const webCryptoKey = await webCrypto.generateKey({ name: "ECDSA", namedCurve: webCurves[name] }, true, ["sign", "verify"]);
const privateKey = await webCrypto.exportKey("jwk", webCryptoKey.privateKey);
const publicKey = await webCrypto.exportKey("jwk", webCryptoKey.publicKey);
return {
pub: {
x: _util2.default.b64_to_Uint8Array(publicKey.x, true),
y: _util2.default.b64_to_Uint8Array(publicKey.y, true)
},
priv: _util2.default.b64_to_Uint8Array(privateKey.d, true)
};
}
async function nodeGenKeyPair(name) {
// Note: ECDSA and ECDH key generation is structurally equivalent
const ecdh = nodeCrypto.createECDH(nodeCurves[name]);
await ecdh.generateKeys();
return {
pub: ecdh.getPublicKey().toJSON().data,
priv: ecdh.getPrivateKey().toJSON().data
};
}
},{"../../../enums":114,"../../../type/oid":151,"../../../util":153,"../../random":110,"./key":106,"bn.js":17,"elliptic":19}],102:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _bn = require('bn.js');
var _bn2 = _interopRequireDefault(_bn);
var _naclFastLight = require('tweetnacl/nacl-fast-light.js');
var _naclFastLight2 = _interopRequireDefault(_naclFastLight);
var _curves = require('./curves');
var _curves2 = _interopRequireDefault(_curves);
var _aes_kw = require('../../aes_kw');
var _aes_kw2 = _interopRequireDefault(_aes_kw);
var _cipher = require('../../cipher');
var _cipher2 = _interopRequireDefault(_cipher);
var _hash = require('../../hash');
var _hash2 = _interopRequireDefault(_hash);
var _kdf_params = require('../../../type/kdf_params');
var _kdf_params2 = _interopRequireDefault(_kdf_params);
var _enums = require('../../../enums');
var _enums2 = _interopRequireDefault(_enums);
var _util = require('../../../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
// Build Param for ECDH algorithm (RFC 6637)
function buildEcdhParam(public_algo, oid, cipher_algo, hash_algo, fingerprint) {
const kdf_params = new _kdf_params2.default([hash_algo, cipher_algo]);
return _util2.default.concatUint8Array([oid.write(), new Uint8Array([public_algo]), kdf_params.write(), _util2.default.str_to_Uint8Array("Anonymous Sender "), fingerprint.subarray(0, 20)]);
}
// Key Derivation Function (RFC 6637)
// OpenPGP.js - An OpenPGP implementation in javascript
// Copyright (C) 2015-2016 Decentral
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @fileoverview Key encryption and decryption for RFC 6637 ECDH
* @requires bn.js
* @requires tweetnacl
* @requires crypto/public_key/elliptic/curve
* @requires crypto/aes_kw
* @requires crypto/cipher
* @requires crypto/hash
* @requires type/kdf_params
* @requires enums
* @requires util
* @module crypto/public_key/elliptic/ecdh
*/
async function kdf(hash_algo, X, length, param, stripLeading = false, stripTrailing = false) {
// Note: X is little endian for Curve25519, big-endian for all others.
// This is not ideal, but the RFC's are unclear
// https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-02#appendix-B
let i;
if (stripLeading) {
// Work around old go crypto bug
for (i = 0; i < X.length && X[i] === 0; i++);
X = X.subarray(i);
}
if (stripTrailing) {
// Work around old OpenPGP.js bug
for (i = X.length - 1; i >= 0 && X[i] === 0; i--);
X = X.subarray(0, i + 1);
}
const digest = await _hash2.default.digest(hash_algo, _util2.default.concatUint8Array([new Uint8Array([0, 0, 0, 1]), X, param]));
return digest.subarray(0, length);
}
/**
* Generate ECDHE ephemeral key and secret from public key
*
* @param {Curve} curve Elliptic curve object
* @param {Uint8Array} Q Recipient public key
* @returns {Promise<{V: Uint8Array, S: BN}>} Returns public part of ephemeral key and generated ephemeral secret
* @async
*/
async function genPublicEphemeralKey(curve, Q) {
if (curve.name === 'curve25519') {
var _nacl$box$keyPair = _naclFastLight2.default.box.keyPair();
const d = _nacl$box$keyPair.secretKey;
var _ref = await genPrivateEphemeralKey(curve, Q, d);
const secretKey = _ref.secretKey,
sharedKey = _ref.sharedKey;
var _nacl$box$keyPair$fro = _naclFastLight2.default.box.keyPair.fromSecretKey(secretKey);
let publicKey = _nacl$box$keyPair$fro.publicKey;
publicKey = _util2.default.concatUint8Array([new Uint8Array([0x40]), publicKey]);
return { publicKey, sharedKey }; // Note: sharedKey is little-endian here, unlike below
}
const v = await curve.genKeyPair();
Q = curve.keyFromPublic(Q);
const publicKey = new Uint8Array(v.getPublic());
const S = v.derive(Q);
const len = curve.curve.curve.p.byteLength();
const sharedKey = S.toArrayLike(Uint8Array, 'be', len);
return { publicKey, sharedKey };
}
/**
* Encrypt and wrap a session key
*
* @param {module:type/oid} oid Elliptic curve object identifier
* @param {module:enums.symmetric} cipher_algo Symmetric cipher to use
* @param {module:enums.hash} hash_algo Hash algorithm to use
* @param {module:type/mpi} m Value derived from session key (RFC 6637)
* @param {Uint8Array} Q Recipient public key
* @param {String} fingerprint Recipient fingerprint
* @returns {Promise<{V: BN, C: BN}>} Returns public part of ephemeral key and encoded session key
* @async
*/
async function encrypt(oid, cipher_algo, hash_algo, m, Q, fingerprint) {
const curve = new _curves2.default(oid);
var _ref2 = await genPublicEphemeralKey(curve, Q);
const publicKey = _ref2.publicKey,
sharedKey = _ref2.sharedKey;
const param = buildEcdhParam(_enums2.default.publicKey.ecdh, oid, cipher_algo, hash_algo, fingerprint);
cipher_algo = _enums2.default.read(_enums2.default.symmetric, cipher_algo);
const Z = await kdf(hash_algo, sharedKey, _cipher2.default[cipher_algo].keySize, param);
const wrappedKey = _aes_kw2.default.wrap(Z, m.toString());
return { publicKey, wrappedKey };
}
/**
* Generate ECDHE secret from private key and public part of ephemeral key
*
* @param {Curve} curve Elliptic curve object
* @param {Uint8Array} V Public part of ephemeral key
* @param {Uint8Array} d Recipient private key
* @returns {Promise<BN>} Generated ephemeral secret
* @async
*/
async function genPrivateEphemeralKey(curve, V, d) {
if (curve.name === 'curve25519') {
const one = new _bn2.default(1);
const mask = one.ushln(255 - 3).sub(one).ushln(3);
let secretKey = new _bn2.default(d);
secretKey = secretKey.or(one.ushln(255 - 1));
secretKey = secretKey.and(mask);
secretKey = secretKey.toArrayLike(Uint8Array, 'le', 32);
const sharedKey = _naclFastLight2.default.scalarMult(secretKey, V.subarray(1));
return { secretKey, sharedKey }; // Note: sharedKey is little-endian here, unlike below
}
V = curve.keyFromPublic(V);
d = curve.keyFromPrivate(d);
const secretKey = new Uint8Array(d.getPrivate());
const S = d.derive(V);
const len = curve.curve.curve.p.byteLength();
const sharedKey = S.toArrayLike(Uint8Array, 'be', len);
return { secretKey, sharedKey };
}
/**
* Decrypt and unwrap the value derived from session key
*
* @param {module:type/oid} oid Elliptic curve object identifier
* @param {module:enums.symmetric} cipher_algo Symmetric cipher to use
* @param {module:enums.hash} hash_algo Hash algorithm to use
* @param {Uint8Array} V Public part of ephemeral key
* @param {Uint8Array} C Encrypted and wrapped value derived from session key
* @param {Uint8Array} d Recipient private key
* @param {String} fingerprint Recipient fingerprint
* @returns {Promise<BN>} Value derived from session
* @async
*/
async function decrypt(oid, cipher_algo, hash_algo, V, C, d, fingerprint) {
const curve = new _curves2.default(oid);
var _ref3 = await genPrivateEphemeralKey(curve, V, d);
const sharedKey = _ref3.sharedKey;
const param = buildEcdhParam(_enums2.default.publicKey.ecdh, oid, cipher_algo, hash_algo, fingerprint);
cipher_algo = _enums2.default.read(_enums2.default.symmetric, cipher_algo);
let err;
for (let i = 0; i < 3; i++) {
try {
// Work around old go crypto bug and old OpenPGP.js bug, respectively.
const Z = await kdf(hash_algo, sharedKey, _cipher2.default[cipher_algo].keySize, param, i === 1, i === 2);
return new _bn2.default(_aes_kw2.default.unwrap(Z, C));
} catch (e) {
err = e;
}
}
throw err;
}
exports.default = { encrypt, decrypt, genPublicEphemeralKey, genPrivateEphemeralKey, buildEcdhParam, kdf };
},{"../../../enums":114,"../../../type/kdf_params":148,"../../../util":153,"../../aes_kw":81,"../../cipher":87,"../../hash":93,"./curves":101,"bn.js":17,"tweetnacl/nacl-fast-light.js":73}],103:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _curves = require('./curves');
var _curves2 = _interopRequireDefault(_curves);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* Sign a message using the provided key
* @param {module:type/oid} oid Elliptic curve object identifier
* @param {module:enums.hash} hash_algo Hash algorithm used to sign
* @param {Uint8Array} m Message to sign
* @param {Uint8Array} d Private key used to sign the message
* @param {Uint8Array} hashed The hashed message
* @returns {{r: Uint8Array,
* s: Uint8Array}} Signature of the message
* @async
*/
async function sign(oid, hash_algo, m, d, hashed) {
const curve = new _curves2.default(oid);
const key = curve.keyFromPrivate(d);
const signature = await key.sign(m, hash_algo, hashed);
return { r: signature.r.toArrayLike(Uint8Array),
s: signature.s.toArrayLike(Uint8Array) };
}
/**
* Verifies if a signature is valid for a message
* @param {module:type/oid} oid Elliptic curve object identifier
* @param {module:enums.hash} hash_algo Hash algorithm used in the signature
* @param {{r: Uint8Array,
s: Uint8Array}} signature Signature to verify
* @param {Uint8Array} m Message to verify
* @param {Uint8Array} Q Public key used to verify the message
* @param {Uint8Array} hashed The hashed message
* @returns {Boolean}
* @async
*/
// OpenPGP.js - An OpenPGP implementation in javascript
// Copyright (C) 2015-2016 Decentral
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @fileoverview Implementation of ECDSA following RFC6637 for Openpgpjs
* @requires crypto/public_key/elliptic/curve
* @module crypto/public_key/elliptic/ecdsa
*/
async function verify(oid, hash_algo, signature, m, Q, hashed) {
const curve = new _curves2.default(oid);
const key = curve.keyFromPublic(Q);
return key.verify(m, signature, hash_algo, hashed);
}
exports.default = { sign, verify };
},{"./curves":101}],104:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _ = require('hash.js/lib/hash/sha/512');
var _2 = _interopRequireDefault(_);
var _naclFastLight = require('tweetnacl/nacl-fast-light.js');
var _naclFastLight2 = _interopRequireDefault(_naclFastLight);
var _util = require('../../../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
_naclFastLight2.default.hash = bytes => new Uint8Array((0, _2.default)().update(bytes).digest());
/**
* Sign a message using the provided key
* @param {module:type/oid} oid Elliptic curve object identifier
* @param {module:enums.hash} hash_algo Hash algorithm used to sign
* @param {Uint8Array} m Message to sign
* @param {Uint8Array} d Private key used to sign
* @param {Uint8Array} hashed The hashed message
* @returns {{R: Uint8Array,
* S: Uint8Array}} Signature of the message
* @async
*/
// OpenPGP.js - An OpenPGP implementation in javascript
// Copyright (C) 2018 Proton Technologies AG
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @fileoverview Implementation of EdDSA following RFC4880bis-03 for OpenPGP
* @requires hash.js
* @requires tweetnacl
* @requires crypto/public_key/elliptic/curve
* @requires util
* @module crypto/public_key/elliptic/eddsa
*/
async function sign(oid, hash_algo, m, d, hashed) {
var _nacl$sign$keyPair$fr = _naclFastLight2.default.sign.keyPair.fromSeed(d);
const secretKey = _nacl$sign$keyPair$fr.secretKey;
const signature = _naclFastLight2.default.sign.detached(hashed, secretKey);
// EdDSA signature params are returned in little-endian format
return {
R: signature.subarray(0, 32),
S: signature.subarray(32)
};
}
/**
* Verifies if a signature is valid for a message
* @param {module:type/oid} oid Elliptic curve object identifier
* @param {module:enums.hash} hash_algo Hash algorithm used in the signature
* @param {{R: Uint8Array,
S: Uint8Array}} signature Signature to verify the message
* @param {Uint8Array} m Message to verify
* @param {Uint8Array} publicKey Public key used to verify the message
* @param {Uint8Array} hashed The hashed message
* @returns {Boolean}
* @async
*/
async function verify(oid, hash_algo, { R, S }, m, publicKey, hashed) {
const signature = _util2.default.concatUint8Array([R, S]);
return _naclFastLight2.default.sign.detached.verify(hashed, signature, publicKey.subarray(1));
}
exports.default = { sign, verify };
},{"../../../util":153,"hash.js/lib/hash/sha/512":44,"tweetnacl/nacl-fast-light.js":73}],105:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _curves = require('./curves');
var _curves2 = _interopRequireDefault(_curves);
var _ecdsa = require('./ecdsa');
var _ecdsa2 = _interopRequireDefault(_ecdsa);
var _eddsa = require('./eddsa');
var _eddsa2 = _interopRequireDefault(_eddsa);
var _ecdh = require('./ecdh');
var _ecdh2 = _interopRequireDefault(_ecdh);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
// OpenPGP.js - An OpenPGP implementation in javascript
// Copyright (C) 2015-2016 Decentral
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @fileoverview Functions to access Elliptic Curve Cryptography
* @see module:crypto/public_key/elliptic/curve
* @see module:crypto/public_key/elliptic/ecdh
* @see module:crypto/public_key/elliptic/ecdsa
* @see module:crypto/public_key/elliptic/eddsa
* @module crypto/public_key/elliptic
*/
exports.default = {
Curve: _curves2.default, ecdh: _ecdh2.default, ecdsa: _ecdsa2.default, eddsa: _eddsa2.default, generate: _curves.generate, getPreferredHashAlgo: _curves.getPreferredHashAlgo
};
},{"./curves":101,"./ecdh":102,"./ecdsa":103,"./eddsa":104}],106:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _bn = require('bn.js');
var _bn2 = _interopRequireDefault(_bn);
var _webStreamTools = require('web-stream-tools');
var _webStreamTools2 = _interopRequireDefault(_webStreamTools);
var _curves = require('./curves');
var _util = require('../../../util');
var _util2 = _interopRequireDefault(_util);
var _enums = require('../../../enums');
var _enums2 = _interopRequireDefault(_enums);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
const webCrypto = _util2.default.getWebCrypto(); // OpenPGP.js - An OpenPGP implementation in javascript
// Copyright (C) 2015-2016 Decentral
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @fileoverview Wrapper for a KeyPair of an Elliptic Curve
* @requires bn.js
* @requires web-stream-tools
* @requires crypto/public_key/elliptic/curves
* @requires util
* @requires enums
* @requires asn1.js
* @module crypto/public_key/elliptic/key
*/
const nodeCrypto = _util2.default.getNodeCrypto();
/**
* @constructor
*/
function KeyPair(curve, options) {
this.curve = curve;
this.keyType = curve.curve.type === 'edwards' ? _enums2.default.publicKey.eddsa : _enums2.default.publicKey.ecdsa;
this.keyPair = this.curve.curve.keyPair(options);
}
KeyPair.prototype.sign = async function (message, hash_algo, hashed) {
if (message && !message.locked) {
message = await _webStreamTools2.default.readToEnd(message);
if (this.curve.web && _util2.default.getWebCrypto()) {
// If browser doesn't support a curve, we'll catch it
try {
// need to await to make sure browser succeeds
const signature = await webSign(this.curve, hash_algo, message, this.keyPair);
return signature;
} catch (err) {
_util2.default.print_debug("Browser did not support signing: " + err.message);
}
} else if (this.curve.node && _util2.default.getNodeCrypto()) {
return nodeSign(this.curve, hash_algo, message, this.keyPair);
}
}
const digest = typeof hash_algo === 'undefined' ? message : hashed;
return this.keyPair.sign(digest);
};
KeyPair.prototype.verify = async function (message, signature, hash_algo, hashed) {
if (message && !message.locked) {
message = await _webStreamTools2.default.readToEnd(message);
if (this.curve.web && _util2.default.getWebCrypto()) {
// If browser doesn't support a curve, we'll catch it
try {
// need to await to make sure browser succeeds
const result = await webVerify(this.curve, hash_algo, signature, message, this.keyPair.getPublic());
return result;
} catch (err) {
_util2.default.print_debug("Browser did not support signing: " + err.message);
}
} else if (this.curve.node && _util2.default.getNodeCrypto()) {
return nodeVerify(this.curve, hash_algo, signature, message, this.keyPair.getPublic());
}
}
const digest = typeof hash_algo === 'undefined' ? message : hashed;
return this.keyPair.verify(digest, signature);
};
KeyPair.prototype.derive = function (pub) {
if (this.keyType === _enums2.default.publicKey.eddsa) {
throw new Error('Key can only be used for EdDSA');
}
return this.keyPair.derive(pub.keyPair.getPublic());
};
KeyPair.prototype.getPublic = function () {
const compact = this.curve.curve.curve.type === 'edwards' || this.curve.curve.curve.type === 'mont';
return this.keyPair.getPublic('array', compact);
};
KeyPair.prototype.getPrivate = function () {
if (this.curve.keyType === _enums2.default.publicKey.eddsa) {
return this.keyPair.getSecret();
}
return this.keyPair.getPrivate().toArray();
};
exports.default = KeyPair;
//////////////////////////
// //
// Helper functions //
// //
//////////////////////////
async function webSign(curve, hash_algo, message, keyPair) {
const len = curve.payloadSize;
const key = await webCrypto.importKey("jwk", {
"kty": "EC",
"crv": _curves.webCurves[curve.name],
"x": _util2.default.Uint8Array_to_b64(new Uint8Array(keyPair.getPublic().getX().toArray('be', len)), true),
"y": _util2.default.Uint8Array_to_b64(new Uint8Array(keyPair.getPublic().getY().toArray('be', len)), true),
"d": _util2.default.Uint8Array_to_b64(new Uint8Array(keyPair.getPrivate().toArray('be', len)), true),
"use": "sig",
"kid": "ECDSA Private Key"
}, {
"name": "ECDSA",
"namedCurve": _curves.webCurves[curve.name],
"hash": { name: _enums2.default.read(_enums2.default.webHash, curve.hash) }
}, false, ["sign"]);
const signature = new Uint8Array((await webCrypto.sign({
"name": 'ECDSA',
"namedCurve": _curves.webCurves[curve.name],
"hash": { name: _enums2.default.read(_enums2.default.webHash, hash_algo) }
}, key, message)));
return {
r: new _bn2.default(signature.slice(0, len)),
s: new _bn2.default(signature.slice(len, len << 1))
};
}
async function webVerify(curve, hash_algo, { r, s }, message, publicKey) {
const len = curve.payloadSize;
const key = await webCrypto.importKey("jwk", {
"kty": "EC",
"crv": _curves.webCurves[curve.name],
"x": _util2.default.Uint8Array_to_b64(new Uint8Array(publicKey.getX().toArray('be', len)), true),
"y": _util2.default.Uint8Array_to_b64(new Uint8Array(publicKey.getY().toArray('be', len)), true),
"use": "sig",
"kid": "ECDSA Public Key"
}, {
"name": "ECDSA",
"namedCurve": _curves.webCurves[curve.name],
"hash": { name: _enums2.default.read(_enums2.default.webHash, curve.hash) }
}, false, ["verify"]);
const signature = _util2.default.concatUint8Array([new Uint8Array(len - r.length), r, new Uint8Array(len - s.length), s]).buffer;
return webCrypto.verify({
"name": 'ECDSA',
"namedCurve": _curves.webCurves[curve.name],
"hash": { name: _enums2.default.read(_enums2.default.webHash, hash_algo) }
}, key, signature, message);
}
async function nodeSign(curve, hash_algo, message, keyPair) {
const sign = nodeCrypto.createSign(_enums2.default.read(_enums2.default.hash, hash_algo));
sign.write(message);
sign.end();
const key = ECPrivateKey.encode({
version: 1,
parameters: curve.oid,
privateKey: keyPair.getPrivate().toArray(),
publicKey: { unused: 0, data: keyPair.getPublic().encode() }
}, 'pem', {
label: 'EC PRIVATE KEY'
});
return ECDSASignature.decode(sign.sign(key), 'der');
}
async function nodeVerify(curve, hash_algo, { r, s }, message, publicKey) {
const verify = nodeCrypto.createVerify(_enums2.default.read(_enums2.default.hash, hash_algo));
verify.write(message);
verify.end();
const key = SubjectPublicKeyInfo.encode({
algorithm: {
algorithm: [1, 2, 840, 10045, 2, 1],
parameters: curve.oid
},
subjectPublicKey: { unused: 0, data: publicKey.encode() }
}, 'pem', {
label: 'PUBLIC KEY'
});
const signature = ECDSASignature.encode({
r: new _bn2.default(r), s: new _bn2.default(s)
}, 'der');
try {
return verify.verify(key, signature);
} catch (err) {
return false;
}
}
// Originally written by Owen Smith https://github.com/omsmith
// Adapted on Feb 2018 from https://github.com/Brightspace/node-jwk-to-pem/
/* eslint-disable no-invalid-this */
const asn1 = nodeCrypto ? require('asn1.js') : undefined;
const ECDSASignature = nodeCrypto ? asn1.define('ECDSASignature', function () {
this.seq().obj(this.key('r').int(), this.key('s').int());
}) : undefined;
const ECPrivateKey = nodeCrypto ? asn1.define('ECPrivateKey', function () {
this.seq().obj(this.key('version').int(), this.key('privateKey').octstr(), this.key('parameters').explicit(0).optional().any(), this.key('publicKey').explicit(1).optional().bitstr());
}) : undefined;
const AlgorithmIdentifier = nodeCrypto ? asn1.define('AlgorithmIdentifier', function () {
this.seq().obj(this.key('algorithm').objid(), this.key('parameters').optional().any());
}) : undefined;
const SubjectPublicKeyInfo = nodeCrypto ? asn1.define('SubjectPublicKeyInfo', function () {
this.seq().obj(this.key('algorithm').use(AlgorithmIdentifier), this.key('subjectPublicKey').bitstr());
}) : undefined;
},{"../../../enums":114,"../../../util":153,"./curves":101,"asn1.js":"asn1.js","bn.js":17,"web-stream-tools":76}],107:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _naclFastLight = require('tweetnacl/nacl-fast-light.js');
var _naclFastLight2 = _interopRequireDefault(_naclFastLight);
var _rsa = require('./rsa');
var _rsa2 = _interopRequireDefault(_rsa);
var _elgamal = require('./elgamal');
var _elgamal2 = _interopRequireDefault(_elgamal);
var _elliptic = require('./elliptic');
var _elliptic2 = _interopRequireDefault(_elliptic);
var _dsa = require('./dsa');
var _dsa2 = _interopRequireDefault(_dsa);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
exports.default = {
/** @see module:crypto/public_key/rsa */
rsa: _rsa2.default,
/** @see module:crypto/public_key/elgamal */
elgamal: _elgamal2.default,
/** @see module:crypto/public_key/elliptic */
elliptic: _elliptic2.default,
/** @see module:crypto/public_key/dsa */
dsa: _dsa2.default,
/** @see tweetnacl */
nacl: _naclFastLight2.default
}; /**
* @fileoverview Asymmetric cryptography functions
* @requires tweetnacl
* @requires crypto/public_key/dsa
* @requires crypto/public_key/elgamal
* @requires crypto/public_key/elliptic
* @requires crypto/public_key/rsa
* @module crypto/public_key
*/
},{"./dsa":99,"./elgamal":100,"./elliptic":105,"./rsa":109,"tweetnacl/nacl-fast-light.js":73}],108:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _bn = require('bn.js');
var _bn2 = _interopRequireDefault(_bn);
var _random = require('../random');
var _random2 = _interopRequireDefault(_random);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
// OpenPGP.js - An OpenPGP implementation in javascript
// Copyright (C) 2018 Proton Technologies AG
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @fileoverview Algorithms for probabilistic random prime generation
* @requires bn.js
* @requires crypto/random
* @module crypto/public_key/prime
*/
exports.default = {
randomProbablePrime, isProbablePrime, fermat, millerRabin, divisionTest
};
/**
* Probabilistic random number generator
* @param {Integer} bits Bit length of the prime
* @param {BN} e Optional RSA exponent to check against the prime
* @param {Integer} k Optional number of iterations of Miller-Rabin test
* @returns BN
* @async
*/
async function randomProbablePrime(bits, e, k) {
const min = new _bn2.default(1).shln(bits - 1);
const thirty = new _bn2.default(30);
/*
* We can avoid any multiples of 3 and 5 by looking at n mod 30
* n mod 30 = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
* the next possible prime is mod 30:
* 1 7 7 7 7 7 7 11 11 11 11 13 13 17 17 17 17 19 19 23 23 23 23 29 29 29 29 29 29 1
*/
const adds = [1, 6, 5, 4, 3, 2, 1, 4, 3, 2, 1, 2, 1, 4, 3, 2, 1, 2, 1, 4, 3, 2, 1, 6, 5, 4, 3, 2, 1, 2];
let n = await _random2.default.getRandomBN(min, min.shln(1));
let i = n.mod(thirty).toNumber();
do {
n.iaddn(adds[i]);
i = (i + adds[i]) % adds.length;
// If reached the maximum, go back to the minimum.
if (n.bitLength() > bits) {
n = n.mod(min.shln(1)).iadd(min);
i = n.mod(thirty).toNumber();
}
} while (!(await isProbablePrime(n, e, k)));
return n;
}
/**
* Probabilistic primality testing
* @param {BN} n Number to test
* @param {BN} e Optional RSA exponent to check against the prime
* @param {Integer} k Optional number of iterations of Miller-Rabin test
* @returns {boolean}
* @async
*/
async function isProbablePrime(n, e, k) {
if (e && !n.subn(1).gcd(e).eqn(1)) {
return false;
}
if (!divisionTest(n)) {
return false;
}
if (!fermat(n)) {
return false;
}
if (!(await millerRabin(n, k))) {
return false;
}
// TODO implement the Lucas test
// See Section C.3.3 here: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
return true;
}
/**
* Tests whether n is probably prime or not using Fermat's test with b = 2.
* Fails if b^(n-1) mod n === 1.
* @param {BN} n Number to test
* @param {Integer} b Optional Fermat test base
* @returns {boolean}
*/
function fermat(n, b) {
b = b || new _bn2.default(2);
return b.toRed(_bn2.default.mont(n)).redPow(n.subn(1)).fromRed().cmpn(1) === 0;
}
function divisionTest(n) {
return small_primes.every(m => {
return n.modn(m) !== 0;
});
}
// https://github.com/gpg/libgcrypt/blob/master/cipher/primegen.c
const small_primes = [7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999];
// Miller-Rabin - Miller Rabin algorithm for primality test
// Copyright Fedor Indutny, 2014.
//
// This software is licensed under the MIT License.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.
// Adapted on Jan 2018 from version 4.0.1 at https://github.com/indutny/miller-rabin
// Sample syntax for Fixed-Base Miller-Rabin:
// millerRabin(n, k, () => new BN(small_primes[Math.random() * small_primes.length | 0]))
/**
* Tests whether n is probably prime or not using the Miller-Rabin test.
* See HAC Remark 4.28.
* @param {BN} n Number to test
* @param {Integer} k Optional number of iterations of Miller-Rabin test
* @param {Function} rand Optional function to generate potential witnesses
* @returns {boolean}
* @async
*/
async function millerRabin(n, k, rand) {
const len = n.bitLength();
const red = _bn2.default.mont(n);
const rone = new _bn2.default(1).toRed(red);
if (!k) {
k = Math.max(1, len / 48 | 0);
}
const n1 = n.subn(1);
const rn1 = n1.toRed(red);
// Find d and s, (n - 1) = (2 ^ s) * d;
let s = 0;
while (!n1.testn(s)) {
s++;
}
const d = n.shrn(s);
for (; k > 0; k--) {
const a = rand ? rand() : await _random2.default.getRandomBN(new _bn2.default(2), n1);
let x = a.toRed(red).redPow(d);
if (x.eq(rone) || x.eq(rn1)) {
continue;
}
let i;
for (i = 1; i < s; i++) {
x = x.redSqr();
if (x.eq(rone)) {
return false;
}
if (x.eq(rn1)) {
break;
}
}
if (i === s) {
return false;
}
}
return true;
}
},{"../random":110,"bn.js":17}],109:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _bn = require('bn.js');
var _bn2 = _interopRequireDefault(_bn);
var _prime = require('./prime');
var _prime2 = _interopRequireDefault(_prime);
var _random = require('../random');
var _random2 = _interopRequireDefault(_random);
var _config = require('../../config');
var _config2 = _interopRequireDefault(_config);
var _util = require('../../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
// Helper for IE11 KeyOperation objects
function promisifyIE11Op(keyObj, err) {
if (typeof keyObj.then !== 'function') {
// IE11 KeyOperation
return new Promise(function (resolve, reject) {
keyObj.onerror = function () {
reject(new Error(err));
};
keyObj.oncomplete = function (e) {
resolve(e.target.result);
};
});
}
return keyObj;
} // GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @fileoverview RSA implementation
* @requires bn.js
* @requires crypto/public_key/prime
* @requires crypto/random
* @requires config
* @requires util
* @module crypto/public_key/rsa
*/
exports.default = {
/** Create signature
* @param {BN} m message
* @param {BN} n RSA public modulus
* @param {BN} e RSA public exponent
* @param {BN} d RSA private exponent
* @returns {BN} RSA Signature
* @async
*/
sign: async function sign(m, n, e, d) {
if (n.cmp(m) <= 0) {
throw new Error('Message size cannot exceed modulus size');
}
const nred = new _bn2.default.red(n);
return m.toRed(nred).redPow(d).toArrayLike(Uint8Array, 'be', n.byteLength());
},
/**
* Verify signature
* @param {BN} s signature
* @param {BN} n RSA public modulus
* @param {BN} e RSA public exponent
* @returns {BN}
* @async
*/
verify: async function verify(s, n, e) {
if (n.cmp(s) <= 0) {
throw new Error('Signature size cannot exceed modulus size');
}
const nred = new _bn2.default.red(n);
return s.toRed(nred).redPow(e).toArrayLike(Uint8Array, 'be', n.byteLength());
},
/**
* Encrypt message
* @param {BN} m message
* @param {BN} n RSA public modulus
* @param {BN} e RSA public exponent
* @returns {BN} RSA Ciphertext
* @async
*/
encrypt: async function encrypt(m, n, e) {
if (n.cmp(m) <= 0) {
throw new Error('Message size cannot exceed modulus size');
}
const nred = new _bn2.default.red(n);
return m.toRed(nred).redPow(e).toArrayLike(Uint8Array, 'be', n.byteLength());
},
/**
* Decrypt RSA message
* @param {BN} m message
* @param {BN} n RSA public modulus
* @param {BN} e RSA public exponent
* @param {BN} d RSA private exponent
* @param {BN} p RSA private prime p
* @param {BN} q RSA private prime q
* @param {BN} u RSA private inverse of prime q
* @returns {BN} RSA Plaintext
* @async
*/
decrypt: async function decrypt(m, n, e, d, p, q, u) {
if (n.cmp(m) <= 0) {
throw new Error('Data too large.');
}
const dq = d.mod(q.subn(1)); // d mod (q-1)
const dp = d.mod(p.subn(1)); // d mod (p-1)
const pred = new _bn2.default.red(p);
const qred = new _bn2.default.red(q);
const nred = new _bn2.default.red(n);
let blinder;
let unblinder;
if (_config2.default.rsa_blinding) {
unblinder = (await _random2.default.getRandomBN(new _bn2.default(2), n)).toRed(nred);
blinder = unblinder.redInvm().redPow(e);
m = m.toRed(nred).redMul(blinder).fromRed();
}
const mp = m.toRed(pred).redPow(dp);
const mq = m.toRed(qred).redPow(dq);
const t = mq.redSub(mp.fromRed().toRed(qred));
const h = u.toRed(qred).redMul(t).fromRed();
let result = h.mul(p).add(mp).toRed(nred);
if (_config2.default.rsa_blinding) {
result = result.redMul(unblinder);
}
return result.toArrayLike(Uint8Array, 'be', n.byteLength());
},
/**
* Generate a new random private key B bits long with public exponent E.
*
* When possible, webCrypto is used. Otherwise, primes are generated using
* 40 rounds of the Miller-Rabin probabilistic random prime generation algorithm.
* @see module:crypto/public_key/prime
* @param {Integer} B RSA bit length
* @param {String} E RSA public exponent in hex string
* @returns {{n: BN, e: BN, d: BN,
* p: BN, q: BN, u: BN}} RSA public modulus, RSA public exponent, RSA private exponent,
* RSA private prime p, RSA private prime q, u = q ** -1 mod p
* @async
*/
generate: async function generate(B, E) {
let key;
E = new _bn2.default(E, 16);
const webCrypto = _util2.default.getWebCryptoAll();
// Native RSA keygen using Web Crypto
if (webCrypto) {
let keyPair;
let keyGenOpt;
if (window.crypto && window.crypto.subtle || window.msCrypto) {
// current standard spec
keyGenOpt = {
name: 'RSASSA-PKCS1-v1_5',
modulusLength: B, // the specified keysize in bits
publicExponent: E.toArrayLike(Uint8Array), // take three bytes (max 65537) for exponent
hash: {
name: 'SHA-1' // not required for actual RSA keys, but for crypto api 'sign' and 'verify'
}
};
keyPair = webCrypto.generateKey(keyGenOpt, true, ['sign', 'verify']);
keyPair = await promisifyIE11Op(keyPair, 'Error generating RSA key pair.');
} else if (window.crypto && window.crypto.webkitSubtle) {
// outdated spec implemented by old Webkit
keyGenOpt = {
name: 'RSA-OAEP',
modulusLength: B, // the specified keysize in bits
publicExponent: E.toArrayLike(Uint8Array), // take three bytes (max 65537) for exponent
hash: {
name: 'SHA-1' // not required for actual RSA keys, but for crypto api 'sign' and 'verify'
}
};
keyPair = await webCrypto.generateKey(keyGenOpt, true, ['encrypt', 'decrypt']);
} else {
throw new Error('Unknown WebCrypto implementation');
}
// export the generated keys as JsonWebKey (JWK)
// https://tools.ietf.org/html/draft-ietf-jose-json-web-key-33
let jwk = webCrypto.exportKey('jwk', keyPair.privateKey);
jwk = await promisifyIE11Op(jwk, 'Error exporting RSA key pair.');
// parse raw ArrayBuffer bytes to jwk/json (WebKit/Safari/IE11 quirk)
if (jwk instanceof ArrayBuffer) {
jwk = JSON.parse(String.fromCharCode.apply(null, new Uint8Array(jwk)));
}
// map JWK parameters to BN
key = {};
key.n = new _bn2.default(_util2.default.b64_to_Uint8Array(jwk.n));
key.e = E;
key.d = new _bn2.default(_util2.default.b64_to_Uint8Array(jwk.d));
key.p = new _bn2.default(_util2.default.b64_to_Uint8Array(jwk.p));
key.q = new _bn2.default(_util2.default.b64_to_Uint8Array(jwk.q));
key.u = key.p.invm(key.q);
return key;
}
// RSA keygen fallback using 40 iterations of the Miller-Rabin test
// See https://stackoverflow.com/a/6330138 for justification
// Also see section C.3 here: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST
let p = await _prime2.default.randomProbablePrime(B - (B >> 1), E, 40);
let q = await _prime2.default.randomProbablePrime(B >> 1, E, 40);
if (p.cmp(q) < 0) {
var _ref = [q, p];
p = _ref[0];
q = _ref[1];
}
const phi = p.subn(1).mul(q.subn(1));
return {
n: p.mul(q),
e: E,
d: E.invm(phi),
p: p,
q: q,
// dp: d.mod(p.subn(1)),
// dq: d.mod(q.subn(1)),
u: p.invm(q)
};
},
prime: _prime2.default
};
},{"../../config":80,"../../util":153,"../random":110,"./prime":108,"bn.js":17}],110:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _bn = require('bn.js');
var _bn2 = _interopRequireDefault(_bn);
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
// Do not use util.getNodeCrypto because we need this regardless of use_native setting
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
// The GPG4Browsers crypto interface
/**
* @fileoverview Provides tools for retrieving secure randomness from browsers or Node.js
* @requires bn.js
* @requires util
* @module crypto/random
*/
const nodeCrypto = _util2.default.detectNode() && require('crypto');
exports.default = {
/**
* Retrieve secure random byte array of the specified length
* @param {Integer} length Length in bytes to generate
* @returns {Uint8Array} Random byte array
* @async
*/
getRandomBytes: async function getRandomBytes(length) {
const buf = new Uint8Array(length);
if (typeof window !== 'undefined' && window.crypto && window.crypto.getRandomValues) {
window.crypto.getRandomValues(buf);
} else if (typeof window !== 'undefined' && typeof window.msCrypto === 'object' && typeof window.msCrypto.getRandomValues === 'function') {
window.msCrypto.getRandomValues(buf);
} else if (nodeCrypto) {
const bytes = nodeCrypto.randomBytes(buf.length);
buf.set(bytes);
} else if (this.randomBuffer.buffer) {
await this.randomBuffer.get(buf);
} else {
throw new Error('No secure random number generator available.');
}
return buf;
},
/**
* Create a secure random MPI that is greater than or equal to min and less than max.
* @param {module:type/mpi} min Lower bound, included
* @param {module:type/mpi} max Upper bound, excluded
* @returns {module:BN} Random MPI
* @async
*/
getRandomBN: async function getRandomBN(min, max) {
if (max.cmp(min) <= 0) {
throw new Error('Illegal parameter value: max <= min');
}
const modulus = max.sub(min);
const bytes = modulus.byteLength();
// Using a while loop is necessary to avoid bias introduced by the mod operation.
// However, we request 64 extra random bits so that the bias is negligible.
// Section B.1.1 here: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
const r = new _bn2.default((await this.getRandomBytes(bytes + 8)));
return r.mod(modulus).add(min);
},
randomBuffer: new RandomBuffer()
};
/**
* Buffer for secure random numbers
*/
function RandomBuffer() {
this.buffer = null;
this.size = null;
this.callback = null;
}
/**
* Initialize buffer
* @param {Integer} size size of buffer
*/
RandomBuffer.prototype.init = function (size, callback) {
this.buffer = new Uint8Array(size);
this.size = 0;
this.callback = callback;
};
/**
* Concat array of secure random numbers to buffer
* @param {Uint8Array} buf
*/
RandomBuffer.prototype.set = function (buf) {
if (!this.buffer) {
throw new Error('RandomBuffer is not initialized');
}
if (!(buf instanceof Uint8Array)) {
throw new Error('Invalid type: buf not an Uint8Array');
}
const freeSpace = this.buffer.length - this.size;
if (buf.length > freeSpace) {
buf = buf.subarray(0, freeSpace);
}
// set buf with offset old size of buffer
this.buffer.set(buf, this.size);
this.size += buf.length;
};
/**
* Take numbers out of buffer and copy to array
* @param {Uint8Array} buf the destination array
*/
RandomBuffer.prototype.get = async function (buf) {
if (!this.buffer) {
throw new Error('RandomBuffer is not initialized');
}
if (!(buf instanceof Uint8Array)) {
throw new Error('Invalid type: buf not an Uint8Array');
}
if (this.size < buf.length) {
if (!this.callback) {
throw new Error('Random number buffer depleted');
}
// Wait for random bytes from main context, then try again
await this.callback();
return this.get(buf);
}
for (let i = 0; i < buf.length; i++) {
buf[i] = this.buffer[--this.size];
// clear buffer value
this.buffer[this.size] = 0;
}
};
},{"../util":153,"bn.js":17,"crypto":"crypto"}],111:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _bn = require('bn.js');
var _bn2 = _interopRequireDefault(_bn);
var _crypto = require('./crypto');
var _crypto2 = _interopRequireDefault(_crypto);
var _public_key = require('./public_key');
var _public_key2 = _interopRequireDefault(_public_key);
var _pkcs = require('./pkcs1');
var _pkcs2 = _interopRequireDefault(_pkcs);
var _enums = require('../enums');
var _enums2 = _interopRequireDefault(_enums);
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* @fileoverview Provides functions for asymmetric signing and signature verification
* @requires bn.js
* @requires crypto/crypto
* @requires crypto/public_key
* @requires crypto/pkcs1
* @requires enums
* @requires util
* @module crypto/signature
*/
exports.default = {
/**
* Verifies the signature provided for data using specified algorithms and public key parameters.
* See {@link https://tools.ietf.org/html/rfc4880#section-9.1|RFC 4880 9.1}
* and {@link https://tools.ietf.org/html/rfc4880#section-9.4|RFC 4880 9.4}
* for public key and hash algorithms.
* @param {module:enums.publicKey} algo Public key algorithm
* @param {module:enums.hash} hash_algo Hash algorithm
* @param {Array<module:type/mpi>} msg_MPIs Algorithm-specific signature parameters
* @param {Array<module:type/mpi>} pub_MPIs Algorithm-specific public key parameters
* @param {Uint8Array} data Data for which the signature was created
* @param {Uint8Array} hashed The hashed data
* @returns {Boolean} True if signature is valid
* @async
*/
verify: async function verify(algo, hash_algo, msg_MPIs, pub_MPIs, data, hashed) {
const types = _crypto2.default.getPubKeyParamTypes(algo);
if (pub_MPIs.length < types.length) {
throw new Error('Missing public key parameters');
}
switch (algo) {
case _enums2.default.publicKey.rsa_encrypt_sign:
case _enums2.default.publicKey.rsa_encrypt:
case _enums2.default.publicKey.rsa_sign:
{
const m = msg_MPIs[0].toBN();
const n = pub_MPIs[0].toBN();
const e = pub_MPIs[1].toBN();
const EM = await _public_key2.default.rsa.verify(m, n, e);
const EM2 = await _pkcs2.default.emsa.encode(hash_algo, hashed, n.byteLength());
return _util2.default.Uint8Array_to_hex(EM) === EM2;
}
case _enums2.default.publicKey.dsa:
{
const r = msg_MPIs[0].toBN();
const s = msg_MPIs[1].toBN();
const p = pub_MPIs[0].toBN();
const q = pub_MPIs[1].toBN();
const g = pub_MPIs[2].toBN();
const y = pub_MPIs[3].toBN();
return _public_key2.default.dsa.verify(hash_algo, r, s, hashed, g, p, q, y);
}
case _enums2.default.publicKey.ecdsa:
{
const oid = pub_MPIs[0];
const signature = { r: msg_MPIs[0].toUint8Array(), s: msg_MPIs[1].toUint8Array() };
const Q = pub_MPIs[1].toUint8Array();
return _public_key2.default.elliptic.ecdsa.verify(oid, hash_algo, signature, data, Q, hashed);
}
case _enums2.default.publicKey.eddsa:
{
const oid = pub_MPIs[0];
// EdDSA signature params are expected in little-endian format
const signature = { R: msg_MPIs[0].toUint8Array('le', 32),
S: msg_MPIs[1].toUint8Array('le', 32) };
const Q = pub_MPIs[1].toUint8Array('be', 33);
return _public_key2.default.elliptic.eddsa.verify(oid, hash_algo, signature, data, Q, hashed);
}
default:
throw new Error('Invalid signature algorithm.');
}
},
/**
* Creates a signature on data using specified algorithms and private key parameters.
* See {@link https://tools.ietf.org/html/rfc4880#section-9.1|RFC 4880 9.1}
* and {@link https://tools.ietf.org/html/rfc4880#section-9.4|RFC 4880 9.4}
* for public key and hash algorithms.
* @param {module:enums.publicKey} algo Public key algorithm
* @param {module:enums.hash} hash_algo Hash algorithm
* @param {Array<module:type/mpi>} key_params Algorithm-specific public and private key parameters
* @param {Uint8Array} data Data to be signed
* @param {Uint8Array} hashed The hashed data
* @returns {Uint8Array} Signature
* @async
*/
sign: async function sign(algo, hash_algo, key_params, data, hashed) {
const types = [].concat(_crypto2.default.getPubKeyParamTypes(algo), _crypto2.default.getPrivKeyParamTypes(algo));
if (key_params.length < types.length) {
throw new Error('Missing private key parameters');
}
switch (algo) {
case _enums2.default.publicKey.rsa_encrypt_sign:
case _enums2.default.publicKey.rsa_encrypt:
case _enums2.default.publicKey.rsa_sign:
{
const n = key_params[0].toBN();
const e = key_params[1].toBN();
const d = key_params[2].toBN();
const m = new _bn2.default((await _pkcs2.default.emsa.encode(hash_algo, hashed, n.byteLength())), 16);
const signature = await _public_key2.default.rsa.sign(m, n, e, d);
return _util2.default.Uint8Array_to_MPI(signature);
}
case _enums2.default.publicKey.dsa:
{
const p = key_params[0].toBN();
const q = key_params[1].toBN();
const g = key_params[2].toBN();
const x = key_params[4].toBN();
const signature = await _public_key2.default.dsa.sign(hash_algo, hashed, g, p, q, x);
return _util2.default.concatUint8Array([_util2.default.Uint8Array_to_MPI(signature.r), _util2.default.Uint8Array_to_MPI(signature.s)]);
}
case _enums2.default.publicKey.elgamal:
{
throw new Error('Signing with Elgamal is not defined in the OpenPGP standard.');
}
case _enums2.default.publicKey.ecdsa:
{
const oid = key_params[0];
const d = key_params[2].toUint8Array();
const signature = await _public_key2.default.elliptic.ecdsa.sign(oid, hash_algo, data, d, hashed);
return _util2.default.concatUint8Array([_util2.default.Uint8Array_to_MPI(signature.r), _util2.default.Uint8Array_to_MPI(signature.s)]);
}
case _enums2.default.publicKey.eddsa:
{
const oid = key_params[0];
const d = key_params[2].toUint8Array('be', 32);
const signature = await _public_key2.default.elliptic.eddsa.sign(oid, hash_algo, data, d, hashed);
return _util2.default.concatUint8Array([_util2.default.Uint8Array_to_MPI(signature.R), _util2.default.Uint8Array_to_MPI(signature.S)]);
}
default:
throw new Error('Invalid signature algorithm.');
}
}
};
},{"../enums":114,"../util":153,"./crypto":90,"./pkcs1":97,"./public_key":107,"bn.js":17}],112:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _webStreamTools = require('web-stream-tools');
var _webStreamTools2 = _interopRequireDefault(_webStreamTools);
var _base = require('./base64.js');
var _base2 = _interopRequireDefault(_base);
var _enums = require('../enums.js');
var _enums2 = _interopRequireDefault(_enums);
var _config = require('../config');
var _config2 = _interopRequireDefault(_config);
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* Finds out which Ascii Armoring type is used. Throws error if unknown type.
* @private
* @param {String} text [String] ascii armored text
* @returns {Integer} 0 = MESSAGE PART n of m
* 1 = MESSAGE PART n
* 2 = SIGNED MESSAGE
* 3 = PGP MESSAGE
* 4 = PUBLIC KEY BLOCK
* 5 = PRIVATE KEY BLOCK
* 6 = SIGNATURE
*/
function getType(text) {
const reHeader = /^-----BEGIN PGP (MESSAGE, PART \d+\/\d+|MESSAGE, PART \d+|SIGNED MESSAGE|MESSAGE|PUBLIC KEY BLOCK|PRIVATE KEY BLOCK|SIGNATURE)-----$/m;
const header = text.match(reHeader);
if (!header) {
throw new Error('Unknown ASCII armor type');
}
// BEGIN PGP MESSAGE, PART X/Y
// Used for multi-part messages, where the armor is split amongst Y
// parts, and this is the Xth part out of Y.
if (/MESSAGE, PART \d+\/\d+/.test(header[1])) {
return _enums2.default.armor.multipart_section;
} else
// BEGIN PGP MESSAGE, PART X
// Used for multi-part messages, where this is the Xth part of an
// unspecified number of parts. Requires the MESSAGE-ID Armor
// Header to be used.
if (/MESSAGE, PART \d+/.test(header[1])) {
return _enums2.default.armor.multipart_last;
} else
// BEGIN PGP SIGNED MESSAGE
if (/SIGNED MESSAGE/.test(header[1])) {
return _enums2.default.armor.signed;
} else
// BEGIN PGP MESSAGE
// Used for signed, encrypted, or compressed files.
if (/MESSAGE/.test(header[1])) {
return _enums2.default.armor.message;
} else
// BEGIN PGP PUBLIC KEY BLOCK
// Used for armoring public keys.
if (/PUBLIC KEY BLOCK/.test(header[1])) {
return _enums2.default.armor.public_key;
} else
// BEGIN PGP PRIVATE KEY BLOCK
// Used for armoring private keys.
if (/PRIVATE KEY BLOCK/.test(header[1])) {
return _enums2.default.armor.private_key;
} else
// BEGIN PGP SIGNATURE
// Used for detached signatures, OpenPGP/MIME signatures, and
// cleartext signatures. Note that PGP 2.x uses BEGIN PGP MESSAGE
// for detached signatures.
if (/SIGNATURE/.test(header[1])) {
return _enums2.default.armor.signature;
}
}
/**
* Add additional information to the armor version of an OpenPGP binary
* packet block.
* @author Alex
* @version 2011-12-16
* @param {String} customComment (optional) additional comment to add to the armored string
* @returns {String} The header information
*/
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @requires web-stream-tools
* @requires encoding/base64
* @requires enums
* @requires config
* @requires util
* @module encoding/armor
*/
function addheader(customComment) {
let result = "";
if (_config2.default.show_version) {
result += "Version: " + _config2.default.versionstring + '\r\n';
}
if (_config2.default.show_comment) {
result += "Comment: " + _config2.default.commentstring + '\r\n';
}
if (customComment) {
result += "Comment: " + customComment + '\r\n';
}
result += '\r\n';
return result;
}
/**
* Calculates a checksum over the given data and returns it base64 encoded
* @param {String | ReadableStream<String>} data Data to create a CRC-24 checksum for
* @returns {String | ReadableStream<String>} Base64 encoded checksum
*/
function getCheckSum(data) {
const crc = createcrc24(data);
return _base2.default.encode(crc);
}
const crc_table = [0x00000000, 0x00864cfb, 0x018ad50d, 0x010c99f6, 0x0393e6e1, 0x0315aa1a, 0x021933ec, 0x029f7f17, 0x07a18139, 0x0727cdc2, 0x062b5434, 0x06ad18cf, 0x043267d8, 0x04b42b23, 0x05b8b2d5, 0x053efe2e, 0x0fc54e89, 0x0f430272, 0x0e4f9b84, 0x0ec9d77f, 0x0c56a868, 0x0cd0e493, 0x0ddc7d65, 0x0d5a319e, 0x0864cfb0, 0x08e2834b, 0x09ee1abd, 0x09685646, 0x0bf72951, 0x0b7165aa, 0x0a7dfc5c, 0x0afbb0a7, 0x1f0cd1e9, 0x1f8a9d12, 0x1e8604e4, 0x1e00481f, 0x1c9f3708, 0x1c197bf3, 0x1d15e205, 0x1d93aefe, 0x18ad50d0, 0x182b1c2b, 0x192785dd, 0x19a1c926, 0x1b3eb631, 0x1bb8faca, 0x1ab4633c, 0x1a322fc7, 0x10c99f60, 0x104fd39b, 0x11434a6d, 0x11c50696, 0x135a7981, 0x13dc357a, 0x12d0ac8c, 0x1256e077, 0x17681e59, 0x17ee52a2, 0x16e2cb54, 0x166487af, 0x14fbf8b8, 0x147db443, 0x15712db5, 0x15f7614e, 0x3e19a3d2, 0x3e9fef29, 0x3f9376df, 0x3f153a24, 0x3d8a4533, 0x3d0c09c8, 0x3c00903e, 0x3c86dcc5, 0x39b822eb, 0x393e6e10, 0x3832f7e6, 0x38b4bb1d, 0x3a2bc40a, 0x3aad88f1, 0x3ba11107, 0x3b275dfc, 0x31dced5b, 0x315aa1a0, 0x30563856, 0x30d074ad, 0x324f0bba, 0x32c94741, 0x33c5deb7, 0x3343924c, 0x367d6c62, 0x36fb2099, 0x37f7b96f, 0x3771f594, 0x35ee8a83, 0x3568c678, 0x34645f8e, 0x34e21375, 0x2115723b, 0x21933ec0, 0x209fa736, 0x2019ebcd, 0x228694da, 0x2200d821, 0x230c41d7, 0x238a0d2c, 0x26b4f302, 0x2632bff9, 0x273e260f, 0x27b86af4, 0x252715e3, 0x25a15918, 0x24adc0ee, 0x242b8c15, 0x2ed03cb2, 0x2e567049, 0x2f5ae9bf, 0x2fdca544, 0x2d43da53, 0x2dc596a8, 0x2cc90f5e, 0x2c4f43a5, 0x2971bd8b, 0x29f7f170, 0x28fb6886, 0x287d247d, 0x2ae25b6a, 0x2a641791, 0x2b688e67, 0x2beec29c, 0x7c3347a4, 0x7cb50b5f, 0x7db992a9, 0x7d3fde52, 0x7fa0a145, 0x7f26edbe, 0x7e2a7448, 0x7eac38b3, 0x7b92c69d, 0x7b148a66, 0x7a181390, 0x7a9e5f6b, 0x7801207c, 0x78876c87, 0x798bf571, 0x790db98a, 0x73f6092d, 0x737045d6, 0x727cdc20, 0x72fa90db, 0x7065efcc, 0x70e3a337, 0x71ef3ac1, 0x7169763a, 0x74578814, 0x74d1c4ef, 0x75dd5d19, 0x755b11e2, 0x77c46ef5, 0x7742220e, 0x764ebbf8, 0x76c8f703, 0x633f964d, 0x63b9dab6, 0x62b54340, 0x62330fbb, 0x60ac70ac, 0x602a3c57, 0x6126a5a1, 0x61a0e95a, 0x649e1774, 0x64185b8f, 0x6514c279, 0x65928e82, 0x670df195, 0x678bbd6e, 0x66872498, 0x66016863, 0x6cfad8c4, 0x6c7c943f, 0x6d700dc9, 0x6df64132, 0x6f693e25, 0x6fef72de, 0x6ee3eb28, 0x6e65a7d3, 0x6b5b59fd, 0x6bdd1506, 0x6ad18cf0, 0x6a57c00b, 0x68c8bf1c, 0x684ef3e7, 0x69426a11, 0x69c426ea, 0x422ae476, 0x42aca88d, 0x43a0317b, 0x43267d80, 0x41b90297, 0x413f4e6c, 0x4033d79a, 0x40b59b61, 0x458b654f, 0x450d29b4, 0x4401b042, 0x4487fcb9, 0x461883ae, 0x469ecf55, 0x479256a3, 0x47141a58, 0x4defaaff, 0x4d69e604, 0x4c657ff2, 0x4ce33309, 0x4e7c4c1e, 0x4efa00e5, 0x4ff69913, 0x4f70d5e8, 0x4a4e2bc6, 0x4ac8673d, 0x4bc4fecb, 0x4b42b230, 0x49ddcd27, 0x495b81dc, 0x4857182a, 0x48d154d1, 0x5d26359f, 0x5da07964, 0x5cace092, 0x5c2aac69, 0x5eb5d37e, 0x5e339f85, 0x5f3f0673, 0x5fb94a88, 0x5a87b4a6, 0x5a01f85d, 0x5b0d61ab, 0x5b8b2d50, 0x59145247, 0x59921ebc, 0x589e874a, 0x5818cbb1, 0x52e37b16, 0x526537ed, 0x5369ae1b, 0x53efe2e0, 0x51709df7, 0x51f6d10c, 0x50fa48fa, 0x507c0401, 0x5542fa2f, 0x55c4b6d4, 0x54c82f22, 0x544e63d9, 0x56d11cce, 0x56575035, 0x575bc9c3, 0x57dd8538];
/**
* Internal function to calculate a CRC-24 checksum over a given string (data)
* @param {String | ReadableStream<String>} data Data to create a CRC-24 checksum for
* @returns {Uint8Array | ReadableStream<Uint8Array>} The CRC-24 checksum
*/
function createcrc24(input) {
let crc = 0xB704CE;
return _webStreamTools2.default.transform(input, value => {
for (let index = 0; index < value.length; index++) {
crc = crc << 8 ^ crc_table[(crc >> 16 ^ value[index]) & 0xff];
}
}, () => new Uint8Array([crc >> 16, crc >> 8, crc]));
}
/**
* Verify armored headers. RFC4880, section 6.3: "OpenPGP should consider improperly formatted
* Armor Headers to be corruption of the ASCII Armor."
* @private
* @param {Array<String>} headers Armor headers
*/
function verifyHeaders(headers) {
for (let i = 0; i < headers.length; i++) {
if (!/^([^\s:]|[^\s:][^:]*[^\s:]): .+$/.test(headers[i])) {
throw new Error('Improperly formatted armor header: ' + headers[i]);
}
if (!/^(Version|Comment|MessageID|Hash|Charset): .+$/.test(headers[i])) {
_util2.default.print_debug_error(new Error('Unknown header: ' + headers[i]));
}
}
}
/**
* Splits a message into two parts, the body and the checksum. This is an internal function
* @param {String} text OpenPGP armored message part
* @returns {Object} An object with attribute "body" containing the body
* and an attribute "checksum" containing the checksum.
*/
function splitChecksum(text) {
let body = text;
let checksum = "";
const lastEquals = text.lastIndexOf("=");
if (lastEquals >= 0 && lastEquals !== text.length - 1) {
// '=' as the last char means no checksum
body = text.slice(0, lastEquals);
checksum = text.slice(lastEquals + 1).substr(0, 4);
}
return { body: body, checksum: checksum };
}
/**
* DeArmor an OpenPGP armored message; verify the checksum and return
* the encoded bytes
* @param {String} text OpenPGP armored message
* @returns {Promise<Object>} An object with attribute "text" containing the message text,
* an attribute "data" containing a stream of bytes and "type" for the ASCII armor type
* @async
* @static
*/
function dearmor(input) {
return new Promise(async (resolve, reject) => {
try {
const reSplit = /^-----[^-]+-----$/m;
const reEmptyLine = /^[ \f\r\t\u00a0\u2000-\u200a\u202f\u205f\u3000]*$/;
let type;
const headers = [];
let lastHeaders = headers;
let headersDone;
let text = [];
let textDone;
let checksum;
let data = _base2.default.decode(_webStreamTools2.default.transformPair(input, async (readable, writable) => {
const reader = _webStreamTools2.default.getReader(readable);
try {
while (true) {
let line = await reader.readLine();
if (line === undefined) {
throw new Error('Misformed armored text');
}
// remove trailing whitespace at end of lines
line = _util2.default.removeTrailingSpaces(line.replace(/[\r\n]/g, ''));
if (!type) {
if (reSplit.test(line)) {
type = getType(line);
}
} else if (!headersDone) {
if (reSplit.test(line)) {
reject(new Error('Mandatory blank line missing between armor headers and armor data'));
}
if (!reEmptyLine.test(line)) {
lastHeaders.push(line);
} else {
verifyHeaders(lastHeaders);
headersDone = true;
if (textDone || type !== 2) {
resolve({ text, data, headers, type });
break;
}
}
} else if (!textDone && type === 2) {
if (!reSplit.test(line)) {
// Reverse dash-escaping for msg
text.push(line.replace(/^- /, ''));
} else {
text = text.join('\r\n');
textDone = true;
verifyHeaders(lastHeaders);
lastHeaders = [];
headersDone = false;
}
}
}
} catch (e) {
reject(e);
return;
}
const writer = _webStreamTools2.default.getWriter(writable);
try {
while (true) {
await writer.ready;
var _ref = await reader.read();
const done = _ref.done,
value = _ref.value;
if (done) {
throw new Error('Misformed armored text');
}
const line = value + '';
if (line.indexOf('=') === -1 && line.indexOf('-') === -1) {
await writer.write(line);
} else {
let remainder = await reader.readToEnd();
if (!remainder.length) remainder = '';
remainder = line + remainder;
remainder = _util2.default.removeTrailingSpaces(remainder.replace(/\r/g, ''));
const parts = remainder.split(reSplit);
if (parts.length === 1) {
throw new Error('Misformed armored text');
}
const split = splitChecksum(parts[0].slice(0, -1));
checksum = split.checksum;
await writer.write(split.body);
break;
}
}
await writer.ready;
await writer.close();
} catch (e) {
await writer.abort(e);
}
}));
data = _webStreamTools2.default.transformPair(data, async (readable, writable) => {
const checksumVerified = getCheckSum(_webStreamTools2.default.passiveClone(readable));
await _webStreamTools2.default.pipe(readable, writable, {
preventClose: true
});
const writer = _webStreamTools2.default.getWriter(writable);
try {
const checksumVerifiedString = await _webStreamTools2.default.readToEnd(checksumVerified);
if (checksum !== checksumVerifiedString && (checksum || _config2.default.checksum_required)) {
throw new Error("Ascii armor integrity check on message failed: '" + checksum + "' should be '" + checksumVerifiedString + "'");
}
await writer.ready;
await writer.close();
} catch (e) {
await writer.abort(e);
}
});
} catch (e) {
reject(e);
}
});
}
/**
* Armor an OpenPGP binary packet block
* @param {Integer} messagetype type of the message
* @param body
* @param {Integer} partindex
* @param {Integer} parttotal
* @param {String} customComment (optional) additional comment to add to the armored string
* @returns {String | ReadableStream<String>} Armored text
* @static
*/
function armor(messagetype, body, partindex, parttotal, customComment) {
let text;
let hash;
if (messagetype === _enums2.default.armor.signed) {
text = body.text;
hash = body.hash;
body = body.data;
}
const bodyClone = _webStreamTools2.default.passiveClone(body);
const result = [];
switch (messagetype) {
case _enums2.default.armor.multipart_section:
result.push("-----BEGIN PGP MESSAGE, PART " + partindex + "/" + parttotal + "-----\r\n");
result.push(addheader(customComment));
result.push(_base2.default.encode(body));
result.push("\r\n=", getCheckSum(bodyClone), "\r\n");
result.push("-----END PGP MESSAGE, PART " + partindex + "/" + parttotal + "-----\r\n");
break;
case _enums2.default.armor.multipart_last:
result.push("-----BEGIN PGP MESSAGE, PART " + partindex + "-----\r\n");
result.push(addheader(customComment));
result.push(_base2.default.encode(body));
result.push("\r\n=", getCheckSum(bodyClone), "\r\n");
result.push("-----END PGP MESSAGE, PART " + partindex + "-----\r\n");
break;
case _enums2.default.armor.signed:
result.push("\r\n-----BEGIN PGP SIGNED MESSAGE-----\r\n");
result.push("Hash: " + hash + "\r\n\r\n");
result.push(text.replace(/^-/mg, "- -"));
result.push("\r\n-----BEGIN PGP SIGNATURE-----\r\n");
result.push(addheader(customComment));
result.push(_base2.default.encode(body));
result.push("\r\n=", getCheckSum(bodyClone), "\r\n");
result.push("-----END PGP SIGNATURE-----\r\n");
break;
case _enums2.default.armor.message:
result.push("-----BEGIN PGP MESSAGE-----\r\n");
result.push(addheader(customComment));
result.push(_base2.default.encode(body));
result.push("\r\n=", getCheckSum(bodyClone), "\r\n");
result.push("-----END PGP MESSAGE-----\r\n");
break;
case _enums2.default.armor.public_key:
result.push("-----BEGIN PGP PUBLIC KEY BLOCK-----\r\n");
result.push(addheader(customComment));
result.push(_base2.default.encode(body));
result.push("\r\n=", getCheckSum(bodyClone), "\r\n");
result.push("-----END PGP PUBLIC KEY BLOCK-----\r\n");
break;
case _enums2.default.armor.private_key:
result.push("-----BEGIN PGP PRIVATE KEY BLOCK-----\r\n");
result.push(addheader(customComment));
result.push(_base2.default.encode(body));
result.push("\r\n=", getCheckSum(bodyClone), "\r\n");
result.push("-----END PGP PRIVATE KEY BLOCK-----\r\n");
break;
case _enums2.default.armor.signature:
result.push("-----BEGIN PGP SIGNATURE-----\r\n");
result.push(addheader(customComment));
result.push(_base2.default.encode(body));
result.push("\r\n=", getCheckSum(bodyClone), "\r\n");
result.push("-----END PGP SIGNATURE-----\r\n");
break;
}
return _util2.default.concat(result);
}
exports.default = {
encode: armor,
decode: dearmor
};
},{"../config":80,"../enums.js":114,"../util":153,"./base64.js":113,"web-stream-tools":76}],113:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _webStreamTools = require('web-stream-tools');
var _webStreamTools2 = _interopRequireDefault(_webStreamTools);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
const b64s = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'; // Standard radix-64
/* OpenPGP radix-64/base64 string encoding/decoding
* Copyright 2005 Herbert Hanewinkel, www.haneWIN.de
* version 1.0, check www.haneWIN.de for the latest version
*
* This software is provided as-is, without express or implied warranty.
* Permission to use, copy, modify, distribute or sell this software, with or
* without fee, for any purpose and by any individual or organization, is hereby
* granted, provided that the above copyright notice and this paragraph appear
* in all copies. Distribution as a part of an application or binary must
* include the above copyright notice in the documentation and/or other materials
* provided with the application or distribution.
*/
/**
* @requires web-stream-tools
* @module encoding/base64
*/
const b64u = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_'; // URL-safe radix-64
const b64toByte = [];
for (let i = 0; i < b64s.length; i++) {
b64toByte[b64s.charCodeAt(i)] = i;
}
b64toByte[b64u.charCodeAt(62)] = 62;
b64toByte[b64u.charCodeAt(63)] = 63;
/**
* Convert binary array to radix-64
* @param {Uint8Array | ReadableStream<Uint8Array>} t Uint8Array to convert
* @param {bool} u if true, output is URL-safe
* @returns {String | ReadableStream<String>} radix-64 version of input string
* @static
*/
function s2r(t, u = false) {
// TODO check btoa alternative
const b64 = u ? b64u : b64s;
let a;
let c;
let l = 0;
let s = 0;
return _webStreamTools2.default.transform(t, value => {
const r = [];
const tl = value.length;
for (let n = 0; n < tl; n++) {
if (l && l % 60 === 0 && !u) {
r.push("\r\n");
}
c = value[n];
if (s === 0) {
r.push(b64.charAt(c >> 2 & 63));
a = (c & 3) << 4;
} else if (s === 1) {
r.push(b64.charAt(a | c >> 4 & 15));
a = (c & 15) << 2;
} else if (s === 2) {
r.push(b64.charAt(a | c >> 6 & 3));
l += 1;
if (l % 60 === 0 && !u) {
r.push("\r\n");
}
r.push(b64.charAt(c & 63));
}
l += 1;
s += 1;
if (s === 3) {
s = 0;
}
}
return r.join('');
}, () => {
const r = [];
if (s > 0) {
r.push(b64.charAt(a));
l += 1;
if (l % 60 === 0 && !u) {
r.push("\r\n");
}
if (!u) {
r.push('=');
l += 1;
}
}
if (s === 1 && !u) {
if (l % 60 === 0 && !u) {
r.push("\r\n");
}
r.push('=');
}
return r.join('');
});
}
/**
* Convert radix-64 to binary array
* @param {String | ReadableStream<String>} t radix-64 string to convert
* @param {bool} u if true, input is interpreted as URL-safe
* @returns {Uint8Array | ReadableStream<Uint8Array>} binary array version of input string
* @static
*/
function r2s(t, u) {
// TODO check atob alternative
let c;
let s = 0;
let a = 0;
return _webStreamTools2.default.transform(t, value => {
const tl = value.length;
const r = new Uint8Array(Math.ceil(0.75 * tl));
let index = 0;
for (let n = 0; n < tl; n++) {
c = b64toByte[value.charCodeAt(n)];
if (c >= 0) {
if (s) {
r[index++] = a | c >> 6 - s & 255;
}
s = s + 2 & 7;
a = c << s & 255;
}
}
return r.subarray(0, index);
});
}
exports.default = {
encode: s2r,
decode: r2s
};
},{"web-stream-tools":76}],114:[function(require,module,exports){
"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
/**
* @module enums
*/
const byValue = Symbol('byValue');
exports.default = {
/** Maps curve names under various standards to one
* @see {@link https://wiki.gnupg.org/ECC|ECC - GnuPG wiki}
* @enum {String}
* @readonly
*/
curve: {
/** NIST P-256 Curve */
"p256": "p256",
"P-256": "p256",
"secp256r1": "p256",
"prime256v1": "p256",
"1.2.840.10045.3.1.7": "p256",
"2a8648ce3d030107": "p256",
"2A8648CE3D030107": "p256",
/** NIST P-384 Curve */
"p384": "p384",
"P-384": "p384",
"secp384r1": "p384",
"1.3.132.0.34": "p384",
"2b81040022": "p384",
"2B81040022": "p384",
/** NIST P-521 Curve */
"p521": "p521",
"P-521": "p521",
"secp521r1": "p521",
"1.3.132.0.35": "p521",
"2b81040023": "p521",
"2B81040023": "p521",
/** SECG SECP256k1 Curve */
"secp256k1": "secp256k1",
"1.3.132.0.10": "secp256k1",
"2b8104000a": "secp256k1",
"2B8104000A": "secp256k1",
/** Ed25519 */
"ED25519": "ed25519",
"ed25519": "ed25519",
"Ed25519": "ed25519",
"1.3.6.1.4.1.11591.15.1": "ed25519",
"2b06010401da470f01": "ed25519",
"2B06010401DA470F01": "ed25519",
/** Curve25519 */
"X25519": "curve25519",
"cv25519": "curve25519",
"curve25519": "curve25519",
"Curve25519": "curve25519",
"1.3.6.1.4.1.3029.1.5.1": "curve25519",
"2b060104019755010501": "curve25519",
"2B060104019755010501": "curve25519",
/** BrainpoolP256r1 Curve */
"brainpoolP256r1": "brainpoolP256r1",
"1.3.36.3.3.2.8.1.1.7": "brainpoolP256r1",
"2b2403030208010107": "brainpoolP256r1",
"2B2403030208010107": "brainpoolP256r1",
/** BrainpoolP384r1 Curve */
"brainpoolP384r1": "brainpoolP384r1",
"1.3.36.3.3.2.8.1.1.11": "brainpoolP384r1",
"2b240303020801010b": "brainpoolP384r1",
"2B240303020801010B": "brainpoolP384r1",
/** BrainpoolP512r1 Curve */
"brainpoolP512r1": "brainpoolP512r1",
"1.3.36.3.3.2.8.1.1.13": "brainpoolP512r1",
"2b240303020801010d": "brainpoolP512r1",
"2B240303020801010D": "brainpoolP512r1"
},
/** A string to key specifier type
* @enum {Integer}
* @readonly
*/
s2k: {
simple: 0,
salted: 1,
iterated: 3,
gnu: 101
},
/** {@link https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-04#section-9.1|RFC4880bis-04, section 9.1}
* @enum {Integer}
* @readonly
*/
publicKey: {
/** RSA (Encrypt or Sign) [HAC] */
rsa_encrypt_sign: 1,
/** RSA (Encrypt only) [HAC] */
rsa_encrypt: 2,
/** RSA (Sign only) [HAC] */
rsa_sign: 3,
/** Elgamal (Encrypt only) [ELGAMAL] [HAC] */
elgamal: 16,
/** DSA (Sign only) [FIPS186] [HAC] */
dsa: 17,
/** ECDH (Encrypt only) [RFC6637] */
ecdh: 18,
/** ECDSA (Sign only) [RFC6637] */
ecdsa: 19,
/** EdDSA (Sign only)
* [{@link https://tools.ietf.org/html/draft-koch-eddsa-for-openpgp-04|Draft RFC}] */
eddsa: 22,
/** Reserved for AEDH */
aedh: 23,
/** Reserved for AEDSA */
aedsa: 24
},
/** {@link https://tools.ietf.org/html/rfc4880#section-9.2|RFC4880, section 9.2}
* @enum {Integer}
* @readonly
*/
symmetric: {
plaintext: 0,
/** Not implemented! */
idea: 1,
'3des': 2,
tripledes: 2,
cast5: 3,
blowfish: 4,
aes128: 7,
aes192: 8,
aes256: 9,
twofish: 10
},
/** {@link https://tools.ietf.org/html/rfc4880#section-9.3|RFC4880, section 9.3}
* @enum {Integer}
* @readonly
*/
compression: {
uncompressed: 0,
/** RFC1951 */
zip: 1,
/** RFC1950 */
zlib: 2,
bzip2: 3
},
/** {@link https://tools.ietf.org/html/rfc4880#section-9.4|RFC4880, section 9.4}
* @enum {Integer}
* @readonly
*/
hash: {
md5: 1,
sha1: 2,
ripemd: 3,
sha256: 8,
sha384: 9,
sha512: 10,
sha224: 11
},
/** A list of hash names as accepted by webCrypto functions.
* {@link https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto/digest|Parameters, algo}
* @enum {String}
*/
webHash: {
'SHA-1': 2,
'SHA-256': 8,
'SHA-384': 9,
'SHA-512': 10
},
/** {@link https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-04#section-9.6|RFC4880bis-04, section 9.6}
* @enum {Integer}
* @readonly
*/
aead: {
eax: 1,
ocb: 2,
experimental_gcm: 100 // Private algorithm
},
/** A list of packet types and numeric tags associated with them.
* @enum {Integer}
* @readonly
*/
packet: {
publicKeyEncryptedSessionKey: 1,
signature: 2,
symEncryptedSessionKey: 3,
onePassSignature: 4,
secretKey: 5,
publicKey: 6,
secretSubkey: 7,
compressed: 8,
symmetricallyEncrypted: 9,
marker: 10,
literal: 11,
trust: 12,
userid: 13,
publicSubkey: 14,
userAttribute: 17,
symEncryptedIntegrityProtected: 18,
modificationDetectionCode: 19,
symEncryptedAEADProtected: 20 // see IETF draft: https://tools.ietf.org/html/draft-ford-openpgp-format-00#section-2.1
},
/** Data types in the literal packet
* @enum {Integer}
* @readonly
*/
literal: {
/** Binary data 'b' */
binary: 'b'.charCodeAt(),
/** Text data 't' */
text: 't'.charCodeAt(),
/** Utf8 data 'u' */
utf8: 'u'.charCodeAt(),
/** MIME message body part 'm' */
mime: 'm'.charCodeAt()
},
/** One pass signature packet type
* @enum {Integer}
* @readonly
*/
signature: {
/** 0x00: Signature of a binary document. */
binary: 0,
/** 0x01: Signature of a canonical text document.
*
* Canonicalyzing the document by converting line endings. */
text: 1,
/** 0x02: Standalone signature.
*
* This signature is a signature of only its own subpacket contents.
* It is calculated identically to a signature over a zero-lengh
* binary document. Note that it doesn't make sense to have a V3
* standalone signature. */
standalone: 2,
/** 0x10: Generic certification of a User ID and Public-Key packet.
*
* The issuer of this certification does not make any particular
* assertion as to how well the certifier has checked that the owner
* of the key is in fact the person described by the User ID. */
cert_generic: 16,
/** 0x11: Persona certification of a User ID and Public-Key packet.
*
* The issuer of this certification has not done any verification of
* the claim that the owner of this key is the User ID specified. */
cert_persona: 17,
/** 0x12: Casual certification of a User ID and Public-Key packet.
*
* The issuer of this certification has done some casual
* verification of the claim of identity. */
cert_casual: 18,
/** 0x13: Positive certification of a User ID and Public-Key packet.
*
* The issuer of this certification has done substantial
* verification of the claim of identity.
*
* Most OpenPGP implementations make their "key signatures" as 0x10
* certifications. Some implementations can issue 0x11-0x13
* certifications, but few differentiate between the types. */
cert_positive: 19,
/** 0x30: Certification revocation signature
*
* This signature revokes an earlier User ID certification signature
* (signature class 0x10 through 0x13) or direct-key signature
* (0x1F). It should be issued by the same key that issued the
* revoked signature or an authorized revocation key. The signature
* is computed over the same data as the certificate that it
* revokes, and should have a later creation date than that
* certificate. */
cert_revocation: 48,
/** 0x18: Subkey Binding Signature
*
* This signature is a statement by the top-level signing key that
* indicates that it owns the subkey. This signature is calculated
* directly on the primary key and subkey, and not on any User ID or
* other packets. A signature that binds a signing subkey MUST have
* an Embedded Signature subpacket in this binding signature that
* contains a 0x19 signature made by the signing subkey on the
* primary key and subkey. */
subkey_binding: 24,
/** 0x19: Primary Key Binding Signature
*
* This signature is a statement by a signing subkey, indicating
* that it is owned by the primary key and subkey. This signature
* is calculated the same way as a 0x18 signature: directly on the
* primary key and subkey, and not on any User ID or other packets.
*
* When a signature is made over a key, the hash data starts with the
* octet 0x99, followed by a two-octet length of the key, and then body
* of the key packet. (Note that this is an old-style packet header for
* a key packet with two-octet length.) A subkey binding signature
* (type 0x18) or primary key binding signature (type 0x19) then hashes
* the subkey using the same format as the main key (also using 0x99 as
* the first octet). */
key_binding: 25,
/** 0x1F: Signature directly on a key
*
* This signature is calculated directly on a key. It binds the
* information in the Signature subpackets to the key, and is
* appropriate to be used for subpackets that provide information
* about the key, such as the Revocation Key subpacket. It is also
* appropriate for statements that non-self certifiers want to make
* about the key itself, rather than the binding between a key and a
* name. */
key: 31,
/** 0x20: Key revocation signature
*
* The signature is calculated directly on the key being revoked. A
* revoked key is not to be used. Only revocation signatures by the
* key being revoked, or by an authorized revocation key, should be
* considered valid revocation signatures.a */
key_revocation: 32,
/** 0x28: Subkey revocation signature
*
* The signature is calculated directly on the subkey being revoked.
* A revoked subkey is not to be used. Only revocation signatures
* by the top-level signature key that is bound to this subkey, or
* by an authorized revocation key, should be considered valid
* revocation signatures.
*
* Key revocation signatures (types 0x20 and 0x28)
* hash only the key being revoked. */
subkey_revocation: 40,
/** 0x40: Timestamp signature.
* This signature is only meaningful for the timestamp contained in
* it. */
timestamp: 64,
/** 0x50: Third-Party Confirmation signature.
*
* This signature is a signature over some other OpenPGP Signature
* packet(s). It is analogous to a notary seal on the signed data.
* A third-party signature SHOULD include Signature Target
* subpacket(s) to give easy identification. Note that we really do
* mean SHOULD. There are plausible uses for this (such as a blind
* party that only sees the signature, not the key or source
* document) that cannot include a target subpacket. */
third_party: 80
},
/** Signature subpacket type
* @enum {Integer}
* @readonly
*/
signatureSubpacket: {
signature_creation_time: 2,
signature_expiration_time: 3,
exportable_certification: 4,
trust_signature: 5,
regular_expression: 6,
revocable: 7,
key_expiration_time: 9,
placeholder_backwards_compatibility: 10,
preferred_symmetric_algorithms: 11,
revocation_key: 12,
issuer: 16,
notation_data: 20,
preferred_hash_algorithms: 21,
preferred_compression_algorithms: 22,
key_server_preferences: 23,
preferred_key_server: 24,
primary_user_id: 25,
policy_uri: 26,
key_flags: 27,
signers_user_id: 28,
reason_for_revocation: 29,
features: 30,
signature_target: 31,
embedded_signature: 32,
issuer_fingerprint: 33,
preferred_aead_algorithms: 34
},
/** Key flags
* @enum {Integer}
* @readonly
*/
keyFlags: {
/** 0x01 - This key may be used to certify other keys. */
certify_keys: 1,
/** 0x02 - This key may be used to sign data. */
sign_data: 2,
/** 0x04 - This key may be used to encrypt communications. */
encrypt_communication: 4,
/** 0x08 - This key may be used to encrypt storage. */
encrypt_storage: 8,
/** 0x10 - The private component of this key may have been split
* by a secret-sharing mechanism. */
split_private_key: 16,
/** 0x20 - This key may be used for authentication. */
authentication: 32,
/** 0x80 - The private component of this key may be in the
* possession of more than one person. */
shared_private_key: 128
},
/** Key status
* @enum {Integer}
* @readonly
*/
keyStatus: {
invalid: 0,
expired: 1,
revoked: 2,
valid: 3,
no_self_cert: 4
},
/** Armor type
* @enum {Integer}
* @readonly
*/
armor: {
multipart_section: 0,
multipart_last: 1,
signed: 2,
message: 3,
public_key: 4,
private_key: 5,
signature: 6
},
/** {@link https://tools.ietf.org/html/rfc4880#section-5.2.3.23|RFC4880, section 5.2.3.23}
* @enum {Integer}
* @readonly
*/
reasonForRevocation: {
/** No reason specified (key revocations or cert revocations) */
no_reason: 0,
/** Key is superseded (key revocations) */
key_superseded: 1,
/** Key material has been compromised (key revocations) */
key_compromised: 2,
/** Key is retired and no longer used (key revocations) */
key_retired: 3,
/** User ID information is no longer valid (cert revocations) */
userid_invalid: 32
},
/** {@link https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-04#section-5.2.3.25|RFC4880bis-04, section 5.2.3.25}
* @enum {Integer}
* @readonly
*/
features: {
/** 0x01 - Modification Detection (packets 18 and 19) */
modification_detection: 1,
/** 0x02 - AEAD Encrypted Data Packet (packet 20) and version 5
* Symmetric-Key Encrypted Session Key Packets (packet 3) */
aead: 2,
/** 0x04 - Version 5 Public-Key Packet format and corresponding new
* fingerprint format */
v5_keys: 4
},
/** Asserts validity and converts from string/integer to integer. */
write: function write(type, e) {
if (typeof e === 'number') {
e = this.read(type, e);
}
if (type[e] !== undefined) {
return type[e];
}
throw new Error('Invalid enum value.');
},
/** Converts from an integer to string. */
read: function read(type, e) {
if (!type[byValue]) {
type[byValue] = [];
Object.entries(type).forEach(([key, value]) => {
type[byValue][value] = key;
});
}
if (type[byValue][e] !== undefined) {
return type[byValue][e];
}
throw new Error('Invalid enum value.');
}
};
},{}],115:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _config = require('./config');
var _config2 = _interopRequireDefault(_config);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* Initialize the HKP client and configure it with the key server url and fetch function.
* @constructor
* @param {String} keyServerBaseUrl (optional) The HKP key server base url including
* the protocol to use, e.g. 'https://pgp.mit.edu'; defaults to
* openpgp.config.keyserver (https://keyserver.ubuntu.com)
*/
function HKP(keyServerBaseUrl) {
this._baseUrl = keyServerBaseUrl || _config2.default.keyserver;
this._fetch = typeof window !== 'undefined' ? window.fetch : require('node-fetch');
}
/**
* Search for a public key on the key server either by key ID or part of the user ID.
* @param {String} options.keyID The long public key ID.
* @param {String} options.query This can be any part of the key user ID such as name
* or email address.
* @returns {Promise<String>} The ascii armored public key.
* @async
*/
// OpenPGP.js - An OpenPGP implementation in javascript
// Copyright (C) 2015 Tankred Hase
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @fileoverview This class implements a client for the OpenPGP HTTP Keyserver Protocol (HKP)
* in order to lookup and upload keys on standard public key servers.
* @module hkp
*/
HKP.prototype.lookup = function (options) {
//let uri = this._baseUrl + '/pks/lookup?op=get&options=mr&search=';
let uri = this._baseUrl + '/pks/lookup?op=get&search=';
const fetch = this._fetch;
if (options.keyId) {
uri += '0x' + encodeURIComponent(options.keyId);
} else if (options.query) {
uri += encodeURIComponent(options.query);
} else {
throw new Error('You must provide a query parameter!');
}
return fetch(uri).then(function (response) {
if (response.status === 200) {
return response.text();
}
}).then(function (publicKeyArmored) {
if (!publicKeyArmored || publicKeyArmored.indexOf('-----END PGP PUBLIC KEY BLOCK-----') < 0) {
return;
}
return publicKeyArmored.trim();
});
};
/**
* Upload a public key to the server.
* @param {String} publicKeyArmored An ascii armored public key to be uploaded.
* @returns {Promise}
* @async
*/
HKP.prototype.upload = function (publicKeyArmored) {
const uri = this._baseUrl + '/pks/add';
const fetch = this._fetch;
return fetch(uri, {
method: 'post',
headers: {
'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'
},
body: 'keytext=' + encodeURIComponent(publicKeyArmored)
});
};
exports.default = HKP;
},{"./config":80,"node-fetch":"node-fetch"}],116:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.WKD = exports.HKP = exports.AsyncProxy = exports.Keyring = exports.crypto = exports.config = exports.enums = exports.armor = exports.stream = exports.OID = exports.KDFParams = exports.ECDHSymmetricKey = exports.Keyid = exports.S2K = exports.MPI = exports.packet = exports.util = exports.cleartext = exports.message = exports.signature = exports.key = exports.destroyWorker = exports.getWorker = exports.initWorker = exports.decryptSessionKeys = exports.encryptSessionKey = exports.decryptKey = exports.revokeKey = exports.reformatKey = exports.generateKey = exports.verify = exports.sign = exports.decrypt = exports.encrypt = undefined;
var _openpgp = require('./openpgp');
Object.defineProperty(exports, 'encrypt', {
enumerable: true,
get: function get() {
return _openpgp.encrypt;
}
});
Object.defineProperty(exports, 'decrypt', {
enumerable: true,
get: function get() {
return _openpgp.decrypt;
}
});
Object.defineProperty(exports, 'sign', {
enumerable: true,
get: function get() {
return _openpgp.sign;
}
});
Object.defineProperty(exports, 'verify', {
enumerable: true,
get: function get() {
return _openpgp.verify;
}
});
Object.defineProperty(exports, 'generateKey', {
enumerable: true,
get: function get() {
return _openpgp.generateKey;
}
});
Object.defineProperty(exports, 'reformatKey', {
enumerable: true,
get: function get() {
return _openpgp.reformatKey;
}
});
Object.defineProperty(exports, 'revokeKey', {
enumerable: true,
get: function get() {
return _openpgp.revokeKey;
}
});
Object.defineProperty(exports, 'decryptKey', {
enumerable: true,
get: function get() {
return _openpgp.decryptKey;
}
});
Object.defineProperty(exports, 'encryptSessionKey', {
enumerable: true,
get: function get() {
return _openpgp.encryptSessionKey;
}
});
Object.defineProperty(exports, 'decryptSessionKeys', {
enumerable: true,
get: function get() {
return _openpgp.decryptSessionKeys;
}
});
Object.defineProperty(exports, 'initWorker', {
enumerable: true,
get: function get() {
return _openpgp.initWorker;
}
});
Object.defineProperty(exports, 'getWorker', {
enumerable: true,
get: function get() {
return _openpgp.getWorker;
}
});
Object.defineProperty(exports, 'destroyWorker', {
enumerable: true,
get: function get() {
return _openpgp.destroyWorker;
}
});
var _util = require('./util');
Object.defineProperty(exports, 'util', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_util).default;
}
});
var _packet = require('./packet');
Object.defineProperty(exports, 'packet', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_packet).default;
}
});
var _mpi = require('./type/mpi');
Object.defineProperty(exports, 'MPI', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_mpi).default;
}
});
var _s2k = require('./type/s2k');
Object.defineProperty(exports, 'S2K', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_s2k).default;
}
});
var _keyid = require('./type/keyid');
Object.defineProperty(exports, 'Keyid', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_keyid).default;
}
});
var _ecdh_symkey = require('./type/ecdh_symkey');
Object.defineProperty(exports, 'ECDHSymmetricKey', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_ecdh_symkey).default;
}
});
var _kdf_params = require('./type/kdf_params');
Object.defineProperty(exports, 'KDFParams', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_kdf_params).default;
}
});
var _oid = require('./type/oid');
Object.defineProperty(exports, 'OID', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_oid).default;
}
});
var _webStreamTools = require('web-stream-tools');
Object.defineProperty(exports, 'stream', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_webStreamTools).default;
}
});
var _armor = require('./encoding/armor');
Object.defineProperty(exports, 'armor', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_armor).default;
}
});
var _enums = require('./enums');
Object.defineProperty(exports, 'enums', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_enums).default;
}
});
var _config = require('./config/config');
Object.defineProperty(exports, 'config', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_config).default;
}
});
var _crypto = require('./crypto');
Object.defineProperty(exports, 'crypto', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_crypto).default;
}
});
var _keyring = require('./keyring');
Object.defineProperty(exports, 'Keyring', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_keyring).default;
}
});
var _async_proxy = require('./worker/async_proxy');
Object.defineProperty(exports, 'AsyncProxy', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_async_proxy).default;
}
});
var _hkp = require('./hkp');
Object.defineProperty(exports, 'HKP', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_hkp).default;
}
});
var _wkd = require('./wkd');
Object.defineProperty(exports, 'WKD', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_wkd).default;
}
});
var openpgp = _interopRequireWildcard(_openpgp);
var _key = require('./key');
var keyMod = _interopRequireWildcard(_key);
var _signature = require('./signature');
var signatureMod = _interopRequireWildcard(_signature);
var _message = require('./message');
var messageMod = _interopRequireWildcard(_message);
var _cleartext = require('./cleartext');
var cleartextMod = _interopRequireWildcard(_cleartext);
function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
exports.default = openpgp;
/**
* Export each high level api function separately.
* Usage:
*
* import { encryptMessage } from 'openpgp.js'
* encryptMessage(keys, text)
*/
/* eslint-disable import/newline-after-import, import/first */
/**
* Export high level api as default.
* Usage:
*
* import openpgp from 'openpgp.js'
* openpgp.encryptMessage(keys, text)
*/
/**
* @see module:key
* @name module:openpgp.key
*/
const key = exports.key = keyMod;
/**
* @see module:signature
* @name module:openpgp.signature
*/
const signature = exports.signature = signatureMod;
/**
* @see module:message
* @name module:openpgp.message
*/
const message = exports.message = messageMod;
/**
* @see module:cleartext
* @name module:openpgp.cleartext
*/
const cleartext = exports.cleartext = cleartextMod;
/**
* @see module:util
* @name module:openpgp.util
*/
},{"./cleartext":78,"./config/config":79,"./crypto":95,"./encoding/armor":112,"./enums":114,"./hkp":115,"./key":117,"./keyring":118,"./message":121,"./openpgp":122,"./packet":126,"./signature":146,"./type/ecdh_symkey":147,"./type/kdf_params":148,"./type/keyid":149,"./type/mpi":150,"./type/oid":151,"./type/s2k":152,"./util":153,"./wkd":154,"./worker/async_proxy":155,"web-stream-tools":76}],117:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _slicedToArray = function () { function sliceIterator(arr, i) { var _arr = []; var _n = true; var _d = false; var _e = undefined; try { for (var _i = arr[Symbol.iterator](), _s; !(_n = (_s = _i.next()).done); _n = true) { _arr.push(_s.value); if (i && _arr.length === i) break; } } catch (err) { _d = true; _e = err; } finally { try { if (!_n && _i["return"]) _i["return"](); } finally { if (_d) throw _e; } } return _arr; } return function (arr, i) { if (Array.isArray(arr)) { return arr; } else if (Symbol.iterator in Object(arr)) { return sliceIterator(arr, i); } else { throw new TypeError("Invalid attempt to destructure non-iterable instance"); } }; }(); // GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @requires encoding/armor
* @requires crypto
* @requires packet
* @requires config
* @requires enums
* @requires util
* @module key
*/
exports.Key = Key;
exports.createSignaturePacket = createSignaturePacket;
exports.read = read;
exports.readArmored = readArmored;
exports.generate = generate;
exports.reformat = reformat;
exports.getPreferredHashAlgo = getPreferredHashAlgo;
exports.getPreferredAlgo = getPreferredAlgo;
exports.isAeadSupported = isAeadSupported;
var _armor = require('./encoding/armor');
var _armor2 = _interopRequireDefault(_armor);
var _crypto = require('./crypto');
var _crypto2 = _interopRequireDefault(_crypto);
var _packet = require('./packet');
var _packet2 = _interopRequireDefault(_packet);
var _config = require('./config');
var _config2 = _interopRequireDefault(_config);
var _enums = require('./enums');
var _enums2 = _interopRequireDefault(_enums);
var _util = require('./util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* @class
* @classdesc Class that represents an OpenPGP key. Must contain a primary key.
* Can contain additional subkeys, signatures, user ids, user attributes.
* @param {module:packet.List} packetlist The packets that form this key
* @borrows module:packet.PublicKey#getKeyId as Key#getKeyId
* @borrows module:packet.PublicKey#getFingerprint as Key#getFingerprint
* @borrows module:packet.PublicKey#hasSameFingerprintAs as Key#hasSameFingerprintAs
* @borrows module:packet.PublicKey#getAlgorithmInfo as Key#getAlgorithmInfo
* @borrows module:packet.PublicKey#getCreationTime as Key#getCreationTime
* @borrows module:packet.PublicKey#isDecrypted as Key#isDecrypted
*/
function Key(packetlist) {
if (!(this instanceof Key)) {
return new Key(packetlist);
}
// same data as in packetlist but in structured form
this.keyPacket = null;
this.revocationSignatures = [];
this.directSignatures = [];
this.users = [];
this.subKeys = [];
this.packetlist2structure(packetlist);
if (!this.keyPacket || !this.users.length) {
throw new Error('Invalid key: need at least key and user ID packet');
}
}
Object.defineProperty(Key.prototype, 'primaryKey', {
get() {
return this.keyPacket;
},
configurable: true,
enumerable: true
});
/**
* Transforms packetlist to structured key data
* @param {module:packet.List} packetlist The packets that form a key
*/
Key.prototype.packetlist2structure = function (packetlist) {
let user;
let primaryKeyId;
let subKey;
for (let i = 0; i < packetlist.length; i++) {
switch (packetlist[i].tag) {
case _enums2.default.packet.publicKey:
case _enums2.default.packet.secretKey:
this.keyPacket = packetlist[i];
primaryKeyId = this.getKeyId();
break;
case _enums2.default.packet.userid:
case _enums2.default.packet.userAttribute:
user = new User(packetlist[i]);
this.users.push(user);
break;
case _enums2.default.packet.publicSubkey:
case _enums2.default.packet.secretSubkey:
user = null;
subKey = new SubKey(packetlist[i]);
this.subKeys.push(subKey);
break;
case _enums2.default.packet.signature:
switch (packetlist[i].signatureType) {
case _enums2.default.signature.cert_generic:
case _enums2.default.signature.cert_persona:
case _enums2.default.signature.cert_casual:
case _enums2.default.signature.cert_positive:
if (!user) {
_util2.default.print_debug('Dropping certification signatures without preceding user packet');
continue;
}
if (packetlist[i].issuerKeyId.equals(primaryKeyId)) {
checkRevocationKey(packetlist[i], primaryKeyId);
user.selfCertifications.push(packetlist[i]);
} else {
user.otherCertifications.push(packetlist[i]);
}
break;
case _enums2.default.signature.cert_revocation:
if (user) {
user.revocationSignatures.push(packetlist[i]);
} else {
this.directSignatures.push(packetlist[i]);
}
break;
case _enums2.default.signature.key:
checkRevocationKey(packetlist[i], primaryKeyId);
this.directSignatures.push(packetlist[i]);
break;
case _enums2.default.signature.subkey_binding:
if (!subKey) {
_util2.default.print_debug('Dropping subkey binding signature without preceding subkey packet');
continue;
}
checkRevocationKey(packetlist[i], primaryKeyId);
subKey.bindingSignatures.push(packetlist[i]);
break;
case _enums2.default.signature.key_revocation:
this.revocationSignatures.push(packetlist[i]);
break;
case _enums2.default.signature.subkey_revocation:
if (!subKey) {
_util2.default.print_debug('Dropping subkey revocation signature without preceding subkey packet');
continue;
}
subKey.revocationSignatures.push(packetlist[i]);
break;
}
break;
}
}
};
/**
* Transforms structured key data to packetlist
* @returns {module:packet.List} The packets that form a key
*/
Key.prototype.toPacketlist = function () {
const packetlist = new _packet2.default.List();
packetlist.push(this.keyPacket);
packetlist.concat(this.revocationSignatures);
packetlist.concat(this.directSignatures);
this.users.map(user => packetlist.concat(user.toPacketlist()));
this.subKeys.map(subKey => packetlist.concat(subKey.toPacketlist()));
return packetlist;
};
/**
* Returns an array containing all public or private subkeys matching keyId;
* If keyId is not present, returns all subkeys.
* @param {type/keyid} keyId
* @returns {Array<module:key~SubKey>}
*/
Key.prototype.getSubkeys = function (keyId = null) {
const subKeys = [];
this.subKeys.forEach(subKey => {
if (!keyId || subKey.getKeyId().equals(keyId, true)) {
subKeys.push(subKey);
}
});
return subKeys;
};
/**
* Returns an array containing all public or private keys matching keyId.
* If keyId is not present, returns all keys starting with the primary key.
* @param {type/keyid} keyId
* @returns {Array<module:key.Key|module:key~SubKey>}
*/
Key.prototype.getKeys = function (keyId = null) {
const keys = [];
if (!keyId || this.getKeyId().equals(keyId, true)) {
keys.push(this);
}
return keys.concat(this.getSubkeys(keyId));
};
/**
* Returns key IDs of all keys
* @returns {Array<module:type/keyid>}
*/
Key.prototype.getKeyIds = function () {
return this.getKeys().map(key => key.getKeyId());
};
/**
* Returns userids
* @returns {Array<string>} array of userids
*/
Key.prototype.getUserIds = function () {
return this.users.map(user => {
return user.userId ? user.userId.userid : null;
}).filter(userid => userid !== null);
};
/**
* Returns true if this is a public key
* @returns {Boolean}
*/
Key.prototype.isPublic = function () {
return this.keyPacket.tag === _enums2.default.packet.publicKey;
};
/**
* Returns true if this is a private key
* @returns {Boolean}
*/
Key.prototype.isPrivate = function () {
return this.keyPacket.tag === _enums2.default.packet.secretKey;
};
/**
* Returns key as public key (shallow copy)
* @returns {module:key.Key} new public Key
*/
Key.prototype.toPublic = function () {
const packetlist = new _packet2.default.List();
const keyPackets = this.toPacketlist();
let bytes;
let pubKeyPacket;
let pubSubkeyPacket;
for (let i = 0; i < keyPackets.length; i++) {
switch (keyPackets[i].tag) {
case _enums2.default.packet.secretKey:
bytes = keyPackets[i].writePublicKey();
pubKeyPacket = new _packet2.default.PublicKey();
pubKeyPacket.read(bytes);
packetlist.push(pubKeyPacket);
break;
case _enums2.default.packet.secretSubkey:
bytes = keyPackets[i].writePublicKey();
pubSubkeyPacket = new _packet2.default.PublicSubkey();
pubSubkeyPacket.read(bytes);
packetlist.push(pubSubkeyPacket);
break;
default:
packetlist.push(keyPackets[i]);
}
}
return new Key(packetlist);
};
/**
* Returns ASCII armored text of key
* @returns {ReadableStream<String>} ASCII armor
*/
Key.prototype.armor = function () {
const type = this.isPublic() ? _enums2.default.armor.public_key : _enums2.default.armor.private_key;
return _armor2.default.encode(type, this.toPacketlist().write());
};
/**
* Returns the valid and non-expired signature that has the latest creation date, while ignoring signatures created in the future.
* @param {Array<module:packet.Signature>} signatures List of signatures
* @param {Date} date Use the given date instead of the current time
* @returns {Promise<module:packet.Signature>} The latest valid signature
* @async
*/
async function getLatestValidSignature(signatures, primaryKey, signatureType, dataToVerify, date = new Date()) {
let signature;
for (let i = signatures.length - 1; i >= 0; i--) {
if ((!signature || signatures[i].created >= signature.created) &&
// check binding signature is not expired (ie, check for V4 expiration time)
!signatures[i].isExpired(date) && (
// check binding signature is verified
signatures[i].verified || (await signatures[i].verify(primaryKey, signatureType, dataToVerify)))) {
signature = signatures[i];
}
}
return signature;
}
/**
* Returns last created key or key by given keyId that is available for signing and verification
* @param {module:type/keyid} keyId, optional
* @param {Date} date (optional) use the given date for verification instead of the current time
* @param {Object} userId, optional user ID
* @returns {Promise<module:key.Key|module:key~SubKey|null>} key or null if no signing key has been found
* @async
*/
Key.prototype.getSigningKey = async function (keyId = null, date = new Date(), userId = {}) {
const primaryKey = this.keyPacket;
if ((await this.verifyPrimaryKey(date, userId)) === _enums2.default.keyStatus.valid) {
const subKeys = this.subKeys.slice().sort((a, b) => b.keyPacket.created - a.keyPacket.created);
for (let i = 0; i < subKeys.length; i++) {
if (!keyId || subKeys[i].getKeyId().equals(keyId)) {
if ((await subKeys[i].verify(primaryKey, date)) === _enums2.default.keyStatus.valid) {
const dataToVerify = { key: primaryKey, bind: subKeys[i].keyPacket };
const bindingSignature = await getLatestValidSignature(subKeys[i].bindingSignatures, primaryKey, _enums2.default.signature.subkey_binding, dataToVerify, date);
if (bindingSignature && bindingSignature.embeddedSignature && isValidSigningKeyPacket(subKeys[i].keyPacket, bindingSignature) && (await getLatestValidSignature([bindingSignature.embeddedSignature], subKeys[i].keyPacket, _enums2.default.signature.key_binding, dataToVerify, date))) {
return subKeys[i];
}
}
}
}
const primaryUser = await this.getPrimaryUser(date, userId);
if (primaryUser && (!keyId || primaryKey.getKeyId().equals(keyId)) && isValidSigningKeyPacket(primaryKey, primaryUser.selfCertification)) {
return this;
}
}
return null;
function isValidSigningKeyPacket(keyPacket, signature) {
if (!signature.verified || signature.revoked !== false) {
// Sanity check
throw new Error('Signature not verified');
}
return keyPacket.algorithm !== _enums2.default.read(_enums2.default.publicKey, _enums2.default.publicKey.rsa_encrypt) && keyPacket.algorithm !== _enums2.default.read(_enums2.default.publicKey, _enums2.default.publicKey.elgamal) && keyPacket.algorithm !== _enums2.default.read(_enums2.default.publicKey, _enums2.default.publicKey.ecdh) && (!signature.keyFlags || (signature.keyFlags[0] & _enums2.default.keyFlags.sign_data) !== 0);
}
};
/**
* Returns last created key or key by given keyId that is available for encryption or decryption
* @param {module:type/keyid} keyId, optional
* @param {Date} date, optional
* @param {String} userId, optional
* @returns {Promise<module:key.Key|module:key~SubKey|null>} key or null if no encryption key has been found
* @async
*/
Key.prototype.getEncryptionKey = async function (keyId, date = new Date(), userId = {}) {
const primaryKey = this.keyPacket;
if ((await this.verifyPrimaryKey(date, userId)) === _enums2.default.keyStatus.valid) {
// V4: by convention subkeys are preferred for encryption service
const subKeys = this.subKeys.slice().sort((a, b) => b.keyPacket.created - a.keyPacket.created);
for (let i = 0; i < subKeys.length; i++) {
if (!keyId || subKeys[i].getKeyId().equals(keyId)) {
if ((await subKeys[i].verify(primaryKey, date)) === _enums2.default.keyStatus.valid) {
const dataToVerify = { key: primaryKey, bind: subKeys[i].keyPacket };
const bindingSignature = await getLatestValidSignature(subKeys[i].bindingSignatures, primaryKey, _enums2.default.signature.subkey_binding, dataToVerify, date);
if (bindingSignature && isValidEncryptionKeyPacket(subKeys[i].keyPacket, bindingSignature)) {
return subKeys[i];
}
}
}
}
// if no valid subkey for encryption, evaluate primary key
const primaryUser = await this.getPrimaryUser(date, userId);
if (primaryUser && (!keyId || primaryKey.getKeyId().equals(keyId)) && isValidEncryptionKeyPacket(primaryKey, primaryUser.selfCertification)) {
return this;
}
}
return null;
function isValidEncryptionKeyPacket(keyPacket, signature) {
if (!signature.verified || signature.revoked !== false) {
// Sanity check
throw new Error('Signature not verified');
}
return keyPacket.algorithm !== _enums2.default.read(_enums2.default.publicKey, _enums2.default.publicKey.dsa) && keyPacket.algorithm !== _enums2.default.read(_enums2.default.publicKey, _enums2.default.publicKey.rsa_sign) && keyPacket.algorithm !== _enums2.default.read(_enums2.default.publicKey, _enums2.default.publicKey.ecdsa) && keyPacket.algorithm !== _enums2.default.read(_enums2.default.publicKey, _enums2.default.publicKey.eddsa) && (!signature.keyFlags || (signature.keyFlags[0] & _enums2.default.keyFlags.encrypt_communication) !== 0 || (signature.keyFlags[0] & _enums2.default.keyFlags.encrypt_storage) !== 0);
}
};
/**
* Encrypts all secret key and subkey packets matching keyId
* @param {String|Array<String>} passphrases - if multiple passphrases, then should be in same order as packets each should encrypt
* @param {module:type/keyid} keyId
* @returns {Promise<Array<module:packet.SecretKey|module:packet.SecretSubkey>>}
* @async
*/
Key.prototype.encrypt = async function (passphrases, keyId = null) {
if (!this.isPrivate()) {
throw new Error("Nothing to encrypt in a public key");
}
const keys = this.getKeys(keyId);
passphrases = _util2.default.isArray(passphrases) ? passphrases : new Array(keys.length).fill(passphrases);
if (passphrases.length !== keys.length) {
throw new Error("Invalid number of passphrases for key");
}
return Promise.all(keys.map(async function (key, i) {
const keyPacket = key.keyPacket;
await keyPacket.encrypt(passphrases[i]);
keyPacket.clearPrivateParams();
return keyPacket;
}));
};
/**
* Decrypts all secret key and subkey packets matching keyId
* @param {String|Array<String>} passphrases
* @param {module:type/keyid} keyId
* @returns {Promise<Boolean>} true if all matching key and subkey packets decrypted successfully
* @async
*/
Key.prototype.decrypt = async function (passphrases, keyId = null) {
if (!this.isPrivate()) {
throw new Error("Nothing to decrypt in a public key");
}
passphrases = _util2.default.isArray(passphrases) ? passphrases : [passphrases];
const results = await Promise.all(this.getKeys(keyId).map(async function (key) {
let decrypted = false;
let error = null;
await Promise.all(passphrases.map(async function (passphrase) {
try {
await key.keyPacket.decrypt(passphrase);
decrypted = true;
} catch (e) {
error = e;
}
}));
if (!decrypted) {
throw error;
}
return decrypted;
}));
return results.every(result => result === true);
};
/**
* Checks if a signature on a key is revoked
* @param {module:packet.SecretKey|
* @param {module:packet.Signature} signature The signature to verify
* @param {module:packet.PublicSubkey|
* module:packet.SecretSubkey|
* module:packet.PublicKey|
* module:packet.SecretKey} key, optional The key to verify the signature
* @param {Date} date Use the given date instead of the current time
* @returns {Promise<Boolean>} True if the certificate is revoked
* @async
*/
Key.prototype.isRevoked = async function (signature, key, date = new Date()) {
return isDataRevoked(this.keyPacket, _enums2.default.signature.key_revocation, { key: this.keyPacket }, this.revocationSignatures, signature, key, date);
};
/**
* Verify primary key. Checks for revocation signatures, expiration time
* and valid self signature
* @param {Date} date (optional) use the given date for verification instead of the current time
* @param {Object} userId (optional) user ID
* @returns {Promise<module:enums.keyStatus>} The status of the primary key
* @async
*/
Key.prototype.verifyPrimaryKey = async function (date = new Date(), userId = {}) {
const primaryKey = this.keyPacket;
// check for key revocation signatures
if (await this.isRevoked(null, null, date)) {
return _enums2.default.keyStatus.revoked;
}
// check for at least one self signature. Self signature of user ID not mandatory
// See {@link https://tools.ietf.org/html/rfc4880#section-11.1}
if (!this.users.some(user => user.userId && user.selfCertifications.length)) {
return _enums2.default.keyStatus.no_self_cert;
}
// check for valid, unrevoked, unexpired self signature
var _ref = (await this.getPrimaryUser(date, userId)) || {};
const user = _ref.user,
selfCertification = _ref.selfCertification;
if (!user) {
return _enums2.default.keyStatus.invalid;
}
// check for expiration time
if (isDataExpired(primaryKey, selfCertification, date)) {
return _enums2.default.keyStatus.expired;
}
return _enums2.default.keyStatus.valid;
};
/**
* Returns the latest date when the key can be used for encrypting, signing, or both, depending on the `capabilities` paramater.
* When `capabilities` is null, defaults to returning the expiry date of the primary key.
* Returns null if `capabilities` is passed and the key does not have the specified capabilities or is revoked or invalid.
* Returns Infinity if the key doesn't expire.
* @param {encrypt|sign|encrypt_sign} capabilities, optional
* @param {module:type/keyid} keyId, optional
* @param {Object} userId, optional user ID
* @returns {Promise<Date | Infinity | null>}
* @async
*/
Key.prototype.getExpirationTime = async function (capabilities, keyId, userId) {
const primaryUser = await this.getPrimaryUser(null, userId);
if (!primaryUser) {
throw new Error('Could not find primary user');
}
const selfCert = primaryUser.selfCertification;
const keyExpiry = getExpirationTime(this.keyPacket, selfCert);
const sigExpiry = selfCert.getExpirationTime();
let expiry = keyExpiry < sigExpiry ? keyExpiry : sigExpiry;
if (capabilities === 'encrypt' || capabilities === 'encrypt_sign') {
const encryptKey = (await this.getEncryptionKey(keyId, expiry, userId)) || (await this.getEncryptionKey(keyId, null, userId));
if (!encryptKey) return null;
const encryptExpiry = await encryptKey.getExpirationTime(this.keyPacket);
if (encryptExpiry < expiry) expiry = encryptExpiry;
}
if (capabilities === 'sign' || capabilities === 'encrypt_sign') {
const signKey = (await this.getSigningKey(keyId, expiry, userId)) || (await this.getSigningKey(keyId, null, userId));
if (!signKey) return null;
const signExpiry = await signKey.getExpirationTime(this.keyPacket);
if (signExpiry < expiry) expiry = signExpiry;
}
return expiry;
};
/**
* Returns primary user and most significant (latest valid) self signature
* - if multiple primary users exist, returns the one with the latest self signature
* - otherwise, returns the user with the latest self signature
* @param {Date} date (optional) use the given date for verification instead of the current time
* @param {Object} userId (optional) user ID to get instead of the primary user, if it exists
* @returns {Promise<{user: module:key.User,
* selfCertification: module:packet.Signature}>} The primary user and the self signature
* @async
*/
Key.prototype.getPrimaryUser = async function (date = new Date(), userId = {}) {
const primaryKey = this.keyPacket;
const users = [];
for (let i = 0; i < this.users.length; i++) {
const user = this.users[i];
if (!user.userId || !((userId.name === undefined || user.userId.name === userId.name) && (userId.email === undefined || user.userId.email === userId.email) && (userId.comment === undefined || user.userId.comment === userId.comment))) continue;
const dataToVerify = { userId: user.userId, key: primaryKey };
const selfCertification = await getLatestValidSignature(user.selfCertifications, primaryKey, _enums2.default.signature.cert_generic, dataToVerify, date);
if (!selfCertification) continue;
users.push({ index: i, user, selfCertification });
}
if (!users.length) {
if (userId.name !== undefined || userId.email !== undefined || userId.comment !== undefined) {
throw new Error('Could not find user that matches that user ID');
}
return null;
}
await Promise.all(users.map(async function (a) {
return a.user.revoked || a.user.isRevoked(primaryKey, a.selfCertification, null, date);
}));
// sort by primary user flag and signature creation time
const primaryUser = users.sort(function (a, b) {
const A = a.selfCertification;
const B = b.selfCertification;
return B.revoked - A.revoked || A.isPrimaryUserID - B.isPrimaryUserID || A.created - B.created;
}).pop();
const user = primaryUser.user,
cert = primaryUser.selfCertification;
if (cert.revoked || (await user.isRevoked(primaryKey, cert, null, date))) {
return null;
}
return primaryUser;
};
/**
* Update key with new components from specified key with same key ID:
* users, subkeys, certificates are merged into the destination key,
* duplicates and expired signatures are ignored.
*
* If the specified key is a private key and the destination key is public,
* the destination key is transformed to a private key.
* @param {module:key.Key} key Source key to merge
* @returns {Promise<undefined>}
* @async
*/
Key.prototype.update = async function (key) {
if ((await key.verifyPrimaryKey()) === _enums2.default.keyStatus.invalid) {
return;
}
if (!this.hasSameFingerprintAs(key)) {
throw new Error('Key update method: fingerprints of keys not equal');
}
if (this.isPublic() && key.isPrivate()) {
// check for equal subkey packets
const equal = this.subKeys.length === key.subKeys.length && this.subKeys.every(destSubKey => {
return key.subKeys.some(srcSubKey => {
return destSubKey.hasSameFingerprintAs(srcSubKey);
});
});
if (!equal) {
throw new Error('Cannot update public key with private key if subkey mismatch');
}
this.keyPacket = key.keyPacket;
}
// revocation signatures
await mergeSignatures(key, this, 'revocationSignatures', srcRevSig => {
return isDataRevoked(this.keyPacket, _enums2.default.signature.key_revocation, this, [srcRevSig], null, key.keyPacket);
});
// direct signatures
await mergeSignatures(key, this, 'directSignatures');
// TODO replace when Promise.some or Promise.any are implemented
// users
await Promise.all(key.users.map(async srcUser => {
let found = false;
await Promise.all(this.users.map(async dstUser => {
if (srcUser.userId && dstUser.userId && srcUser.userId.userid === dstUser.userId.userid || srcUser.userAttribute && srcUser.userAttribute.equals(dstUser.userAttribute)) {
await dstUser.update(srcUser, this.keyPacket);
found = true;
}
}));
if (!found) {
this.users.push(srcUser);
}
}));
// TODO replace when Promise.some or Promise.any are implemented
// subkeys
await Promise.all(key.subKeys.map(async srcSubKey => {
let found = false;
await Promise.all(this.subKeys.map(async dstSubKey => {
if (dstSubKey.hasSameFingerprintAs(srcSubKey)) {
await dstSubKey.update(srcSubKey, this.keyPacket);
found = true;
}
}));
if (!found) {
this.subKeys.push(srcSubKey);
}
}));
};
/**
* Merges signatures from source[attr] to dest[attr]
* @private
* @param {Object} source
* @param {Object} dest
* @param {String} attr
* @param {Function} checkFn optional, signature only merged if true
*/
async function mergeSignatures(source, dest, attr, checkFn) {
source = source[attr];
if (source) {
if (!dest[attr].length) {
dest[attr] = source;
} else {
await Promise.all(source.map(async function (sourceSig) {
if (!sourceSig.isExpired() && (!checkFn || (await checkFn(sourceSig))) && !dest[attr].some(function (destSig) {
return _util2.default.equalsUint8Array(destSig.signature, sourceSig.signature);
})) {
dest[attr].push(sourceSig);
}
}));
}
}
}
/**
* Revokes the key
* @param {Object} reasonForRevocation optional, object indicating the reason for revocation
* @param {module:enums.reasonForRevocation} reasonForRevocation.flag optional, flag indicating the reason for revocation
* @param {String} reasonForRevocation.string optional, string explaining the reason for revocation
* @param {Date} date optional, override the creationtime of the revocation signature
* @returns {Promise<module:key.Key>} new key with revocation signature
* @async
*/
Key.prototype.revoke = async function ({
flag: reasonForRevocationFlag = _enums2.default.reasonForRevocation.no_reason,
string: reasonForRevocationString = ''
} = {}, date = new Date()) {
if (this.isPublic()) {
throw new Error('Need private key for revoking');
}
const dataToSign = { key: this.keyPacket };
const key = new Key(this.toPacketlist());
key.revocationSignatures.push((await createSignaturePacket(dataToSign, null, this.keyPacket, {
signatureType: _enums2.default.signature.key_revocation,
reasonForRevocationFlag: _enums2.default.write(_enums2.default.reasonForRevocation, reasonForRevocationFlag),
reasonForRevocationString
}, date)));
return key;
};
/**
* Get revocation certificate from a revoked key.
* (To get a revocation certificate for an unrevoked key, call revoke() first.)
* @returns {Promise<String>} armored revocation certificate
* @async
*/
Key.prototype.getRevocationCertificate = async function () {
const dataToVerify = { key: this.keyPacket };
const revocationSignature = await getLatestValidSignature(this.revocationSignatures, this.keyPacket, _enums2.default.signature.key_revocation, dataToVerify);
if (revocationSignature) {
const packetlist = new _packet2.default.List();
packetlist.push(revocationSignature);
return _armor2.default.encode(_enums2.default.armor.public_key, packetlist.write(), null, null, 'This is a revocation certificate');
}
};
/**
* Applies a revocation certificate to a key
* This adds the first signature packet in the armored text to the key,
* if it is a valid revocation signature.
* @param {String} revocationCertificate armored revocation certificate
* @returns {Promise<module:key.Key>} new revoked key
* @async
*/
Key.prototype.applyRevocationCertificate = async function (revocationCertificate) {
const input = await _armor2.default.decode(revocationCertificate);
const packetlist = new _packet2.default.List();
await packetlist.read(input.data);
const revocationSignature = packetlist.findPacket(_enums2.default.packet.signature);
if (!revocationSignature || revocationSignature.signatureType !== _enums2.default.signature.key_revocation) {
throw new Error('Could not find revocation signature packet');
}
if (!revocationSignature.issuerKeyId.equals(this.getKeyId())) {
throw new Error('Revocation signature does not match key');
}
if (revocationSignature.isExpired()) {
throw new Error('Revocation signature is expired');
}
if (!(await revocationSignature.verify(this.keyPacket, _enums2.default.signature.key_revocation, { key: this.keyPacket }))) {
throw new Error('Could not verify revocation signature');
}
const key = new Key(this.toPacketlist());
key.revocationSignatures.push(revocationSignature);
return key;
};
/**
* Signs primary user of key
* @param {Array<module:key.Key>} privateKey decrypted private keys for signing
* @param {Date} date (optional) use the given date for verification instead of the current time
* @param {Object} userId (optional) user ID to get instead of the primary user, if it exists
* @returns {Promise<module:key.Key>} new public key with new certificate signature
* @async
*/
Key.prototype.signPrimaryUser = async function (privateKeys, date, userId) {
var _ref2 = (await this.getPrimaryUser(date, userId)) || {};
const index = _ref2.index,
user = _ref2.user;
if (!user) {
throw new Error('Could not find primary user');
}
const userSign = await user.sign(this.keyPacket, privateKeys);
const key = new Key(this.toPacketlist());
key.users[index] = userSign;
return key;
};
/**
* Signs all users of key
* @param {Array<module:key.Key>} privateKeys decrypted private keys for signing
* @returns {Promise<module:key.Key>} new public key with new certificate signature
* @async
*/
Key.prototype.signAllUsers = async function (privateKeys) {
const that = this;
const key = new Key(this.toPacketlist());
key.users = await Promise.all(this.users.map(function (user) {
return user.sign(that.keyPacket, privateKeys);
}));
return key;
};
/**
* Verifies primary user of key
* - if no arguments are given, verifies the self certificates;
* - otherwise, verifies all certificates signed with given keys.
* @param {Array<module:key.Key>} keys array of keys to verify certificate signatures
* @param {Date} date (optional) use the given date for verification instead of the current time
* @param {Object} userId (optional) user ID to get instead of the primary user, if it exists
* @returns {Promise<Array<{keyid: module:type/keyid,
* valid: Boolean}>>} List of signer's keyid and validity of signature
* @async
*/
Key.prototype.verifyPrimaryUser = async function (keys, date, userId) {
const primaryKey = this.keyPacket;
var _ref3 = (await this.getPrimaryUser(date, userId)) || {};
const user = _ref3.user;
if (!user) {
throw new Error('Could not find primary user');
}
const results = keys ? await user.verifyAllCertifications(primaryKey, keys) : [{ keyid: primaryKey.keyid, valid: (await user.verify(primaryKey)) === _enums2.default.keyStatus.valid }];
return results;
};
/**
* Verifies all users of key
* - if no arguments are given, verifies the self certificates;
* - otherwise, verifies all certificates signed with given keys.
* @param {Array<module:key.Key>} keys array of keys to verify certificate signatures
* @returns {Promise<Array<{userid: String,
* keyid: module:type/keyid,
* valid: Boolean}>>} list of userid, signer's keyid and validity of signature
* @async
*/
Key.prototype.verifyAllUsers = async function (keys) {
const results = [];
const primaryKey = this.keyPacket;
await Promise.all(this.users.map(async function (user) {
const signatures = keys ? await user.verifyAllCertifications(primaryKey, keys) : [{ keyid: primaryKey.keyid, valid: (await user.verify(primaryKey)) === _enums2.default.keyStatus.valid }];
signatures.forEach(signature => {
results.push({
userid: user.userId.userid,
keyid: signature.keyid,
valid: signature.valid
});
});
}));
return results;
};
/**
* @class
* @classdesc Class that represents an user ID or attribute packet and the relevant signatures.
*/
function User(userPacket) {
if (!(this instanceof User)) {
return new User(userPacket);
}
this.userId = userPacket.tag === _enums2.default.packet.userid ? userPacket : null;
this.userAttribute = userPacket.tag === _enums2.default.packet.userAttribute ? userPacket : null;
this.selfCertifications = [];
this.otherCertifications = [];
this.revocationSignatures = [];
}
/**
* Transforms structured user data to packetlist
* @returns {module:packet.List}
*/
User.prototype.toPacketlist = function () {
const packetlist = new _packet2.default.List();
packetlist.push(this.userId || this.userAttribute);
packetlist.concat(this.revocationSignatures);
packetlist.concat(this.selfCertifications);
packetlist.concat(this.otherCertifications);
return packetlist;
};
/**
* Signs user
* @param {module:packet.SecretKey|
* module:packet.PublicKey} primaryKey The primary key packet
* @param {Array<module:key.Key>} privateKeys Decrypted private keys for signing
* @returns {Promise<module:key.Key>} New user with new certificate signatures
* @async
*/
User.prototype.sign = async function (primaryKey, privateKeys) {
const dataToSign = {
userId: this.userId,
userAttribute: this.userAttribute,
key: primaryKey
};
const user = new User(dataToSign.userId || dataToSign.userAttribute);
user.otherCertifications = await Promise.all(privateKeys.map(async function (privateKey) {
if (privateKey.isPublic()) {
throw new Error('Need private key for signing');
}
if (privateKey.hasSameFingerprintAs(primaryKey)) {
throw new Error('Not implemented for self signing');
}
const signingKey = await privateKey.getSigningKey();
if (!signingKey) {
throw new Error('Could not find valid signing key packet in key ' + privateKey.getKeyId().toHex());
}
return createSignaturePacket(dataToSign, privateKey, signingKey.keyPacket, {
// Most OpenPGP implementations use generic certification (0x10)
signatureType: _enums2.default.signature.cert_generic,
keyFlags: [_enums2.default.keyFlags.certify_keys | _enums2.default.keyFlags.sign_data]
});
}));
await user.update(this, primaryKey);
return user;
};
/**
* Checks if a given certificate of the user is revoked
* @param {module:packet.SecretKey|
* module:packet.PublicKey} primaryKey The primary key packet
* @param {module:packet.Signature} certificate The certificate to verify
* @param {module:packet.PublicSubkey|
* module:packet.SecretSubkey|
* module:packet.PublicKey|
* module:packet.SecretKey} key, optional The key to verify the signature
* @param {Date} date Use the given date instead of the current time
* @returns {Promise<Boolean>} True if the certificate is revoked
* @async
*/
User.prototype.isRevoked = async function (primaryKey, certificate, key, date = new Date()) {
return isDataRevoked(primaryKey, _enums2.default.signature.cert_revocation, {
key: primaryKey,
userId: this.userId,
userAttribute: this.userAttribute
}, this.revocationSignatures, certificate, key, date);
};
/**
* Create signature packet
* @param {Object} dataToSign Contains packets to be signed
* @param {module:packet.SecretKey|
* module:packet.SecretSubkey} signingKeyPacket secret key packet for signing
* @param {Object} signatureProperties (optional) properties to write on the signature packet before signing
* @param {Date} date (optional) override the creationtime of the signature
* @param {Object} userId (optional) user ID
* @returns {module:packet/signature} signature packet
*/
async function createSignaturePacket(dataToSign, privateKey, signingKeyPacket, signatureProperties, date, userId) {
if (!signingKeyPacket.isDecrypted()) {
throw new Error('Private key is not decrypted.');
}
const signaturePacket = new _packet2.default.Signature(date);
Object.assign(signaturePacket, signatureProperties);
signaturePacket.publicKeyAlgorithm = signingKeyPacket.algorithm;
signaturePacket.hashAlgorithm = await getPreferredHashAlgo(privateKey, signingKeyPacket, date, userId);
await signaturePacket.sign(signingKeyPacket, dataToSign);
return signaturePacket;
}
/**
* Verifies the user certificate
* @param {module:packet.SecretKey|
* module:packet.PublicKey} primaryKey The primary key packet
* @param {module:packet.Signature} certificate A certificate of this user
* @param {Array<module:key.Key>} keys Array of keys to verify certificate signatures
* @param {Date} date Use the given date instead of the current time
* @returns {Promise<module:enums.keyStatus>} status of the certificate
* @async
*/
User.prototype.verifyCertificate = async function (primaryKey, certificate, keys, date = new Date()) {
const that = this;
const keyid = certificate.issuerKeyId;
const dataToVerify = {
userId: this.userId,
userAttribute: this.userAttribute,
key: primaryKey
};
const results = await Promise.all(keys.map(async function (key) {
if (!key.getKeyIds().some(id => id.equals(keyid))) {
return;
}
const signingKey = await key.getSigningKey(keyid, date);
if (certificate.revoked || (await that.isRevoked(primaryKey, certificate, signingKey.keyPacket, date))) {
return _enums2.default.keyStatus.revoked;
}
if (!(certificate.verified || (await certificate.verify(signingKey.keyPacket, _enums2.default.signature.cert_generic, dataToVerify)))) {
return _enums2.default.keyStatus.invalid;
}
if (certificate.isExpired(date)) {
return _enums2.default.keyStatus.expired;
}
return _enums2.default.keyStatus.valid;
}));
return results.find(result => result !== undefined);
};
/**
* Verifies all user certificates
* @param {module:packet.SecretKey|
* module:packet.PublicKey} primaryKey The primary key packet
* @param {Array<module:key.Key>} keys Array of keys to verify certificate signatures
* @param {Date} date Use the given date instead of the current time
* @returns {Promise<Array<{keyid: module:type/keyid,
* valid: Boolean}>>} List of signer's keyid and validity of signature
* @async
*/
User.prototype.verifyAllCertifications = async function (primaryKey, keys, date = new Date()) {
const that = this;
const certifications = this.selfCertifications.concat(this.otherCertifications);
return Promise.all(certifications.map(async function (certification) {
const status = await that.verifyCertificate(primaryKey, certification, keys, date);
return {
keyid: certification.issuerKeyId,
valid: status === undefined ? null : status === _enums2.default.keyStatus.valid
};
}));
};
/**
* Verify User. Checks for existence of self signatures, revocation signatures
* and validity of self signature
* @param {module:packet.SecretKey|
* module:packet.PublicKey} primaryKey The primary key packet
* @param {Date} date Use the given date instead of the current time
* @returns {Promise<module:enums.keyStatus>} Status of user
* @async
*/
User.prototype.verify = async function (primaryKey, date = new Date()) {
if (!this.selfCertifications.length) {
return _enums2.default.keyStatus.no_self_cert;
}
const that = this;
const dataToVerify = {
userId: this.userId,
userAttribute: this.userAttribute,
key: primaryKey
};
// TODO replace when Promise.some or Promise.any are implemented
const results = [_enums2.default.keyStatus.invalid].concat((await Promise.all(this.selfCertifications.map(async function (selfCertification) {
if (selfCertification.revoked || (await that.isRevoked(primaryKey, selfCertification, undefined, date))) {
return _enums2.default.keyStatus.revoked;
}
if (!(selfCertification.verified || (await selfCertification.verify(primaryKey, _enums2.default.signature.cert_generic, dataToVerify)))) {
return _enums2.default.keyStatus.invalid;
}
if (selfCertification.isExpired(date)) {
return _enums2.default.keyStatus.expired;
}
return _enums2.default.keyStatus.valid;
}))));
return results.some(status => status === _enums2.default.keyStatus.valid) ? _enums2.default.keyStatus.valid : results.pop();
};
/**
* Update user with new components from specified user
* @param {module:key.User} user Source user to merge
* @param {module:packet.SecretKey|
* module:packet.SecretSubkey} primaryKey primary key used for validation
* @returns {Promise<undefined>}
* @async
*/
User.prototype.update = async function (user, primaryKey) {
const dataToVerify = {
userId: this.userId,
userAttribute: this.userAttribute,
key: primaryKey
};
// self signatures
await mergeSignatures(user, this, 'selfCertifications', async function (srcSelfSig) {
return srcSelfSig.verified || srcSelfSig.verify(primaryKey, _enums2.default.signature.cert_generic, dataToVerify);
});
// other signatures
await mergeSignatures(user, this, 'otherCertifications');
// revocation signatures
await mergeSignatures(user, this, 'revocationSignatures', function (srcRevSig) {
return isDataRevoked(primaryKey, _enums2.default.signature.cert_revocation, dataToVerify, [srcRevSig]);
});
};
/**
* @class
* @classdesc Class that represents a subkey packet and the relevant signatures.
* @borrows module:packet.PublicSubkey#getKeyId as SubKey#getKeyId
* @borrows module:packet.PublicSubkey#getFingerprint as SubKey#getFingerprint
* @borrows module:packet.PublicSubkey#hasSameFingerprintAs as SubKey#hasSameFingerprintAs
* @borrows module:packet.PublicSubkey#getAlgorithmInfo as SubKey#getAlgorithmInfo
* @borrows module:packet.PublicSubkey#getCreationTime as SubKey#getCreationTime
* @borrows module:packet.PublicSubkey#isDecrypted as SubKey#isDecrypted
*/
function SubKey(subKeyPacket) {
if (!(this instanceof SubKey)) {
return new SubKey(subKeyPacket);
}
this.keyPacket = subKeyPacket;
this.bindingSignatures = [];
this.revocationSignatures = [];
}
/**
* Transforms structured subkey data to packetlist
* @returns {module:packet.List}
*/
SubKey.prototype.toPacketlist = function () {
const packetlist = new _packet2.default.List();
packetlist.push(this.keyPacket);
packetlist.concat(this.revocationSignatures);
packetlist.concat(this.bindingSignatures);
return packetlist;
};
/**
* Checks if a binding signature of a subkey is revoked
* @param {module:packet.SecretKey|
* module:packet.PublicKey} primaryKey The primary key packet
* @param {module:packet.Signature} signature The binding signature to verify
* @param {module:packet.PublicSubkey|
* module:packet.SecretSubkey|
* module:packet.PublicKey|
* module:packet.SecretKey} key, optional The key to verify the signature
* @param {Date} date Use the given date instead of the current time
* @returns {Promise<Boolean>} True if the binding signature is revoked
* @async
*/
SubKey.prototype.isRevoked = async function (primaryKey, signature, key, date = new Date()) {
return isDataRevoked(primaryKey, _enums2.default.signature.subkey_revocation, {
key: primaryKey,
bind: this.keyPacket
}, this.revocationSignatures, signature, key, date);
};
/**
* Verify subkey. Checks for revocation signatures, expiration time
* and valid binding signature
* @param {module:packet.SecretKey|
* module:packet.PublicKey} primaryKey The primary key packet
* @param {Date} date Use the given date instead of the current time
* @returns {Promise<module:enums.keyStatus>} The status of the subkey
* @async
*/
SubKey.prototype.verify = async function (primaryKey, date = new Date()) {
const that = this;
const dataToVerify = { key: primaryKey, bind: this.keyPacket };
// check subkey binding signatures
const bindingSignature = await getLatestValidSignature(this.bindingSignatures, primaryKey, _enums2.default.signature.subkey_binding, dataToVerify, date);
// check binding signature is verified
if (!bindingSignature) {
return _enums2.default.keyStatus.invalid;
}
// check binding signature is not revoked
if (bindingSignature.revoked || (await that.isRevoked(primaryKey, bindingSignature, null, date))) {
return _enums2.default.keyStatus.revoked;
}
// check for expiration time
if (isDataExpired(this.keyPacket, bindingSignature, date)) {
return _enums2.default.keyStatus.expired;
}
return _enums2.default.keyStatus.valid; // binding signature passed all checks
};
/**
* Returns the expiration time of the subkey or Infinity if key does not expire
* Returns null if the subkey is invalid.
* @param {module:packet.SecretKey|
* module:packet.PublicKey} primaryKey The primary key packet
* @param {Date} date Use the given date instead of the current time
* @returns {Promise<Date | Infinity | null>}
* @async
*/
SubKey.prototype.getExpirationTime = async function (primaryKey, date = new Date()) {
const dataToVerify = { key: primaryKey, bind: this.keyPacket };
const bindingSignature = await getLatestValidSignature(this.bindingSignatures, primaryKey, _enums2.default.signature.subkey_binding, dataToVerify, date);
if (!bindingSignature) return null;
const keyExpiry = getExpirationTime(this.keyPacket, bindingSignature);
const sigExpiry = bindingSignature.getExpirationTime();
return keyExpiry < sigExpiry ? keyExpiry : sigExpiry;
};
/**
* Update subkey with new components from specified subkey
* @param {module:key~SubKey} subKey Source subkey to merge
* @param {module:packet.SecretKey|
module:packet.SecretSubkey} primaryKey primary key used for validation
* @returns {Promise<undefined>}
* @async
*/
SubKey.prototype.update = async function (subKey, primaryKey) {
if ((await subKey.verify(primaryKey)) === _enums2.default.keyStatus.invalid) {
return;
}
if (!this.hasSameFingerprintAs(subKey)) {
throw new Error('SubKey update method: fingerprints of subkeys not equal');
}
// key packet
if (this.keyPacket.tag === _enums2.default.packet.publicSubkey && subKey.keyPacket.tag === _enums2.default.packet.secretSubkey) {
this.keyPacket = subKey.keyPacket;
}
// update missing binding signatures
const that = this;
const dataToVerify = { key: primaryKey, bind: that.keyPacket };
await mergeSignatures(subKey, this, 'bindingSignatures', async function (srcBindSig) {
if (!(srcBindSig.verified || (await srcBindSig.verify(primaryKey, _enums2.default.signature.subkey_binding, dataToVerify)))) {
return false;
}
for (let i = 0; i < that.bindingSignatures.length; i++) {
if (that.bindingSignatures[i].issuerKeyId.equals(srcBindSig.issuerKeyId)) {
if (srcBindSig.created > that.bindingSignatures[i].created) {
that.bindingSignatures[i] = srcBindSig;
}
return false;
}
}
return true;
});
// revocation signatures
await mergeSignatures(subKey, this, 'revocationSignatures', function (srcRevSig) {
return isDataRevoked(primaryKey, _enums2.default.signature.subkey_revocation, dataToVerify, [srcRevSig]);
});
};
/**
* Revokes the subkey
* @param {module:packet.SecretKey} primaryKey decrypted private primary key for revocation
* @param {Object} reasonForRevocation optional, object indicating the reason for revocation
* @param {module:enums.reasonForRevocation} reasonForRevocation.flag optional, flag indicating the reason for revocation
* @param {String} reasonForRevocation.string optional, string explaining the reason for revocation
* @param {Date} date optional, override the creationtime of the revocation signature
* @returns {Promise<module:key~SubKey>} new subkey with revocation signature
* @async
*/
SubKey.prototype.revoke = async function (primaryKey, {
flag: reasonForRevocationFlag = _enums2.default.reasonForRevocation.no_reason,
string: reasonForRevocationString = ''
} = {}, date = new Date()) {
const dataToSign = { key: primaryKey, bind: this.keyPacket };
const subKey = new SubKey(this.keyPacket);
subKey.revocationSignatures.push((await createSignaturePacket(dataToSign, null, primaryKey, {
signatureType: _enums2.default.signature.subkey_revocation,
reasonForRevocationFlag: _enums2.default.write(_enums2.default.reasonForRevocation, reasonForRevocationFlag),
reasonForRevocationString
}, date)));
await subKey.update(this, primaryKey);
return subKey;
};
['getKeyId', 'getFingerprint', 'getAlgorithmInfo', 'getCreationTime', 'isDecrypted'].forEach(name => {
Key.prototype[name] = SubKey.prototype[name] = function () {
return this.keyPacket[name]();
};
});
Key.prototype.hasSameFingerprintAs = SubKey.prototype.hasSameFingerprintAs = function (other) {
return this.keyPacket.hasSameFingerprintAs(other.keyPacket || other);
};
/**
* Reads an unarmored OpenPGP key list and returns one or multiple key objects
* @param {Uint8Array} data to be parsed
* @returns {Promise<{keys: Array<module:key.Key>,
* err: (Array<Error>|null)}>} result object with key and error arrays
* @async
* @static
*/
async function read(data) {
const result = {};
result.keys = [];
const err = [];
try {
const packetlist = new _packet2.default.List();
await packetlist.read(data);
const keyIndex = packetlist.indexOfTag(_enums2.default.packet.publicKey, _enums2.default.packet.secretKey);
if (keyIndex.length === 0) {
throw new Error('No key packet found');
}
for (let i = 0; i < keyIndex.length; i++) {
const oneKeyList = packetlist.slice(keyIndex[i], keyIndex[i + 1]);
try {
const newKey = new Key(oneKeyList);
result.keys.push(newKey);
} catch (e) {
err.push(e);
}
}
} catch (e) {
err.push(e);
}
if (err.length) {
result.err = err;
}
return result;
}
/**
* Reads an OpenPGP armored text and returns one or multiple key objects
* @param {String | ReadableStream<String>} armoredText text to be parsed
* @returns {Promise<{keys: Array<module:key.Key>,
* err: (Array<Error>|null)}>} result object with key and error arrays
* @async
* @static
*/
async function readArmored(armoredText) {
try {
const input = await _armor2.default.decode(armoredText);
if (!(input.type === _enums2.default.armor.public_key || input.type === _enums2.default.armor.private_key)) {
throw new Error('Armored text not of type key');
}
return read(input.data);
} catch (e) {
const result = { keys: [], err: [] };
result.err.push(e);
return result;
}
}
/**
* Generates a new OpenPGP key. Supports RSA and ECC keys.
* Primary and subkey will be of same type.
* @param {module:enums.publicKey} [options.keyType=module:enums.publicKey.rsa_encrypt_sign]
* To indicate what type of key to make.
* RSA is 1. See {@link https://tools.ietf.org/html/rfc4880#section-9.1}
* @param {Integer} options.numBits number of bits for the key creation.
* @param {String|Array<String>} options.userIds
* Assumes already in form of "User Name <username@email.com>"
* If array is used, the first userId is set as primary user Id
* @param {String} options.passphrase The passphrase used to encrypt the resulting private key
* @param {Number} [options.keyExpirationTime=0]
* The number of seconds after the key creation time that the key expires
* @param {String} curve (optional) elliptic curve for ECC keys
* @param {Date} date Override the creation date of the key and the key signatures
* @param {Array<Object>} subkeys (optional) options for each subkey, default to main key options. e.g. [{sign: true, passphrase: '123'}]
* sign parameter defaults to false, and indicates whether the subkey should sign rather than encrypt
* @returns {Promise<module:key.Key>}
* @async
* @static
*/
async function generate(options) {
options.sign = true; // primary key is always a signing key
options = sanitizeKeyOptions(options);
options.subkeys = options.subkeys.map(function (subkey, index) {
return sanitizeKeyOptions(options.subkeys[index], options);
});
let promises = [generateSecretKey(options)];
promises = promises.concat(options.subkeys.map(generateSecretSubkey));
return Promise.all(promises).then(packets => wrapKeyObject(packets[0], packets.slice(1), options));
function sanitizeKeyOptions(options, subkeyDefaults = {}) {
options.curve = options.curve || subkeyDefaults.curve;
options.numBits = options.numBits || subkeyDefaults.numBits;
options.keyExpirationTime = options.keyExpirationTime !== undefined ? options.keyExpirationTime : subkeyDefaults.keyExpirationTime;
options.passphrase = _util2.default.isString(options.passphrase) ? options.passphrase : subkeyDefaults.passphrase;
options.date = options.date || subkeyDefaults.date;
options.sign = options.sign || false;
if (options.curve) {
try {
options.curve = _enums2.default.write(_enums2.default.curve, options.curve);
} catch (e) {
throw new Error('Not valid curve.');
}
if (options.curve === _enums2.default.curve.ed25519 || options.curve === _enums2.default.curve.curve25519) {
if (options.sign) {
options.algorithm = _enums2.default.publicKey.eddsa;
options.curve = _enums2.default.curve.ed25519;
} else {
options.algorithm = _enums2.default.publicKey.ecdh;
options.curve = _enums2.default.curve.curve25519;
}
} else {
if (options.sign) {
options.algorithm = _enums2.default.publicKey.ecdsa;
} else {
options.algorithm = _enums2.default.publicKey.ecdh;
}
}
} else if (options.numBits) {
options.algorithm = _enums2.default.publicKey.rsa_encrypt_sign;
} else {
throw new Error('Unrecognized key type');
}
return options;
}
async function generateSecretKey(options) {
const secretKeyPacket = new _packet2.default.SecretKey(options.date);
secretKeyPacket.packets = null;
secretKeyPacket.algorithm = _enums2.default.read(_enums2.default.publicKey, options.algorithm);
await secretKeyPacket.generate(options.numBits, options.curve);
return secretKeyPacket;
}
async function generateSecretSubkey(options) {
const secretSubkeyPacket = new _packet2.default.SecretSubkey(options.date);
secretSubkeyPacket.packets = null;
secretSubkeyPacket.algorithm = _enums2.default.read(_enums2.default.publicKey, options.algorithm);
await secretSubkeyPacket.generate(options.numBits, options.curve);
return secretSubkeyPacket;
}
}
/**
* Reformats and signs an OpenPGP key with a given User ID. Currently only supports RSA keys.
* @param {module:key.Key} options.privateKey The private key to reformat
* @param {module:enums.publicKey} [options.keyType=module:enums.publicKey.rsa_encrypt_sign]
* @param {String|Array<String>} options.userIds
* Assumes already in form of "User Name <username@email.com>"
* If array is used, the first userId is set as primary user Id
* @param {String} options.passphrase The passphrase used to encrypt the resulting private key
* @param {Number} [options.keyExpirationTime=0]
* The number of seconds after the key creation time that the key expires
* @param {Date} date Override the creation date of the key and the key signatures
* @param {Array<Object>} subkeys (optional) options for each subkey, default to main key options. e.g. [{sign: true, passphrase: '123'}]
*
* @returns {Promise<module:key.Key>}
* @async
* @static
*/
async function reformat(options) {
options = sanitizeKeyOptions(options);
try {
const isDecrypted = options.privateKey.getKeys().every(key => key.isDecrypted());
if (!isDecrypted) {
await options.privateKey.decrypt();
}
} catch (err) {
throw new Error('Key not decrypted');
}
const packetlist = options.privateKey.toPacketlist();
let secretKeyPacket;
const secretSubkeyPackets = [];
for (let i = 0; i < packetlist.length; i++) {
if (packetlist[i].tag === _enums2.default.packet.secretKey) {
secretKeyPacket = packetlist[i];
} else if (packetlist[i].tag === _enums2.default.packet.secretSubkey) {
secretSubkeyPackets.push(packetlist[i]);
}
}
if (!secretKeyPacket) {
throw new Error('Key does not contain a secret key packet');
}
if (!options.subkeys) {
options.subkeys = secretSubkeyPackets.map(() => ({}));
}
if (options.subkeys.length !== secretSubkeyPackets.length) {
throw new Error('Number of subkey options does not match number of subkeys');
}
options.subkeys = options.subkeys.map(function (subkey, index) {
return sanitizeKeyOptions(options.subkeys[index], options);
});
return wrapKeyObject(secretKeyPacket, secretSubkeyPackets, options);
function sanitizeKeyOptions(options, subkeyDefaults = {}) {
options.keyExpirationTime = options.keyExpirationTime || subkeyDefaults.keyExpirationTime;
options.passphrase = _util2.default.isString(options.passphrase) ? options.passphrase : subkeyDefaults.passphrase;
options.date = options.date || subkeyDefaults.date;
return options;
}
}
async function wrapKeyObject(secretKeyPacket, secretSubkeyPackets, options) {
// set passphrase protection
if (options.passphrase) {
await secretKeyPacket.encrypt(options.passphrase);
}
await Promise.all(secretSubkeyPackets.map(async function (secretSubkeyPacket, index) {
const subkeyPassphrase = options.subkeys[index].passphrase;
if (subkeyPassphrase) {
await secretSubkeyPacket.encrypt(subkeyPassphrase);
}
}));
const packetlist = new _packet2.default.List();
packetlist.push(secretKeyPacket);
await Promise.all(options.userIds.map(async function (userId, index) {
function createdPreferredAlgos(algos, configAlgo) {
if (configAlgo) {
// Not `uncompressed` / `plaintext`
const configIndex = algos.indexOf(configAlgo);
if (configIndex >= 1) {
// If it is included and not in first place,
algos.splice(configIndex, 1); // remove it.
}
if (configIndex !== 0) {
// If it was included and not in first place, or wasn't included,
algos.unshift(configAlgo); // add it to the front.
}
}
return algos;
}
const userIdPacket = new _packet2.default.Userid();
userIdPacket.format(userId);
const dataToSign = {};
dataToSign.userId = userIdPacket;
dataToSign.key = secretKeyPacket;
const signaturePacket = new _packet2.default.Signature(options.date);
signaturePacket.signatureType = _enums2.default.signature.cert_generic;
signaturePacket.publicKeyAlgorithm = secretKeyPacket.algorithm;
signaturePacket.hashAlgorithm = await getPreferredHashAlgo(null, secretKeyPacket);
signaturePacket.keyFlags = [_enums2.default.keyFlags.certify_keys | _enums2.default.keyFlags.sign_data];
signaturePacket.preferredSymmetricAlgorithms = createdPreferredAlgos([
// prefer aes256, aes128, then aes192 (no WebCrypto support: https://www.chromium.org/blink/webcrypto#TOC-AES-support)
_enums2.default.symmetric.aes256, _enums2.default.symmetric.aes128, _enums2.default.symmetric.aes192, _enums2.default.symmetric.cast5, _enums2.default.symmetric.tripledes], _config2.default.encryption_cipher);
if (_config2.default.aead_protect && _config2.default.aead_protect_version === 4) {
signaturePacket.preferredAeadAlgorithms = createdPreferredAlgos([_enums2.default.aead.eax, _enums2.default.aead.ocb], _config2.default.aead_mode);
}
signaturePacket.preferredHashAlgorithms = createdPreferredAlgos([
// prefer fast asm.js implementations (SHA-256). SHA-1 will not be secure much longer...move to bottom of list
_enums2.default.hash.sha256, _enums2.default.hash.sha512, _enums2.default.hash.sha1], _config2.default.prefer_hash_algorithm);
signaturePacket.preferredCompressionAlgorithms = createdPreferredAlgos([_enums2.default.compression.zlib, _enums2.default.compression.zip], _config2.default.compression);
if (index === 0) {
signaturePacket.isPrimaryUserID = true;
}
if (_config2.default.integrity_protect) {
signaturePacket.features = [0];
signaturePacket.features[0] |= _enums2.default.features.modification_detection;
}
if (_config2.default.aead_protect && _config2.default.aead_protect_version === 4) {
signaturePacket.features || (signaturePacket.features = [0]);
signaturePacket.features[0] |= _enums2.default.features.aead;
signaturePacket.features[0] |= _enums2.default.features.v5_keys;
}
if (options.keyExpirationTime > 0) {
signaturePacket.keyExpirationTime = options.keyExpirationTime;
signaturePacket.keyNeverExpires = false;
}
await signaturePacket.sign(secretKeyPacket, dataToSign);
return { userIdPacket, signaturePacket };
})).then(list => {
list.forEach(({ userIdPacket, signaturePacket }) => {
packetlist.push(userIdPacket);
packetlist.push(signaturePacket);
});
});
await Promise.all(secretSubkeyPackets.map(async function (secretSubkeyPacket, index) {
const subkeyOptions = options.subkeys[index];
const dataToSign = {};
dataToSign.key = secretKeyPacket;
dataToSign.bind = secretSubkeyPacket;
const subkeySignaturePacket = new _packet2.default.Signature(subkeyOptions.date);
subkeySignaturePacket.signatureType = _enums2.default.signature.subkey_binding;
subkeySignaturePacket.publicKeyAlgorithm = secretKeyPacket.algorithm;
subkeySignaturePacket.hashAlgorithm = await getPreferredHashAlgo(null, secretSubkeyPacket);
if (subkeyOptions.sign) {
subkeySignaturePacket.keyFlags = [_enums2.default.keyFlags.sign_data];
subkeySignaturePacket.embeddedSignature = await createSignaturePacket(dataToSign, null, secretSubkeyPacket, {
signatureType: _enums2.default.signature.key_binding
}, subkeyOptions.date);
} else {
subkeySignaturePacket.keyFlags = [_enums2.default.keyFlags.encrypt_communication | _enums2.default.keyFlags.encrypt_storage];
}
if (subkeyOptions.keyExpirationTime > 0) {
subkeySignaturePacket.keyExpirationTime = subkeyOptions.keyExpirationTime;
subkeySignaturePacket.keyNeverExpires = false;
}
await subkeySignaturePacket.sign(secretKeyPacket, dataToSign);
return { secretSubkeyPacket, subkeySignaturePacket };
})).then(packets => {
packets.forEach(({ secretSubkeyPacket, subkeySignaturePacket }) => {
packetlist.push(secretSubkeyPacket);
packetlist.push(subkeySignaturePacket);
});
});
// Add revocation signature packet for creating a revocation certificate.
// This packet should be removed before returning the key.
const dataToSign = { key: secretKeyPacket };
packetlist.push((await createSignaturePacket(dataToSign, null, secretKeyPacket, {
signatureType: _enums2.default.signature.key_revocation,
reasonForRevocationFlag: _enums2.default.reasonForRevocation.no_reason,
reasonForRevocationString: ''
}, options.date)));
// set passphrase protection
if (options.passphrase) {
secretKeyPacket.clearPrivateParams();
}
await Promise.all(secretSubkeyPackets.map(async function (secretSubkeyPacket, index) {
const subkeyPassphrase = options.subkeys[index].passphrase;
if (subkeyPassphrase) {
secretSubkeyPacket.clearPrivateParams();
}
}));
return new Key(packetlist);
}
/**
* Checks if a given certificate or binding signature is revoked
* @param {module:packet.SecretKey|
* module:packet.PublicKey} primaryKey The primary key packet
* @param {Object} dataToVerify The data to check
* @param {Array<module:packet.Signature>} revocations The revocation signatures to check
* @param {module:packet.Signature} signature The certificate or signature to check
* @param {module:packet.PublicSubkey|
* module:packet.SecretSubkey|
* module:packet.PublicKey|
* module:packet.SecretKey} key, optional The key packet to check the signature
* @param {Date} date Use the given date instead of the current time
* @returns {Promise<Boolean>} True if the signature revokes the data
* @async
*/
async function isDataRevoked(primaryKey, signatureType, dataToVerify, revocations, signature, key, date = new Date()) {
key = key || primaryKey;
const normDate = _util2.default.normalizeDate(date);
const revocationKeyIds = [];
await Promise.all(revocations.map(async function (revocationSignature) {
if (
// Note: a third-party revocation signature could legitimately revoke a
// self-signature if the signature has an authorized revocation key.
// However, we don't support passing authorized revocation keys, nor
// verifying such revocation signatures. Instead, we indicate an error
// when parsing a key with an authorized revocation key, and ignore
// third-party revocation signatures here. (It could also be revoking a
// third-party key certification, which should only affect
// `verifyAllCertifications`.)
(!signature || revocationSignature.issuerKeyId.equals(signature.issuerKeyId)) && !(_config2.default.revocations_expire && revocationSignature.isExpired(normDate)) && (revocationSignature.verified || (await revocationSignature.verify(key, signatureType, dataToVerify)))) {
// TODO get an identifier of the revoked object instead
revocationKeyIds.push(revocationSignature.issuerKeyId);
return true;
}
return false;
}));
// TODO further verify that this is the signature that should be revoked
if (signature) {
signature.revoked = revocationKeyIds.some(keyId => keyId.equals(signature.issuerKeyId)) ? true : signature.revoked || false;
return signature.revoked;
}
return revocationKeyIds.length > 0;
}
function isDataExpired(keyPacket, signature, date = new Date()) {
const normDate = _util2.default.normalizeDate(date);
if (normDate !== null) {
const expirationTime = getExpirationTime(keyPacket, signature);
return !(keyPacket.created <= normDate && normDate <= expirationTime) || signature && signature.isExpired(date);
}
return false;
}
function getExpirationTime(keyPacket, signature) {
let expirationTime;
// check V4 expiration time
if (signature.keyNeverExpires === false) {
expirationTime = keyPacket.created.getTime() + signature.keyExpirationTime * 1000;
}
return expirationTime ? new Date(expirationTime) : Infinity;
}
/**
* Check if signature has revocation key sub packet (not supported by OpenPGP.js)
* and throw error if found
* @param {module:packet.Signature} signature The certificate or signature to check
* @param {type/keyid} keyId Check only certificates or signatures from a certain issuer key ID
*/
function checkRevocationKey(signature, keyId) {
if (signature.revocationKeyClass !== null && signature.issuerKeyId.equals(keyId)) {
throw new Error('This key is intended to be revoked with an authorized key, which OpenPGP.js does not support.');
}
}
/**
* Returns the preferred signature hash algorithm of a key
* @param {module:key.Key} key (optional) the key to get preferences from
* @param {module:packet.SecretKey|module:packet.SecretSubkey} keyPacket key packet used for signing
* @param {Date} date (optional) use the given date for verification instead of the current time
* @param {Object} userId (optional) user ID
* @returns {Promise<String>}
* @async
*/
async function getPreferredHashAlgo(key, keyPacket, date = new Date(), userId = {}) {
let hash_algo = _config2.default.prefer_hash_algorithm;
let pref_algo = hash_algo;
if (key instanceof Key) {
const primaryUser = await key.getPrimaryUser(date, userId);
if (primaryUser && primaryUser.selfCertification.preferredHashAlgorithms) {
var _primaryUser$selfCert = _slicedToArray(primaryUser.selfCertification.preferredHashAlgorithms, 1);
pref_algo = _primaryUser$selfCert[0];
hash_algo = _crypto2.default.hash.getHashByteLength(hash_algo) <= _crypto2.default.hash.getHashByteLength(pref_algo) ? pref_algo : hash_algo;
}
}
switch (Object.getPrototypeOf(keyPacket)) {
case _packet2.default.SecretKey.prototype:
case _packet2.default.PublicKey.prototype:
case _packet2.default.SecretSubkey.prototype:
case _packet2.default.PublicSubkey.prototype:
switch (keyPacket.algorithm) {
case 'ecdh':
case 'ecdsa':
case 'eddsa':
pref_algo = _crypto2.default.publicKey.elliptic.getPreferredHashAlgo(keyPacket.params[0]);
}
}
return _crypto2.default.hash.getHashByteLength(hash_algo) <= _crypto2.default.hash.getHashByteLength(pref_algo) ? pref_algo : hash_algo;
}
/**
* Returns the preferred symmetric/aead algorithm for a set of keys
* @param {symmetric|aead} type Type of preference to return
* @param {Array<module:key.Key>} keys Set of keys
* @param {Date} date (optional) use the given date for verification instead of the current time
* @param {Array} userIds (optional) user IDs
* @returns {Promise<module:enums.symmetric>} Preferred symmetric algorithm
* @async
*/
async function getPreferredAlgo(type, keys, date = new Date(), userIds = []) {
const prefProperty = type === 'symmetric' ? 'preferredSymmetricAlgorithms' : 'preferredAeadAlgorithms';
const defaultAlgo = type === 'symmetric' ? _enums2.default.symmetric.aes128 : _enums2.default.aead.eax;
const prioMap = {};
await Promise.all(keys.map(async function (key, i) {
const primaryUser = await key.getPrimaryUser(date, userIds[i]);
if (!primaryUser || !primaryUser.selfCertification[prefProperty]) {
return defaultAlgo;
}
primaryUser.selfCertification[prefProperty].forEach(function (algo, index) {
const entry = prioMap[algo] || (prioMap[algo] = { prio: 0, count: 0, algo: algo });
entry.prio += 64 >> index;
entry.count++;
});
}));
let prefAlgo = { prio: 0, algo: defaultAlgo };
Object.values(prioMap).forEach(({ prio, count, algo }) => {
try {
if (algo !== _enums2.default[type].plaintext && algo !== _enums2.default[type].idea && // not implemented
_enums2.default.read(_enums2.default[type], algo) && // known algorithm
count === keys.length && // available for all keys
prio > prefAlgo.prio) {
prefAlgo = prioMap[algo];
}
} catch (e) {}
});
return prefAlgo.algo;
}
/**
* Returns whether aead is supported by all keys in the set
* @param {Array<module:key.Key>} keys Set of keys
* @param {Date} date (optional) use the given date for verification instead of the current time
* @param {Array} userIds (optional) user IDs
* @returns {Promise<Boolean>}
* @async
*/
async function isAeadSupported(keys, date = new Date(), userIds = []) {
let supported = true;
// TODO replace when Promise.some or Promise.any are implemented
await Promise.all(keys.map(async function (key, i) {
const primaryUser = await key.getPrimaryUser(date, userIds[i]);
if (!primaryUser || !primaryUser.selfCertification.features || !(primaryUser.selfCertification.features[0] & _enums2.default.features.aead)) {
supported = false;
}
}));
return supported;
}
},{"./config":80,"./crypto":95,"./encoding/armor":112,"./enums":114,"./packet":126,"./util":153}],118:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _keyring = require('./keyring.js');
var _keyring2 = _interopRequireDefault(_keyring);
var _localstore = require('./localstore.js');
var _localstore2 = _interopRequireDefault(_localstore);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* @fileoverview Functions dealing with storage of the keyring.
* @see module:keyring/keyring
* @see module:keyring/localstore
* @module keyring
*/
_keyring2.default.localstore = _localstore2.default;
exports.default = _keyring2.default;
},{"./keyring.js":119,"./localstore.js":120}],119:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _key = require('../key');
var _localstore = require('./localstore');
var _localstore2 = _interopRequireDefault(_localstore);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* Initialization routine for the keyring.
* @constructor
* @param {keyring/localstore} [storeHandler] class implementing loadPublic(), loadPrivate(), storePublic(), and storePrivate() methods
*/
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @fileoverview Provides the Keyring class
* @requires key
* @requires keyring/localstore
* @module keyring/keyring
*/
function Keyring(storeHandler) {
this.storeHandler = storeHandler || new _localstore2.default();
}
/**
* Calls the storeHandler to load the keys
* @async
*/
Keyring.prototype.load = async function () {
this.publicKeys = new KeyArray((await this.storeHandler.loadPublic()));
this.privateKeys = new KeyArray((await this.storeHandler.loadPrivate()));
};
/**
* Calls the storeHandler to save the keys
* @async
*/
Keyring.prototype.store = async function () {
await Promise.all([this.storeHandler.storePublic(this.publicKeys.keys), this.storeHandler.storePrivate(this.privateKeys.keys)]);
};
/**
* Clear the keyring - erase all the keys
*/
Keyring.prototype.clear = function () {
this.publicKeys.keys = [];
this.privateKeys.keys = [];
};
/**
* Searches the keyring for keys having the specified key id
* @param {String} keyId provided as string of lowercase hex number
* withouth 0x prefix (can be 16-character key ID or fingerprint)
* @param {Boolean} deep if true search also in subkeys
* @returns {Array<module:key.Key>|null} keys found or null
*/
Keyring.prototype.getKeysForId = function (keyId, deep) {
let result = [];
result = result.concat(this.publicKeys.getForId(keyId, deep) || []);
result = result.concat(this.privateKeys.getForId(keyId, deep) || []);
return result.length ? result : null;
};
/**
* Removes keys having the specified key id from the keyring
* @param {String} keyId provided as string of lowercase hex number
* withouth 0x prefix (can be 16-character key ID or fingerprint)
* @returns {Array<module:key.Key>|null} keys found or null
*/
Keyring.prototype.removeKeysForId = function (keyId) {
let result = [];
result = result.concat(this.publicKeys.removeForId(keyId) || []);
result = result.concat(this.privateKeys.removeForId(keyId) || []);
return result.length ? result : null;
};
/**
* Get all public and private keys
* @returns {Array<module:key.Key>} all keys
*/
Keyring.prototype.getAllKeys = function () {
return this.publicKeys.keys.concat(this.privateKeys.keys);
};
/**
* Array of keys
* @param {Array<module:key.Key>} keys The keys to store in this array
*/
function KeyArray(keys) {
this.keys = keys;
}
/**
* Searches all keys in the KeyArray matching the address or address part of the user ids
* @param {String} email email address to search for
* @returns {Array<module:key.Key>} The public keys associated with provided email address.
*/
KeyArray.prototype.getForAddress = function (email) {
const results = [];
for (let i = 0; i < this.keys.length; i++) {
if (emailCheck(email, this.keys[i])) {
results.push(this.keys[i]);
}
}
return results;
};
/**
* Checks a key to see if it matches the specified email address
* @private
* @param {String} email email address to search for
* @param {module:key.Key} key The key to be checked.
* @returns {Boolean} True if the email address is defined in the specified key
*/
function emailCheck(email, key) {
email = email.toLowerCase();
// escape email before using in regular expression
const emailEsc = email.replace(/[.*+?^${}()|[\]\\]/g, "\\$&");
const emailRegex = new RegExp('<' + emailEsc + '>');
const userIds = key.getUserIds();
for (let i = 0; i < userIds.length; i++) {
const userId = userIds[i].toLowerCase();
if (email === userId || emailRegex.test(userId)) {
return true;
}
}
return false;
}
/**
* Checks a key to see if it matches the specified keyid
* @private
* @param {String} keyId provided as string of lowercase hex number
* withouth 0x prefix (can be 16-character key ID or fingerprint)
* @param {module:key.Key|module:key.SubKey} key The key to be checked
* @returns {Boolean} True if key has the specified keyid
*/
function keyIdCheck(keyId, key) {
if (keyId.length === 16) {
return keyId === key.getKeyId().toHex();
}
return keyId === key.getFingerprint();
}
/**
* Searches the KeyArray for a key having the specified key id
* @param {String} keyId provided as string of lowercase hex number
* withouth 0x prefix (can be 16-character key ID or fingerprint)
* @param {Boolean} deep if true search also in subkeys
* @returns {module:key.Key|null} key found or null
*/
KeyArray.prototype.getForId = function (keyId, deep) {
for (let i = 0; i < this.keys.length; i++) {
if (keyIdCheck(keyId, this.keys[i])) {
return this.keys[i];
}
if (deep && this.keys[i].subKeys.length) {
for (let j = 0; j < this.keys[i].subKeys.length; j++) {
if (keyIdCheck(keyId, this.keys[i].subKeys[j])) {
return this.keys[i];
}
}
}
}
return null;
};
/**
* Imports a key from an ascii armored message
* @param {String} armored message to read the keys/key from
* @returns {Promise<Array<Error>|null>} array of error objects or null
* @async
*/
KeyArray.prototype.importKey = async function (armored) {
const imported = await (0, _key.readArmored)(armored);
for (let i = 0; i < imported.keys.length; i++) {
const key = imported.keys[i];
// check if key already in key array
const keyidHex = key.getKeyId().toHex();
const keyFound = this.getForId(keyidHex);
if (keyFound) {
await keyFound.update(key);
} else {
this.push(key);
}
}
return imported.err ? imported.err : null;
};
/**
* Add key to KeyArray
* @param {module:key.Key} key The key that will be added to the keyring
* @returns {Number} The new length of the KeyArray
*/
KeyArray.prototype.push = function (key) {
return this.keys.push(key);
};
/**
* Removes a key with the specified keyid from the keyring
* @param {String} keyId provided as string of lowercase hex number
* withouth 0x prefix (can be 16-character key ID or fingerprint)
* @returns {module:key.Key|null} The key object which has been removed or null
*/
KeyArray.prototype.removeForId = function (keyId) {
for (let i = 0; i < this.keys.length; i++) {
if (keyIdCheck(keyId, this.keys[i])) {
return this.keys.splice(i, 1)[0];
}
}
return null;
};
exports.default = Keyring;
},{"../key":117,"./localstore":120}],120:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _webStreamTools = require('web-stream-tools');
var _webStreamTools2 = _interopRequireDefault(_webStreamTools);
var _config = require('../config');
var _config2 = _interopRequireDefault(_config);
var _key = require('../key');
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* The class that deals with storage of the keyring.
* Currently the only option is to use HTML5 local storage.
* @constructor
* @param {String} prefix prefix for itemnames in localstore
*/
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @fileoverview Provides the LocalStore class
* @requires web-stream-tools
* @requires config
* @requires key
* @requires util
* @module keyring/localstore
*/
function LocalStore(prefix) {
prefix = prefix || 'openpgp-';
this.publicKeysItem = prefix + this.publicKeysItem;
this.privateKeysItem = prefix + this.privateKeysItem;
if (typeof window !== 'undefined' && window.localStorage) {
this.storage = window.localStorage;
} else {
this.storage = new (require('node-localstorage').LocalStorage)(_config2.default.node_store);
}
}
/*
* Declare the localstore itemnames
*/
LocalStore.prototype.publicKeysItem = 'public-keys';
LocalStore.prototype.privateKeysItem = 'private-keys';
/**
* Load the public keys from HTML5 local storage.
* @returns {Array<module:key.Key>} array of keys retrieved from localstore
* @async
*/
LocalStore.prototype.loadPublic = async function () {
return loadKeys(this.storage, this.publicKeysItem);
};
/**
* Load the private keys from HTML5 local storage.
* @returns {Array<module:key.Key>} array of keys retrieved from localstore
* @async
*/
LocalStore.prototype.loadPrivate = async function () {
return loadKeys(this.storage, this.privateKeysItem);
};
async function loadKeys(storage, itemname) {
const armoredKeys = JSON.parse(storage.getItem(itemname));
const keys = [];
if (armoredKeys !== null && armoredKeys.length !== 0) {
let key;
for (let i = 0; i < armoredKeys.length; i++) {
key = await (0, _key.readArmored)(armoredKeys[i]);
if (!key.err) {
keys.push(key.keys[0]);
} else {
_util2.default.print_debug("Error reading armored key from keyring index: " + i);
}
}
}
return keys;
}
/**
* Saves the current state of the public keys to HTML5 local storage.
* The key array gets stringified using JSON
* @param {Array<module:key.Key>} keys array of keys to save in localstore
* @async
*/
LocalStore.prototype.storePublic = async function (keys) {
await storeKeys(this.storage, this.publicKeysItem, keys);
};
/**
* Saves the current state of the private keys to HTML5 local storage.
* The key array gets stringified using JSON
* @param {Array<module:key.Key>} keys array of keys to save in localstore
* @async
*/
LocalStore.prototype.storePrivate = async function (keys) {
await storeKeys(this.storage, this.privateKeysItem, keys);
};
async function storeKeys(storage, itemname, keys) {
if (keys.length) {
const armoredKeys = await Promise.all(keys.map(key => _webStreamTools2.default.readToEnd(key.armor())));
storage.setItem(itemname, JSON.stringify(armoredKeys));
} else {
storage.removeItem(itemname);
}
}
exports.default = LocalStore;
},{"../config":80,"../key":117,"../util":153,"node-localstorage":"node-localstorage","web-stream-tools":76}],121:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.Message = Message;
exports.encryptSessionKey = encryptSessionKey;
exports.createSignaturePackets = createSignaturePackets;
exports.createVerificationObjects = createVerificationObjects;
exports.readArmored = readArmored;
exports.read = read;
exports.fromText = fromText;
exports.fromBinary = fromBinary;
var _webStreamTools = require('web-stream-tools');
var _webStreamTools2 = _interopRequireDefault(_webStreamTools);
var _armor = require('./encoding/armor');
var _armor2 = _interopRequireDefault(_armor);
var _keyid = require('./type/keyid');
var _keyid2 = _interopRequireDefault(_keyid);
var _config = require('./config');
var _config2 = _interopRequireDefault(_config);
var _crypto = require('./crypto');
var _crypto2 = _interopRequireDefault(_crypto);
var _enums = require('./enums');
var _enums2 = _interopRequireDefault(_enums);
var _util = require('./util');
var _util2 = _interopRequireDefault(_util);
var _packet = require('./packet');
var _packet2 = _interopRequireDefault(_packet);
var _signature = require('./signature');
var _key = require('./key');
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* @class
* @classdesc Class that represents an OpenPGP message.
* Can be an encrypted message, signed message, compressed message or literal message
* @param {module:packet.List} packetlist The packets that form this message
* See {@link https://tools.ietf.org/html/rfc4880#section-11.3}
*/
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @requires web-stream-tools
* @requires encoding/armor
* @requires type/keyid
* @requires config
* @requires crypto
* @requires enums
* @requires util
* @requires packet
* @requires signature
* @requires key
* @module message
*/
function Message(packetlist) {
if (!(this instanceof Message)) {
return new Message(packetlist);
}
this.packets = packetlist || new _packet2.default.List();
}
/**
* Returns the key IDs of the keys to which the session key is encrypted
* @returns {Array<module:type/keyid>} array of keyid objects
*/
Message.prototype.getEncryptionKeyIds = function () {
const keyIds = [];
const pkESKeyPacketlist = this.packets.filterByTag(_enums2.default.packet.publicKeyEncryptedSessionKey);
pkESKeyPacketlist.forEach(function (packet) {
keyIds.push(packet.publicKeyId);
});
return keyIds;
};
/**
* Returns the key IDs of the keys that signed the message
* @returns {Array<module:type/keyid>} array of keyid objects
*/
Message.prototype.getSigningKeyIds = function () {
const keyIds = [];
const msg = this.unwrapCompressed();
// search for one pass signatures
const onePassSigList = msg.packets.filterByTag(_enums2.default.packet.onePassSignature);
onePassSigList.forEach(function (packet) {
keyIds.push(packet.issuerKeyId);
});
// if nothing found look for signature packets
if (!keyIds.length) {
const signatureList = msg.packets.filterByTag(_enums2.default.packet.signature);
signatureList.forEach(function (packet) {
keyIds.push(packet.issuerKeyId);
});
}
return keyIds;
};
/**
* Decrypt the message. Either a private key, a session key, or a password must be specified.
* @param {Array<Key>} privateKeys (optional) private keys with decrypted secret data
* @param {Array<String>} passwords (optional) passwords used to decrypt
* @param {Array<Object>} sessionKeys (optional) session keys in the form: { data:Uint8Array, algorithm:String, [aeadAlgorithm:String] }
* @param {Boolean} streaming (optional) whether to process data as a stream
* @returns {Promise<Message>} new message with decrypted content
* @async
*/
Message.prototype.decrypt = async function (privateKeys, passwords, sessionKeys, streaming) {
const keyObjs = sessionKeys || (await this.decryptSessionKeys(privateKeys, passwords));
const symEncryptedPacketlist = this.packets.filterByTag(_enums2.default.packet.symmetricallyEncrypted, _enums2.default.packet.symEncryptedIntegrityProtected, _enums2.default.packet.symEncryptedAEADProtected);
if (symEncryptedPacketlist.length === 0) {
return this;
}
const symEncryptedPacket = symEncryptedPacketlist[0];
let exception = null;
for (let i = 0; i < keyObjs.length; i++) {
if (!keyObjs[i] || !_util2.default.isUint8Array(keyObjs[i].data) || !_util2.default.isString(keyObjs[i].algorithm)) {
throw new Error('Invalid session key for decryption.');
}
try {
await symEncryptedPacket.decrypt(keyObjs[i].algorithm, keyObjs[i].data, streaming);
break;
} catch (e) {
_util2.default.print_debug_error(e);
exception = e;
}
}
// We don't await stream.cancel here because it only returns when the other copy is canceled too.
_webStreamTools2.default.cancel(symEncryptedPacket.encrypted); // Don't keep copy of encrypted data in memory.
symEncryptedPacket.encrypted = null;
if (!symEncryptedPacket.packets || !symEncryptedPacket.packets.length) {
throw exception || new Error('Decryption failed.');
}
const resultMsg = new Message(symEncryptedPacket.packets);
symEncryptedPacket.packets = new _packet2.default.List(); // remove packets after decryption
return resultMsg;
};
/**
* Decrypt encrypted session keys either with private keys or passwords.
* @param {Array<Key>} privateKeys (optional) private keys with decrypted secret data
* @param {Array<String>} passwords (optional) passwords used to decrypt
* @returns {Promise<Array<{ data: Uint8Array,
algorithm: String }>>} array of object with potential sessionKey, algorithm pairs
* @async
*/
Message.prototype.decryptSessionKeys = async function (privateKeys, passwords) {
let keyPackets = [];
let exception;
if (passwords) {
const symESKeyPacketlist = this.packets.filterByTag(_enums2.default.packet.symEncryptedSessionKey);
if (!symESKeyPacketlist) {
throw new Error('No symmetrically encrypted session key packet found.');
}
await Promise.all(passwords.map(async function (password, i) {
let packets;
if (i) {
packets = new _packet2.default.List();
await packets.read(symESKeyPacketlist.write());
} else {
packets = symESKeyPacketlist;
}
await Promise.all(packets.map(async function (keyPacket) {
try {
await keyPacket.decrypt(password);
keyPackets.push(keyPacket);
} catch (err) {
_util2.default.print_debug_error(err);
}
}));
}));
} else if (privateKeys) {
const pkESKeyPacketlist = this.packets.filterByTag(_enums2.default.packet.publicKeyEncryptedSessionKey);
if (!pkESKeyPacketlist) {
throw new Error('No public key encrypted session key packet found.');
}
await Promise.all(pkESKeyPacketlist.map(async function (keyPacket) {
await Promise.all(privateKeys.map(async function (privateKey) {
const primaryUser = await privateKey.getPrimaryUser(); // TODO: Pass userId from somewhere.
let algos = [_enums2.default.symmetric.aes256, // Old OpenPGP.js default fallback
_enums2.default.symmetric.aes128, // RFC4880bis fallback
_enums2.default.symmetric.tripledes, // RFC4880 fallback
_enums2.default.symmetric.cast5 // Golang OpenPGP fallback
];
if (primaryUser && primaryUser.selfCertification.preferredSymmetricAlgorithms) {
algos = algos.concat(primaryUser.selfCertification.preferredSymmetricAlgorithms);
}
const privateKeyPackets = privateKey.getKeys(keyPacket.publicKeyId).map(key => key.keyPacket);
await Promise.all(privateKeyPackets.map(async function (privateKeyPacket) {
if (!privateKeyPacket) {
return;
}
if (!privateKeyPacket.isDecrypted()) {
throw new Error('Private key is not decrypted.');
}
try {
await keyPacket.decrypt(privateKeyPacket);
if (!algos.includes(_enums2.default.write(_enums2.default.symmetric, keyPacket.sessionKeyAlgorithm))) {
throw new Error('A non-preferred symmetric algorithm was used.');
}
keyPackets.push(keyPacket);
} catch (err) {
_util2.default.print_debug_error(err);
exception = err;
}
}));
}));
_webStreamTools2.default.cancel(keyPacket.encrypted); // Don't keep copy of encrypted data in memory.
keyPacket.encrypted = null;
}));
} else {
throw new Error('No key or password specified.');
}
if (keyPackets.length) {
// Return only unique session keys
if (keyPackets.length > 1) {
const seen = {};
keyPackets = keyPackets.filter(function (item) {
const k = item.sessionKeyAlgorithm + _util2.default.Uint8Array_to_str(item.sessionKey);
if (seen.hasOwnProperty(k)) {
return false;
}
seen[k] = true;
return true;
});
}
return keyPackets.map(packet => ({ data: packet.sessionKey, algorithm: packet.sessionKeyAlgorithm }));
}
throw exception || new Error('Session key decryption failed.');
};
/**
* Get literal data that is the body of the message
* @returns {(Uint8Array|null)} literal body of the message as Uint8Array
*/
Message.prototype.getLiteralData = function () {
const msg = this.unwrapCompressed();
const literal = msg.packets.findPacket(_enums2.default.packet.literal);
return literal && literal.getBytes() || null;
};
/**
* Get filename from literal data packet
* @returns {(String|null)} filename of literal data packet as string
*/
Message.prototype.getFilename = function () {
const msg = this.unwrapCompressed();
const literal = msg.packets.findPacket(_enums2.default.packet.literal);
return literal && literal.getFilename() || null;
};
/**
* Get literal data as text
* @returns {(String|null)} literal body of the message interpreted as text
*/
Message.prototype.getText = function () {
const msg = this.unwrapCompressed();
const literal = msg.packets.findPacket(_enums2.default.packet.literal);
if (literal) {
return literal.getText();
}
return null;
};
/**
* Encrypt the message either with public keys, passwords, or both at once.
* @param {Array<Key>} keys (optional) public key(s) for message encryption
* @param {Array<String>} passwords (optional) password(s) for message encryption
* @param {Object} sessionKey (optional) session key in the form: { data:Uint8Array, algorithm:String, [aeadAlgorithm:String] }
* @param {Boolean} wildcard (optional) use a key ID of 0 instead of the public key IDs
* @param {Date} date (optional) override the creation date of the literal package
* @param {Array} userIds (optional) user IDs to encrypt for, e.g. [{ name:'Robert Receiver', email:'robert@openpgp.org' }]
* @param {Boolean} streaming (optional) whether to process data as a stream
* @returns {Promise<Message>} new message with encrypted content
* @async
*/
Message.prototype.encrypt = async function (keys, passwords, sessionKey, wildcard = false, date = new Date(), userIds = [], streaming) {
let symAlgo;
let aeadAlgo;
let symEncryptedPacket;
if (sessionKey) {
if (!_util2.default.isUint8Array(sessionKey.data) || !_util2.default.isString(sessionKey.algorithm)) {
throw new Error('Invalid session key for encryption.');
}
symAlgo = sessionKey.algorithm;
aeadAlgo = sessionKey.aeadAlgorithm;
sessionKey = sessionKey.data;
} else if (keys && keys.length) {
symAlgo = _enums2.default.read(_enums2.default.symmetric, (await (0, _key.getPreferredAlgo)('symmetric', keys, date, userIds)));
if (_config2.default.aead_protect && _config2.default.aead_protect_version === 4 && (await (0, _key.isAeadSupported)(keys, date, userIds))) {
aeadAlgo = _enums2.default.read(_enums2.default.aead, (await (0, _key.getPreferredAlgo)('aead', keys, date, userIds)));
}
} else if (passwords && passwords.length) {
symAlgo = _enums2.default.read(_enums2.default.symmetric, _config2.default.encryption_cipher);
aeadAlgo = _enums2.default.read(_enums2.default.aead, _config2.default.aead_mode);
} else {
throw new Error('No keys, passwords, or session key provided.');
}
if (!sessionKey) {
sessionKey = await _crypto2.default.generateSessionKey(symAlgo);
}
const msg = await encryptSessionKey(sessionKey, symAlgo, aeadAlgo, keys, passwords, wildcard, date, userIds);
if (_config2.default.aead_protect && (_config2.default.aead_protect_version !== 4 || aeadAlgo)) {
symEncryptedPacket = new _packet2.default.SymEncryptedAEADProtected();
symEncryptedPacket.aeadAlgorithm = aeadAlgo;
} else if (_config2.default.integrity_protect) {
symEncryptedPacket = new _packet2.default.SymEncryptedIntegrityProtected();
} else {
symEncryptedPacket = new _packet2.default.SymmetricallyEncrypted();
}
symEncryptedPacket.packets = this.packets;
await symEncryptedPacket.encrypt(symAlgo, sessionKey, streaming);
msg.packets.push(symEncryptedPacket);
symEncryptedPacket.packets = new _packet2.default.List(); // remove packets after encryption
return {
message: msg,
sessionKey: {
data: sessionKey,
algorithm: symAlgo,
aeadAlgorithm: aeadAlgo
}
};
};
/**
* Encrypt a session key either with public keys, passwords, or both at once.
* @param {Uint8Array} sessionKey session key for encryption
* @param {String} symAlgo session key algorithm
* @param {String} aeadAlgo (optional) aead algorithm, e.g. 'eax' or 'ocb'
* @param {Array<Key>} publicKeys (optional) public key(s) for message encryption
* @param {Array<String>} passwords (optional) for message encryption
* @param {Boolean} wildcard (optional) use a key ID of 0 instead of the public key IDs
* @param {Date} date (optional) override the date
* @param {Array} userIds (optional) user IDs to encrypt for, e.g. [{ name:'Robert Receiver', email:'robert@openpgp.org' }]
* @returns {Promise<Message>} new message with encrypted content
* @async
*/
async function encryptSessionKey(sessionKey, symAlgo, aeadAlgo, publicKeys, passwords, wildcard = false, date = new Date(), userIds = []) {
const packetlist = new _packet2.default.List();
if (publicKeys) {
const results = await Promise.all(publicKeys.map(async function (publicKey) {
const encryptionKey = await publicKey.getEncryptionKey(undefined, date, userIds);
if (!encryptionKey) {
throw new Error('Could not find valid key packet for encryption in key ' + publicKey.getKeyId().toHex());
}
const pkESKeyPacket = new _packet2.default.PublicKeyEncryptedSessionKey();
pkESKeyPacket.publicKeyId = wildcard ? _keyid2.default.wildcard() : encryptionKey.getKeyId();
pkESKeyPacket.publicKeyAlgorithm = encryptionKey.keyPacket.algorithm;
pkESKeyPacket.sessionKey = sessionKey;
pkESKeyPacket.sessionKeyAlgorithm = symAlgo;
await pkESKeyPacket.encrypt(encryptionKey.keyPacket);
delete pkESKeyPacket.sessionKey; // delete plaintext session key after encryption
return pkESKeyPacket;
}));
packetlist.concat(results);
}
if (passwords) {
const testDecrypt = async function testDecrypt(keyPacket, password) {
try {
await keyPacket.decrypt(password);
return 1;
} catch (e) {
return 0;
}
};
const sum = (accumulator, currentValue) => accumulator + currentValue;
const encryptPassword = async function encryptPassword(sessionKey, symAlgo, aeadAlgo, password) {
const symEncryptedSessionKeyPacket = new _packet2.default.SymEncryptedSessionKey();
symEncryptedSessionKeyPacket.sessionKey = sessionKey;
symEncryptedSessionKeyPacket.sessionKeyAlgorithm = symAlgo;
if (aeadAlgo) {
symEncryptedSessionKeyPacket.aeadAlgorithm = aeadAlgo;
}
await symEncryptedSessionKeyPacket.encrypt(password);
if (_config2.default.password_collision_check) {
const results = await Promise.all(passwords.map(pwd => testDecrypt(symEncryptedSessionKeyPacket, pwd)));
if (results.reduce(sum) !== 1) {
return encryptPassword(sessionKey, symAlgo, password);
}
}
delete symEncryptedSessionKeyPacket.sessionKey; // delete plaintext session key after encryption
return symEncryptedSessionKeyPacket;
};
const results = await Promise.all(passwords.map(pwd => encryptPassword(sessionKey, symAlgo, aeadAlgo, pwd)));
packetlist.concat(results);
}
return new Message(packetlist);
}
/**
* Sign the message (the literal data packet of the message)
* @param {Array<module:key.Key>} privateKeys private keys with decrypted secret key data for signing
* @param {Signature} signature (optional) any existing detached signature to add to the message
* @param {Date} date (optional) override the creation time of the signature
* @param {Array} userIds (optional) user IDs to sign with, e.g. [{ name:'Steve Sender', email:'steve@openpgp.org' }]
* @returns {Promise<Message>} new message with signed content
* @async
*/
Message.prototype.sign = async function (privateKeys = [], signature = null, date = new Date(), userIds = []) {
const packetlist = new _packet2.default.List();
const literalDataPacket = this.packets.findPacket(_enums2.default.packet.literal);
if (!literalDataPacket) {
throw new Error('No literal data packet to sign.');
}
let i;
let existingSigPacketlist;
// If data packet was created from Uint8Array, use binary, otherwise use text
const signatureType = literalDataPacket.text === null ? _enums2.default.signature.binary : _enums2.default.signature.text;
if (signature) {
existingSigPacketlist = signature.packets.filterByTag(_enums2.default.packet.signature);
for (i = existingSigPacketlist.length - 1; i >= 0; i--) {
const signaturePacket = existingSigPacketlist[i];
const onePassSig = new _packet2.default.OnePassSignature();
onePassSig.signatureType = signaturePacket.signatureType;
onePassSig.hashAlgorithm = signaturePacket.hashAlgorithm;
onePassSig.publicKeyAlgorithm = signaturePacket.publicKeyAlgorithm;
onePassSig.issuerKeyId = signaturePacket.issuerKeyId;
if (!privateKeys.length && i === 0) {
onePassSig.flags = 1;
}
packetlist.push(onePassSig);
}
}
await Promise.all(Array.from(privateKeys).reverse().map(async function (privateKey, i) {
if (privateKey.isPublic()) {
throw new Error('Need private key for signing');
}
const signingKey = await privateKey.getSigningKey(undefined, date, userIds);
if (!signingKey) {
throw new Error('Could not find valid key packet for signing in key ' + privateKey.getKeyId().toHex());
}
const onePassSig = new _packet2.default.OnePassSignature();
onePassSig.signatureType = signatureType;
onePassSig.hashAlgorithm = await (0, _key.getPreferredHashAlgo)(privateKey, signingKey.keyPacket, date, userIds);
onePassSig.publicKeyAlgorithm = signingKey.keyPacket.algorithm;
onePassSig.issuerKeyId = signingKey.getKeyId();
if (i === privateKeys.length - 1) {
onePassSig.flags = 1;
}
return onePassSig;
})).then(onePassSignatureList => {
onePassSignatureList.forEach(onePassSig => packetlist.push(onePassSig));
});
packetlist.push(literalDataPacket);
packetlist.concat((await createSignaturePackets(literalDataPacket, privateKeys, signature, date)));
return new Message(packetlist);
};
/**
* Compresses the message (the literal and -if signed- signature data packets of the message)
* @param {module:enums.compression} compression compression algorithm to be used
* @returns {module:message.Message} new message with compressed content
*/
Message.prototype.compress = function (compression) {
if (compression === _enums2.default.compression.uncompressed) {
return this;
}
const compressed = new _packet2.default.Compressed();
compressed.packets = this.packets;
compressed.algorithm = _enums2.default.read(_enums2.default.compression, compression);
const packetList = new _packet2.default.List();
packetList.push(compressed);
return new Message(packetList);
};
/**
* Create a detached signature for the message (the literal data packet of the message)
* @param {Array<module:key.Key>} privateKeys private keys with decrypted secret key data for signing
* @param {Signature} signature (optional) any existing detached signature
* @param {Date} date (optional) override the creation time of the signature
* @param {Array} userIds (optional) user IDs to sign with, e.g. [{ name:'Steve Sender', email:'steve@openpgp.org' }]
* @returns {Promise<module:signature.Signature>} new detached signature of message content
* @async
*/
Message.prototype.signDetached = async function (privateKeys = [], signature = null, date = new Date(), userIds = []) {
const literalDataPacket = this.packets.findPacket(_enums2.default.packet.literal);
if (!literalDataPacket) {
throw new Error('No literal data packet to sign.');
}
return new _signature.Signature((await createSignaturePackets(literalDataPacket, privateKeys, signature, date, userIds)));
};
/**
* Create signature packets for the message
* @param {module:packet.Literal} literalDataPacket the literal data packet to sign
* @param {Array<module:key.Key>} privateKeys private keys with decrypted secret key data for signing
* @param {Signature} signature (optional) any existing detached signature to append
* @param {Date} date (optional) override the creationtime of the signature
* @param {Array} userIds (optional) user IDs to sign with, e.g. [{ name:'Steve Sender', email:'steve@openpgp.org' }]
* @returns {Promise<module:packet.List>} list of signature packets
* @async
*/
async function createSignaturePackets(literalDataPacket, privateKeys, signature = null, date = new Date(), userIds = []) {
const packetlist = new _packet2.default.List();
// If data packet was created from Uint8Array, use binary, otherwise use text
const signatureType = literalDataPacket.text === null ? _enums2.default.signature.binary : _enums2.default.signature.text;
await Promise.all(privateKeys.map(async (privateKey, i) => {
const userId = userIds[i];
if (privateKey.isPublic()) {
throw new Error('Need private key for signing');
}
const signingKey = await privateKey.getSigningKey(undefined, date, userId);
if (!signingKey) {
throw new Error(`Could not find valid signing key packet in key ${privateKey.getKeyId().toHex()}`);
}
return (0, _key.createSignaturePacket)(literalDataPacket, privateKey, signingKey.keyPacket, { signatureType }, date, userId);
})).then(signatureList => {
signatureList.forEach(signaturePacket => packetlist.push(signaturePacket));
});
if (signature) {
const existingSigPacketlist = signature.packets.filterByTag(_enums2.default.packet.signature);
packetlist.concat(existingSigPacketlist);
}
return packetlist;
}
/**
* Verify message signatures
* @param {Array<module:key.Key>} keys array of keys to verify signatures
* @param {Date} date (optional) Verify the signature against the given date, i.e. check signature creation time < date < expiration time
* @param {Boolean} streaming (optional) whether to process data as a stream
* @returns {Promise<Array<({keyid: module:type/keyid, valid: Boolean})>>} list of signer's keyid and validity of signature
* @async
*/
Message.prototype.verify = async function (keys, date = new Date(), streaming) {
const msg = this.unwrapCompressed();
const literalDataList = msg.packets.filterByTag(_enums2.default.packet.literal);
if (literalDataList.length !== 1) {
throw new Error('Can only verify message with one literal data packet.');
}
const onePassSigList = msg.packets.filterByTag(_enums2.default.packet.onePassSignature).reverse();
const signatureList = msg.packets.filterByTag(_enums2.default.packet.signature);
if (onePassSigList.length && !signatureList.length && msg.packets.stream) {
await Promise.all(onePassSigList.map(async onePassSig => {
onePassSig.correspondingSig = new Promise((resolve, reject) => {
onePassSig.correspondingSigResolve = resolve;
onePassSig.correspondingSigReject = reject;
});
onePassSig.signatureData = _webStreamTools2.default.fromAsync(async () => (await onePassSig.correspondingSig).signatureData);
onePassSig.hashed = await onePassSig.hash(onePassSig.signatureType, literalDataList[0], undefined, streaming);
}));
msg.packets.stream = _webStreamTools2.default.transformPair(msg.packets.stream, async (readable, writable) => {
const reader = _webStreamTools2.default.getReader(readable);
const writer = _webStreamTools2.default.getWriter(writable);
try {
for (let i = 0; i < onePassSigList.length; i++) {
var _ref = await reader.read();
const signature = _ref.value;
onePassSigList[i].correspondingSigResolve(signature);
}
await reader.readToEnd();
await writer.ready;
await writer.close();
} catch (e) {
onePassSigList.forEach(onePassSig => {
onePassSig.correspondingSigReject(e);
});
await writer.abort(e);
}
});
return createVerificationObjects(onePassSigList, literalDataList, keys, date);
}
return createVerificationObjects(signatureList, literalDataList, keys, date);
};
/**
* Verify detached message signature
* @param {Array<module:key.Key>} keys array of keys to verify signatures
* @param {Signature} signature
* @param {Date} date Verify the signature against the given date, i.e. check signature creation time < date < expiration time
* @returns {Promise<Array<({keyid: module:type/keyid, valid: Boolean})>>} list of signer's keyid and validity of signature
* @async
*/
Message.prototype.verifyDetached = function (signature, keys, date = new Date()) {
const msg = this.unwrapCompressed();
const literalDataList = msg.packets.filterByTag(_enums2.default.packet.literal);
if (literalDataList.length !== 1) {
throw new Error('Can only verify message with one literal data packet.');
}
const signatureList = signature.packets;
return createVerificationObjects(signatureList, literalDataList, keys, date);
};
/**
* Create object containing signer's keyid and validity of signature
* @param {module:packet.Signature} signature signature packets
* @param {Array<module:packet.Literal>} literalDataList array of literal data packets
* @param {Array<module:key.Key>} keys array of keys to verify signatures
* @param {Date} date Verify the signature against the given date,
* i.e. check signature creation time < date < expiration time
* @returns {Promise<Array<{keyid: module:type/keyid,
* valid: Boolean}>>} list of signer's keyid and validity of signature
* @async
*/
async function createVerificationObject(signature, literalDataList, keys, date = new Date()) {
let primaryKey = null;
let signingKey = null;
await Promise.all(keys.map(async function (key) {
// Look for the unique key that matches issuerKeyId of signature
const result = await key.getSigningKey(signature.issuerKeyId, null);
if (result) {
primaryKey = key;
signingKey = result;
}
}));
const signaturePacket = signature.correspondingSig || signature;
const verifiedSig = {
keyid: signature.issuerKeyId,
verified: (async () => {
if (!signingKey) {
return null;
}
const verified = await signature.verify(signingKey.keyPacket, signature.signatureType, literalDataList[0]);
const sig = await signaturePacket;
if (sig.isExpired(date) || !(sig.created >= signingKey.getCreationTime() && sig.created < (await (signingKey === primaryKey ? signingKey.getExpirationTime() : signingKey.getExpirationTime(primaryKey, date))))) {
return null;
}
return verified;
})(),
signature: (async () => {
const sig = await signaturePacket;
const packetlist = new _packet2.default.List();
packetlist.push(sig);
return new _signature.Signature(packetlist);
})()
};
// Mark potential promise rejections as "handled". This is needed because in
// some cases, we reject them before the user has a reasonable chance to
// handle them (e.g. `await readToEnd(result.data); await result.verified` and
// the data stream errors).
verifiedSig.signature.catch(() => {});
verifiedSig.verified.catch(() => {});
return verifiedSig;
}
/**
* Create list of objects containing signer's keyid and validity of signature
* @param {Array<module:packet.Signature>} signatureList array of signature packets
* @param {Array<module:packet.Literal>} literalDataList array of literal data packets
* @param {Array<module:key.Key>} keys array of keys to verify signatures
* @param {Date} date Verify the signature against the given date,
* i.e. check signature creation time < date < expiration time
* @returns {Promise<Array<{keyid: module:type/keyid,
* valid: Boolean}>>} list of signer's keyid and validity of signature
* @async
*/
async function createVerificationObjects(signatureList, literalDataList, keys, date = new Date()) {
return Promise.all(signatureList.filter(function (signature) {
return ['text', 'binary'].includes(_enums2.default.read(_enums2.default.signature, signature.signatureType));
}).map(async function (signature) {
return createVerificationObject(signature, literalDataList, keys, date);
}));
}
/**
* Unwrap compressed message
* @returns {module:message.Message} message Content of compressed message
*/
Message.prototype.unwrapCompressed = function () {
const compressed = this.packets.filterByTag(_enums2.default.packet.compressed);
if (compressed.length) {
return new Message(compressed[0].packets);
}
return this;
};
/**
* Append signature to unencrypted message object
* @param {String|Uint8Array} detachedSignature The detached ASCII-armored or Uint8Array PGP signature
*/
Message.prototype.appendSignature = async function (detachedSignature) {
await this.packets.read(_util2.default.isUint8Array(detachedSignature) ? detachedSignature : (await _armor2.default.decode(detachedSignature)).data);
};
/**
* Returns ASCII armored text of message
* @returns {ReadableStream<String>} ASCII armor
*/
Message.prototype.armor = function () {
return _armor2.default.encode(_enums2.default.armor.message, this.packets.write());
};
/**
* reads an OpenPGP armored message and returns a message object
* @param {String | ReadableStream<String>} armoredText text to be parsed
* @returns {Promise<module:message.Message>} new message object
* @async
* @static
*/
async function readArmored(armoredText) {
//TODO how do we want to handle bad text? Exception throwing
//TODO don't accept non-message armored texts
const streamType = _util2.default.isStream(armoredText);
if (streamType === 'node') {
armoredText = _webStreamTools2.default.nodeToWeb(armoredText);
}
const input = await _armor2.default.decode(armoredText);
return read(input.data, streamType);
}
/**
* reads an OpenPGP message as byte array and returns a message object
* @param {Uint8Array | ReadableStream<Uint8Array>} input binary message
* @param {Boolean} fromStream whether the message was created from a Stream
* @returns {Promise<module:message.Message>} new message object
* @async
* @static
*/
async function read(input, fromStream = _util2.default.isStream(input)) {
const streamType = _util2.default.isStream(input);
if (streamType === 'node') {
input = _webStreamTools2.default.nodeToWeb(input);
}
const packetlist = new _packet2.default.List();
await packetlist.read(input, fromStream);
const message = new Message(packetlist);
message.fromStream = fromStream;
return message;
}
/**
* creates new message object from text
* @param {String | ReadableStream<String>} text
* @param {String} filename (optional)
* @param {Date} date (optional)
* @param {utf8|binary|text|mime} type (optional) data packet type
* @returns {module:message.Message} new message object
* @static
*/
function fromText(text, filename, date = new Date(), type = 'utf8') {
const streamType = _util2.default.isStream(text);
if (streamType === 'node') {
text = _webStreamTools2.default.nodeToWeb(text);
}
const literalDataPacket = new _packet2.default.Literal(date);
// text will be converted to UTF8
literalDataPacket.setText(text, type);
if (filename !== undefined) {
literalDataPacket.setFilename(filename);
}
const literalDataPacketlist = new _packet2.default.List();
literalDataPacketlist.push(literalDataPacket);
const message = new Message(literalDataPacketlist);
message.fromStream = streamType;
return message;
}
/**
* creates new message object from binary data
* @param {Uint8Array | ReadableStream<Uint8Array>} bytes
* @param {String} filename (optional)
* @param {Date} date (optional)
* @param {utf8|binary|text|mime} type (optional) data packet type
* @returns {module:message.Message} new message object
* @static
*/
function fromBinary(bytes, filename, date = new Date(), type = 'binary') {
const streamType = _util2.default.isStream(bytes);
if (!_util2.default.isUint8Array(bytes) && !streamType) {
throw new Error('Data must be in the form of a Uint8Array or Stream');
}
if (streamType === 'node') {
bytes = _webStreamTools2.default.nodeToWeb(bytes);
}
const literalDataPacket = new _packet2.default.Literal(date);
literalDataPacket.setBytes(bytes, type);
if (filename !== undefined) {
literalDataPacket.setFilename(filename);
}
const literalDataPacketlist = new _packet2.default.List();
literalDataPacketlist.push(literalDataPacket);
const message = new Message(literalDataPacketlist);
message.fromStream = streamType;
return message;
}
},{"./config":80,"./crypto":95,"./encoding/armor":112,"./enums":114,"./key":117,"./packet":126,"./signature":146,"./type/keyid":149,"./util":153,"web-stream-tools":76}],122:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.initWorker = initWorker;
exports.getWorker = getWorker;
exports.destroyWorker = destroyWorker;
exports.generateKey = generateKey;
exports.reformatKey = reformatKey;
exports.revokeKey = revokeKey;
exports.decryptKey = decryptKey;
exports.encryptKey = encryptKey;
exports.encrypt = encrypt;
exports.decrypt = decrypt;
exports.sign = sign;
exports.verify = verify;
exports.encryptSessionKey = encryptSessionKey;
exports.decryptSessionKeys = decryptSessionKeys;
var _webStreamTools = require('web-stream-tools');
var _webStreamTools2 = _interopRequireDefault(_webStreamTools);
var _message = require('./message');
var messageLib = _interopRequireWildcard(_message);
var _cleartext = require('./cleartext');
var _key = require('./key');
var _config = require('./config/config');
var _config2 = _interopRequireDefault(_config);
var _enums = require('./enums');
var _enums2 = _interopRequireDefault(_enums);
require('./polyfills');
var _util = require('./util');
var _util2 = _interopRequireDefault(_util);
var _async_proxy = require('./worker/async_proxy');
var _async_proxy2 = _interopRequireDefault(_async_proxy);
function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
//////////////////////////
// //
// Web Worker setup //
// //
//////////////////////////
let asyncProxy; // instance of the asyncproxy
/**
* Set the path for the web worker script and create an instance of the async proxy
* @param {String} path relative path to the worker scripts, default: 'openpgp.worker.js'
* @param {Number} n number of workers to initialize
* @param {Array<Object>} workers alternative to path parameter: web workers initialized with 'openpgp.worker.js'
* @returns {Promise<Boolean>} returns a promise that resolves to true if all workers have succesfully finished loading
* @async
*/
// OpenPGP.js - An OpenPGP implementation in javascript
// Copyright (C) 2016 Tankred Hase
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @fileoverview The openpgp base module should provide all of the functionality
* to consume the openpgp.js library. All additional classes are documented
* for extending and developing on top of the base library.
* @requires web-stream-tools
* @requires message
* @requires cleartext
* @requires key
* @requires config
* @requires enums
* @requires util
* @requires polyfills
* @requires worker/async_proxy
* @module openpgp
*/
// This file intentionally has two separate file overviews so that
// a reference to this module appears at the end of doc/index.html.
/**
* @fileoverview To view the full API documentation, start from
* {@link module:openpgp}
*/
async function initWorker({ path = 'openpgp.worker.js', n = 1, workers = [] } = {}) {
if (workers.length || typeof window !== 'undefined' && window.Worker && window.MessageChannel) {
const proxy = new _async_proxy2.default({ path, n, workers, config: _config2.default });
const loaded = await proxy.loaded();
if (loaded) {
asyncProxy = proxy;
return true;
}
}
return false;
}
/**
* Returns a reference to the async proxy if the worker was initialized with openpgp.initWorker()
* @returns {module:worker/async_proxy.AsyncProxy|null} the async proxy or null if not initialized
*/
function getWorker() {
return asyncProxy;
}
/**
* Cleanup the current instance of the web worker.
*/
function destroyWorker() {
asyncProxy = undefined;
}
//////////////////////
// //
// Key handling //
// //
//////////////////////
/**
* Generates a new OpenPGP key pair. Supports RSA and ECC keys. Primary and subkey will be of same type.
* @param {Array<Object>} userIds array of user IDs e.g. [{ name:'Phil Zimmermann', email:'phil@openpgp.org' }]
* @param {String} passphrase (optional) The passphrase used to encrypt the resulting private key
* @param {Number} numBits (optional) number of bits for RSA keys: 2048 or 4096.
* @param {Number} keyExpirationTime (optional) The number of seconds after the key creation time that the key expires
* @param {String} curve (optional) elliptic curve for ECC keys:
* curve25519, p256, p384, p521, secp256k1,
* brainpoolP256r1, brainpoolP384r1, or brainpoolP512r1.
* @param {Date} date (optional) override the creation date of the key and the key signatures
* @param {Array<Object>} subkeys (optional) options for each subkey, default to main key options. e.g. [{sign: true, passphrase: '123'}]
* sign parameter defaults to false, and indicates whether the subkey should sign rather than encrypt
* @returns {Promise<Object>} The generated key object in the form:
* { key:Key, privateKeyArmored:String, publicKeyArmored:String, revocationCertificate:String }
* @async
* @static
*/
function generateKey({ userIds = [], passphrase = "", numBits = 2048, keyExpirationTime = 0, curve = "", date = new Date(), subkeys = [{}] }) {
userIds = toArray(userIds);
const options = { userIds, passphrase, numBits, keyExpirationTime, curve, date, subkeys };
if (_util2.default.getWebCryptoAll() && numBits < 2048) {
throw new Error('numBits should be 2048 or 4096, found: ' + numBits);
}
if (!_util2.default.getWebCryptoAll() && asyncProxy) {
// use web worker if web crypto apis are not supported
return asyncProxy.delegate('generateKey', options);
}
return (0, _key.generate)(options).then(async key => {
const revocationCertificate = await key.getRevocationCertificate();
key.revocationSignatures = [];
return convertStreams({
key: key,
privateKeyArmored: key.armor(),
publicKeyArmored: key.toPublic().armor(),
revocationCertificate: revocationCertificate
});
}).catch(onError.bind(null, 'Error generating keypair'));
}
/**
* Reformats signature packets for a key and rewraps key object.
* @param {Key} privateKey private key to reformat
* @param {Array<Object>} userIds array of user IDs e.g. [{ name:'Phil Zimmermann', email:'phil@openpgp.org' }]
* @param {String} passphrase (optional) The passphrase used to encrypt the resulting private key
* @param {Number} keyExpirationTime (optional) The number of seconds after the key creation time that the key expires
* @param {Boolean} revocationCertificate (optional) Whether the returned object should include a revocation certificate to revoke the public key
* @returns {Promise<Object>} The generated key object in the form:
* { key:Key, privateKeyArmored:String, publicKeyArmored:String, revocationCertificate:String }
* @async
* @static
*/
function reformatKey({ privateKey, userIds = [], passphrase = "", keyExpirationTime = 0, date, revocationCertificate = true }) {
userIds = toArray(userIds);
const options = { privateKey, userIds, passphrase, keyExpirationTime, date, revocationCertificate };
if (asyncProxy) {
return asyncProxy.delegate('reformatKey', options);
}
options.revoked = options.revocationCertificate;
return (0, _key.reformat)(options).then(async key => {
const revocationCertificate = await key.getRevocationCertificate();
key.revocationSignatures = [];
return convertStreams({
key: key,
privateKeyArmored: key.armor(),
publicKeyArmored: key.toPublic().armor(),
revocationCertificate: revocationCertificate
});
}).catch(onError.bind(null, 'Error reformatting keypair'));
}
/**
* Revokes a key. Requires either a private key or a revocation certificate.
* If a revocation certificate is passed, the reasonForRevocation parameters will be ignored.
* @param {Key} key (optional) public or private key to revoke
* @param {String} revocationCertificate (optional) revocation certificate to revoke the key with
* @param {Object} reasonForRevocation (optional) object indicating the reason for revocation
* @param {module:enums.reasonForRevocation} reasonForRevocation.flag (optional) flag indicating the reason for revocation
* @param {String} reasonForRevocation.string (optional) string explaining the reason for revocation
* @returns {Promise<Object>} The revoked key object in the form:
* { privateKey:Key, privateKeyArmored:String, publicKey:Key, publicKeyArmored:String }
* (if private key is passed) or { publicKey:Key, publicKeyArmored:String } (otherwise)
* @static
*/
function revokeKey({
key, revocationCertificate, reasonForRevocation
} = {}) {
const options = {
key, revocationCertificate, reasonForRevocation
};
if (!_util2.default.getWebCryptoAll() && asyncProxy) {
// use web worker if web crypto apis are not supported
return asyncProxy.delegate('revokeKey', options);
}
return Promise.resolve().then(() => {
if (revocationCertificate) {
return key.applyRevocationCertificate(revocationCertificate);
} else {
return key.revoke(reasonForRevocation);
}
}).then(async key => {
await convertStreams(key);
if (key.isPrivate()) {
const publicKey = key.toPublic();
return {
privateKey: key,
privateKeyArmored: key.armor(),
publicKey: publicKey,
publicKeyArmored: publicKey.armor()
};
}
return {
publicKey: key,
publicKeyArmored: key.armor()
};
}).catch(onError.bind(null, 'Error revoking key'));
}
/**
* Unlock a private key with your passphrase.
* @param {Key} privateKey the private key that is to be decrypted
* @param {String|Array<String>} passphrase the user's passphrase(s) chosen during key generation
* @returns {Promise<Object>} the unlocked key object in the form: { key:Key }
* @async
*/
function decryptKey({ privateKey, passphrase }) {
if (asyncProxy) {
// use web worker if available
return asyncProxy.delegate('decryptKey', { privateKey, passphrase });
}
return Promise.resolve().then(async function () {
await privateKey.decrypt(passphrase);
return {
key: privateKey
};
}).catch(onError.bind(null, 'Error decrypting private key'));
}
/**
* Lock a private key with your passphrase.
* @param {Key} privateKey the private key that is to be decrypted
* @param {String|Array<String>} passphrase the user's passphrase(s) chosen during key generation
* @returns {Promise<Object>} the locked key object in the form: { key:Key }
* @async
*/
function encryptKey({ privateKey, passphrase }) {
if (asyncProxy) {
// use web worker if available
return asyncProxy.delegate('encryptKey', { privateKey, passphrase });
}
return Promise.resolve().then(async function () {
await privateKey.encrypt(passphrase);
return {
key: privateKey
};
}).catch(onError.bind(null, 'Error decrypting private key'));
}
///////////////////////////////////////////
// //
// Message encryption and decryption //
// //
///////////////////////////////////////////
/**
* Encrypts message text/data with public keys, passwords or both at once. At least either public keys or passwords
* must be specified. If private keys are specified, those will be used to sign the message.
* @param {Message} message message to be encrypted as created by openpgp.message.fromText or openpgp.message.fromBinary
* @param {Key|Array<Key>} publicKeys (optional) array of keys or single key, used to encrypt the message
* @param {Key|Array<Key>} privateKeys (optional) private keys for signing. If omitted message will not be signed
* @param {String|Array<String>} passwords (optional) array of passwords or a single password to encrypt the message
* @param {Object} sessionKey (optional) session key in the form: { data:Uint8Array, algorithm:String }
* @param {module:enums.compression} compression (optional) which compression algorithm to compress the message with, defaults to what is specified in config
* @param {Boolean} armor (optional) if the return values should be ascii armored or the message/signature objects
* @param {'web'|'node'|false} streaming (optional) whether to return data as a stream. Defaults to the type of stream `message` was created from, if any.
* @param {Boolean} detached (optional) if the signature should be detached (if true, signature will be added to returned object)
* @param {Signature} signature (optional) a detached signature to add to the encrypted message
* @param {Boolean} returnSessionKey (optional) if the unencrypted session key should be added to returned object
* @param {Boolean} wildcard (optional) use a key ID of 0 instead of the public key IDs
* @param {Date} date (optional) override the creation date of the message signature
* @param {Array} fromUserIds (optional) array of user IDs to sign with, one per key in `privateKeys`, e.g. [{ name:'Steve Sender', email:'steve@openpgp.org' }]
* @param {Array} toUserIds (optional) array of user IDs to encrypt for, one per key in `publicKeys`, e.g. [{ name:'Robert Receiver', email:'robert@openpgp.org' }]
* @returns {Promise<Object>} Object containing encrypted (and optionally signed) message in the form:
*
* {
* data: String|ReadableStream<String>|NodeStream, (if `armor` was true, the default)
* message: Message, (if `armor` was false)
* signature: String|ReadableStream<String>|NodeStream, (if `detached` was true and `armor` was true)
* signature: Signature (if `detached` was true and `armor` was false)
* sessionKey: { data, algorithm, aeadAlgorithm } (if `returnSessionKey` was true)
* }
* @async
* @static
*/
function encrypt({ message, publicKeys, privateKeys, passwords, sessionKey, compression = _config2.default.compression, armor = true, streaming = message && message.fromStream, detached = false, signature = null, returnSessionKey = false, wildcard = false, date = new Date(), fromUserIds = [], toUserIds = [] }) {
checkMessage(message);publicKeys = toArray(publicKeys);privateKeys = toArray(privateKeys);passwords = toArray(passwords);fromUserIds = toArray(fromUserIds);toUserIds = toArray(toUserIds);
if (!nativeAEAD() && asyncProxy) {
// use web worker if web crypto apis are not supported
return asyncProxy.delegate('encrypt', { message, publicKeys, privateKeys, passwords, sessionKey, compression, armor, streaming, detached, signature, returnSessionKey, wildcard, date, fromUserIds, toUserIds });
}
const result = {};
return Promise.resolve().then(async function () {
if (!privateKeys) {
privateKeys = [];
}
if (privateKeys.length || signature) {
// sign the message only if private keys or signature is specified
if (detached) {
const detachedSignature = await message.signDetached(privateKeys, signature, date, fromUserIds);
result.signature = armor ? detachedSignature.armor() : detachedSignature;
} else {
message = await message.sign(privateKeys, signature, date, fromUserIds);
}
}
message = message.compress(compression);
return message.encrypt(publicKeys, passwords, sessionKey, wildcard, date, toUserIds, streaming);
}).then(async encrypted => {
if (armor) {
result.data = encrypted.message.armor();
} else {
result.message = encrypted.message;
}
if (returnSessionKey) {
result.sessionKey = encrypted.sessionKey;
}
return convertStreams(result, streaming, armor ? ['signature', 'data'] : []);
}).catch(onError.bind(null, 'Error encrypting message'));
}
/**
* Decrypts a message with the user's private key, a session key or a password. Either a private key,
* a session key or a password must be specified.
* @param {Message} message the message object with the encrypted data
* @param {Key|Array<Key>} privateKeys (optional) private keys with decrypted secret key data or session key
* @param {String|Array<String>} passwords (optional) passwords to decrypt the message
* @param {Object|Array<Object>} sessionKeys (optional) session keys in the form: { data:Uint8Array, algorithm:String }
* @param {Key|Array<Key>} publicKeys (optional) array of public keys or single key, to verify signatures
* @param {'utf8'|'binary'} format (optional) whether to return data as a string(Stream) or Uint8Array(Stream). If 'utf8' (the default), also normalize newlines.
* @param {'web'|'node'|false} streaming (optional) whether to return data as a stream. Defaults to the type of stream `message` was created from, if any.
* @param {Signature} signature (optional) detached signature for verification
* @param {Date} date (optional) use the given date for verification instead of the current time
* @returns {Promise<Object>} Object containing decrypted and verified message in the form:
*
* {
* data: String|ReadableStream<String>|NodeStream, (if format was 'utf8', the default)
* data: Uint8Array|ReadableStream<Uint8Array>|NodeStream, (if format was 'binary')
* filename: String,
* signatures: [
* {
* keyid: module:type/keyid,
* verified: Promise<Boolean>,
* valid: Boolean (if streaming was false)
* }, ...
* ]
* }
* @async
* @static
*/
function decrypt({ message, privateKeys, passwords, sessionKeys, publicKeys, format = 'utf8', streaming = message && message.fromStream, signature = null, date = new Date() }) {
checkMessage(message);publicKeys = toArray(publicKeys);privateKeys = toArray(privateKeys);passwords = toArray(passwords);sessionKeys = toArray(sessionKeys);
if (!nativeAEAD() && asyncProxy) {
// use web worker if web crypto apis are not supported
return asyncProxy.delegate('decrypt', { message, privateKeys, passwords, sessionKeys, publicKeys, format, streaming, signature, date });
}
return message.decrypt(privateKeys, passwords, sessionKeys, streaming).then(async function (decrypted) {
if (!publicKeys) {
publicKeys = [];
}
const result = {};
result.signatures = signature ? await decrypted.verifyDetached(signature, publicKeys, date, streaming) : await decrypted.verify(publicKeys, date, streaming);
result.data = format === 'binary' ? decrypted.getLiteralData() : decrypted.getText();
result.filename = decrypted.getFilename();
if (streaming) linkStreams(result, message, decrypted.packets.stream);
result.data = await convertStream(result.data, streaming);
if (!streaming) await prepareSignatures(result.signatures);
return result;
}).catch(onError.bind(null, 'Error decrypting message'));
}
//////////////////////////////////////////
// //
// Message signing and verification //
// //
//////////////////////////////////////////
/**
* Signs a cleartext message.
* @param {CleartextMessage|Message} message (cleartext) message to be signed
* @param {Key|Array<Key>} privateKeys array of keys or single key with decrypted secret key data to sign cleartext
* @param {Boolean} armor (optional) if the return value should be ascii armored or the message object
* @param {'web'|'node'|false} streaming (optional) whether to return data as a stream. Defaults to the type of stream `message` was created from, if any.
* @param {Boolean} detached (optional) if the return value should contain a detached signature
* @param {Date} date (optional) override the creation date of the signature
* @param {Array} fromUserIds (optional) array of user IDs to sign with, one per key in `privateKeys`, e.g. [{ name:'Steve Sender', email:'steve@openpgp.org' }]
* @returns {Promise<Object>} Object containing signed message in the form:
*
* {
* data: String|ReadableStream<String>|NodeStream, (if `armor` was true, the default)
* message: Message (if `armor` was false)
* }
*
* Or, if `detached` was true:
*
* {
* signature: String|ReadableStream<String>|NodeStream, (if `armor` was true, the default)
* signature: Signature (if `armor` was false)
* }
* @async
* @static
*/
function sign({ message, privateKeys, armor = true, streaming = message && message.fromStream, detached = false, date = new Date(), fromUserIds = [] }) {
checkCleartextOrMessage(message);
privateKeys = toArray(privateKeys);fromUserIds = toArray(fromUserIds);
if (asyncProxy) {
// use web worker if available
return asyncProxy.delegate('sign', {
message, privateKeys, armor, streaming, detached, date, fromUserIds
});
}
const result = {};
return Promise.resolve().then(async function () {
if (detached) {
const signature = await message.signDetached(privateKeys, undefined, date, fromUserIds);
result.signature = armor ? signature.armor() : signature;
if (message.packets) {
result.signature = _webStreamTools2.default.transformPair(message.packets.write(), async (readable, writable) => {
await Promise.all([_webStreamTools2.default.pipe(result.signature, writable), _webStreamTools2.default.readToEnd(readable).catch(() => {})]);
});
}
} else {
message = await message.sign(privateKeys, undefined, date, fromUserIds);
if (armor) {
result.data = message.armor();
} else {
result.message = message;
}
}
return convertStreams(result, streaming, armor ? ['signature', 'data'] : []);
}).catch(onError.bind(null, 'Error signing cleartext message'));
}
/**
* Verifies signatures of cleartext signed message
* @param {Key|Array<Key>} publicKeys array of publicKeys or single key, to verify signatures
* @param {CleartextMessage|Message} message (cleartext) message object with signatures
* @param {'web'|'node'|false} streaming (optional) whether to return data as a stream. Defaults to the type of stream `message` was created from, if any.
* @param {Signature} signature (optional) detached signature for verification
* @param {Date} date (optional) use the given date for verification instead of the current time
* @returns {Promise<Object>} Object containing verified message in the form:
*
* {
* data: String|ReadableStream<String>|NodeStream, (if `message` was a CleartextMessage)
* data: Uint8Array|ReadableStream<Uint8Array>|NodeStream, (if `message` was a Message)
* signatures: [
* {
* keyid: module:type/keyid,
* verified: Promise<Boolean>,
* valid: Boolean (if `streaming` was false)
* }, ...
* ]
* }
* @async
* @static
*/
function verify({ message, publicKeys, streaming = message && message.fromStream, signature = null, date = new Date() }) {
checkCleartextOrMessage(message);
publicKeys = toArray(publicKeys);
if (asyncProxy) {
// use web worker if available
return asyncProxy.delegate('verify', { message, publicKeys, streaming, signature, date });
}
return Promise.resolve().then(async function () {
const result = {};
result.signatures = signature ? await message.verifyDetached(signature, publicKeys, date, streaming) : await message.verify(publicKeys, date, streaming);
result.data = message instanceof _cleartext.CleartextMessage ? message.getText() : message.getLiteralData();
if (streaming) linkStreams(result, message);
result.data = await convertStream(result.data, streaming);
if (!streaming) await prepareSignatures(result.signatures);
return result;
}).catch(onError.bind(null, 'Error verifying cleartext signed message'));
}
///////////////////////////////////////////////
// //
// Session key encryption and decryption //
// //
///////////////////////////////////////////////
/**
* Encrypt a symmetric session key with public keys, passwords, or both at once. At least either public keys
* or passwords must be specified.
* @param {Uint8Array} data the session key to be encrypted e.g. 16 random bytes (for aes128)
* @param {String} algorithm algorithm of the symmetric session key e.g. 'aes128' or 'aes256'
* @param {String} aeadAlgorithm (optional) aead algorithm, e.g. 'eax' or 'ocb'
* @param {Key|Array<Key>} publicKeys (optional) array of public keys or single key, used to encrypt the key
* @param {String|Array<String>} passwords (optional) passwords for the message
* @param {Boolean} wildcard (optional) use a key ID of 0 instead of the public key IDs
* @param {Date} date (optional) override the date
* @param {Array} toUserIds (optional) array of user IDs to encrypt for, one per key in `publicKeys`, e.g. [{ name:'Phil Zimmermann', email:'phil@openpgp.org' }]
* @returns {Promise<Message>} the encrypted session key packets contained in a message object
* @async
* @static
*/
function encryptSessionKey({ data, algorithm, aeadAlgorithm, publicKeys, passwords, wildcard = false, date = new Date(), toUserIds = [] }) {
checkBinary(data);checkString(algorithm, 'algorithm');publicKeys = toArray(publicKeys);passwords = toArray(passwords);toUserIds = toArray(toUserIds);
if (asyncProxy) {
// use web worker if available
return asyncProxy.delegate('encryptSessionKey', { data, algorithm, aeadAlgorithm, publicKeys, passwords, wildcard, date, toUserIds });
}
return Promise.resolve().then(async function () {
return { message: await messageLib.encryptSessionKey(data, algorithm, aeadAlgorithm, publicKeys, passwords, wildcard, date, toUserIds) };
}).catch(onError.bind(null, 'Error encrypting session key'));
}
/**
* Decrypt symmetric session keys with a private key or password. Either a private key or
* a password must be specified.
* @param {Message} message a message object containing the encrypted session key packets
* @param {Key|Array<Key>} privateKeys (optional) private keys with decrypted secret key data
* @param {String|Array<String>} passwords (optional) passwords to decrypt the session key
* @returns {Promise<Object|undefined>} Array of decrypted session key, algorithm pairs in form:
* { data:Uint8Array, algorithm:String }
* or 'undefined' if no key packets found
* @async
* @static
*/
function decryptSessionKeys({ message, privateKeys, passwords }) {
checkMessage(message);privateKeys = toArray(privateKeys);passwords = toArray(passwords);
if (asyncProxy) {
// use web worker if available
return asyncProxy.delegate('decryptSessionKeys', { message, privateKeys, passwords });
}
return Promise.resolve().then(async function () {
return message.decryptSessionKeys(privateKeys, passwords);
}).catch(onError.bind(null, 'Error decrypting session keys'));
}
//////////////////////////
// //
// Helper functions //
// //
//////////////////////////
/**
* Input validation
*/
function checkString(data, name) {
if (!_util2.default.isString(data)) {
throw new Error('Parameter [' + (name || 'data') + '] must be of type String');
}
}
function checkBinary(data, name) {
if (!_util2.default.isUint8Array(data)) {
throw new Error('Parameter [' + (name || 'data') + '] must be of type Uint8Array');
}
}
function checkMessage(message) {
if (!(message instanceof messageLib.Message)) {
throw new Error('Parameter [message] needs to be of type Message');
}
}
function checkCleartextOrMessage(message) {
if (!(message instanceof _cleartext.CleartextMessage) && !(message instanceof messageLib.Message)) {
throw new Error('Parameter [message] needs to be of type Message or CleartextMessage');
}
}
/**
* Normalize parameter to an array if it is not undefined.
* @param {Object} param the parameter to be normalized
* @returns {Array<Object>|undefined} the resulting array or undefined
*/
function toArray(param) {
if (param && !_util2.default.isArray(param)) {
param = [param];
}
return param;
}
/**
* Convert data to or from Stream
* @param {Object} data the data to convert
* @param {'web'|'node'|false} streaming (optional) whether to return a ReadableStream
* @returns {Object} the data in the respective format
*/
async function convertStream(data, streaming) {
if (!streaming && _util2.default.isStream(data)) {
return _webStreamTools2.default.readToEnd(data);
}
if (streaming && !_util2.default.isStream(data)) {
data = new ReadableStream({
start(controller) {
controller.enqueue(data);
controller.close();
}
});
}
if (streaming === 'node') {
data = _webStreamTools2.default.webToNode(data);
}
return data;
}
/**
* Convert object properties from Stream
* @param {Object} obj the data to convert
* @param {'web'|'node'|false} streaming (optional) whether to return ReadableStreams
* @param {Array<String>} keys (optional) which keys to return as streams, if possible
* @returns {Object} the data in the respective format
*/
async function convertStreams(obj, streaming, keys = []) {
if (Object.prototype.isPrototypeOf(obj) && !Uint8Array.prototype.isPrototypeOf(obj)) {
await Promise.all(Object.entries(obj).map(async ([key, value]) => {
// recursively search all children
if (_util2.default.isStream(value) || keys.includes(key)) {
obj[key] = await convertStream(value, streaming);
} else {
await convertStreams(obj[key], streaming);
}
}));
}
return obj;
}
/**
* Link result.data to the message stream for cancellation.
* Also, forward errors in the message to result.data.
* @param {Object} result the data to convert
* @param {Message} message message object
* @param {ReadableStream} erroringStream (optional) stream which either errors or gets closed without data
* @returns {Object}
*/
function linkStreams(result, message, erroringStream) {
result.data = _webStreamTools2.default.transformPair(message.packets.stream, async (readable, writable) => {
await _webStreamTools2.default.pipe(result.data, writable, {
preventClose: true
});
const writer = _webStreamTools2.default.getWriter(writable);
try {
// Forward errors in erroringStream (defaulting to the message stream) to result.data.
await _webStreamTools2.default.readToEnd(erroringStream || readable, arr => arr);
await writer.close();
} catch (e) {
await writer.abort(e);
}
});
}
/**
* Wait until signature objects have been verified
* @param {Object} signatures list of signatures
*/
async function prepareSignatures(signatures) {
await Promise.all(signatures.map(async signature => {
signature.signature = await signature.signature;
try {
signature.valid = await signature.verified;
} catch (e) {
signature.valid = null;
signature.error = e;
_util2.default.print_debug_error(e);
}
}));
}
/**
* Global error handler that logs the stack trace and rethrows a high lvl error message.
* @param {String} message A human readable high level error Message
* @param {Error} error The internal error that caused the failure
*/
function onError(message, error) {
// log the stack trace
_util2.default.print_debug_error(error);
// update error message
try {
error.message = message + ': ' + error.message;
} catch (e) {}
throw error;
}
/**
* Check for native AEAD support and configuration by the user. Only
* browsers that implement the current WebCrypto specification support
* native GCM. Native EAX is built on CTR and CBC, which current
* browsers support. OCB and CFB are not natively supported.
* @returns {Boolean} If authenticated encryption should be used
*/
function nativeAEAD() {
return _config2.default.aead_protect && ((_config2.default.aead_protect_version !== 4 || _config2.default.aead_mode === _enums2.default.aead.experimental_gcm) && _util2.default.getWebCrypto() || _config2.default.aead_protect_version === 4 && _config2.default.aead_mode === _enums2.default.aead.eax && _util2.default.getWebCrypto());
}
},{"./cleartext":78,"./config/config":79,"./enums":114,"./key":117,"./message":121,"./polyfills":145,"./util":153,"./worker/async_proxy":155,"web-stream-tools":76}],123:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.Trust = exports.Signature = exports.SecretSubkey = exports.Userid = exports.SecretKey = exports.OnePassSignature = exports.UserAttribute = exports.PublicSubkey = exports.Marker = exports.SymmetricallyEncrypted = exports.PublicKey = exports.Literal = exports.SymEncryptedSessionKey = exports.PublicKeyEncryptedSessionKey = exports.SymEncryptedAEADProtected = exports.SymEncryptedIntegrityProtected = exports.Compressed = undefined;
var _compressed = require('./compressed.js');
Object.defineProperty(exports, 'Compressed', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_compressed).default;
}
});
var _sym_encrypted_integrity_protected = require('./sym_encrypted_integrity_protected.js');
Object.defineProperty(exports, 'SymEncryptedIntegrityProtected', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_sym_encrypted_integrity_protected).default;
}
});
var _sym_encrypted_aead_protected = require('./sym_encrypted_aead_protected.js');
Object.defineProperty(exports, 'SymEncryptedAEADProtected', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_sym_encrypted_aead_protected).default;
}
});
var _public_key_encrypted_session_key = require('./public_key_encrypted_session_key.js');
Object.defineProperty(exports, 'PublicKeyEncryptedSessionKey', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_public_key_encrypted_session_key).default;
}
});
var _sym_encrypted_session_key = require('./sym_encrypted_session_key.js');
Object.defineProperty(exports, 'SymEncryptedSessionKey', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_sym_encrypted_session_key).default;
}
});
var _literal = require('./literal.js');
Object.defineProperty(exports, 'Literal', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_literal).default;
}
});
var _public_key = require('./public_key.js');
Object.defineProperty(exports, 'PublicKey', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_public_key).default;
}
});
var _symmetrically_encrypted = require('./symmetrically_encrypted.js');
Object.defineProperty(exports, 'SymmetricallyEncrypted', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_symmetrically_encrypted).default;
}
});
var _marker = require('./marker.js');
Object.defineProperty(exports, 'Marker', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_marker).default;
}
});
var _public_subkey = require('./public_subkey.js');
Object.defineProperty(exports, 'PublicSubkey', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_public_subkey).default;
}
});
var _user_attribute = require('./user_attribute.js');
Object.defineProperty(exports, 'UserAttribute', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_user_attribute).default;
}
});
var _one_pass_signature = require('./one_pass_signature.js');
Object.defineProperty(exports, 'OnePassSignature', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_one_pass_signature).default;
}
});
var _secret_key = require('./secret_key.js');
Object.defineProperty(exports, 'SecretKey', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_secret_key).default;
}
});
var _userid = require('./userid.js');
Object.defineProperty(exports, 'Userid', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_userid).default;
}
});
var _secret_subkey = require('./secret_subkey.js');
Object.defineProperty(exports, 'SecretSubkey', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_secret_subkey).default;
}
});
var _signature = require('./signature.js');
Object.defineProperty(exports, 'Signature', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_signature).default;
}
});
var _trust = require('./trust.js');
Object.defineProperty(exports, 'Trust', {
enumerable: true,
get: function get() {
return _interopRequireDefault(_trust).default;
}
});
exports.newPacketFromTag = newPacketFromTag;
exports.fromStructuredClone = fromStructuredClone;
var _enums = require('../enums.js');
var _enums2 = _interopRequireDefault(_enums);
var _all_packets = require('./all_packets.js');
var packets = _interopRequireWildcard(_all_packets);
function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* Allocate a new packet
* @function newPacketFromTag
* @memberof module:packet
* @param {String} tag property name from {@link module:enums.packet}
* @returns {Object} new packet object with type based on tag
*/
function newPacketFromTag(tag) {
return new packets[packetClassFromTagName(tag)]();
}
/**
* Allocate a new packet from structured packet clone
* @see {@link https://w3c.github.io/html/infrastructure.html#safe-passing-of-structured-data}
* @function fromStructuredClone
* @memberof module:packet
* @param {Object} packetClone packet clone
* @returns {Object} new packet object with data from packet clone
*/
function fromStructuredClone(packetClone) {
const tagName = _enums2.default.read(_enums2.default.packet, packetClone.tag);
const packet = newPacketFromTag(tagName);
Object.assign(packet, packetClone);
if (packet.postCloneTypeFix) {
packet.postCloneTypeFix();
}
return packet;
}
/**
* Convert tag name to class name
* @param {String} tag property name from {@link module:enums.packet}
* @returns {String}
* @private
*/
function packetClassFromTagName(tag) {
return tag.substr(0, 1).toUpperCase() + tag.substr(1);
}
},{"../enums.js":114,"./all_packets.js":123,"./compressed.js":125,"./literal.js":127,"./marker.js":128,"./one_pass_signature.js":129,"./public_key.js":132,"./public_key_encrypted_session_key.js":133,"./public_subkey.js":134,"./secret_key.js":135,"./secret_subkey.js":136,"./signature.js":137,"./sym_encrypted_aead_protected.js":138,"./sym_encrypted_integrity_protected.js":139,"./sym_encrypted_session_key.js":140,"./symmetrically_encrypted.js":141,"./trust.js":142,"./user_attribute.js":143,"./userid.js":144}],124:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.clonePackets = clonePackets;
exports.parseClonedPackets = parseClonedPackets;
var _webStreamTools = require('web-stream-tools');
var _webStreamTools2 = _interopRequireDefault(_webStreamTools);
var _key = require('../key');
var _message = require('../message');
var _cleartext = require('../cleartext');
var _signature = require('../signature');
var _packetlist = require('./packetlist');
var _packetlist2 = _interopRequireDefault(_packetlist);
var _keyid = require('../type/keyid');
var _keyid2 = _interopRequireDefault(_keyid);
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
//////////////////////////////
// //
// List --> Clone //
// //
//////////////////////////////
/**
* Create a packetlist from the correspoding object types.
* @param {Object} options the object passed to and from the web worker
* @returns {Object} a mutated version of the options optject
*/
// OpenPGP.js - An OpenPGP implementation in javascript
// Copyright (C) 2015 Tankred Hase
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @fileoverview This module implements packet list cloning required to
* pass certain object types between the web worker and main thread using
* the structured cloning algorithm.
* @module packet/clone
*/
function clonePackets(options) {
if (options.publicKeys) {
options.publicKeys = options.publicKeys.map(key => key.toPacketlist());
}
if (options.privateKeys) {
options.privateKeys = options.privateKeys.map(key => key.toPacketlist());
}
if (options.privateKey) {
options.privateKey = options.privateKey.toPacketlist();
}
if (options.key) {
options.key = options.key.toPacketlist();
}
if (options.message) {
//could be either a Message or CleartextMessage object
if (options.message instanceof _message.Message) {
options.message = options.message.packets;
} else if (options.message instanceof _cleartext.CleartextMessage) {
options.message = { text: options.message.text, signature: options.message.signature.packets };
}
}
if (options.signature && options.signature instanceof _signature.Signature) {
options.signature = options.signature.packets;
}
if (options.signatures) {
options.signatures.forEach(verificationObjectToClone);
}
return options;
}
function verificationObjectToClone(verObject) {
const verified = verObject.verified;
verObject.verified = _webStreamTools2.default.fromAsync(() => verified);
if (verObject.signature instanceof Promise) {
const signature = verObject.signature;
verObject.signature = _webStreamTools2.default.fromAsync(async () => {
const packets = (await signature).packets;
try {
await verified;
delete packets[0].signature;
} catch (e) {}
return packets;
});
} else {
verObject.signature = verObject.signature.packets;
}
if (verObject.error) {
verObject.error = verObject.error.message;
}
return verObject;
}
//////////////////////////////
// //
// Clone --> List //
// //
//////////////////////////////
/**
* Creates an object with the correct prototype from a corresponding packetlist.
* @param {Object} options the object passed to and from the web worker
* @param {String} method the public api function name to be delegated to the worker
* @returns {Object} a mutated version of the options optject
*/
function parseClonedPackets(options) {
if (options.publicKeys) {
options.publicKeys = options.publicKeys.map(packetlistCloneToKey);
}
if (options.privateKeys) {
options.privateKeys = options.privateKeys.map(packetlistCloneToKey);
}
if (options.privateKey) {
options.privateKey = packetlistCloneToKey(options.privateKey);
}
if (options.key) {
options.key = packetlistCloneToKey(options.key);
}
if (options.message && options.message.signature) {
options.message = packetlistCloneToCleartextMessage(options.message);
} else if (options.message) {
options.message = packetlistCloneToMessage(options.message);
}
if (options.signatures) {
options.signatures = options.signatures.map(packetlistCloneToSignatures);
}
if (options.signature) {
options.signature = packetlistCloneToSignature(options.signature);
}
return options;
}
function packetlistCloneToKey(clone) {
const packetlist = _packetlist2.default.fromStructuredClone(clone);
return new _key.Key(packetlist);
}
function packetlistCloneToMessage(clone) {
const packetlist = _packetlist2.default.fromStructuredClone(clone);
return new _message.Message(packetlist);
}
function packetlistCloneToCleartextMessage(clone) {
const packetlist = _packetlist2.default.fromStructuredClone(clone.signature);
return new _cleartext.CleartextMessage(clone.text, new _signature.Signature(packetlist));
}
//verification objects
function packetlistCloneToSignatures(clone) {
clone.keyid = _keyid2.default.fromClone(clone.keyid);
if (_util2.default.isStream(clone.signature)) {
clone.signature = _webStreamTools2.default.readToEnd(clone.signature, ([signature]) => new _signature.Signature(_packetlist2.default.fromStructuredClone(signature)));
clone.signature.catch(() => {});
} else {
clone.signature = new _signature.Signature(_packetlist2.default.fromStructuredClone(clone.signature));
}
clone.verified = _webStreamTools2.default.readToEnd(clone.verified, ([verified]) => verified);
clone.verified.catch(() => {});
if (clone.error) {
clone.error = new Error(clone.error);
}
return clone;
}
function packetlistCloneToSignature(clone) {
if (_util2.default.isString(clone) || _util2.default.isStream(clone)) {
//signature is armored
return clone;
}
const packetlist = _packetlist2.default.fromStructuredClone(clone);
return new _signature.Signature(packetlist);
}
},{"../cleartext":78,"../key":117,"../message":121,"../signature":146,"../type/keyid":149,"../util":153,"./packetlist":131,"web-stream-tools":76}],125:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _pako = require('pako');
var _pako2 = _interopRequireDefault(_pako);
var _seekBzip = require('seek-bzip');
var _seekBzip2 = _interopRequireDefault(_seekBzip);
var _webStreamTools = require('web-stream-tools');
var _webStreamTools2 = _interopRequireDefault(_webStreamTools);
var _config = require('../config');
var _config2 = _interopRequireDefault(_config);
var _enums = require('../enums');
var _enums2 = _interopRequireDefault(_enums);
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* Implementation of the Compressed Data Packet (Tag 8)
*
* {@link https://tools.ietf.org/html/rfc4880#section-5.6|RFC4880 5.6}:
* The Compressed Data packet contains compressed data. Typically,
* this packet is found as the contents of an encrypted packet, or following
* a Signature or One-Pass Signature packet, and contains a literal data packet.
* @memberof module:packet
* @constructor
*/
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @requires web-stream-tools
* @requires pako
* @requires config
* @requires enums
* @requires util
* @requires compression/bzip2
*/
function Compressed() {
/**
* Packet type
* @type {module:enums.packet}
*/
this.tag = _enums2.default.packet.compressed;
/**
* List of packets
* @type {module:packet.List}
*/
this.packets = null;
/**
* Compression algorithm
* @type {compression}
*/
this.algorithm = 'zip';
/**
* Compressed packet data
* @type {Uint8Array | ReadableStream<Uint8Array>}
*/
this.compressed = null;
}
/**
* Parsing function for the packet.
* @param {Uint8Array | ReadableStream<Uint8Array>} bytes Payload of a tag 8 packet
*/
Compressed.prototype.read = async function (bytes, streaming) {
await _webStreamTools2.default.parse(bytes, async reader => {
// One octet that gives the algorithm used to compress the packet.
this.algorithm = _enums2.default.read(_enums2.default.compression, (await reader.readByte()));
// Compressed data, which makes up the remainder of the packet.
this.compressed = reader.remainder();
await this.decompress(streaming);
});
};
/**
* Return the compressed packet.
* @returns {Uint8Array | ReadableStream<Uint8Array>} binary compressed packet
*/
Compressed.prototype.write = function () {
if (this.compressed === null) {
this.compress();
}
return _util2.default.concat([new Uint8Array([_enums2.default.write(_enums2.default.compression, this.algorithm)]), this.compressed]);
};
/**
* Decompression method for decompressing the compressed data
* read by read_packet
*/
Compressed.prototype.decompress = async function (streaming) {
if (!decompress_fns[this.algorithm]) {
throw new Error(this.algorithm + ' decompression not supported');
}
await this.packets.read(decompress_fns[this.algorithm](this.compressed), streaming);
};
/**
* Compress the packet data (member decompressedData)
*/
Compressed.prototype.compress = function () {
if (!compress_fns[this.algorithm]) {
throw new Error(this.algorithm + ' compression not supported');
}
this.compressed = compress_fns[this.algorithm](this.packets.write());
};
exports.default = Compressed;
//////////////////////////
// //
// Helper functions //
// //
//////////////////////////
const nodeZlib = _util2.default.getNodeZlib();
function node_zlib(func, options = {}) {
return function (data) {
return _webStreamTools2.default.nodeToWeb(_webStreamTools2.default.webToNode(data).pipe(func(options)));
};
}
function pako_zlib(constructor, options = {}) {
return function (data) {
const obj = new constructor(options);
return _webStreamTools2.default.transform(data, value => {
if (value.length) {
obj.push(value, _pako2.default.Z_SYNC_FLUSH);
return obj.result;
}
}, () => {
if (constructor === _pako2.default.Deflate) {
obj.push([], _pako2.default.Z_FINISH);
return obj.result;
}
});
};
}
function bzip2(func) {
return function (data) {
return _webStreamTools2.default.fromAsync(async () => func((await _webStreamTools2.default.readToEnd(data))));
};
}
let compress_fns;
let decompress_fns;
if (nodeZlib) {
// Use Node native zlib for DEFLATE compression/decompression
compress_fns = {
zip: node_zlib(nodeZlib.createDeflateRaw, { level: _config2.default.deflate_level }),
zlib: node_zlib(nodeZlib.createDeflate, { level: _config2.default.deflate_level })
};
decompress_fns = {
zip: node_zlib(nodeZlib.createInflateRaw),
zlib: node_zlib(nodeZlib.createInflate),
bzip2: bzip2(_seekBzip2.default.decode)
};
} else {
// Use JS fallbacks
compress_fns = {
zip: pako_zlib(_pako2.default.Deflate, { raw: true, level: _config2.default.deflate_level }),
zlib: pako_zlib(_pako2.default.Deflate, { level: _config2.default.deflate_level })
};
decompress_fns = {
zip: pako_zlib(_pako2.default.Inflate, { raw: true }),
zlib: pako_zlib(_pako2.default.Inflate),
bzip2: bzip2(_seekBzip2.default.decode)
};
}
},{"../config":80,"../enums":114,"../util":153,"pako":51,"seek-bzip":70,"web-stream-tools":76}],126:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _all_packets = require('./all_packets');
var packets = _interopRequireWildcard(_all_packets);
var _clone = require('./clone');
var clone = _interopRequireWildcard(_clone);
var _packetlist = require('./packetlist');
var _packetlist2 = _interopRequireDefault(_packetlist);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }
const mod = {
List: _packetlist2.default,
clone
}; /**
* @fileoverview OpenPGP packet types
* @see module:packet/all_packets
* @see module:packet/clone
* @see module:packet.List
* @module packet
*/
Object.assign(mod, packets);
exports.default = mod;
},{"./all_packets":123,"./clone":124,"./packetlist":131}],127:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _webStreamTools = require('web-stream-tools');
var _webStreamTools2 = _interopRequireDefault(_webStreamTools);
var _enums = require('../enums');
var _enums2 = _interopRequireDefault(_enums);
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* Implementation of the Literal Data Packet (Tag 11)
*
* {@link https://tools.ietf.org/html/rfc4880#section-5.9|RFC4880 5.9}:
* A Literal Data packet contains the body of a message; data that is not to be
* further interpreted.
* @param {Date} date the creation date of the literal package
* @memberof module:packet
* @constructor
*/
function Literal(date = new Date()) {
this.tag = _enums2.default.packet.literal;
this.format = 'utf8'; // default format for literal data packets
this.date = _util2.default.normalizeDate(date);
this.text = null; // textual data representation
this.data = null; // literal data representation
this.filename = 'msg.txt';
}
/**
* Set the packet data to a javascript native string, end of line
* will be normalized to \r\n and by default text is converted to UTF8
* @param {String | ReadableStream<String>} text Any native javascript string
* @param {utf8|binary|text|mime} format (optional) The format of the string of bytes
*/
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @requires web-stream-tools
* @requires enums
* @requires util
*/
Literal.prototype.setText = function (text, format = 'utf8') {
this.format = format;
this.text = text;
this.data = null;
};
/**
* Returns literal data packets as native JavaScript string
* with normalized end of line to \n
* @param {Boolean} clone (optional) Whether to return a clone so that getBytes/getText can be called again
* @returns {String | ReadableStream<String>} literal data as text
*/
Literal.prototype.getText = function (clone = false) {
if (this.text === null || _util2.default.isStream(this.text)) {
// Assume that this.text has been read
this.text = _util2.default.nativeEOL(_util2.default.decode_utf8(this.getBytes(clone)));
}
return this.text;
};
/**
* Set the packet data to value represented by the provided string of bytes.
* @param {Uint8Array | ReadableStream<Uint8Array>} bytes The string of bytes
* @param {utf8|binary|text|mime} format The format of the string of bytes
*/
Literal.prototype.setBytes = function (bytes, format) {
this.format = format;
this.data = bytes;
this.text = null;
};
/**
* Get the byte sequence representing the literal packet data
* @param {Boolean} clone (optional) Whether to return a clone so that getBytes/getText can be called again
* @returns {Uint8Array | ReadableStream<Uint8Array>} A sequence of bytes
*/
Literal.prototype.getBytes = function (clone = false) {
if (this.data === null) {
// normalize EOL to \r\n and encode UTF8
this.data = _util2.default.encode_utf8(_util2.default.canonicalizeEOL(this.text));
}
if (clone) {
return _webStreamTools2.default.passiveClone(this.data);
}
return this.data;
};
/**
* Sets the filename of the literal packet data
* @param {String} filename Any native javascript string
*/
Literal.prototype.setFilename = function (filename) {
this.filename = filename;
};
/**
* Get the filename of the literal packet data
* @returns {String} filename
*/
Literal.prototype.getFilename = function () {
return this.filename;
};
/**
* Parsing function for a literal data packet (tag 11).
*
* @param {Uint8Array | ReadableStream<Uint8Array>} input Payload of a tag 11 packet
* @returns {module:packet.Literal} object representation
*/
Literal.prototype.read = async function (bytes) {
await _webStreamTools2.default.parse(bytes, async reader => {
// - A one-octet field that describes how the data is formatted.
const format = _enums2.default.read(_enums2.default.literal, (await reader.readByte()));
const filename_len = await reader.readByte();
this.filename = _util2.default.decode_utf8((await reader.readBytes(filename_len)));
this.date = _util2.default.readDate((await reader.readBytes(4)));
const data = reader.remainder();
this.setBytes(data, format);
});
};
/**
* Creates a string representation of the packet
*
* @returns {Uint8Array | ReadableStream<Uint8Array>} Uint8Array representation of the packet
*/
Literal.prototype.write = function () {
const filename = _util2.default.encode_utf8(this.filename);
const filename_length = new Uint8Array([filename.length]);
const format = new Uint8Array([_enums2.default.write(_enums2.default.literal, this.format)]);
const date = _util2.default.writeDate(this.date);
const data = this.getBytes();
return _util2.default.concat([format, filename_length, filename, date, data]);
};
exports.default = Literal;
},{"../enums":114,"../util":153,"web-stream-tools":76}],128:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _enums = require('../enums');
var _enums2 = _interopRequireDefault(_enums);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* Implementation of the strange "Marker packet" (Tag 10)
*
* {@link https://tools.ietf.org/html/rfc4880#section-5.8|RFC4880 5.8}:
* An experimental version of PGP used this packet as the Literal
* packet, but no released version of PGP generated Literal packets with this
* tag. With PGP 5.x, this packet has been reassigned and is reserved for use as
* the Marker packet.
*
* Such a packet MUST be ignored when received.
* @memberof module:packet
* @constructor
*/
function Marker() {
this.tag = _enums2.default.packet.marker;
}
/**
* Parsing function for a literal data packet (tag 10).
*
* @param {String} input Payload of a tag 10 packet
* @param {Integer} position
* Position to start reading from the input string
* @param {Integer} len
* Length of the packet or the remaining length of
* input at position
* @returns {module:packet.Marker} Object representation
*/
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @requires enums
*/
Marker.prototype.read = function (bytes) {
if (bytes[0] === 0x50 && // P
bytes[1] === 0x47 && // G
bytes[2] === 0x50) {
// P
return true;
}
// marker packet does not contain "PGP"
return false;
};
exports.default = Marker;
},{"../enums":114}],129:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _signature = require('./signature');
var _signature2 = _interopRequireDefault(_signature);
var _keyid = require('../type/keyid');
var _keyid2 = _interopRequireDefault(_keyid);
var _enums = require('../enums');
var _enums2 = _interopRequireDefault(_enums);
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* Implementation of the One-Pass Signature Packets (Tag 4)
*
* {@link https://tools.ietf.org/html/rfc4880#section-5.4|RFC4880 5.4}:
* The One-Pass Signature packet precedes the signed data and contains
* enough information to allow the receiver to begin calculating any
* hashes needed to verify the signature. It allows the Signature
* packet to be placed at the end of the message, so that the signer
* can compute the entire signed message in one pass.
* @memberof module:packet
* @constructor
*/
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @requires packet/signature
* @requires type/keyid
* @requires enums
* @requires util
*/
function OnePassSignature() {
/**
* Packet type
* @type {module:enums.packet}
*/
this.tag = _enums2.default.packet.onePassSignature;
/** A one-octet version number. The current version is 3. */
this.version = null;
/**
* A one-octet signature type.
* Signature types are described in
* {@link https://tools.ietf.org/html/rfc4880#section-5.2.1|RFC4880 Section 5.2.1}.
*/
this.signatureType = null;
/**
* A one-octet number describing the hash algorithm used.
* @see {@link https://tools.ietf.org/html/rfc4880#section-9.4|RFC4880 9.4}
*/
this.hashAlgorithm = null;
/**
* A one-octet number describing the public-key algorithm used.
* @see {@link https://tools.ietf.org/html/rfc4880#section-9.1|RFC4880 9.1}
*/
this.publicKeyAlgorithm = null;
/** An eight-octet number holding the Key ID of the signing key. */
this.issuerKeyId = null;
/**
* A one-octet number holding a flag showing whether the signature is nested.
* A zero value indicates that the next packet is another One-Pass Signature packet
* that describes another signature to be applied to the same message data.
*/
this.flags = null;
}
/**
* parsing function for a one-pass signature packet (tag 4).
* @param {Uint8Array} bytes payload of a tag 4 packet
* @returns {module:packet.OnePassSignature} object representation
*/
OnePassSignature.prototype.read = function (bytes) {
let mypos = 0;
// A one-octet version number. The current version is 3.
this.version = bytes[mypos++];
// A one-octet signature type. Signature types are described in
// Section 5.2.1.
this.signatureType = bytes[mypos++];
// A one-octet number describing the hash algorithm used.
this.hashAlgorithm = bytes[mypos++];
// A one-octet number describing the public-key algorithm used.
this.publicKeyAlgorithm = bytes[mypos++];
// An eight-octet number holding the Key ID of the signing key.
this.issuerKeyId = new _keyid2.default();
this.issuerKeyId.read(bytes.subarray(mypos, mypos + 8));
mypos += 8;
// A one-octet number holding a flag showing whether the signature
// is nested. A zero value indicates that the next packet is
// another One-Pass Signature packet that describes another
// signature to be applied to the same message data.
this.flags = bytes[mypos++];
return this;
};
/**
* creates a string representation of a one-pass signature packet
* @returns {Uint8Array} a Uint8Array representation of a one-pass signature packet
*/
OnePassSignature.prototype.write = function () {
const start = new Uint8Array([3, _enums2.default.write(_enums2.default.signature, this.signatureType), _enums2.default.write(_enums2.default.hash, this.hashAlgorithm), _enums2.default.write(_enums2.default.publicKey, this.publicKeyAlgorithm)]);
const end = new Uint8Array([this.flags]);
return _util2.default.concatUint8Array([start, this.issuerKeyId.write(), end]);
};
/**
* Fix custom types after cloning
*/
OnePassSignature.prototype.postCloneTypeFix = function () {
this.issuerKeyId = _keyid2.default.fromClone(this.issuerKeyId);
};
OnePassSignature.prototype.hash = function () {
const version = this.version;
this.version = 4;
try {
return _signature2.default.prototype.hash.apply(this, arguments);
} finally {
this.version = version;
}
};
OnePassSignature.prototype.toHash = _signature2.default.prototype.toHash;
OnePassSignature.prototype.toSign = _signature2.default.prototype.toSign;
OnePassSignature.prototype.calculateTrailer = _signature2.default.prototype.calculateTrailer;
OnePassSignature.prototype.verify = async function () {
const correspondingSig = await this.correspondingSig;
if (!correspondingSig || correspondingSig.tag !== _enums2.default.packet.signature) {
throw new Error('Corresponding signature packet missing');
}
if (correspondingSig.signatureType !== this.signatureType || correspondingSig.hashAlgorithm !== this.hashAlgorithm || correspondingSig.publicKeyAlgorithm !== this.publicKeyAlgorithm || !correspondingSig.issuerKeyId.equals(this.issuerKeyId)) {
throw new Error('Corresponding signature packet does not match one-pass signature packet');
}
correspondingSig.hashed = this.hashed;
return correspondingSig.verify.apply(correspondingSig, arguments);
};
exports.default = OnePassSignature;
},{"../enums":114,"../type/keyid":149,"../util":153,"./signature":137}],130:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _slicedToArray = function () { function sliceIterator(arr, i) { var _arr = []; var _n = true; var _d = false; var _e = undefined; try { for (var _i = arr[Symbol.iterator](), _s; !(_n = (_s = _i.next()).done); _n = true) { _arr.push(_s.value); if (i && _arr.length === i) break; } } catch (err) { _d = true; _e = err; } finally { try { if (!_n && _i["return"]) _i["return"](); } finally { if (_d) throw _e; } } return _arr; } return function (arr, i) { if (Array.isArray(arr)) { return arr; } else if (Symbol.iterator in Object(arr)) { return sliceIterator(arr, i); } else { throw new TypeError("Invalid attempt to destructure non-iterable instance"); } }; }(); // GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/* eslint-disable callback-return */
/**
* @fileoverview Functions for reading and writing packets
* @requires web-stream-tools
* @requires enums
* @requires util
* @module packet/packet
*/
var _webStreamTools = require('web-stream-tools');
var _webStreamTools2 = _interopRequireDefault(_webStreamTools);
var _enums = require('../enums');
var _enums2 = _interopRequireDefault(_enums);
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
exports.default = {
readSimpleLength: function readSimpleLength(bytes) {
let len = 0;
let offset;
const type = bytes[0];
if (type < 192) {
var _bytes = _slicedToArray(bytes, 1);
len = _bytes[0];
offset = 1;
} else if (type < 255) {
len = (bytes[0] - 192 << 8) + bytes[1] + 192;
offset = 2;
} else if (type === 255) {
len = _util2.default.readNumber(bytes.subarray(1, 1 + 4));
offset = 5;
}
return {
len: len,
offset: offset
};
},
/**
* Encodes a given integer of length to the openpgp length specifier to a
* string
*
* @param {Integer} length The length to encode
* @returns {Uint8Array} String with openpgp length representation
*/
writeSimpleLength: function writeSimpleLength(length) {
if (length < 192) {
return new Uint8Array([length]);
} else if (length > 191 && length < 8384) {
/*
* let a = (total data packet length) - 192 let bc = two octet
* representation of a let d = b + 192
*/
return new Uint8Array([(length - 192 >> 8) + 192, length - 192 & 0xFF]);
}
return _util2.default.concatUint8Array([new Uint8Array([255]), _util2.default.writeNumber(length, 4)]);
},
writePartialLength: function writePartialLength(power) {
if (power < 0 || power > 30) {
throw new Error('Partial Length power must be between 1 and 30');
}
return new Uint8Array([224 + power]);
},
writeTag: function writeTag(tag_type) {
/* we're only generating v4 packet headers here */
return new Uint8Array([0xC0 | tag_type]);
},
/**
* Writes a packet header version 4 with the given tag_type and length to a
* string
*
* @param {Integer} tag_type Tag type
* @param {Integer} length Length of the payload
* @returns {String} String of the header
*/
writeHeader: function writeHeader(tag_type, length) {
/* we're only generating v4 packet headers here */
return _util2.default.concatUint8Array([this.writeTag(tag_type), this.writeSimpleLength(length)]);
},
/**
* Writes a packet header Version 3 with the given tag_type and length to a
* string
*
* @param {Integer} tag_type Tag type
* @param {Integer} length Length of the payload
* @returns {String} String of the header
*/
writeOldHeader: function writeOldHeader(tag_type, length) {
if (length < 256) {
return new Uint8Array([0x80 | tag_type << 2, length]);
} else if (length < 65536) {
return _util2.default.concatUint8Array([new Uint8Array([0x80 | tag_type << 2 | 1]), _util2.default.writeNumber(length, 2)]);
}
return _util2.default.concatUint8Array([new Uint8Array([0x80 | tag_type << 2 | 2]), _util2.default.writeNumber(length, 4)]);
},
/**
* Whether the packet type supports partial lengths per RFC4880
* @param {Integer} tag_type Tag type
* @returns {Boolean} String of the header
*/
supportsStreaming: function supportsStreaming(tag_type) {
return [_enums2.default.packet.literal, _enums2.default.packet.compressed, _enums2.default.packet.symmetricallyEncrypted, _enums2.default.packet.symEncryptedIntegrityProtected, _enums2.default.packet.symEncryptedAEADProtected].includes(tag_type);
},
/**
* Generic static Packet Parser function
*
* @param {Uint8Array | ReadableStream<Uint8Array>} input Input stream as string
* @param {Function} callback Function to call with the parsed packet
* @returns {Boolean} Returns false if the stream was empty and parsing is done, and true otherwise.
*/
read: async function read(input, streaming, callback) {
const reader = _webStreamTools2.default.getReader(input);
let writer;
try {
const peekedBytes = await reader.peekBytes(2);
// some sanity checks
if (!peekedBytes || peekedBytes.length < 2 || (peekedBytes[0] & 0x80) === 0) {
throw new Error("Error during parsing. This message / key probably does not conform to a valid OpenPGP format.");
}
const headerByte = await reader.readByte();
let tag = -1;
let format = -1;
let packet_length;
format = 0; // 0 = old format; 1 = new format
if ((headerByte & 0x40) !== 0) {
format = 1;
}
let packet_length_type;
if (format) {
// new format header
tag = headerByte & 0x3F; // bit 5-0
} else {
// old format header
tag = (headerByte & 0x3F) >> 2; // bit 5-2
packet_length_type = headerByte & 0x03; // bit 1-0
}
const supportsStreaming = this.supportsStreaming(tag);
let packet = null;
let callbackReturned;
if (streaming && supportsStreaming) {
const transform = new TransformStream();
writer = _webStreamTools2.default.getWriter(transform.writable);
packet = transform.readable;
callbackReturned = callback({ tag, packet });
} else {
packet = [];
}
let wasPartialLength;
do {
if (!format) {
// 4.2.1. Old Format Packet Lengths
switch (packet_length_type) {
case 0:
// The packet has a one-octet length. The header is 2 octets
// long.
packet_length = await reader.readByte();
break;
case 1:
// The packet has a two-octet length. The header is 3 octets
// long.
packet_length = (await reader.readByte()) << 8 | (await reader.readByte());
break;
case 2:
// The packet has a four-octet length. The header is 5
// octets long.
packet_length = (await reader.readByte()) << 24 | (await reader.readByte()) << 16 | (await reader.readByte()) << 8 | (await reader.readByte());
break;
default:
// 3 - The packet is of indeterminate length. The header is 1
// octet long, and the implementation must determine how long
// the packet is. If the packet is in a file, this means that
// the packet extends until the end of the file. In general,
// an implementation SHOULD NOT use indeterminate-length
// packets except where the end of the data will be clear
// from the context, and even then it is better to use a
// definite length, or a new format header. The new format
// headers described below have a mechanism for precisely
// encoding data of indeterminate length.
packet_length = Infinity;
break;
}
} else {
// 4.2.2. New Format Packet Lengths
// 4.2.2.1. One-Octet Lengths
const lengthByte = await reader.readByte();
wasPartialLength = false;
if (lengthByte < 192) {
packet_length = lengthByte;
// 4.2.2.2. Two-Octet Lengths
} else if (lengthByte >= 192 && lengthByte < 224) {
packet_length = (lengthByte - 192 << 8) + (await reader.readByte()) + 192;
// 4.2.2.4. Partial Body Lengths
} else if (lengthByte > 223 && lengthByte < 255) {
packet_length = 1 << (lengthByte & 0x1F);
wasPartialLength = true;
if (!supportsStreaming) {
throw new TypeError('This packet type does not support partial lengths.');
}
// 4.2.2.3. Five-Octet Lengths
} else {
packet_length = (await reader.readByte()) << 24 | (await reader.readByte()) << 16 | (await reader.readByte()) << 8 | (await reader.readByte());
}
}
if (packet_length > 0) {
let bytesRead = 0;
while (true) {
if (writer) await writer.ready;
var _ref = await reader.read();
const done = _ref.done,
value = _ref.value;
if (done) {
if (packet_length === Infinity) break;
throw new Error('Unexpected end of packet');
}
const chunk = packet_length === Infinity ? value : value.subarray(0, packet_length - bytesRead);
if (writer) await writer.write(chunk);else packet.push(chunk);
bytesRead += value.length;
if (bytesRead >= packet_length) {
reader.unshift(value.subarray(packet_length - bytesRead + value.length));
break;
}
}
}
} while (wasPartialLength);
if (!writer) {
packet = _util2.default.concatUint8Array(packet);
await callback({ tag, packet });
}
const nextPacket = await reader.peekBytes(2);
if (writer) {
await writer.ready;
await writer.close();
await callbackReturned;
}
return !nextPacket || !nextPacket.length;
} catch (e) {
if (writer) {
await writer.abort(e);
return true;
} else {
throw e;
}
} finally {
reader.releaseLock();
}
}
};
},{"../enums":114,"../util":153,"web-stream-tools":76}],131:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _webStreamTools = require('web-stream-tools');
var _webStreamTools2 = _interopRequireDefault(_webStreamTools);
var _all_packets = require('./all_packets');
var packets = _interopRequireWildcard(_all_packets);
var _packet = require('./packet');
var _packet2 = _interopRequireDefault(_packet);
var _config = require('../config');
var _config2 = _interopRequireDefault(_config);
var _enums = require('../enums');
var _enums2 = _interopRequireDefault(_enums);
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* This class represents a list of openpgp packets.
* Take care when iterating over it - the packets themselves
* are stored as numerical indices.
* @memberof module:packet
* @constructor
* @extends Array
*/
/* eslint-disable callback-return */
/**
* @requires web-stream-tools
* @requires packet/all_packets
* @requires packet/packet
* @requires config
* @requires enums
* @requires util
*/
function List() {
/**
* The number of packets contained within the list.
* @readonly
* @type {Integer}
*/
this.length = 0;
}
List.prototype = [];
/**
* Reads a stream of binary data and interprents it as a list of packets.
* @param {Uint8Array | ReadableStream<Uint8Array>} A Uint8Array of bytes.
*/
List.prototype.read = async function (bytes, streaming) {
this.stream = _webStreamTools2.default.transformPair(bytes, async (readable, writable) => {
const writer = _webStreamTools2.default.getWriter(writable);
try {
while (true) {
await writer.ready;
const done = await _packet2.default.read(readable, streaming, async parsed => {
try {
const tag = _enums2.default.read(_enums2.default.packet, parsed.tag);
const packet = packets.newPacketFromTag(tag);
packet.packets = new List();
packet.fromStream = _util2.default.isStream(parsed.packet);
await packet.read(parsed.packet, streaming);
await writer.write(packet);
} catch (e) {
if (!_config2.default.tolerant || _packet2.default.supportsStreaming(parsed.tag)) {
// The packets that support streaming are the ones that contain
// message data. Those are also the ones we want to be more strict
// about and throw on parse errors for.
await writer.abort(e);
}
_util2.default.print_debug_error(e);
}
});
if (done) {
await writer.ready;
await writer.close();
return;
}
}
} catch (e) {
await writer.abort(e);
}
});
// Wait until first few packets have been read
const reader = _webStreamTools2.default.getReader(this.stream);
while (true) {
var _ref = await reader.read();
const done = _ref.done,
value = _ref.value;
if (!done) {
this.push(value);
} else {
this.stream = null;
}
if (done || _packet2.default.supportsStreaming(value.tag)) {
break;
}
}
reader.releaseLock();
};
/**
* Creates a binary representation of openpgp objects contained within the
* class instance.
* @returns {Uint8Array} A Uint8Array containing valid openpgp packets.
*/
List.prototype.write = function () {
const arr = [];
for (let i = 0; i < this.length; i++) {
const packetbytes = this[i].write();
if (_util2.default.isStream(packetbytes) && _packet2.default.supportsStreaming(this[i].tag)) {
let buffer = [];
let bufferLength = 0;
const minLength = 512;
arr.push(_packet2.default.writeTag(this[i].tag));
arr.push(_webStreamTools2.default.transform(packetbytes, value => {
buffer.push(value);
bufferLength += value.length;
if (bufferLength >= minLength) {
const powerOf2 = Math.min(Math.log(bufferLength) / Math.LN2 | 0, 30);
const chunkSize = 2 ** powerOf2;
const bufferConcat = _util2.default.concat([_packet2.default.writePartialLength(powerOf2)].concat(buffer));
buffer = [bufferConcat.subarray(1 + chunkSize)];
bufferLength = buffer[0].length;
return bufferConcat.subarray(0, 1 + chunkSize);
}
}, () => _util2.default.concat([_packet2.default.writeSimpleLength(bufferLength)].concat(buffer))));
} else {
if (_util2.default.isStream(packetbytes)) {
let length = 0;
arr.push(_webStreamTools2.default.transform(_webStreamTools2.default.clone(packetbytes), value => {
length += value.length;
}, () => _packet2.default.writeHeader(this[i].tag, length)));
} else {
arr.push(_packet2.default.writeHeader(this[i].tag, packetbytes.length));
}
arr.push(packetbytes);
}
}
return _util2.default.concat(arr);
};
/**
* Adds a packet to the list. This is the only supported method of doing so;
* writing to packetlist[i] directly will result in an error.
* @param {Object} packet Packet to push
*/
List.prototype.push = function (packet) {
if (!packet) {
return;
}
packet.packets = packet.packets || new List();
this[this.length] = packet;
this.length++;
};
/**
* Creates a new PacketList with all packets from the given types
*/
List.prototype.filterByTag = function (...args) {
const filtered = new List();
const handle = tag => packetType => tag === packetType;
for (let i = 0; i < this.length; i++) {
if (args.some(handle(this[i].tag))) {
filtered.push(this[i]);
}
}
return filtered;
};
/**
* Traverses packet tree and returns first matching packet
* @param {module:enums.packet} type The packet type
* @returns {module:packet/packet|undefined}
*/
List.prototype.findPacket = function (type) {
return this.find(packet => packet.tag === type);
};
/**
* Returns array of found indices by tag
*/
List.prototype.indexOfTag = function (...args) {
const tagIndex = [];
const that = this;
const handle = tag => packetType => tag === packetType;
for (let i = 0; i < this.length; i++) {
if (args.some(handle(that[i].tag))) {
tagIndex.push(i);
}
}
return tagIndex;
};
/**
* Concatenates packetlist or array of packets
*/
List.prototype.concat = function (packetlist) {
if (packetlist) {
for (let i = 0; i < packetlist.length; i++) {
this.push(packetlist[i]);
}
}
return this;
};
/**
* Allocate a new packetlist from structured packetlist clone
* See {@link https://w3c.github.io/html/infrastructure.html#safe-passing-of-structured-data}
* @param {Object} packetClone packetlist clone
* @returns {Object} new packetlist object with data from packetlist clone
*/
List.fromStructuredClone = function (packetlistClone) {
const packetlist = new List();
for (let i = 0; i < packetlistClone.length; i++) {
const packet = packets.fromStructuredClone(packetlistClone[i]);
packetlist.push(packet);
if (packet.embeddedSignature) {
packet.embeddedSignature = packets.fromStructuredClone(packet.embeddedSignature);
}
if (packet.packets.length !== 0) {
packet.packets = this.fromStructuredClone(packet.packets);
} else {
packet.packets = new List();
}
}
if (packetlistClone.stream) {
packetlist.stream = _webStreamTools2.default.transform(packetlistClone.stream, packet => packets.fromStructuredClone(packet));
}
return packetlist;
};
exports.default = List;
},{"../config":80,"../enums":114,"../util":153,"./all_packets":123,"./packet":130,"web-stream-tools":76}],132:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _sha = require('asmcrypto.js/dist_es5/hash/sha1/sha1');
var _sha2 = require('asmcrypto.js/dist_es5/hash/sha256/sha256');
var _keyid = require('../type/keyid');
var _keyid2 = _interopRequireDefault(_keyid);
var _mpi = require('../type/mpi');
var _mpi2 = _interopRequireDefault(_mpi);
var _config = require('../config');
var _config2 = _interopRequireDefault(_config);
var _crypto = require('../crypto');
var _crypto2 = _interopRequireDefault(_crypto);
var _enums = require('../enums');
var _enums2 = _interopRequireDefault(_enums);
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* Implementation of the Key Material Packet (Tag 5,6,7,14)
*
* {@link https://tools.ietf.org/html/rfc4880#section-5.5|RFC4480 5.5}:
* A key material packet contains all the information about a public or
* private key. There are four variants of this packet type, and two
* major versions.
*
* A Public-Key packet starts a series of packets that forms an OpenPGP
* key (sometimes called an OpenPGP certificate).
* @memberof module:packet
* @constructor
*/
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @requires type/keyid
* @requires type/mpi
* @requires config
* @requires crypto
* @requires enums
* @requires util
*/
function PublicKey(date = new Date()) {
/**
* Packet type
* @type {module:enums.packet}
*/
this.tag = _enums2.default.packet.publicKey;
/**
* Packet version
* @type {Integer}
*/
this.version = _config2.default.aead_protect && _config2.default.aead_protect_version === 4 ? 5 : 4;
/**
* Key creation date.
* @type {Date}
*/
this.created = _util2.default.normalizeDate(date);
/**
* Public key algorithm.
* @type {String}
*/
this.algorithm = null;
/**
* Algorithm specific params
* @type {Array<Object>}
*/
this.params = [];
/**
* Time until expiration in days (V3 only)
* @type {Integer}
*/
this.expirationTimeV3 = 0;
/**
* Fingerprint in lowercase hex
* @type {String}
*/
this.fingerprint = null;
/**
* Keyid
* @type {module:type/keyid}
*/
this.keyid = null;
}
/**
* Internal Parser for public keys as specified in {@link https://tools.ietf.org/html/rfc4880#section-5.5.2|RFC 4880 section 5.5.2 Public-Key Packet Formats}
* called by read_tag&lt;num&gt;
* @param {Uint8Array} bytes Input array to read the packet from
* @returns {Object} This object with attributes set by the parser
*/
PublicKey.prototype.read = function (bytes) {
let pos = 0;
// A one-octet version number (3, 4 or 5).
this.version = bytes[pos++];
if (this.version === 4 || this.version === 5) {
// - A four-octet number denoting the time that the key was created.
this.created = _util2.default.readDate(bytes.subarray(pos, pos + 4));
pos += 4;
// - A one-octet number denoting the public-key algorithm of this key.
this.algorithm = _enums2.default.read(_enums2.default.publicKey, bytes[pos++]);
const algo = _enums2.default.write(_enums2.default.publicKey, this.algorithm);
if (this.version === 5) {
// - A four-octet scalar octet count for the following key material.
pos += 4;
}
// - A series of values comprising the key material. This is
// algorithm-specific and described in section XXXX.
const types = _crypto2.default.getPubKeyParamTypes(algo);
this.params = _crypto2.default.constructParams(types);
for (let i = 0; i < types.length && pos < bytes.length; i++) {
pos += this.params[i].read(bytes.subarray(pos, bytes.length));
if (pos > bytes.length) {
throw new Error('Error reading MPI @:' + pos);
}
}
return pos;
}
throw new Error('Version ' + this.version + ' of the key packet is unsupported.');
};
/**
* Alias of read()
* @see module:packet.PublicKey#read
*/
PublicKey.prototype.readPublicKey = PublicKey.prototype.read;
/**
* Same as write_private_key, but has less information because of
* public key.
* @returns {Uint8Array} OpenPGP packet body contents,
*/
PublicKey.prototype.write = function () {
const arr = [];
// Version
arr.push(new Uint8Array([this.version]));
arr.push(_util2.default.writeDate(this.created));
// A one-octet number denoting the public-key algorithm of this key
const algo = _enums2.default.write(_enums2.default.publicKey, this.algorithm);
arr.push(new Uint8Array([algo]));
const paramCount = _crypto2.default.getPubKeyParamTypes(algo).length;
const params = _util2.default.concatUint8Array(this.params.slice(0, paramCount).map(param => param.write()));
if (this.version === 5) {
// A four-octet scalar octet count for the following key material
arr.push(_util2.default.writeNumber(params.length, 4));
}
// Algorithm-specific params
arr.push(params);
return _util2.default.concatUint8Array(arr);
};
/**
* Alias of write()
* @see module:packet.PublicKey#write
*/
PublicKey.prototype.writePublicKey = PublicKey.prototype.write;
/**
* Write an old version packet - it's used by some of the internal routines.
*/
PublicKey.prototype.writeOld = function () {
const bytes = this.writePublicKey();
return _util2.default.concatUint8Array([new Uint8Array([0x99]), _util2.default.writeNumber(bytes.length, 2), bytes]);
};
/**
* Check whether secret-key data is available in decrypted form. Returns null for public keys.
* @returns {Boolean|null}
*/
PublicKey.prototype.isDecrypted = function () {
return null;
};
/**
* Returns the creation time of the key
* @returns {Date}
*/
PublicKey.prototype.getCreationTime = function () {
return this.created;
};
/**
* Calculates the key id of the key
* @returns {String} A 8 byte key id
*/
PublicKey.prototype.getKeyId = function () {
if (this.keyid) {
return this.keyid;
}
this.keyid = new _keyid2.default();
if (this.version === 5) {
this.keyid.read(_util2.default.hex_to_Uint8Array(this.getFingerprint()).subarray(0, 8));
} else if (this.version === 4) {
this.keyid.read(_util2.default.hex_to_Uint8Array(this.getFingerprint()).subarray(12, 20));
}
return this.keyid;
};
/**
* Calculates the fingerprint of the key
* @returns {Uint8Array} A Uint8Array containing the fingerprint
*/
PublicKey.prototype.getFingerprintBytes = function () {
if (this.fingerprint) {
return this.fingerprint;
}
let toHash;
if (this.version === 5) {
const bytes = this.writePublicKey();
toHash = _util2.default.concatUint8Array([new Uint8Array([0x9A]), _util2.default.writeNumber(bytes.length, 4), bytes]);
this.fingerprint = _sha2.Sha256.bytes(toHash);
} else if (this.version === 4) {
toHash = this.writeOld();
this.fingerprint = _sha.Sha1.bytes(toHash);
}
return this.fingerprint;
};
/**
* Calculates the fingerprint of the key
* @returns {String} A string containing the fingerprint in lowercase hex
*/
PublicKey.prototype.getFingerprint = function () {
return _util2.default.Uint8Array_to_hex(this.getFingerprintBytes());
};
/**
* Calculates whether two keys have the same fingerprint without actually calculating the fingerprint
* @returns {Boolean} Whether the two keys have the same version and public key data
*/
PublicKey.prototype.hasSameFingerprintAs = function (other) {
return this.version === other.version && _util2.default.equalsUint8Array(this.writePublicKey(), other.writePublicKey());
};
/**
* Returns algorithm information
* @returns {Object} An object of the form {algorithm: String, bits:int, curve:String}
*/
PublicKey.prototype.getAlgorithmInfo = function () {
const result = {};
result.algorithm = this.algorithm;
if (this.params[0] instanceof _mpi2.default) {
result.bits = this.params[0].byteLength() * 8;
} else {
result.curve = this.params[0].getName();
}
return result;
};
/**
* Fix custom types after cloning
*/
PublicKey.prototype.postCloneTypeFix = function () {
const algo = _enums2.default.write(_enums2.default.publicKey, this.algorithm);
const types = _crypto2.default.getPubKeyParamTypes(algo);
for (let i = 0; i < types.length; i++) {
const param = this.params[i];
this.params[i] = types[i].fromClone(param);
}
if (this.keyid) {
this.keyid = _keyid2.default.fromClone(this.keyid);
}
};
exports.default = PublicKey;
},{"../config":80,"../crypto":95,"../enums":114,"../type/keyid":149,"../type/mpi":150,"../util":153,"asmcrypto.js/dist_es5/hash/sha1/sha1":12,"asmcrypto.js/dist_es5/hash/sha256/sha256":14}],133:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _keyid = require('../type/keyid');
var _keyid2 = _interopRequireDefault(_keyid);
var _mpi = require('../type/mpi');
var _mpi2 = _interopRequireDefault(_mpi);
var _crypto = require('../crypto');
var _crypto2 = _interopRequireDefault(_crypto);
var _enums = require('../enums');
var _enums2 = _interopRequireDefault(_enums);
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* Public-Key Encrypted Session Key Packets (Tag 1)
*
* {@link https://tools.ietf.org/html/rfc4880#section-5.1|RFC4880 5.1}:
* A Public-Key Encrypted Session Key packet holds the session key
* used to encrypt a message. Zero or more Public-Key Encrypted Session Key
* packets and/or Symmetric-Key Encrypted Session Key packets may precede a
* Symmetrically Encrypted Data Packet, which holds an encrypted message. The
* message is encrypted with the session key, and the session key is itself
* encrypted and stored in the Encrypted Session Key packet(s). The
* Symmetrically Encrypted Data Packet is preceded by one Public-Key Encrypted
* Session Key packet for each OpenPGP key to which the message is encrypted.
* The recipient of the message finds a session key that is encrypted to their
* public key, decrypts the session key, and then uses the session key to
* decrypt the message.
* @memberof module:packet
* @constructor
*/
function PublicKeyEncryptedSessionKey() {
this.tag = _enums2.default.packet.publicKeyEncryptedSessionKey;
this.version = 3;
this.publicKeyId = new _keyid2.default();
this.publicKeyAlgorithm = null;
this.sessionKey = null;
this.sessionKeyAlgorithm = null;
/** @type {Array<module:type/mpi>} */
this.encrypted = [];
}
/**
* Parsing function for a publickey encrypted session key packet (tag 1).
*
* @param {Uint8Array} input Payload of a tag 1 packet
* @param {Integer} position Position to start reading from the input string
* @param {Integer} len Length of the packet or the remaining length of
* input at position
* @returns {module:packet.PublicKeyEncryptedSessionKey} Object representation
*/
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @requires type/keyid
* @requires type/mpi
* @requires crypto
* @requires enums
* @requires util
*/
PublicKeyEncryptedSessionKey.prototype.read = function (bytes) {
this.version = bytes[0];
this.publicKeyId.read(bytes.subarray(1, bytes.length));
this.publicKeyAlgorithm = _enums2.default.read(_enums2.default.publicKey, bytes[9]);
let i = 10;
const algo = _enums2.default.write(_enums2.default.publicKey, this.publicKeyAlgorithm);
const types = _crypto2.default.getEncSessionKeyParamTypes(algo);
this.encrypted = _crypto2.default.constructParams(types);
for (let j = 0; j < types.length; j++) {
i += this.encrypted[j].read(bytes.subarray(i, bytes.length));
}
};
/**
* Create a string representation of a tag 1 packet
*
* @returns {Uint8Array} The Uint8Array representation
*/
PublicKeyEncryptedSessionKey.prototype.write = function () {
const arr = [new Uint8Array([this.version]), this.publicKeyId.write(), new Uint8Array([_enums2.default.write(_enums2.default.publicKey, this.publicKeyAlgorithm)])];
for (let i = 0; i < this.encrypted.length; i++) {
arr.push(this.encrypted[i].write());
}
return _util2.default.concatUint8Array(arr);
};
/**
* Encrypt session key packet
* @param {module:packet.PublicKey} key Public key
* @returns {Promise<Boolean>}
* @async
*/
PublicKeyEncryptedSessionKey.prototype.encrypt = async function (key) {
let data = String.fromCharCode(_enums2.default.write(_enums2.default.symmetric, this.sessionKeyAlgorithm));
data += _util2.default.Uint8Array_to_str(this.sessionKey);
data += _util2.default.Uint8Array_to_str(_util2.default.write_checksum(this.sessionKey));
let toEncrypt;
const algo = _enums2.default.write(_enums2.default.publicKey, this.publicKeyAlgorithm);
if (algo === _enums2.default.publicKey.ecdh) {
toEncrypt = new _mpi2.default(_crypto2.default.pkcs5.encode(data));
} else {
toEncrypt = new _mpi2.default((await _crypto2.default.pkcs1.eme.encode(data, key.params[0].byteLength())));
}
this.encrypted = await _crypto2.default.publicKeyEncrypt(algo, key.params, toEncrypt, key.getFingerprintBytes());
return true;
};
/**
* Decrypts the session key (only for public key encrypted session key
* packets (tag 1)
*
* @param {module:packet.SecretKey} key
* Private key with secret params unlocked
* @returns {Promise<Boolean>}
* @async
*/
PublicKeyEncryptedSessionKey.prototype.decrypt = async function (key) {
const algo = _enums2.default.write(_enums2.default.publicKey, this.publicKeyAlgorithm);
const result = new _mpi2.default((await _crypto2.default.publicKeyDecrypt(algo, key.params, this.encrypted, key.getFingerprintBytes())));
let checksum;
let decoded;
if (algo === _enums2.default.publicKey.ecdh) {
decoded = _crypto2.default.pkcs5.decode(result.toString());
checksum = _util2.default.str_to_Uint8Array(decoded.substr(decoded.length - 2));
} else {
decoded = _crypto2.default.pkcs1.eme.decode(result.toString());
checksum = result.toUint8Array().slice(result.byteLength() - 2);
}
key = _util2.default.str_to_Uint8Array(decoded.substring(1, decoded.length - 2));
if (!_util2.default.equalsUint8Array(checksum, _util2.default.write_checksum(key))) {
throw new Error('Decryption error');
} else {
this.sessionKey = key;
this.sessionKeyAlgorithm = _enums2.default.read(_enums2.default.symmetric, decoded.charCodeAt(0));
}
return true;
};
/**
* Fix custom types after cloning
*/
PublicKeyEncryptedSessionKey.prototype.postCloneTypeFix = function () {
this.publicKeyId = _keyid2.default.fromClone(this.publicKeyId);
const algo = _enums2.default.write(_enums2.default.publicKey, this.publicKeyAlgorithm);
const types = _crypto2.default.getEncSessionKeyParamTypes(algo);
for (let i = 0; i < this.encrypted.length; i++) {
this.encrypted[i] = types[i].fromClone(this.encrypted[i]);
}
};
exports.default = PublicKeyEncryptedSessionKey;
},{"../crypto":95,"../enums":114,"../type/keyid":149,"../type/mpi":150,"../util":153}],134:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _public_key = require('./public_key');
var _public_key2 = _interopRequireDefault(_public_key);
var _enums = require('../enums');
var _enums2 = _interopRequireDefault(_enums);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* A Public-Subkey packet (tag 14) has exactly the same format as a
* Public-Key packet, but denotes a subkey. One or more subkeys may be
* associated with a top-level key. By convention, the top-level key
* provides signature services, and the subkeys provide encryption
* services.
* @memberof module:packet
* @constructor
* @extends module:packet.PublicKey
*/
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @requires packet/public_key
* @requires enums
*/
function PublicSubkey() {
_public_key2.default.call(this);
this.tag = _enums2.default.packet.publicSubkey;
}
PublicSubkey.prototype = new _public_key2.default();
PublicSubkey.prototype.constructor = PublicSubkey;
exports.default = PublicSubkey;
},{"../enums":114,"./public_key":132}],135:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _public_key = require('./public_key');
var _public_key2 = _interopRequireDefault(_public_key);
var _keyid = require('../type/keyid.js');
var _keyid2 = _interopRequireDefault(_keyid);
var _s2k = require('../type/s2k');
var _s2k2 = _interopRequireDefault(_s2k);
var _crypto = require('../crypto');
var _crypto2 = _interopRequireDefault(_crypto);
var _enums = require('../enums');
var _enums2 = _interopRequireDefault(_enums);
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* A Secret-Key packet contains all the information that is found in a
* Public-Key packet, including the public-key material, but also
* includes the secret-key material after all the public-key fields.
* @memberof module:packet
* @constructor
* @extends module:packet.PublicKey
*/
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @requires packet/public_key
* @requires type/keyid
* @requires type/s2k
* @requires crypto
* @requires enums
* @requires util
*/
function SecretKey(date = new Date()) {
_public_key2.default.call(this, date);
/**
* Packet type
* @type {module:enums.packet}
*/
this.tag = _enums2.default.packet.secretKey;
/**
* Encrypted secret-key data
*/
this.encrypted = null;
/**
* Indicator if secret-key data is encrypted. `this.isEncrypted === false` means data is available in decrypted form.
*/
this.isEncrypted = null;
}
SecretKey.prototype = new _public_key2.default();
SecretKey.prototype.constructor = SecretKey;
// Helper function
function parse_cleartext_params(cleartext, algorithm) {
const algo = _enums2.default.write(_enums2.default.publicKey, algorithm);
const types = _crypto2.default.getPrivKeyParamTypes(algo);
const params = _crypto2.default.constructParams(types);
let p = 0;
for (let i = 0; i < types.length && p < cleartext.length; i++) {
p += params[i].read(cleartext.subarray(p, cleartext.length));
if (p > cleartext.length) {
throw new Error('Error reading param @:' + p);
}
}
return params;
}
function write_cleartext_params(params, algorithm) {
const arr = [];
const algo = _enums2.default.write(_enums2.default.publicKey, algorithm);
const numPublicParams = _crypto2.default.getPubKeyParamTypes(algo).length;
for (let i = numPublicParams; i < params.length; i++) {
arr.push(params[i].write());
}
return _util2.default.concatUint8Array(arr);
}
// 5.5.3. Secret-Key Packet Formats
/**
* Internal parser for private keys as specified in
* {@link https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-04#section-5.5.3|RFC4880bis-04 section 5.5.3}
* @param {String} bytes Input string to read the packet from
*/
SecretKey.prototype.read = function (bytes) {
// - A Public-Key or Public-Subkey packet, as described above.
const len = this.readPublicKey(bytes);
bytes = bytes.subarray(len, bytes.length);
// - One octet indicating string-to-key usage conventions. Zero
// indicates that the secret-key data is not encrypted. 255 or 254
// indicates that a string-to-key specifier is being given. Any
// other value is a symmetric-key encryption algorithm identifier.
const isEncrypted = bytes[0];
if (isEncrypted) {
this.encrypted = bytes;
this.isEncrypted = true;
} else {
// - Plain or encrypted multiprecision integers comprising the secret
// key data. These algorithm-specific fields are as described
// below.
const cleartext = bytes.subarray(1, -2);
if (!_util2.default.equalsUint8Array(_util2.default.write_checksum(cleartext), bytes.subarray(-2))) {
throw new Error('Key checksum mismatch');
}
const privParams = parse_cleartext_params(cleartext, this.algorithm);
this.params = this.params.concat(privParams);
this.isEncrypted = false;
}
};
/**
* Creates an OpenPGP key packet for the given key.
* @returns {String} A string of bytes containing the secret key OpenPGP packet
*/
SecretKey.prototype.write = function () {
const arr = [this.writePublicKey()];
if (!this.encrypted) {
arr.push(new Uint8Array([0]));
const cleartextParams = write_cleartext_params(this.params, this.algorithm);
arr.push(cleartextParams);
arr.push(_util2.default.write_checksum(cleartextParams));
} else {
arr.push(this.encrypted);
}
return _util2.default.concatUint8Array(arr);
};
/**
* Check whether secret-key data is available in decrypted form. Returns null for public keys.
* @returns {Boolean|null}
*/
SecretKey.prototype.isDecrypted = function () {
return this.isEncrypted === false;
};
/**
* Encrypt the payload. By default, we use aes256 and iterated, salted string
* to key specifier. If the key is in a decrypted state (isEncrypted === false)
* and the passphrase is empty or undefined, the key will be set as not encrypted.
* This can be used to remove passphrase protection after calling decrypt().
* @param {String} passphrase
* @returns {Promise<Boolean>}
* @async
*/
SecretKey.prototype.encrypt = async function (passphrase) {
if (this.isDecrypted() && this.encrypted) {
// gnu-dummy
this.isEncrypted = true;
return false;
}
if (this.isDecrypted() && !passphrase) {
this.encrypted = null;
return false;
} else if (!passphrase) {
throw new Error('The key must be decrypted before removing passphrase protection.');
}
const s2k = new _s2k2.default();
s2k.salt = await _crypto2.default.random.getRandomBytes(8);
const symmetric = 'aes256';
const cleartext = write_cleartext_params(this.params, this.algorithm);
const key = await produceEncryptionKey(s2k, passphrase, symmetric);
const blockLen = _crypto2.default.cipher[symmetric].blockSize;
const iv = await _crypto2.default.random.getRandomBytes(blockLen);
let arr;
if (this.version === 5) {
const aead = 'eax';
const optionalFields = _util2.default.concatUint8Array([new Uint8Array([_enums2.default.write(_enums2.default.symmetric, symmetric), _enums2.default.write(_enums2.default.aead, aead)]), s2k.write(), iv]);
arr = [new Uint8Array([253, optionalFields.length])];
arr.push(optionalFields);
const mode = _crypto2.default[aead];
const modeInstance = await mode(symmetric, key);
const encrypted = await modeInstance.encrypt(cleartext, iv.subarray(0, mode.ivLength), new Uint8Array());
arr.push(_util2.default.writeNumber(encrypted.length, 4));
arr.push(encrypted);
} else {
arr = [new Uint8Array([254, _enums2.default.write(_enums2.default.symmetric, symmetric)])];
arr.push(s2k.write());
arr.push(iv);
arr.push(_crypto2.default.cfb.encrypt(symmetric, key, _util2.default.concatUint8Array([cleartext, await _crypto2.default.hash.sha1(cleartext)]), iv));
}
this.encrypted = _util2.default.concatUint8Array(arr);
return true;
};
async function produceEncryptionKey(s2k, passphrase, algorithm) {
return s2k.produce_key(passphrase, _crypto2.default.cipher[algorithm].keySize);
}
/**
* Decrypts the private key params which are needed to use the key.
* {@link module:packet.SecretKey.isDecrypted} should be false, as
* otherwise calls to this function will throw an error.
* @param {String} passphrase The passphrase for this private key as string
* @returns {Promise<Boolean>}
* @async
*/
SecretKey.prototype.decrypt = async function (passphrase) {
if (this.isDecrypted()) {
throw new Error('Key packet is already decrypted.');
}
let i = 0;
let symmetric;
let aead;
let key;
const s2k_usage = this.encrypted[i++];
// - Only for a version 5 packet, a one-octet scalar octet count of
// the next 4 optional fields.
if (this.version === 5) {
i++;
}
// - [Optional] If string-to-key usage octet was 255, 254, or 253, a
// one-octet symmetric encryption algorithm.
if (s2k_usage === 255 || s2k_usage === 254 || s2k_usage === 253) {
symmetric = this.encrypted[i++];
symmetric = _enums2.default.read(_enums2.default.symmetric, symmetric);
// - [Optional] If string-to-key usage octet was 253, a one-octet
// AEAD algorithm.
if (s2k_usage === 253) {
aead = this.encrypted[i++];
aead = _enums2.default.read(_enums2.default.aead, aead);
}
// - [Optional] If string-to-key usage octet was 255, 254, or 253, a
// string-to-key specifier. The length of the string-to-key
// specifier is implied by its type, as described above.
const s2k = new _s2k2.default();
i += s2k.read(this.encrypted.subarray(i, this.encrypted.length));
if (s2k.type === 'gnu-dummy') {
this.isEncrypted = false;
return false;
}
key = await produceEncryptionKey(s2k, passphrase, symmetric);
} else {
symmetric = s2k_usage;
symmetric = _enums2.default.read(_enums2.default.symmetric, symmetric);
key = await _crypto2.default.hash.md5(passphrase);
}
// - [Optional] If secret data is encrypted (string-to-key usage octet
// not zero), an Initial Vector (IV) of the same length as the
// cipher's block size.
const iv = this.encrypted.subarray(i, i + _crypto2.default.cipher[symmetric].blockSize);
i += iv.length;
// - Only for a version 5 packet, a four-octet scalar octet count for
// the following key material.
if (this.version === 5) {
i += 4;
}
const ciphertext = this.encrypted.subarray(i, this.encrypted.length);
let cleartext;
if (aead) {
const mode = _crypto2.default[aead];
try {
const modeInstance = await mode(symmetric, key);
cleartext = await modeInstance.decrypt(ciphertext, iv.subarray(0, mode.ivLength), new Uint8Array());
} catch (err) {
if (err.message === 'Authentication tag mismatch') {
throw new Error('Incorrect key passphrase: ' + err.message);
}
}
} else {
const cleartextWithHash = await _crypto2.default.cfb.decrypt(symmetric, key, ciphertext, iv);
let hash;
let hashlen;
if (s2k_usage === 255) {
hashlen = 2;
cleartext = cleartextWithHash.subarray(0, -hashlen);
hash = _util2.default.write_checksum(cleartext);
} else {
hashlen = 20;
cleartext = cleartextWithHash.subarray(0, -hashlen);
hash = await _crypto2.default.hash.sha1(cleartext);
}
if (!_util2.default.equalsUint8Array(hash, cleartextWithHash.subarray(-hashlen))) {
throw new Error('Incorrect key passphrase');
}
}
const privParams = parse_cleartext_params(cleartext, this.algorithm);
this.params = this.params.concat(privParams);
this.isEncrypted = false;
this.encrypted = null;
return true;
};
SecretKey.prototype.generate = async function (bits, curve) {
const algo = _enums2.default.write(_enums2.default.publicKey, this.algorithm);
this.params = await _crypto2.default.generateParams(algo, bits, curve);
this.isEncrypted = false;
};
/**
* Clear private params, return to initial state
*/
SecretKey.prototype.clearPrivateParams = function () {
if (!this.encrypted) {
throw new Error('If secret key is not encrypted, clearing private params is irreversible.');
}
const algo = _enums2.default.write(_enums2.default.publicKey, this.algorithm);
this.params = this.params.slice(0, _crypto2.default.getPubKeyParamTypes(algo).length);
this.isEncrypted = true;
};
/**
* Fix custom types after cloning
*/
SecretKey.prototype.postCloneTypeFix = function () {
const algo = _enums2.default.write(_enums2.default.publicKey, this.algorithm);
const types = [].concat(_crypto2.default.getPubKeyParamTypes(algo), _crypto2.default.getPrivKeyParamTypes(algo));
for (let i = 0; i < this.params.length; i++) {
const param = this.params[i];
this.params[i] = types[i].fromClone(param);
}
if (this.keyid) {
this.keyid = _keyid2.default.fromClone(this.keyid);
}
};
exports.default = SecretKey;
},{"../crypto":95,"../enums":114,"../type/keyid.js":149,"../type/s2k":152,"../util":153,"./public_key":132}],136:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _secret_key = require('./secret_key');
var _secret_key2 = _interopRequireDefault(_secret_key);
var _enums = require('../enums');
var _enums2 = _interopRequireDefault(_enums);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* A Secret-Subkey packet (tag 7) is the subkey analog of the Secret
* Key packet and has exactly the same format.
* @memberof module:packet
* @constructor
* @extends module:packet.SecretKey
*/
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @requires packet/secret_key
* @requires enums
*/
function SecretSubkey(date = new Date()) {
_secret_key2.default.call(this, date);
this.tag = _enums2.default.packet.secretSubkey;
}
SecretSubkey.prototype = new _secret_key2.default();
SecretSubkey.prototype.constructor = SecretSubkey;
exports.default = SecretSubkey;
},{"../enums":114,"./secret_key":135}],137:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _webStreamTools = require('web-stream-tools');
var _webStreamTools2 = _interopRequireDefault(_webStreamTools);
var _packet = require('./packet');
var _packet2 = _interopRequireDefault(_packet);
var _keyid = require('../type/keyid.js');
var _keyid2 = _interopRequireDefault(_keyid);
var _mpi = require('../type/mpi.js');
var _mpi2 = _interopRequireDefault(_mpi);
var _crypto = require('../crypto');
var _crypto2 = _interopRequireDefault(_crypto);
var _enums = require('../enums');
var _enums2 = _interopRequireDefault(_enums);
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* Implementation of the Signature Packet (Tag 2)
*
* {@link https://tools.ietf.org/html/rfc4880#section-5.2|RFC4480 5.2}:
* A Signature packet describes a binding between some public key and
* some data. The most common signatures are a signature of a file or a
* block of text, and a signature that is a certification of a User ID.
* @memberof module:packet
* @constructor
* @param {Date} date the creation date of the signature
*/
function Signature(date = new Date()) {
this.tag = _enums2.default.packet.signature;
this.version = 4;
this.signatureType = null;
this.hashAlgorithm = null;
this.publicKeyAlgorithm = null;
this.signatureData = null;
this.unhashedSubpackets = [];
this.signedHashValue = null;
this.created = _util2.default.normalizeDate(date);
this.signatureExpirationTime = null;
this.signatureNeverExpires = true;
this.exportable = null;
this.trustLevel = null;
this.trustAmount = null;
this.regularExpression = null;
this.revocable = null;
this.keyExpirationTime = null;
this.keyNeverExpires = null;
this.preferredSymmetricAlgorithms = null;
this.revocationKeyClass = null;
this.revocationKeyAlgorithm = null;
this.revocationKeyFingerprint = null;
this.issuerKeyId = new _keyid2.default();
this.notations = [];
this.preferredHashAlgorithms = null;
this.preferredCompressionAlgorithms = null;
this.keyServerPreferences = null;
this.preferredKeyServer = null;
this.isPrimaryUserID = null;
this.policyURI = null;
this.keyFlags = null;
this.signersUserId = null;
this.reasonForRevocationFlag = null;
this.reasonForRevocationString = null;
this.features = null;
this.signatureTargetPublicKeyAlgorithm = null;
this.signatureTargetHashAlgorithm = null;
this.signatureTargetHash = null;
this.embeddedSignature = null;
this.issuerKeyVersion = null;
this.issuerFingerprint = null;
this.preferredAeadAlgorithms = null;
this.verified = null;
this.revoked = null;
}
/**
* parsing function for a signature packet (tag 2).
* @param {String} bytes payload of a tag 2 packet
* @param {Integer} position position to start reading from the bytes string
* @param {Integer} len length of the packet or the remaining length of bytes at position
* @returns {module:packet.Signature} object representation
*/
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @requires web-stream-tools
* @requires packet/packet
* @requires type/keyid
* @requires type/mpi
* @requires crypto
* @requires enums
* @requires util
*/
Signature.prototype.read = function (bytes) {
let i = 0;
this.version = bytes[i++];
if (this.version !== 4) {
throw new Error('Version ' + this.version + ' of the signature is unsupported.');
}
this.signatureType = bytes[i++];
this.publicKeyAlgorithm = bytes[i++];
this.hashAlgorithm = bytes[i++];
// hashed subpackets
i += this.read_sub_packets(bytes.subarray(i, bytes.length), true);
// A V4 signature hashes the packet body
// starting from its first field, the version number, through the end
// of the hashed subpacket data. Thus, the fields hashed are the
// signature version, the signature type, the public-key algorithm, the
// hash algorithm, the hashed subpacket length, and the hashed
// subpacket body.
this.signatureData = bytes.subarray(0, i);
// unhashed subpackets
i += this.read_sub_packets(bytes.subarray(i, bytes.length), false);
// Two-octet field holding left 16 bits of signed hash value.
this.signedHashValue = bytes.subarray(i, i + 2);
i += 2;
this.signature = bytes.subarray(i, bytes.length);
};
Signature.prototype.write = function () {
const arr = [];
arr.push(this.signatureData);
arr.push(this.write_unhashed_sub_packets());
arr.push(this.signedHashValue);
arr.push(_webStreamTools2.default.clone(this.signature));
return _util2.default.concat(arr);
};
/**
* Signs provided data. This needs to be done prior to serialization.
* @param {module:packet.SecretKey} key private key used to sign the message.
* @param {Object} data Contains packets to be signed.
* @returns {Promise<Boolean>}
* @async
*/
Signature.prototype.sign = async function (key, data) {
const signatureType = _enums2.default.write(_enums2.default.signature, this.signatureType);
const publicKeyAlgorithm = _enums2.default.write(_enums2.default.publicKey, this.publicKeyAlgorithm);
const hashAlgorithm = _enums2.default.write(_enums2.default.hash, this.hashAlgorithm);
const arr = [new Uint8Array([4, signatureType, publicKeyAlgorithm, hashAlgorithm])];
if (key.version === 5) {
// We could also generate this subpacket for version 4 keys, but for
// now we don't.
this.issuerKeyVersion = key.version;
this.issuerFingerprint = key.getFingerprintBytes();
}
this.issuerKeyId = key.getKeyId();
// Add hashed subpackets
arr.push(this.write_hashed_sub_packets());
this.signatureData = _util2.default.concat(arr);
const toHash = this.toHash(signatureType, data);
const hash = await this.hash(signatureType, data, toHash);
this.signedHashValue = _webStreamTools2.default.slice(_webStreamTools2.default.clone(hash), 0, 2);
const params = key.params;
this.signature = _webStreamTools2.default.fromAsync(async () => _crypto2.default.signature.sign(publicKeyAlgorithm, hashAlgorithm, params, toHash, (await _webStreamTools2.default.readToEnd(hash))));
// Store the fact that this signature is valid, e.g. for when we call `await
// getLatestValidSignature(this.revocationSignatures, key, data)` later. Note
// that this only holds up if the key and data passed to verify are the same
// as the ones passed to sign.
this.verified = true;
return true;
};
/**
* Creates Uint8Array of bytes of all subpacket data except Issuer and Embedded Signature subpackets
* @returns {Uint8Array} subpacket data
*/
Signature.prototype.write_hashed_sub_packets = function () {
const sub = _enums2.default.signatureSubpacket;
const arr = [];
let bytes;
if (this.created !== null) {
arr.push(write_sub_packet(sub.signature_creation_time, _util2.default.writeDate(this.created)));
}
if (this.signatureExpirationTime !== null) {
arr.push(write_sub_packet(sub.signature_expiration_time, _util2.default.writeNumber(this.signatureExpirationTime, 4)));
}
if (this.exportable !== null) {
arr.push(write_sub_packet(sub.exportable_certification, new Uint8Array([this.exportable ? 1 : 0])));
}
if (this.trustLevel !== null) {
bytes = new Uint8Array([this.trustLevel, this.trustAmount]);
arr.push(write_sub_packet(sub.trust_signature, bytes));
}
if (this.regularExpression !== null) {
arr.push(write_sub_packet(sub.regular_expression, this.regularExpression));
}
if (this.revocable !== null) {
arr.push(write_sub_packet(sub.revocable, new Uint8Array([this.revocable ? 1 : 0])));
}
if (this.keyExpirationTime !== null) {
arr.push(write_sub_packet(sub.key_expiration_time, _util2.default.writeNumber(this.keyExpirationTime, 4)));
}
if (this.preferredSymmetricAlgorithms !== null) {
bytes = _util2.default.str_to_Uint8Array(_util2.default.Uint8Array_to_str(this.preferredSymmetricAlgorithms));
arr.push(write_sub_packet(sub.preferred_symmetric_algorithms, bytes));
}
if (this.revocationKeyClass !== null) {
bytes = new Uint8Array([this.revocationKeyClass, this.revocationKeyAlgorithm]);
bytes = _util2.default.concat([bytes, this.revocationKeyFingerprint]);
arr.push(write_sub_packet(sub.revocation_key, bytes));
}
this.notations.forEach(([name, value]) => {
bytes = [new Uint8Array([0x80, 0, 0, 0])];
// 2 octets of name length
bytes.push(_util2.default.writeNumber(name.length, 2));
// 2 octets of value length
bytes.push(_util2.default.writeNumber(value.length, 2));
bytes.push(_util2.default.str_to_Uint8Array(name + value));
bytes = _util2.default.concat(bytes);
arr.push(write_sub_packet(sub.notation_data, bytes));
});
if (this.preferredHashAlgorithms !== null) {
bytes = _util2.default.str_to_Uint8Array(_util2.default.Uint8Array_to_str(this.preferredHashAlgorithms));
arr.push(write_sub_packet(sub.preferred_hash_algorithms, bytes));
}
if (this.preferredCompressionAlgorithms !== null) {
bytes = _util2.default.str_to_Uint8Array(_util2.default.Uint8Array_to_str(this.preferredCompressionAlgorithms));
arr.push(write_sub_packet(sub.preferred_compression_algorithms, bytes));
}
if (this.keyServerPreferences !== null) {
bytes = _util2.default.str_to_Uint8Array(_util2.default.Uint8Array_to_str(this.keyServerPreferences));
arr.push(write_sub_packet(sub.key_server_preferences, bytes));
}
if (this.preferredKeyServer !== null) {
arr.push(write_sub_packet(sub.preferred_key_server, _util2.default.str_to_Uint8Array(this.preferredKeyServer)));
}
if (this.isPrimaryUserID !== null) {
arr.push(write_sub_packet(sub.primary_user_id, new Uint8Array([this.isPrimaryUserID ? 1 : 0])));
}
if (this.policyURI !== null) {
arr.push(write_sub_packet(sub.policy_uri, _util2.default.str_to_Uint8Array(this.policyURI)));
}
if (this.keyFlags !== null) {
bytes = _util2.default.str_to_Uint8Array(_util2.default.Uint8Array_to_str(this.keyFlags));
arr.push(write_sub_packet(sub.key_flags, bytes));
}
if (this.signersUserId !== null) {
arr.push(write_sub_packet(sub.signers_user_id, _util2.default.str_to_Uint8Array(this.signersUserId)));
}
if (this.reasonForRevocationFlag !== null) {
bytes = _util2.default.str_to_Uint8Array(String.fromCharCode(this.reasonForRevocationFlag) + this.reasonForRevocationString);
arr.push(write_sub_packet(sub.reason_for_revocation, bytes));
}
if (this.features !== null) {
bytes = _util2.default.str_to_Uint8Array(_util2.default.Uint8Array_to_str(this.features));
arr.push(write_sub_packet(sub.features, bytes));
}
if (this.signatureTargetPublicKeyAlgorithm !== null) {
bytes = [new Uint8Array([this.signatureTargetPublicKeyAlgorithm, this.signatureTargetHashAlgorithm])];
bytes.push(_util2.default.str_to_Uint8Array(this.signatureTargetHash));
bytes = _util2.default.concat(bytes);
arr.push(write_sub_packet(sub.signature_target, bytes));
}
if (this.preferredAeadAlgorithms !== null) {
bytes = _util2.default.str_to_Uint8Array(_util2.default.Uint8Array_to_str(this.preferredAeadAlgorithms));
arr.push(write_sub_packet(sub.preferred_aead_algorithms, bytes));
}
const result = _util2.default.concat(arr);
const length = _util2.default.writeNumber(result.length, 2);
return _util2.default.concat([length, result]);
};
/**
* Creates Uint8Array of bytes of Issuer and Embedded Signature subpackets
* @returns {Uint8Array} subpacket data
*/
Signature.prototype.write_unhashed_sub_packets = function () {
const sub = _enums2.default.signatureSubpacket;
const arr = [];
let bytes;
if (!this.issuerKeyId.isNull() && this.issuerKeyVersion !== 5) {
// If the version of [the] key is greater than 4, this subpacket
// MUST NOT be included in the signature.
arr.push(write_sub_packet(sub.issuer, this.issuerKeyId.write()));
}
if (this.embeddedSignature !== null) {
arr.push(write_sub_packet(sub.embedded_signature, this.embeddedSignature.write()));
}
if (this.issuerFingerprint !== null) {
bytes = [new Uint8Array([this.issuerKeyVersion]), this.issuerFingerprint];
bytes = _util2.default.concat(bytes);
arr.push(write_sub_packet(sub.issuer_fingerprint, bytes));
}
this.unhashedSubpackets.forEach(data => {
arr.push(_packet2.default.writeSimpleLength(data.length));
arr.push(data);
});
const result = _util2.default.concat(arr);
const length = _util2.default.writeNumber(result.length, 2);
return _util2.default.concat([length, result]);
};
/**
* Creates a string representation of a sub signature packet
* @see {@link https://tools.ietf.org/html/rfc4880#section-5.2.3.1|RFC4880 5.2.3.1}
* @see {@link https://tools.ietf.org/html/rfc4880#section-5.2.3.2|RFC4880 5.2.3.2}
* @param {Integer} type subpacket signature type.
* @param {String} data data to be included
* @returns {String} a string-representation of a sub signature packet
* @private
*/
function write_sub_packet(type, data) {
const arr = [];
arr.push(_packet2.default.writeSimpleLength(data.length + 1));
arr.push(new Uint8Array([type]));
arr.push(data);
return _util2.default.concat(arr);
}
// V4 signature sub packets
Signature.prototype.read_sub_packet = function (bytes, trusted = true) {
let mypos = 0;
const read_array = (prop, bytes) => {
this[prop] = [];
for (let i = 0; i < bytes.length; i++) {
this[prop].push(bytes[i]);
}
};
// The leftmost bit denotes a "critical" packet
const critical = bytes[mypos] & 0x80;
const type = bytes[mypos] & 0x7F;
// GPG puts the Issuer and Signature subpackets in the unhashed area.
// Tampering with those invalidates the signature, so we can trust them.
// Ignore all other unhashed subpackets.
if (!trusted && ![_enums2.default.signatureSubpacket.issuer, _enums2.default.signatureSubpacket.issuer_fingerprint, _enums2.default.signatureSubpacket.embedded_signature].includes(type)) {
this.unhashedSubpackets.push(bytes.subarray(mypos, bytes.length));
return;
}
mypos++;
// subpacket type
switch (type) {
case 2:
// Signature Creation Time
this.created = _util2.default.readDate(bytes.subarray(mypos, bytes.length));
break;
case 3:
{
// Signature Expiration Time in seconds
const seconds = _util2.default.readNumber(bytes.subarray(mypos, bytes.length));
this.signatureNeverExpires = seconds === 0;
this.signatureExpirationTime = seconds;
break;
}
case 4:
// Exportable Certification
this.exportable = bytes[mypos++] === 1;
break;
case 5:
// Trust Signature
this.trustLevel = bytes[mypos++];
this.trustAmount = bytes[mypos++];
break;
case 6:
// Regular Expression
this.regularExpression = bytes[mypos];
break;
case 7:
// Revocable
this.revocable = bytes[mypos++] === 1;
break;
case 9:
{
// Key Expiration Time in seconds
const seconds = _util2.default.readNumber(bytes.subarray(mypos, bytes.length));
this.keyExpirationTime = seconds;
this.keyNeverExpires = seconds === 0;
break;
}
case 11:
// Preferred Symmetric Algorithms
read_array('preferredSymmetricAlgorithms', bytes.subarray(mypos, bytes.length));
break;
case 12:
// Revocation Key
// (1 octet of class, 1 octet of public-key algorithm ID, 20
// octets of
// fingerprint)
this.revocationKeyClass = bytes[mypos++];
this.revocationKeyAlgorithm = bytes[mypos++];
this.revocationKeyFingerprint = bytes.subarray(mypos, mypos + 20);
break;
case 16:
// Issuer
this.issuerKeyId.read(bytes.subarray(mypos, bytes.length));
break;
case 20:
// Notation Data
// We don't know how to handle anything but a text flagged data.
if (bytes[mypos] === 0x80) {
// We extract key/value tuple from the byte stream.
mypos += 4;
const m = _util2.default.readNumber(bytes.subarray(mypos, mypos + 2));
mypos += 2;
const n = _util2.default.readNumber(bytes.subarray(mypos, mypos + 2));
mypos += 2;
const name = _util2.default.Uint8Array_to_str(bytes.subarray(mypos, mypos + m));
const value = _util2.default.Uint8Array_to_str(bytes.subarray(mypos + m, mypos + m + n));
this.notations.push([name, value]);
} else {
_util2.default.print_debug("Unsupported notation flag " + bytes[mypos]);
}
break;
case 21:
// Preferred Hash Algorithms
read_array('preferredHashAlgorithms', bytes.subarray(mypos, bytes.length));
break;
case 22:
// Preferred Compression Algorithms
read_array('preferredCompressionAlgorithms', bytes.subarray(mypos, bytes.length));
break;
case 23:
// Key Server Preferences
read_array('keyServerPreferences', bytes.subarray(mypos, bytes.length));
break;
case 24:
// Preferred Key Server
this.preferredKeyServer = _util2.default.Uint8Array_to_str(bytes.subarray(mypos, bytes.length));
break;
case 25:
// Primary User ID
this.isPrimaryUserID = bytes[mypos++] !== 0;
break;
case 26:
// Policy URI
this.policyURI = _util2.default.Uint8Array_to_str(bytes.subarray(mypos, bytes.length));
break;
case 27:
// Key Flags
read_array('keyFlags', bytes.subarray(mypos, bytes.length));
break;
case 28:
// Signer's User ID
this.signersUserId = _util2.default.Uint8Array_to_str(bytes.subarray(mypos, bytes.length));
break;
case 29:
// Reason for Revocation
this.reasonForRevocationFlag = bytes[mypos++];
this.reasonForRevocationString = _util2.default.Uint8Array_to_str(bytes.subarray(mypos, bytes.length));
break;
case 30:
// Features
read_array('features', bytes.subarray(mypos, bytes.length));
break;
case 31:
{
// Signature Target
// (1 octet public-key algorithm, 1 octet hash algorithm, N octets hash)
this.signatureTargetPublicKeyAlgorithm = bytes[mypos++];
this.signatureTargetHashAlgorithm = bytes[mypos++];
const len = _crypto2.default.getHashByteLength(this.signatureTargetHashAlgorithm);
this.signatureTargetHash = _util2.default.Uint8Array_to_str(bytes.subarray(mypos, mypos + len));
break;
}
case 32:
// Embedded Signature
this.embeddedSignature = new Signature();
this.embeddedSignature.read(bytes.subarray(mypos, bytes.length));
break;
case 33:
// Issuer Fingerprint
this.issuerKeyVersion = bytes[mypos++];
this.issuerFingerprint = bytes.subarray(mypos, bytes.length);
if (this.issuerKeyVersion === 5) {
this.issuerKeyId.read(this.issuerFingerprint);
} else {
this.issuerKeyId.read(this.issuerFingerprint.subarray(-8));
}
break;
case 34:
// Preferred AEAD Algorithms
read_array.call(this, 'preferredAeadAlgorithms', bytes.subarray(mypos, bytes.length));
break;
default:
{
const err = new Error("Unknown signature subpacket type " + type + " @:" + mypos);
if (critical) {
throw err;
} else {
_util2.default.print_debug(err);
}
}
}
};
Signature.prototype.read_sub_packets = function (bytes, trusted = true) {
// Two-octet scalar octet count for following subpacket data.
const subpacket_length = _util2.default.readNumber(bytes.subarray(0, 2));
let i = 2;
// subpacket data set (zero or more subpackets)
while (i < 2 + subpacket_length) {
const len = _packet2.default.readSimpleLength(bytes.subarray(i, bytes.length));
i += len.offset;
this.read_sub_packet(bytes.subarray(i, i + len.len), trusted);
i += len.len;
}
return i;
};
// Produces data to produce signature on
Signature.prototype.toSign = function (type, data) {
const t = _enums2.default.signature;
switch (type) {
case t.binary:
if (data.text !== null) {
return _util2.default.str_to_Uint8Array(data.getText(true));
}
return data.getBytes(true);
case t.text:
{
let text = data.getText(true);
// normalize EOL to \r\n
text = _util2.default.canonicalizeEOL(text);
// encode UTF8
return _util2.default.encode_utf8(text);
}
case t.standalone:
return new Uint8Array(0);
case t.cert_generic:
case t.cert_persona:
case t.cert_casual:
case t.cert_positive:
case t.cert_revocation:
{
let packet;
let tag;
if (data.userId) {
tag = 0xB4;
packet = data.userId;
} else if (data.userAttribute) {
tag = 0xD1;
packet = data.userAttribute;
} else {
throw new Error('Either a userId or userAttribute packet needs to be ' + 'supplied for certification.');
}
const bytes = packet.write();
return _util2.default.concat([this.toSign(t.key, data), new Uint8Array([tag]), _util2.default.writeNumber(bytes.length, 4), bytes]);
}
case t.subkey_binding:
case t.subkey_revocation:
case t.key_binding:
return _util2.default.concat([this.toSign(t.key, data), this.toSign(t.key, {
key: data.bind
})]);
case t.key:
if (data.key === undefined) {
throw new Error('Key packet is required for this signature.');
}
return data.key.writeOld();
case t.key_revocation:
return this.toSign(t.key, data);
case t.timestamp:
return new Uint8Array(0);
case t.third_party:
throw new Error('Not implemented');
default:
throw new Error('Unknown signature type.');
}
};
Signature.prototype.calculateTrailer = function () {
let length = 0;
return _webStreamTools2.default.transform(_webStreamTools2.default.clone(this.signatureData), value => {
length += value.length;
}, () => {
const first = new Uint8Array([4, 0xFF]); //Version, ?
return _util2.default.concat([first, _util2.default.writeNumber(length, 4)]);
});
};
Signature.prototype.toHash = function (signatureType, data) {
const bytes = this.toSign(signatureType, data);
return _util2.default.concat([bytes, this.signatureData, this.calculateTrailer()]);
};
Signature.prototype.hash = async function (signatureType, data, toHash, streaming = true) {
const hashAlgorithm = _enums2.default.write(_enums2.default.hash, this.hashAlgorithm);
if (!toHash) toHash = this.toHash(signatureType, data);
if (!streaming && _util2.default.isStream(toHash)) {
return _webStreamTools2.default.fromAsync(async () => this.hash(signatureType, data, (await _webStreamTools2.default.readToEnd(toHash))));
}
return _crypto2.default.hash.digest(hashAlgorithm, toHash);
};
/**
* verifys the signature packet. Note: not signature types are implemented
* @param {module:packet.PublicSubkey|module:packet.PublicKey|
* module:packet.SecretSubkey|module:packet.SecretKey} key the public key to verify the signature
* @param {module:enums.signature} signatureType expected signature type
* @param {String|Object} data data which on the signature applies
* @returns {Promise<Boolean>} True if message is verified, else false.
* @async
*/
Signature.prototype.verify = async function (key, signatureType, data) {
const publicKeyAlgorithm = _enums2.default.write(_enums2.default.publicKey, this.publicKeyAlgorithm);
const hashAlgorithm = _enums2.default.write(_enums2.default.hash, this.hashAlgorithm);
if (publicKeyAlgorithm !== _enums2.default.write(_enums2.default.publicKey, key.algorithm)) {
throw new Error('Public key algorithm used to sign signature does not match issuer key algorithm.');
}
let toHash;
let hash;
if (this.hashed) {
hash = this.hashed;
} else {
toHash = this.toHash(signatureType, data);
hash = await this.hash(signatureType, data, toHash);
}
hash = await _webStreamTools2.default.readToEnd(hash);
if (this.signedHashValue[0] !== hash[0] || this.signedHashValue[1] !== hash[1]) {
this.verified = false;
} else {
let mpicount = 0;
// Algorithm-Specific Fields for RSA signatures:
// - multiprecision number (MPI) of RSA signature value m**d mod n.
if (publicKeyAlgorithm > 0 && publicKeyAlgorithm < 4) {
mpicount = 1;
// Algorithm-Specific Fields for DSA, ECDSA, and EdDSA signatures:
// - MPI of DSA value r.
// - MPI of DSA value s.
} else if (publicKeyAlgorithm === _enums2.default.publicKey.dsa || publicKeyAlgorithm === _enums2.default.publicKey.ecdsa || publicKeyAlgorithm === _enums2.default.publicKey.eddsa) {
mpicount = 2;
}
// EdDSA signature parameters are encoded in little-endian format
// https://tools.ietf.org/html/rfc8032#section-5.1.2
const endian = publicKeyAlgorithm === _enums2.default.publicKey.eddsa ? 'le' : 'be';
const mpi = [];
let i = 0;
this.signature = await _webStreamTools2.default.readToEnd(this.signature);
for (let j = 0; j < mpicount; j++) {
mpi[j] = new _mpi2.default();
i += mpi[j].read(this.signature.subarray(i, this.signature.length), endian);
}
this.verified = await _crypto2.default.signature.verify(publicKeyAlgorithm, hashAlgorithm, mpi, key.params, toHash, hash);
}
return this.verified;
};
/**
* Verifies signature expiration date
* @param {Date} date (optional) use the given date for verification instead of the current time
* @returns {Boolean} true if expired
*/
Signature.prototype.isExpired = function (date = new Date()) {
const normDate = _util2.default.normalizeDate(date);
if (normDate !== null) {
const expirationTime = this.getExpirationTime();
return !(this.created <= normDate && normDate <= expirationTime);
}
return false;
};
/**
* Returns the expiration time of the signature or Infinity if signature does not expire
* @returns {Date} expiration time
*/
Signature.prototype.getExpirationTime = function () {
return !this.signatureNeverExpires ? new Date(this.created.getTime() + this.signatureExpirationTime * 1000) : Infinity;
};
/**
* Fix custom types after cloning
*/
Signature.prototype.postCloneTypeFix = function () {
this.issuerKeyId = _keyid2.default.fromClone(this.issuerKeyId);
};
exports.default = Signature;
},{"../crypto":95,"../enums":114,"../type/keyid.js":149,"../type/mpi.js":150,"../util":153,"./packet":130,"web-stream-tools":76}],138:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _webStreamTools = require('web-stream-tools');
var _webStreamTools2 = _interopRequireDefault(_webStreamTools);
var _config = require('../config');
var _config2 = _interopRequireDefault(_config);
var _crypto = require('../crypto');
var _crypto2 = _interopRequireDefault(_crypto);
var _enums = require('../enums');
var _enums2 = _interopRequireDefault(_enums);
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
const VERSION = 1; // A one-octet version number of the data packet.
/**
* Implementation of the Symmetrically Encrypted Authenticated Encryption with
* Additional Data (AEAD) Protected Data Packet
*
* {@link https://tools.ietf.org/html/draft-ford-openpgp-format-00#section-2.1}:
* AEAD Protected Data Packet
* @memberof module:packet
* @constructor
*/
// OpenPGP.js - An OpenPGP implementation in javascript
// Copyright (C) 2016 Tankred Hase
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @requires web-stream-tools
* @requires config
* @requires crypto
* @requires enums
* @requires util
*/
function SymEncryptedAEADProtected() {
this.tag = _enums2.default.packet.symEncryptedAEADProtected;
this.version = VERSION;
this.cipherAlgo = null;
this.aeadAlgorithm = 'eax';
this.aeadAlgo = null;
this.chunkSizeByte = null;
this.iv = null;
this.encrypted = null;
this.packets = null;
}
exports.default = SymEncryptedAEADProtected;
/**
* Parse an encrypted payload of bytes in the order: version, IV, ciphertext (see specification)
* @param {Uint8Array | ReadableStream<Uint8Array>} bytes
*/
SymEncryptedAEADProtected.prototype.read = async function (bytes) {
await _webStreamTools2.default.parse(bytes, async reader => {
if ((await reader.readByte()) !== VERSION) {
// The only currently defined value is 1.
throw new Error('Invalid packet version.');
}
if (_config2.default.aead_protect_version === 4) {
this.cipherAlgo = await reader.readByte();
this.aeadAlgo = await reader.readByte();
this.chunkSizeByte = await reader.readByte();
} else {
this.aeadAlgo = _enums2.default.aead.experimental_gcm;
}
const mode = _crypto2.default[_enums2.default.read(_enums2.default.aead, this.aeadAlgo)];
this.iv = await reader.readBytes(mode.ivLength);
this.encrypted = reader.remainder();
});
};
/**
* Write the encrypted payload of bytes in the order: version, IV, ciphertext (see specification)
* @returns {Uint8Array | ReadableStream<Uint8Array>} The encrypted payload
*/
SymEncryptedAEADProtected.prototype.write = function () {
if (_config2.default.aead_protect_version === 4) {
return _util2.default.concat([new Uint8Array([this.version, this.cipherAlgo, this.aeadAlgo, this.chunkSizeByte]), this.iv, this.encrypted]);
}
return _util2.default.concat([new Uint8Array([this.version]), this.iv, this.encrypted]);
};
/**
* Decrypt the encrypted payload.
* @param {String} sessionKeyAlgorithm The session key's cipher algorithm e.g. 'aes128'
* @param {Uint8Array} key The session key used to encrypt the payload
* @param {Boolean} streaming Whether the top-level function will return a stream
* @returns {Boolean}
* @async
*/
SymEncryptedAEADProtected.prototype.decrypt = async function (sessionKeyAlgorithm, key, streaming) {
if (_config2.default.aead_protect_version !== 4) {
this.cipherAlgo = _enums2.default.write(_enums2.default.symmetric, sessionKeyAlgorithm);
}
await this.packets.read((await this.crypt('decrypt', key, _webStreamTools2.default.clone(this.encrypted), streaming)), streaming);
return true;
};
/**
* Encrypt the packet list payload.
* @param {String} sessionKeyAlgorithm The session key's cipher algorithm e.g. 'aes128'
* @param {Uint8Array} key The session key used to encrypt the payload
* @param {Boolean} streaming Whether the top-level function will return a stream
* @async
*/
SymEncryptedAEADProtected.prototype.encrypt = async function (sessionKeyAlgorithm, key, streaming) {
this.cipherAlgo = _enums2.default.write(_enums2.default.symmetric, sessionKeyAlgorithm);
this.aeadAlgo = _config2.default.aead_protect_version === 4 ? _enums2.default.write(_enums2.default.aead, this.aeadAlgorithm) : _enums2.default.aead.experimental_gcm;
const mode = _crypto2.default[_enums2.default.read(_enums2.default.aead, this.aeadAlgo)];
this.iv = await _crypto2.default.random.getRandomBytes(mode.ivLength); // generate new random IV
this.chunkSizeByte = _config2.default.aead_chunk_size_byte;
const data = this.packets.write();
this.encrypted = await this.crypt('encrypt', key, data, streaming);
};
/**
* En/decrypt the payload.
* @param {encrypt|decrypt} fn Whether to encrypt or decrypt
* @param {Uint8Array} key The session key used to en/decrypt the payload
* @param {Uint8Array | ReadableStream<Uint8Array>} data The data to en/decrypt
* @param {Boolean} streaming Whether the top-level function will return a stream
* @returns {Uint8Array | ReadableStream<Uint8Array>}
* @async
*/
SymEncryptedAEADProtected.prototype.crypt = async function (fn, key, data, streaming) {
const cipher = _enums2.default.read(_enums2.default.symmetric, this.cipherAlgo);
const mode = _crypto2.default[_enums2.default.read(_enums2.default.aead, this.aeadAlgo)];
const modeInstance = await mode(cipher, key);
if (_config2.default.aead_protect_version === 4) {
const tagLengthIfDecrypting = fn === 'decrypt' ? mode.tagLength : 0;
const chunkSize = 2 ** (this.chunkSizeByte + 6) + tagLengthIfDecrypting; // ((uint64_t)1 << (c + 6))
const adataBuffer = new ArrayBuffer(21);
const adataArray = new Uint8Array(adataBuffer, 0, 13);
const adataTagArray = new Uint8Array(adataBuffer);
const adataView = new DataView(adataBuffer);
const chunkIndexArray = new Uint8Array(adataBuffer, 5, 8);
adataArray.set([0xC0 | this.tag, this.version, this.cipherAlgo, this.aeadAlgo, this.chunkSizeByte], 0);
let chunkIndex = 0;
let latestPromise = Promise.resolve();
let cryptedBytes = 0;
let queuedBytes = 0;
const iv = this.iv;
return _webStreamTools2.default.transformPair(data, async (readable, writable) => {
const reader = _webStreamTools2.default.getReader(readable);
const buffer = new TransformStream({}, {
highWaterMark: streaming ? _util2.default.getHardwareConcurrency() * 2 ** (_config2.default.aead_chunk_size_byte + 6) : Infinity,
size: array => array.length
});
_webStreamTools2.default.pipe(buffer.readable, writable);
const writer = _webStreamTools2.default.getWriter(buffer.writable);
try {
while (true) {
let chunk = (await reader.readBytes(chunkSize + tagLengthIfDecrypting)) || new Uint8Array();
const finalChunk = chunk.subarray(chunk.length - tagLengthIfDecrypting);
chunk = chunk.subarray(0, chunk.length - tagLengthIfDecrypting);
let cryptedPromise;
let done;
if (!chunkIndex || chunk.length) {
reader.unshift(finalChunk);
cryptedPromise = modeInstance[fn](chunk, mode.getNonce(iv, chunkIndexArray), adataArray);
} else {
// After the last chunk, we either encrypt a final, empty
// data chunk to get the final authentication tag or
// validate that final authentication tag.
adataView.setInt32(13 + 4, cryptedBytes); // Should be setInt64(13, ...)
cryptedPromise = modeInstance[fn](finalChunk, mode.getNonce(iv, chunkIndexArray), adataTagArray);
done = true;
}
cryptedBytes += chunk.length - tagLengthIfDecrypting;
queuedBytes += chunk.length - tagLengthIfDecrypting;
// eslint-disable-next-line no-loop-func
latestPromise = latestPromise.then(() => cryptedPromise).then(async crypted => {
await writer.ready;
await writer.write(crypted);
queuedBytes -= chunk.length;
}).catch(err => writer.abort(err));
if (done || queuedBytes > writer.desiredSize) {
await latestPromise; // Respect backpressure
}
if (!done) {
adataView.setInt32(5 + 4, ++chunkIndex); // Should be setInt64(5, ...)
} else {
await writer.close();
break;
}
}
} catch (e) {
await writer.abort(e);
}
});
} else {
return modeInstance[fn]((await _webStreamTools2.default.readToEnd(data)), this.iv);
}
};
},{"../config":80,"../crypto":95,"../enums":114,"../util":153,"web-stream-tools":76}],139:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _webStreamTools = require('web-stream-tools');
var _webStreamTools2 = _interopRequireDefault(_webStreamTools);
var _config = require('../config');
var _config2 = _interopRequireDefault(_config);
var _crypto = require('../crypto');
var _crypto2 = _interopRequireDefault(_crypto);
var _enums = require('../enums');
var _enums2 = _interopRequireDefault(_enums);
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
const VERSION = 1; // A one-octet version number of the data packet.
/**
* Implementation of the Sym. Encrypted Integrity Protected Data Packet (Tag 18)
*
* {@link https://tools.ietf.org/html/rfc4880#section-5.13|RFC4880 5.13}:
* The Symmetrically Encrypted Integrity Protected Data packet is
* a variant of the Symmetrically Encrypted Data packet. It is a new feature
* created for OpenPGP that addresses the problem of detecting a modification to
* encrypted data. It is used in combination with a Modification Detection Code
* packet.
* @memberof module:packet
* @constructor
*/
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @requires asmcrypto.js
* @requires web-stream-tools
* @requires config
* @requires crypto
* @requires enums
* @requires util
*/
function SymEncryptedIntegrityProtected() {
this.tag = _enums2.default.packet.symEncryptedIntegrityProtected;
this.version = VERSION;
/** The encrypted payload. */
this.encrypted = null; // string
/**
* If after decrypting the packet this is set to true,
* a modification has been detected and thus the contents
* should be discarded.
* @type {Boolean}
*/
this.modification = false;
this.packets = null;
}
SymEncryptedIntegrityProtected.prototype.read = async function (bytes) {
await _webStreamTools2.default.parse(bytes, async reader => {
// - A one-octet version number. The only currently defined value is 1.
if ((await reader.readByte()) !== VERSION) {
throw new Error('Invalid packet version.');
}
// - Encrypted data, the output of the selected symmetric-key cipher
// operating in Cipher Feedback mode with shift amount equal to the
// block size of the cipher (CFB-n where n is the block size).
this.encrypted = reader.remainder();
});
};
SymEncryptedIntegrityProtected.prototype.write = function () {
return _util2.default.concat([new Uint8Array([VERSION]), this.encrypted]);
};
/**
* Encrypt the payload in the packet.
* @param {String} sessionKeyAlgorithm The selected symmetric encryption algorithm to be used e.g. 'aes128'
* @param {Uint8Array} key The key of cipher blocksize length to be used
* @param {Boolean} streaming Whether to set this.encrypted to a stream
* @returns {Promise<Boolean>}
* @async
*/
SymEncryptedIntegrityProtected.prototype.encrypt = async function (sessionKeyAlgorithm, key, streaming) {
let bytes = this.packets.write();
if (!streaming) bytes = await _webStreamTools2.default.readToEnd(bytes);
const prefix = await _crypto2.default.getPrefixRandom(sessionKeyAlgorithm);
const mdc = new Uint8Array([0xD3, 0x14]); // modification detection code packet
const tohash = _util2.default.concat([prefix, bytes, mdc]);
const hash = await _crypto2.default.hash.sha1(_webStreamTools2.default.passiveClone(tohash));
const plaintext = _util2.default.concat([tohash, hash]);
this.encrypted = await _crypto2.default.cfb.encrypt(sessionKeyAlgorithm, key, plaintext, new Uint8Array(_crypto2.default.cipher[sessionKeyAlgorithm].blockSize));
return true;
};
/**
* Decrypts the encrypted data contained in the packet.
* @param {String} sessionKeyAlgorithm The selected symmetric encryption algorithm to be used e.g. 'aes128'
* @param {Uint8Array} key The key of cipher blocksize length to be used
* @param {Boolean} streaming Whether to read this.encrypted as a stream
* @returns {Promise<Boolean>}
* @async
*/
SymEncryptedIntegrityProtected.prototype.decrypt = async function (sessionKeyAlgorithm, key, streaming) {
if (!streaming) this.encrypted = await _webStreamTools2.default.readToEnd(this.encrypted);
const encrypted = _webStreamTools2.default.clone(this.encrypted);
const decrypted = await _crypto2.default.cfb.decrypt(sessionKeyAlgorithm, key, encrypted, new Uint8Array(_crypto2.default.cipher[sessionKeyAlgorithm].blockSize));
// there must be a modification detection code packet as the
// last packet and everything gets hashed except the hash itself
const realHash = _webStreamTools2.default.slice(_webStreamTools2.default.passiveClone(decrypted), -20);
const tohash = _webStreamTools2.default.slice(decrypted, 0, -20);
const verifyHash = Promise.all([_webStreamTools2.default.readToEnd((await _crypto2.default.hash.sha1(_webStreamTools2.default.passiveClone(tohash)))), _webStreamTools2.default.readToEnd(realHash)]).then(([hash, mdc]) => {
if (!_util2.default.equalsUint8Array(hash, mdc)) {
throw new Error('Modification detected.');
}
return new Uint8Array();
});
const bytes = _webStreamTools2.default.slice(tohash, _crypto2.default.cipher[sessionKeyAlgorithm].blockSize + 2); // Remove random prefix
let packetbytes = _webStreamTools2.default.slice(bytes, 0, -2); // Remove MDC packet
packetbytes = _webStreamTools2.default.concat([packetbytes, _webStreamTools2.default.fromAsync(() => verifyHash)]);
if (!_util2.default.isStream(encrypted) || !_config2.default.allow_unauthenticated_stream) {
packetbytes = await _webStreamTools2.default.readToEnd(packetbytes);
}
await this.packets.read(packetbytes, streaming);
return true;
};
exports.default = SymEncryptedIntegrityProtected;
},{"../config":80,"../crypto":95,"../enums":114,"../util":153,"web-stream-tools":76}],140:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _s2k = require('../type/s2k');
var _s2k2 = _interopRequireDefault(_s2k);
var _config = require('../config');
var _config2 = _interopRequireDefault(_config);
var _crypto = require('../crypto');
var _crypto2 = _interopRequireDefault(_crypto);
var _enums = require('../enums');
var _enums2 = _interopRequireDefault(_enums);
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* Public-Key Encrypted Session Key Packets (Tag 1)
*
* {@link https://tools.ietf.org/html/rfc4880#section-5.1|RFC4880 5.1}:
* A Public-Key Encrypted Session Key packet holds the session key
* used to encrypt a message. Zero or more Public-Key Encrypted Session Key
* packets and/or Symmetric-Key Encrypted Session Key packets may precede a
* Symmetrically Encrypted Data Packet, which holds an encrypted message. The
* message is encrypted with the session key, and the session key is itself
* encrypted and stored in the Encrypted Session Key packet(s). The
* Symmetrically Encrypted Data Packet is preceded by one Public-Key Encrypted
* Session Key packet for each OpenPGP key to which the message is encrypted.
* The recipient of the message finds a session key that is encrypted to their
* public key, decrypts the session key, and then uses the session key to
* decrypt the message.
* @memberof module:packet
* @constructor
*/
function SymEncryptedSessionKey() {
this.tag = _enums2.default.packet.symEncryptedSessionKey;
this.version = _config2.default.aead_protect && _config2.default.aead_protect_version === 4 ? 5 : 4;
this.sessionKey = null;
this.sessionKeyEncryptionAlgorithm = null;
this.sessionKeyAlgorithm = 'aes256';
this.aeadAlgorithm = _enums2.default.read(_enums2.default.aead, _config2.default.aead_mode);
this.encrypted = null;
this.s2k = null;
this.iv = null;
}
/**
* Parsing function for a symmetric encrypted session key packet (tag 3).
*
* @param {Uint8Array} input Payload of a tag 1 packet
* @param {Integer} position Position to start reading from the input string
* @param {Integer} len
* Length of the packet or the remaining length of
* input at position
* @returns {module:packet.SymEncryptedSessionKey} Object representation
*/
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @requires type/s2k
* @requires config
* @requires crypto
* @requires enums
* @requires util
*/
SymEncryptedSessionKey.prototype.read = function (bytes) {
let offset = 0;
// A one-octet version number. The only currently defined version is 4.
this.version = bytes[offset++];
// A one-octet number describing the symmetric algorithm used.
const algo = _enums2.default.read(_enums2.default.symmetric, bytes[offset++]);
if (this.version === 5) {
// A one-octet AEAD algorithm.
this.aeadAlgorithm = _enums2.default.read(_enums2.default.aead, bytes[offset++]);
}
// A string-to-key (S2K) specifier, length as defined above.
this.s2k = new _s2k2.default();
offset += this.s2k.read(bytes.subarray(offset, bytes.length));
if (this.version === 5) {
const mode = _crypto2.default[this.aeadAlgorithm];
// A starting initialization vector of size specified by the AEAD
// algorithm.
this.iv = bytes.subarray(offset, offset += mode.ivLength);
}
// The encrypted session key itself, which is decrypted with the
// string-to-key object. This is optional in version 4.
if (this.version === 5 || offset < bytes.length) {
this.encrypted = bytes.subarray(offset, bytes.length);
this.sessionKeyEncryptionAlgorithm = algo;
} else {
this.sessionKeyAlgorithm = algo;
}
};
SymEncryptedSessionKey.prototype.write = function () {
const algo = this.encrypted === null ? this.sessionKeyAlgorithm : this.sessionKeyEncryptionAlgorithm;
let bytes;
if (this.version === 5) {
bytes = _util2.default.concatUint8Array([new Uint8Array([this.version, _enums2.default.write(_enums2.default.symmetric, algo), _enums2.default.write(_enums2.default.aead, this.aeadAlgorithm)]), this.s2k.write(), this.iv, this.encrypted]);
} else {
bytes = _util2.default.concatUint8Array([new Uint8Array([this.version, _enums2.default.write(_enums2.default.symmetric, algo)]), this.s2k.write()]);
if (this.encrypted !== null) {
bytes = _util2.default.concatUint8Array([bytes, this.encrypted]);
}
}
return bytes;
};
/**
* Decrypts the session key
* @param {String} passphrase The passphrase in string form
* @returns {Promise<Boolean>}
* @async
*/
SymEncryptedSessionKey.prototype.decrypt = async function (passphrase) {
const algo = this.sessionKeyEncryptionAlgorithm !== null ? this.sessionKeyEncryptionAlgorithm : this.sessionKeyAlgorithm;
const length = _crypto2.default.cipher[algo].keySize;
const key = await this.s2k.produce_key(passphrase, length);
if (this.version === 5) {
const mode = _crypto2.default[this.aeadAlgorithm];
const adata = new Uint8Array([0xC0 | this.tag, this.version, _enums2.default.write(_enums2.default.symmetric, this.sessionKeyEncryptionAlgorithm), _enums2.default.write(_enums2.default.aead, this.aeadAlgorithm)]);
const modeInstance = await mode(algo, key);
this.sessionKey = await modeInstance.decrypt(this.encrypted, this.iv, adata);
} else if (this.encrypted !== null) {
const decrypted = await _crypto2.default.cfb.decrypt(algo, key, this.encrypted, new Uint8Array(_crypto2.default.cipher[algo].blockSize));
this.sessionKeyAlgorithm = _enums2.default.read(_enums2.default.symmetric, decrypted[0]);
this.sessionKey = decrypted.subarray(1, decrypted.length);
} else {
this.sessionKey = key;
}
return true;
};
/**
* Encrypts the session key
* @param {String} passphrase The passphrase in string form
* @returns {Promise<Boolean>}
* @async
*/
SymEncryptedSessionKey.prototype.encrypt = async function (passphrase) {
const algo = this.sessionKeyEncryptionAlgorithm !== null ? this.sessionKeyEncryptionAlgorithm : this.sessionKeyAlgorithm;
this.sessionKeyEncryptionAlgorithm = algo;
this.s2k = new _s2k2.default();
this.s2k.salt = await _crypto2.default.random.getRandomBytes(8);
const length = _crypto2.default.cipher[algo].keySize;
const key = await this.s2k.produce_key(passphrase, length);
if (this.sessionKey === null) {
this.sessionKey = await _crypto2.default.generateSessionKey(this.sessionKeyAlgorithm);
}
if (this.version === 5) {
const mode = _crypto2.default[this.aeadAlgorithm];
this.iv = await _crypto2.default.random.getRandomBytes(mode.ivLength); // generate new random IV
const adata = new Uint8Array([0xC0 | this.tag, this.version, _enums2.default.write(_enums2.default.symmetric, this.sessionKeyEncryptionAlgorithm), _enums2.default.write(_enums2.default.aead, this.aeadAlgorithm)]);
const modeInstance = await mode(algo, key);
this.encrypted = await modeInstance.encrypt(this.sessionKey, this.iv, adata);
} else {
const algo_enum = new Uint8Array([_enums2.default.write(_enums2.default.symmetric, this.sessionKeyAlgorithm)]);
const private_key = _util2.default.concatUint8Array([algo_enum, this.sessionKey]);
this.encrypted = await _crypto2.default.cfb.encrypt(algo, key, private_key, new Uint8Array(_crypto2.default.cipher[algo].blockSize));
}
return true;
};
/**
* Fix custom types after cloning
*/
SymEncryptedSessionKey.prototype.postCloneTypeFix = function () {
this.s2k = _s2k2.default.fromClone(this.s2k);
};
exports.default = SymEncryptedSessionKey;
},{"../config":80,"../crypto":95,"../enums":114,"../type/s2k":152,"../util":153}],141:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _webStreamTools = require('web-stream-tools');
var _webStreamTools2 = _interopRequireDefault(_webStreamTools);
var _config = require('../config');
var _config2 = _interopRequireDefault(_config);
var _crypto = require('../crypto');
var _crypto2 = _interopRequireDefault(_crypto);
var _enums = require('../enums');
var _enums2 = _interopRequireDefault(_enums);
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* Implementation of the Symmetrically Encrypted Data Packet (Tag 9)
*
* {@link https://tools.ietf.org/html/rfc4880#section-5.7|RFC4880 5.7}:
* The Symmetrically Encrypted Data packet contains data encrypted with a
* symmetric-key algorithm. When it has been decrypted, it contains other
* packets (usually a literal data packet or compressed data packet, but in
* theory other Symmetrically Encrypted Data packets or sequences of packets
* that form whole OpenPGP messages).
* @memberof module:packet
* @constructor
*/
function SymmetricallyEncrypted() {
/**
* Packet type
* @type {module:enums.packet}
*/
this.tag = _enums2.default.packet.symmetricallyEncrypted;
/**
* Encrypted secret-key data
*/
this.encrypted = null;
/**
* Decrypted packets contained within.
* @type {module:packet.List}
*/
this.packets = null;
/**
* When true, decrypt fails if message is not integrity protected
* @see module:config.ignore_mdc_error
*/
this.ignore_mdc_error = _config2.default.ignore_mdc_error;
} // GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @requires web-stream-tools
* @requires config
* @requires crypto
* @requires enums
* @requires util
*/
SymmetricallyEncrypted.prototype.read = function (bytes) {
this.encrypted = bytes;
};
SymmetricallyEncrypted.prototype.write = function () {
return this.encrypted;
};
/**
* Decrypt the symmetrically-encrypted packet data
* See {@link https://tools.ietf.org/html/rfc4880#section-9.2|RFC 4880 9.2} for algorithms.
* @param {module:enums.symmetric} sessionKeyAlgorithm Symmetric key algorithm to use
* @param {Uint8Array} key The key of cipher blocksize length to be used
* @returns {Promise<Boolean>}
* @async
*/
SymmetricallyEncrypted.prototype.decrypt = async function (sessionKeyAlgorithm, key) {
// If MDC errors are not being ignored, all missing MDC packets in symmetrically encrypted data should throw an error
if (!this.ignore_mdc_error) {
throw new Error('Decryption failed due to missing MDC.');
}
this.encrypted = await _webStreamTools2.default.readToEnd(this.encrypted);
const decrypted = await _crypto2.default.cfb.decrypt(sessionKeyAlgorithm, key, this.encrypted.subarray(_crypto2.default.cipher[sessionKeyAlgorithm].blockSize + 2), this.encrypted.subarray(2, _crypto2.default.cipher[sessionKeyAlgorithm].blockSize + 2));
await this.packets.read(decrypted);
return true;
};
/**
* Encrypt the symmetrically-encrypted packet data
* See {@link https://tools.ietf.org/html/rfc4880#section-9.2|RFC 4880 9.2} for algorithms.
* @param {module:enums.symmetric} sessionKeyAlgorithm Symmetric key algorithm to use
* @param {Uint8Array} key The key of cipher blocksize length to be used
* @returns {Promise<Boolean>}
* @async
*/
SymmetricallyEncrypted.prototype.encrypt = async function (algo, key) {
const data = this.packets.write();
const prefix = await _crypto2.default.getPrefixRandom(algo);
const FRE = await _crypto2.default.cfb.encrypt(algo, key, prefix, new Uint8Array(_crypto2.default.cipher[algo].blockSize));
const ciphertext = await _crypto2.default.cfb.encrypt(algo, key, data, FRE.subarray(2));
this.encrypted = _util2.default.concat([FRE, ciphertext]);
return true;
};
exports.default = SymmetricallyEncrypted;
},{"../config":80,"../crypto":95,"../enums":114,"../util":153,"web-stream-tools":76}],142:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _enums = require('../enums');
var _enums2 = _interopRequireDefault(_enums);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* Implementation of the Trust Packet (Tag 12)
*
* {@link https://tools.ietf.org/html/rfc4880#section-5.10|RFC4880 5.10}:
* The Trust packet is used only within keyrings and is not normally
* exported. Trust packets contain data that record the user's
* specifications of which key holders are trustworthy introducers,
* along with other information that implementing software uses for
* trust information. The format of Trust packets is defined by a given
* implementation.
*
* Trust packets SHOULD NOT be emitted to output streams that are
* transferred to other users, and they SHOULD be ignored on any input
* other than local keyring files.
* @memberof module:packet
* @constructor
*/
function Trust() {
this.tag = _enums2.default.packet.trust;
}
/**
* Parsing function for a trust packet (tag 12).
* Currently not implemented as we ignore trust packets
* @param {String} byptes payload of a tag 12 packet
*/
/**
* @requires enums
*/
Trust.prototype.read = function () {}; // TODO
exports.default = Trust;
},{"../enums":114}],143:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _packet = require('./packet');
var _packet2 = _interopRequireDefault(_packet);
var _enums = require('../enums');
var _enums2 = _interopRequireDefault(_enums);
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* Implementation of the User Attribute Packet (Tag 17)
*
* The User Attribute packet is a variation of the User ID packet. It
* is capable of storing more types of data than the User ID packet,
* which is limited to text. Like the User ID packet, a User Attribute
* packet may be certified by the key owner ("self-signed") or any other
* key owner who cares to certify it. Except as noted, a User Attribute
* packet may be used anywhere that a User ID packet may be used.
*
* While User Attribute packets are not a required part of the OpenPGP
* standard, implementations SHOULD provide at least enough
* compatibility to properly handle a certification signature on the
* User Attribute packet. A simple way to do this is by treating the
* User Attribute packet as a User ID packet with opaque contents, but
* an implementation may use any method desired.
* @memberof module:packet
* @constructor
*/
function UserAttribute() {
this.tag = _enums2.default.packet.userAttribute;
this.attributes = [];
}
/**
* parsing function for a user attribute packet (tag 17).
* @param {Uint8Array} input payload of a tag 17 packet
*/
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @requires packet
* @requires enums
* @requires util
*/
UserAttribute.prototype.read = function (bytes) {
let i = 0;
while (i < bytes.length) {
const len = _packet2.default.readSimpleLength(bytes.subarray(i, bytes.length));
i += len.offset;
this.attributes.push(_util2.default.Uint8Array_to_str(bytes.subarray(i, i + len.len)));
i += len.len;
}
};
/**
* Creates a binary representation of the user attribute packet
* @returns {Uint8Array} string representation
*/
UserAttribute.prototype.write = function () {
const arr = [];
for (let i = 0; i < this.attributes.length; i++) {
arr.push(_packet2.default.writeSimpleLength(this.attributes[i].length));
arr.push(_util2.default.str_to_Uint8Array(this.attributes[i]));
}
return _util2.default.concatUint8Array(arr);
};
/**
* Compare for equality
* @param {module:packet.UserAttribute} usrAttr
* @returns {Boolean} true if equal
*/
UserAttribute.prototype.equals = function (usrAttr) {
if (!usrAttr || !(usrAttr instanceof UserAttribute)) {
return false;
}
return this.attributes.every(function (attr, index) {
return attr === usrAttr.attributes[index];
});
};
exports.default = UserAttribute;
},{"../enums":114,"../util":153,"./packet":130}],144:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _enums = require('../enums');
var _enums2 = _interopRequireDefault(_enums);
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* Implementation of the User ID Packet (Tag 13)
*
* A User ID packet consists of UTF-8 text that is intended to represent
* the name and email address of the key holder. By convention, it
* includes an RFC 2822 [RFC2822] mail name-addr, but there are no
* restrictions on its content. The packet length in the header
* specifies the length of the User ID.
* @memberof module:packet
* @constructor
*/
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @requires enums
* @requires util
*/
function Userid() {
this.tag = _enums2.default.packet.userid;
/** A string containing the user id. Usually in the form
* John Doe <john@example.com>
* @type {String}
*/
this.userid = '';
this.name = '';
this.email = '';
this.comment = '';
}
/**
* Parsing function for a user id packet (tag 13).
* @param {Uint8Array} input payload of a tag 13 packet
*/
Userid.prototype.read = function (bytes) {
this.parse(_util2.default.decode_utf8(bytes));
};
/**
* Parse userid string, e.g. 'John Doe <john@example.com>'
*/
Userid.prototype.parse = function (userid) {
try {
Object.assign(this, _util2.default.parseUserId(userid));
} catch (e) {}
this.userid = userid;
};
/**
* Creates a binary representation of the user id packet
* @returns {Uint8Array} binary representation
*/
Userid.prototype.write = function () {
return _util2.default.encode_utf8(this.userid);
};
/**
* Set userid string from object, e.g. { name:'Phil Zimmermann', email:'phil@openpgp.org' }
*/
Userid.prototype.format = function (userid) {
if (_util2.default.isString(userid)) {
userid = _util2.default.parseUserId(userid);
}
Object.assign(this, userid);
this.userid = _util2.default.formatUserId(userid);
};
exports.default = Userid;
},{"../enums":114,"../util":153}],145:[function(require,module,exports){
(function (global){
'use strict';
var _util = require('./util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
if (typeof window !== 'undefined') {
/********************************************************************
* NOTE: This list is duplicated in Gruntfile.js, *
* so that these polyfills are only included in the compat bundle. *
********************************************************************/
try {
if (typeof window.fetch === 'undefined') {
require('whatwg-fetch');
}
if (typeof Array.prototype.fill === 'undefined') {
require('core-js/fn/array/fill');
}
if (typeof Array.prototype.find === 'undefined') {
require('core-js/fn/array/find');
}
if (typeof Array.prototype.includes === 'undefined') {
require('core-js/fn/array/includes');
}
if (typeof Array.from === 'undefined') {
require('core-js/fn/array/from');
}
// No if-statement on Promise because of IE11. Otherwise Promise is undefined in the service worker.
require('core-js/fn/promise');
if (typeof Uint8Array.from === 'undefined') {
require('core-js/fn/typed/uint8-array');
}
if (typeof String.prototype.repeat === 'undefined') {
require('core-js/fn/string/repeat');
}
if (typeof Symbol === 'undefined') {
require('core-js/fn/symbol');
}
if (typeof Object.assign === 'undefined') {
require('core-js/fn/object/assign');
}
} catch (e) {}
} /**
* @fileoverview Old browser polyfills
* All are listed as dev dependencies because Node does not need them
* and for browser babel will take care of it
* @requires util
* @module polyfills
*/
if (typeof TransformStream === 'undefined') {
require('@mattiasbuelens/web-streams-polyfill/es6');
}
if (typeof TextEncoder === 'undefined') {
const nodeUtil = _util2.default.nodeRequire('util') || {};
global.TextEncoder = nodeUtil.TextEncoder;
global.TextDecoder = nodeUtil.TextDecoder;
}
if (typeof TextEncoder === 'undefined') {
const textEncoding = require('text-encoding-utf-8');
global.TextEncoder = textEncoding.TextEncoder;
global.TextDecoder = textEncoding.TextDecoder;
}
}).call(this,typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {})
},{"./util":153,"@mattiasbuelens/web-streams-polyfill/es6":1,"core-js/fn/array/fill":"core-js/fn/array/fill","core-js/fn/array/find":"core-js/fn/array/find","core-js/fn/array/from":"core-js/fn/array/from","core-js/fn/array/includes":"core-js/fn/array/includes","core-js/fn/object/assign":"core-js/fn/object/assign","core-js/fn/promise":"core-js/fn/promise","core-js/fn/string/repeat":"core-js/fn/string/repeat","core-js/fn/symbol":"core-js/fn/symbol","core-js/fn/typed/uint8-array":"core-js/fn/typed/uint8-array","text-encoding-utf-8":72,"whatwg-fetch":"whatwg-fetch"}],146:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.Signature = Signature;
exports.readArmored = readArmored;
exports.read = read;
var _armor = require('./encoding/armor');
var _armor2 = _interopRequireDefault(_armor);
var _packet = require('./packet');
var _packet2 = _interopRequireDefault(_packet);
var _enums = require('./enums');
var _enums2 = _interopRequireDefault(_enums);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* @class
* @classdesc Class that represents an OpenPGP signature.
* @param {module:packet.List} packetlist The signature packets
*/
function Signature(packetlist) {
if (!(this instanceof Signature)) {
return new Signature(packetlist);
}
this.packets = packetlist || new _packet2.default.List();
}
/**
* Returns ASCII armored text of signature
* @returns {ReadableStream<String>} ASCII armor
*/
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @requires encoding/armor
* @requires packet
* @requires enums
* @module signature
*/
Signature.prototype.armor = function () {
return _armor2.default.encode(_enums2.default.armor.signature, this.packets.write());
};
/**
* reads an OpenPGP armored signature and returns a signature object
* @param {String | ReadableStream<String>} armoredText text to be parsed
* @returns {Signature} new signature object
* @async
* @static
*/
async function readArmored(armoredText) {
const input = await _armor2.default.decode(armoredText);
return read(input.data);
}
/**
* reads an OpenPGP signature as byte array and returns a signature object
* @param {Uint8Array | ReadableStream<Uint8Array>} input binary signature
* @returns {Signature} new signature object
* @async
* @static
*/
async function read(input) {
const packetlist = new _packet2.default.List();
await packetlist.read(input);
return new Signature(packetlist);
}
},{"./encoding/armor":112,"./enums":114,"./packet":126}],147:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* @constructor
*/
function ECDHSymmetricKey(data) {
if (typeof data === 'undefined') {
data = new Uint8Array([]);
} else if (_util2.default.isString(data)) {
data = _util2.default.str_to_Uint8Array(data);
} else {
data = new Uint8Array(data);
}
this.data = data;
}
/**
* Read an ECDHSymmetricKey from an Uint8Array
* @param {Uint8Array} input Where to read the encoded symmetric key from
* @returns {Number} Number of read bytes
*/
// OpenPGP.js - An OpenPGP implementation in javascript
// Copyright (C) 2015-2016 Decentral
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* Encoded symmetric key for ECDH
*
* @requires util
* @module type/ecdh_symkey
*/
ECDHSymmetricKey.prototype.read = function (input) {
if (input.length >= 1) {
const length = input[0];
if (input.length >= 1 + length) {
this.data = input.subarray(1, 1 + length);
return 1 + this.data.length;
}
}
throw new Error('Invalid symmetric key');
};
/**
* Write an ECDHSymmetricKey as an Uint8Array
* @returns {Uint8Array} An array containing the value
*/
ECDHSymmetricKey.prototype.write = function () {
return _util2.default.concatUint8Array([new Uint8Array([this.data.length]), this.data]);
};
ECDHSymmetricKey.fromClone = function (clone) {
return new ECDHSymmetricKey(clone.data);
};
exports.default = ECDHSymmetricKey;
},{"../util":153}],148:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _enums = require('../enums.js');
var _enums2 = _interopRequireDefault(_enums);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* @constructor
* @param {enums.hash} hash Hash algorithm
* @param {enums.symmetric} cipher Symmetric algorithm
*/
function KDFParams(data) {
if (data && data.length === 2) {
this.hash = data[0];
this.cipher = data[1];
} else {
this.hash = _enums2.default.hash.sha1;
this.cipher = _enums2.default.symmetric.aes128;
}
}
/**
* Read KDFParams from an Uint8Array
* @param {Uint8Array} input Where to read the KDFParams from
* @returns {Number} Number of read bytes
*/
// OpenPGP.js - An OpenPGP implementation in javascript
// Copyright (C) 2015-2016 Decentral
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* Implementation of type KDF parameters
*
* {@link https://tools.ietf.org/html/rfc6637#section-7|RFC 6637 7}:
* A key derivation function (KDF) is necessary to implement the EC
* encryption. The Concatenation Key Derivation Function (Approved
* Alternative 1) [NIST-SP800-56A] with the KDF hash function that is
* SHA2-256 [FIPS-180-3] or stronger is REQUIRED.
* @requires enums
* @module type/kdf_params
*/
KDFParams.prototype.read = function (input) {
if (input.length < 4 || input[0] !== 3 || input[1] !== 1) {
throw new Error('Cannot read KDFParams');
}
this.hash = input[2];
this.cipher = input[3];
return 4;
};
/**
* Write KDFParams to an Uint8Array
* @returns {Uint8Array} Array with the KDFParams value
*/
KDFParams.prototype.write = function () {
return new Uint8Array([3, 1, this.hash, this.cipher]);
};
KDFParams.fromClone = function (clone) {
return new KDFParams([clone.hash, clone.cipher]);
};
exports.default = KDFParams;
},{"../enums.js":114}],149:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _util = require('../util.js');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* @constructor
*/
function Keyid() {
this.bytes = '';
}
/**
* Parsing method for a key id
* @param {Uint8Array} input Input to read the key id from
*/
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* Implementation of type key id
*
* {@link https://tools.ietf.org/html/rfc4880#section-3.3|RFC4880 3.3}:
* A Key ID is an eight-octet scalar that identifies a key.
* Implementations SHOULD NOT assume that Key IDs are unique. The
* section "Enhanced Key Formats" below describes how Key IDs are
* formed.
* @requires util
* @module type/keyid
*/
Keyid.prototype.read = function (bytes) {
this.bytes = _util2.default.Uint8Array_to_str(bytes.subarray(0, 8));
};
Keyid.prototype.write = function () {
return _util2.default.str_to_Uint8Array(this.bytes);
};
Keyid.prototype.toHex = function () {
return _util2.default.str_to_hex(this.bytes);
};
/**
* Checks equality of Key ID's
* @param {Keyid} keyid
* @param {Boolean} matchWildcard Indicates whether to check if either keyid is a wildcard
*/
Keyid.prototype.equals = function (keyid, matchWildcard = false) {
return matchWildcard && (keyid.isWildcard() || this.isWildcard()) || this.bytes === keyid.bytes;
};
Keyid.prototype.isNull = function () {
return this.bytes === '';
};
Keyid.prototype.isWildcard = function () {
return (/^0+$/.test(this.toHex())
);
};
Keyid.mapToHex = function (keyId) {
return keyId.toHex();
};
Keyid.fromClone = function (clone) {
const keyid = new Keyid();
keyid.bytes = clone.bytes;
return keyid;
};
Keyid.fromId = function (hex) {
const keyid = new Keyid();
keyid.read(_util2.default.hex_to_Uint8Array(hex));
return keyid;
};
Keyid.wildcard = function () {
const keyid = new Keyid();
keyid.read(new Uint8Array(8));
return keyid;
};
exports.default = Keyid;
},{"../util.js":153}],150:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _bn = require('bn.js');
var _bn2 = _interopRequireDefault(_bn);
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* @constructor
*/
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
// Hint: We hold our MPIs as an array of octets in big endian format preceding a two
// octet scalar: MPI: [a,b,c,d,e,f]
// - MPI size: (a << 8) | b
// - MPI = c | d << 8 | e << ((MPI.length -2)*8) | f ((MPI.length -2)*8)
/**
* Implementation of type MPI ({@link https://tools.ietf.org/html/rfc4880#section-3.2|RFC4880 3.2})
* Multiprecision integers (also called MPIs) are unsigned integers used
* to hold large integers such as the ones used in cryptographic
* calculations.
* An MPI consists of two pieces: a two-octet scalar that is the length
* of the MPI in bits followed by a string of octets that contain the
* actual integer.
* @requires bn.js
* @requires util
* @module type/mpi
*/
function MPI(data) {
/** An implementation dependent integer */
if (data instanceof MPI) {
this.data = data.data;
} else if (_bn2.default.isBN(data)) {
this.fromBN(data);
} else if (_util2.default.isUint8Array(data)) {
this.fromUint8Array(data);
} else if (_util2.default.isString(data)) {
this.fromString(data);
} else {
this.data = null;
}
}
/**
* Parsing function for a MPI ({@link https://tools.ietf.org/html/rfc4880#section-3.2|RFC 4880 3.2}).
* @param {Uint8Array} input Payload of MPI data
* @param {String} endian Endianness of the data; 'be' for big-endian or 'le' for little-endian
* @returns {Integer} Length of data read
*/
MPI.prototype.read = function (bytes, endian = 'be') {
if (_util2.default.isString(bytes)) {
bytes = _util2.default.str_to_Uint8Array(bytes);
}
const bits = bytes[0] << 8 | bytes[1];
const bytelen = bits + 7 >>> 3;
const payload = bytes.subarray(2, 2 + bytelen);
this.fromUint8Array(payload, endian);
return 2 + bytelen;
};
/**
* Converts the mpi object to a bytes as specified in
* {@link https://tools.ietf.org/html/rfc4880#section-3.2|RFC4880 3.2}
* @param {String} endian Endianness of the payload; 'be' for big-endian or 'le' for little-endian
* @param {Integer} length Length of the data part of the MPI
* @returns {Uint8Aray} mpi Byte representation
*/
MPI.prototype.write = function (endian, length) {
return _util2.default.Uint8Array_to_MPI(this.toUint8Array(endian, length));
};
MPI.prototype.bitLength = function () {
return (this.data.length - 1) * 8 + _util2.default.nbits(this.data[0]);
};
MPI.prototype.byteLength = function () {
return this.data.length;
};
MPI.prototype.toUint8Array = function (endian, length) {
endian = endian || 'be';
length = length || this.data.length;
const payload = new Uint8Array(length);
const start = length - this.data.length;
if (start < 0) {
throw new Error('Payload is too large.');
}
payload.set(this.data, start);
if (endian === 'le') {
payload.reverse();
}
return payload;
};
MPI.prototype.fromUint8Array = function (bytes, endian = 'be') {
this.data = new Uint8Array(bytes.length);
this.data.set(bytes);
if (endian === 'le') {
this.data.reverse();
}
};
MPI.prototype.toString = function () {
return _util2.default.Uint8Array_to_str(this.toUint8Array());
};
MPI.prototype.fromString = function (str, endian = 'be') {
this.fromUint8Array(_util2.default.str_to_Uint8Array(str), endian);
};
MPI.prototype.toBN = function () {
return new _bn2.default(this.toUint8Array());
};
MPI.prototype.fromBN = function (bn) {
this.data = bn.toArrayLike(Uint8Array);
};
MPI.fromClone = function (clone) {
return new MPI(clone.data);
};
exports.default = MPI;
},{"../util":153,"bn.js":17}],151:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _util = require('../util');
var _util2 = _interopRequireDefault(_util);
var _enums = require('../enums');
var _enums2 = _interopRequireDefault(_enums);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* @constructor
*/
// OpenPGP.js - An OpenPGP implementation in javascript
// Copyright (C) 2015-2016 Decentral
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* Wrapper to an OID value
*
* {@link https://tools.ietf.org/html/rfc6637#section-11|RFC6637, section 11}:
* The sequence of octets in the third column is the result of applying
* the Distinguished Encoding Rules (DER) to the ASN.1 Object Identifier
* with subsequent truncation. The truncation removes the two fields of
* encoded Object Identifier. The first omitted field is one octet
* representing the Object Identifier tag, and the second omitted field
* is the length of the Object Identifier body. For example, the
* complete ASN.1 DER encoding for the NIST P-256 curve OID is "06 08 2A
* 86 48 CE 3D 03 01 07", from which the first entry in the table above
* is constructed by omitting the first two octets. Only the truncated
* sequence of octets is the valid representation of a curve OID.
* @requires util
* @requires enums
* @module type/oid
*/
function OID(oid) {
if (oid instanceof OID) {
this.oid = oid.oid;
} else if (_util2.default.isArray(oid) || _util2.default.isUint8Array(oid)) {
oid = new Uint8Array(oid);
if (oid[0] === 0x06) {
// DER encoded oid byte array
if (oid[1] !== oid.length - 2) {
throw new Error('Length mismatch in DER encoded oid');
}
oid = oid.subarray(2);
}
this.oid = oid;
} else {
this.oid = '';
}
}
/**
* Method to read an OID object
* @param {Uint8Array} input Where to read the OID from
* @returns {Number} Number of read bytes
*/
OID.prototype.read = function (input) {
if (input.length >= 1) {
const length = input[0];
if (input.length >= 1 + length) {
this.oid = input.subarray(1, 1 + length);
return 1 + this.oid.length;
}
}
throw new Error('Invalid oid');
};
/**
* Serialize an OID object
* @returns {Uint8Array} Array with the serialized value the OID
*/
OID.prototype.write = function () {
return _util2.default.concatUint8Array([new Uint8Array([this.oid.length]), this.oid]);
};
/**
* Serialize an OID object as a hex string
* @returns {string} String with the hex value of the OID
*/
OID.prototype.toHex = function () {
return _util2.default.Uint8Array_to_hex(this.oid);
};
/**
* If a known curve object identifier, return the canonical name of the curve
* @returns {string} String with the canonical name of the curve
*/
OID.prototype.getName = function () {
const hex = this.toHex();
if (_enums2.default.curve[hex]) {
return _enums2.default.write(_enums2.default.curve, hex);
} else {
throw new Error('Unknown curve object identifier.');
}
};
OID.fromClone = function (clone) {
return new OID(clone.oid);
};
exports.default = OID;
},{"../enums":114,"../util":153}],152:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _config = require('../config');
var _config2 = _interopRequireDefault(_config);
var _crypto = require('../crypto');
var _crypto2 = _interopRequireDefault(_crypto);
var _enums = require('../enums.js');
var _enums2 = _interopRequireDefault(_enums);
var _util = require('../util.js');
var _util2 = _interopRequireDefault(_util);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* @constructor
*/
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* Implementation of the String-to-key specifier
*
* {@link https://tools.ietf.org/html/rfc4880#section-3.7|RFC4880 3.7}:
* String-to-key (S2K) specifiers are used to convert passphrase strings
* into symmetric-key encryption/decryption keys. They are used in two
* places, currently: to encrypt the secret part of private keys in the
* private keyring, and to convert passphrases to encryption keys for
* symmetrically encrypted messages.
* @requires config
* @requires crypto
* @requires enums
* @requires util
* @module type/s2k
*/
function S2K() {
/** @type {module:enums.hash} */
this.algorithm = 'sha256';
/** @type {module:enums.s2k} */
this.type = 'iterated';
/** @type {Integer} */
this.c = _config2.default.s2k_iteration_count_byte;
/** Eight bytes of salt in a binary string.
* @type {String}
*/
this.salt = null;
}
S2K.prototype.get_count = function () {
// Exponent bias, defined in RFC4880
const expbias = 6;
return 16 + (this.c & 15) << (this.c >> 4) + expbias;
};
/**
* Parsing function for a string-to-key specifier ({@link https://tools.ietf.org/html/rfc4880#section-3.7|RFC 4880 3.7}).
* @param {String} input Payload of string-to-key specifier
* @returns {Integer} Actual length of the object
*/
S2K.prototype.read = function (bytes) {
let i = 0;
this.type = _enums2.default.read(_enums2.default.s2k, bytes[i++]);
this.algorithm = bytes[i++];
if (this.type !== 'gnu') {
this.algorithm = _enums2.default.read(_enums2.default.hash, this.algorithm);
}
switch (this.type) {
case 'simple':
break;
case 'salted':
this.salt = bytes.subarray(i, i + 8);
i += 8;
break;
case 'iterated':
this.salt = bytes.subarray(i, i + 8);
i += 8;
// Octet 10: count, a one-octet, coded value
this.c = bytes[i++];
break;
case 'gnu':
if (_util2.default.Uint8Array_to_str(bytes.subarray(i, i + 3)) === "GNU") {
i += 3; // GNU
const gnuExtType = 1000 + bytes[i++];
if (gnuExtType === 1001) {
this.type = 'gnu-dummy';
// GnuPG extension mode 1001 -- don't write secret key at all
} else {
throw new Error("Unknown s2k gnu protection mode.");
}
} else {
throw new Error("Unknown s2k type.");
}
break;
default:
throw new Error("Unknown s2k type.");
}
return i;
};
/**
* Serializes s2k information
* @returns {Uint8Array} binary representation of s2k
*/
S2K.prototype.write = function () {
const arr = [new Uint8Array([_enums2.default.write(_enums2.default.s2k, this.type), _enums2.default.write(_enums2.default.hash, this.algorithm)])];
switch (this.type) {
case 'simple':
break;
case 'salted':
arr.push(this.salt);
break;
case 'iterated':
arr.push(this.salt);
arr.push(new Uint8Array([this.c]));
break;
case 'gnu':
throw new Error("GNU s2k type not supported.");
default:
throw new Error("Unknown s2k type.");
}
return _util2.default.concatUint8Array(arr);
};
/**
* Produces a key using the specified passphrase and the defined
* hashAlgorithm
* @param {String} passphrase Passphrase containing user input
* @returns {Uint8Array} Produced key with a length corresponding to
* hashAlgorithm hash length
*/
S2K.prototype.produce_key = async function (passphrase, numBytes) {
passphrase = _util2.default.encode_utf8(passphrase);
async function round(prefix, s2k) {
const algorithm = _enums2.default.write(_enums2.default.hash, s2k.algorithm);
switch (s2k.type) {
case 'simple':
return _crypto2.default.hash.digest(algorithm, _util2.default.concatUint8Array([prefix, passphrase]));
case 'salted':
return _crypto2.default.hash.digest(algorithm, _util2.default.concatUint8Array([prefix, s2k.salt, passphrase]));
case 'iterated':
{
const count = s2k.get_count();
const data = _util2.default.concatUint8Array([s2k.salt, passphrase]);
const datalen = data.length;
const isp = new Uint8Array(prefix.length + count + datalen);
isp.set(prefix);
for (let pos = prefix.length; pos < count; pos += datalen) {
isp.set(data, pos);
}
return _crypto2.default.hash.digest(algorithm, isp.subarray(0, prefix.length + count));
}
case 'gnu':
throw new Error("GNU s2k type not supported.");
default:
throw new Error("Unknown s2k type.");
}
}
const arr = [];
let rlength = 0;
const prefix = new Uint8Array(numBytes);
for (let i = 0; i < numBytes; i++) {
prefix[i] = 0;
}
let i = 0;
while (rlength < numBytes) {
const result = await round(prefix.subarray(0, i), this);
arr.push(result);
rlength += result.length;
i++;
}
return _util2.default.concatUint8Array(arr).subarray(0, numBytes);
};
S2K.fromClone = function (clone) {
const s2k = new S2K();
s2k.algorithm = clone.algorithm;
s2k.type = clone.type;
s2k.c = clone.c;
s2k.salt = clone.salt;
return s2k;
};
exports.default = S2K;
},{"../config":80,"../crypto":95,"../enums.js":114,"../util.js":153}],153:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _slicedToArray = function () { function sliceIterator(arr, i) { var _arr = []; var _n = true; var _d = false; var _e = undefined; try { for (var _i = arr[Symbol.iterator](), _s; !(_n = (_s = _i.next()).done); _n = true) { _arr.push(_s.value); if (i && _arr.length === i) break; } } catch (err) { _d = true; _e = err; } finally { try { if (!_n && _i["return"]) _i["return"](); } finally { if (_d) throw _e; } } return _arr; } return function (arr, i) { if (Array.isArray(arr)) { return arr; } else if (Symbol.iterator in Object(arr)) { return sliceIterator(arr, i); } else { throw new TypeError("Invalid attempt to destructure non-iterable instance"); } }; }(); // GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/* eslint-disable no-console */
/**
* This object contains utility functions
* @requires address-rfc2822
* @requires web-stream-tools
* @requires config
* @requires encoding/base64
* @module util
*/
// re-import module to access util functions
var _addressRfc = require('address-rfc2822');
var _addressRfc2 = _interopRequireDefault(_addressRfc);
var _webStreamTools = require('web-stream-tools');
var _webStreamTools2 = _interopRequireDefault(_webStreamTools);
var _config = require('./config');
var _config2 = _interopRequireDefault(_config);
var _util = require('./util');
var _util2 = _interopRequireDefault(_util);
var _base = require('./encoding/base64');
var _base2 = _interopRequireDefault(_base);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
exports.default = {
isString: function isString(data) {
return typeof data === 'string' || String.prototype.isPrototypeOf(data);
},
isArray: function isArray(data) {
return Array.prototype.isPrototypeOf(data);
},
isUint8Array: _webStreamTools2.default.isUint8Array,
isStream: _webStreamTools2.default.isStream,
/**
* Get transferable objects to pass buffers with zero copy (similar to "pass by reference" in C++)
* See: https://developer.mozilla.org/en-US/docs/Web/API/Worker/postMessage
* Also, convert ReadableStreams to MessagePorts
* @param {Object} obj the options object to be passed to the web worker
* @returns {Array<ArrayBuffer>} an array of binary data to be passed
*/
getTransferables: function getTransferables(obj, zero_copy) {
const transferables = [];
_util2.default.collectTransferables(obj, transferables, zero_copy);
return transferables.length ? transferables : undefined;
},
collectTransferables: function collectTransferables(obj, collection, zero_copy) {
if (!obj) {
return;
}
if (_util2.default.isUint8Array(obj)) {
if (zero_copy && collection.indexOf(obj.buffer) === -1 && !(navigator.userAgent.indexOf('Version/11.1') !== -1 || // Safari 11.1
(navigator.userAgent.match(/Chrome\/(\d+)/) || [])[1] < 56 && navigator.userAgent.indexOf('Edge') === -1 // Chrome < 56
)) {
collection.push(obj.buffer);
}
return;
}
if (Object.prototype.isPrototypeOf(obj)) {
Object.entries(obj).forEach(([key, value]) => {
// recursively search all children
if (_util2.default.isStream(value)) {
if (value.locked) {
obj[key] = null;
} else {
const transformed = _webStreamTools2.default.transformPair(value, async readable => {
const reader = _webStreamTools2.default.getReader(readable);
var _ref = new MessageChannel();
const port1 = _ref.port1,
port2 = _ref.port2;
port1.onmessage = async function ({ data: { action } }) {
if (action === 'read') {
try {
const result = await reader.read();
port1.postMessage(result, _util2.default.getTransferables(result));
} catch (e) {
port1.postMessage({ error: e.message });
}
} else if (action === 'cancel') {
await transformed.cancel();
port1.postMessage();
}
};
obj[key] = port2;
collection.push(port2);
});
}
return;
}
if (Object.prototype.toString.call(value) === '[object MessagePort]') {
throw new Error("Can't transfer the same stream twice.");
}
_util2.default.collectTransferables(value, collection, zero_copy);
});
}
},
/**
* Convert MessagePorts back to ReadableStreams
* @param {Object} obj
* @returns {Object}
*/
restoreStreams: function restoreStreams(obj) {
if (Object.prototype.isPrototypeOf(obj) && !Uint8Array.prototype.isPrototypeOf(obj)) {
Object.entries(obj).forEach(([key, value]) => {
// recursively search all children
if (Object.prototype.toString.call(value) === '[object MessagePort]') {
obj[key] = new ReadableStream({
pull(controller) {
return new Promise(resolve => {
value.onmessage = evt => {
var _evt$data = evt.data;
const done = _evt$data.done,
value = _evt$data.value,
error = _evt$data.error;
if (error) {
controller.error(new Error(error));
} else if (!done) {
controller.enqueue(value);
} else {
controller.close();
}
resolve();
};
value.postMessage({ action: 'read' });
});
},
cancel() {
return new Promise(resolve => {
value.onmessage = resolve;
value.postMessage({ action: 'cancel' });
});
}
}, { highWaterMark: 0 });
return;
}
_util2.default.restoreStreams(value);
});
}
return obj;
},
readNumber: function readNumber(bytes) {
let n = 0;
for (let i = 0; i < bytes.length; i++) {
n += 256 ** i * bytes[bytes.length - 1 - i];
}
return n;
},
writeNumber: function writeNumber(n, bytes) {
const b = new Uint8Array(bytes);
for (let i = 0; i < bytes; i++) {
b[i] = n >> 8 * (bytes - i - 1) & 0xFF;
}
return b;
},
readDate: function readDate(bytes) {
const n = _util2.default.readNumber(bytes);
const d = new Date(n * 1000);
return d;
},
writeDate: function writeDate(time) {
const numeric = Math.floor(time.getTime() / 1000);
return _util2.default.writeNumber(numeric, 4);
},
normalizeDate: function normalizeDate(time = Date.now()) {
return time === null || time === Infinity ? time : new Date(Math.floor(+time / 1000) * 1000);
},
/**
* Create hex string from a binary
* @param {String} str String to convert
* @returns {String} String containing the hexadecimal values
*/
str_to_hex: function str_to_hex(str) {
if (str === null) {
return "";
}
const r = [];
const e = str.length;
let c = 0;
let h;
while (c < e) {
h = str.charCodeAt(c++).toString(16);
while (h.length < 2) {
h = "0" + h;
}
r.push("" + h);
}
return r.join('');
},
/**
* Create binary string from a hex encoded string
* @param {String} str Hex string to convert
* @returns {String}
*/
hex_to_str: function hex_to_str(hex) {
let str = '';
for (let i = 0; i < hex.length; i += 2) {
str += String.fromCharCode(parseInt(hex.substr(i, 2), 16));
}
return str;
},
/**
* Convert a Uint8Array to an MPI-formatted Uint8Array.
* Note: the output is **not** an MPI object.
* @see {@link module:type/mpi/MPI.fromUint8Array}
* @see {@link module:type/mpi/MPI.toUint8Array}
* @param {Uint8Array} bin An array of 8-bit integers to convert
* @returns {Uint8Array} MPI-formatted Uint8Array
*/
Uint8Array_to_MPI: function Uint8Array_to_MPI(bin) {
const size = (bin.length - 1) * 8 + _util2.default.nbits(bin[0]);
const prefix = Uint8Array.from([(size & 0xFF00) >> 8, size & 0xFF]);
return _util2.default.concatUint8Array([prefix, bin]);
},
/**
* Convert a Base-64 encoded string an array of 8-bit integer
*
* Note: accepts both Radix-64 and URL-safe strings
* @param {String} base64 Base-64 encoded string to convert
* @returns {Uint8Array} An array of 8-bit integers
*/
b64_to_Uint8Array: function b64_to_Uint8Array(base64) {
return _base2.default.decode(base64.replace(/-/g, '+').replace(/_/g, '/'));
},
/**
* Convert an array of 8-bit integer to a Base-64 encoded string
* @param {Uint8Array} bytes An array of 8-bit integers to convert
* @param {bool} url If true, output is URL-safe
* @returns {String} Base-64 encoded string
*/
Uint8Array_to_b64: function Uint8Array_to_b64(bytes, url) {
return _base2.default.encode(bytes, url).replace(/(\n)/g, '');
},
/**
* Convert a hex string to an array of 8-bit integers
* @param {String} hex A hex string to convert
* @returns {Uint8Array} An array of 8-bit integers
*/
hex_to_Uint8Array: function hex_to_Uint8Array(hex) {
const result = new Uint8Array(hex.length >> 1);
for (let k = 0; k < hex.length >> 1; k++) {
result[k] = parseInt(hex.substr(k << 1, 2), 16);
}
return result;
},
/**
* Convert an array of 8-bit integers to a hex string
* @param {Uint8Array} bytes Array of 8-bit integers to convert
* @returns {String} Hexadecimal representation of the array
*/
Uint8Array_to_hex: function Uint8Array_to_hex(bytes) {
const r = [];
const e = bytes.length;
let c = 0;
let h;
while (c < e) {
h = bytes[c++].toString(16);
while (h.length < 2) {
h = "0" + h;
}
r.push("" + h);
}
return r.join('');
},
/**
* Convert a string to an array of 8-bit integers
* @param {String} str String to convert
* @returns {Uint8Array} An array of 8-bit integers
*/
str_to_Uint8Array: function str_to_Uint8Array(str) {
return _webStreamTools2.default.transform(str, str => {
if (!_util2.default.isString(str)) {
throw new Error('str_to_Uint8Array: Data must be in the form of a string');
}
const result = new Uint8Array(str.length);
for (let i = 0; i < str.length; i++) {
result[i] = str.charCodeAt(i);
}
return result;
});
},
/**
* Convert an array of 8-bit integers to a string
* @param {Uint8Array} bytes An array of 8-bit integers to convert
* @returns {String} String representation of the array
*/
Uint8Array_to_str: function Uint8Array_to_str(bytes) {
bytes = new Uint8Array(bytes);
const result = [];
const bs = 1 << 14;
const j = bytes.length;
for (let i = 0; i < j; i += bs) {
result.push(String.fromCharCode.apply(String, bytes.subarray(i, i + bs < j ? i + bs : j)));
}
return result.join('');
},
/**
* Convert a native javascript string to a Uint8Array of utf8 bytes
* @param {String|ReadableStream} str The string to convert
* @returns {Uint8Array|ReadableStream} A valid squence of utf8 bytes
*/
encode_utf8: function encode_utf8(str) {
const encoder = new TextEncoder('utf-8');
// eslint-disable-next-line no-inner-declarations
function process(value, lastChunk = false) {
return encoder.encode(value, { stream: !lastChunk });
}
return _webStreamTools2.default.transform(str, process, () => process('', true));
},
/**
* Convert a Uint8Array of utf8 bytes to a native javascript string
* @param {Uint8Array|ReadableStream} utf8 A valid squence of utf8 bytes
* @returns {String|ReadableStream} A native javascript string
*/
decode_utf8: function decode_utf8(utf8) {
const decoder = new TextDecoder('utf-8');
// eslint-disable-next-line no-inner-declarations
function process(value, lastChunk = false) {
return decoder.decode(value, { stream: !lastChunk });
}
return _webStreamTools2.default.transform(utf8, process, () => process(new Uint8Array(), true));
},
/**
* Concat a list of Uint8Arrays, Strings or Streams
* The caller must not mix Uint8Arrays with Strings, but may mix Streams with non-Streams.
* @param {Array<Uint8Array|String|ReadableStream>} Array of Uint8Arrays/Strings/Streams to concatenate
* @returns {Uint8Array|String|ReadableStream} Concatenated array
*/
concat: _webStreamTools2.default.concat,
/**
* Concat Uint8Arrays
* @param {Array<Uint8Array>} Array of Uint8Arrays to concatenate
* @returns {Uint8Array} Concatenated array
*/
concatUint8Array: _webStreamTools2.default.concatUint8Array,
/**
* Check Uint8Array equality
* @param {Uint8Array} first array
* @param {Uint8Array} second array
* @returns {Boolean} equality
*/
equalsUint8Array: function equalsUint8Array(array1, array2) {
if (!_util2.default.isUint8Array(array1) || !_util2.default.isUint8Array(array2)) {
throw new Error('Data must be in the form of a Uint8Array');
}
if (array1.length !== array2.length) {
return false;
}
for (let i = 0; i < array1.length; i++) {
if (array1[i] !== array2[i]) {
return false;
}
}
return true;
},
/**
* Calculates a 16bit sum of a Uint8Array by adding each character
* codes modulus 65535
* @param {Uint8Array} Uint8Array to create a sum of
* @returns {Uint8Array} 2 bytes containing the sum of all charcodes % 65535
*/
write_checksum: function write_checksum(text) {
let s = 0;
for (let i = 0; i < text.length; i++) {
s = s + text[i] & 0xFFFF;
}
return _util2.default.writeNumber(s, 2);
},
/**
* Helper function to print a debug message. Debug
* messages are only printed if
* @link module:config/config.debug is set to true.
* @param {String} str String of the debug message
*/
print_debug: function print_debug(str) {
if (_config2.default.debug) {
console.log(str);
}
},
/**
* Helper function to print a debug message. Debug
* messages are only printed if
* @link module:config/config.debug is set to true.
* Different than print_debug because will call Uint8Array_to_hex iff necessary.
* @param {String} str String of the debug message
*/
print_debug_hexarray_dump: function print_debug_hexarray_dump(str, arrToHex) {
if (_config2.default.debug) {
str += ': ' + _util2.default.Uint8Array_to_hex(arrToHex);
console.log(str);
}
},
/**
* Helper function to print a debug message. Debug
* messages are only printed if
* @link module:config/config.debug is set to true.
* Different than print_debug because will call str_to_hex iff necessary.
* @param {String} str String of the debug message
*/
print_debug_hexstr_dump: function print_debug_hexstr_dump(str, strToHex) {
if (_config2.default.debug) {
str += _util2.default.str_to_hex(strToHex);
console.log(str);
}
},
/**
* Helper function to print a debug error. Debug
* messages are only printed if
* @link module:config/config.debug is set to true.
* @param {String} str String of the debug message
*/
print_debug_error: function print_debug_error(error) {
if (_config2.default.debug) {
console.error(error);
}
},
/**
* Read a stream to the end and print it to the console when it's closed.
* @param {String} str String of the debug message
* @param {ReadableStream|Uint8array|String} input Stream to print
* @param {Function} concat Function to concatenate chunks of the stream (defaults to util.concat).
*/
print_entire_stream: function print_entire_stream(str, input, concat) {
_webStreamTools2.default.readToEnd(_webStreamTools2.default.clone(input), concat).then(result => {
console.log(str + ': ', result);
});
},
getLeftNBits: function getLeftNBits(array, bitcount) {
const rest = bitcount % 8;
if (rest === 0) {
return array.subarray(0, bitcount / 8);
}
const bytes = (bitcount - rest) / 8 + 1;
const result = array.subarray(0, bytes);
return _util2.default.shiftRight(result, 8 - rest); // +String.fromCharCode(string.charCodeAt(bytes -1) << (8-rest) & 0xFF);
},
// returns bit length of the integer x
nbits: function nbits(x) {
let r = 1;
let t = x >>> 16;
if (t !== 0) {
x = t;
r += 16;
}
t = x >> 8;
if (t !== 0) {
x = t;
r += 8;
}
t = x >> 4;
if (t !== 0) {
x = t;
r += 4;
}
t = x >> 2;
if (t !== 0) {
x = t;
r += 2;
}
t = x >> 1;
if (t !== 0) {
x = t;
r += 1;
}
return r;
},
/**
* If S[1] == 0, then double(S) == (S[2..128] || 0);
* otherwise, double(S) == (S[2..128] || 0) xor
* (zeros(120) || 10000111).
*
* Both OCB and EAX (through CMAC) require this function to be constant-time.
*
* @param {Uint8Array} data
*/
double: function double(data) {
const double_var = new Uint8Array(data.length);
const last = data.length - 1;
for (let i = 0; i < last; i++) {
double_var[i] = data[i] << 1 ^ data[i + 1] >> 7;
}
double_var[last] = data[last] << 1 ^ (data[0] >> 7) * 0x87;
return double_var;
},
/**
* Shift a Uint8Array to the right by n bits
* @param {Uint8Array} array The array to shift
* @param {Integer} bits Amount of bits to shift (MUST be smaller
* than 8)
* @returns {String} Resulting array.
*/
shiftRight: function shiftRight(array, bits) {
if (bits) {
for (let i = array.length - 1; i >= 0; i--) {
array[i] >>= bits;
if (i > 0) {
array[i] |= array[i - 1] << 8 - bits;
}
}
}
return array;
},
/**
* Get native Web Cryptography api, only the current version of the spec.
* The default configuration is to use the api when available. But it can
* be deactivated with config.use_native
* @returns {Object} The SubtleCrypto api or 'undefined'
*/
getWebCrypto: function getWebCrypto() {
if (!_config2.default.use_native) {
return;
}
return typeof window !== 'undefined' && window.crypto && window.crypto.subtle;
},
/**
* Get native Web Cryptography api for all browsers, including legacy
* implementations of the spec e.g IE11 and Safari 8/9. The default
* configuration is to use the api when available. But it can be deactivated
* with config.use_native
* @returns {Object} The SubtleCrypto api or 'undefined'
*/
getWebCryptoAll: function getWebCryptoAll() {
if (!_config2.default.use_native) {
return;
}
if (typeof window !== 'undefined') {
if (window.crypto) {
return window.crypto.subtle || window.crypto.webkitSubtle;
}
if (window.msCrypto) {
return window.msCrypto.subtle;
}
}
},
/**
* Detect Node.js runtime.
*/
detectNode: function detectNode() {
return typeof window === 'undefined';
},
/**
* Get native Node.js module
* @param {String} The module to require
* @returns {Object} The required module or 'undefined'
*/
nodeRequire: function nodeRequire(module) {
if (!_util2.default.detectNode()) {
return;
}
// Requiring the module dynamically allows us to access the native node module.
// otherwise, it gets replaced with the browserified version
// eslint-disable-next-line import/no-dynamic-require
return require(module);
},
/**
* Get native Node.js crypto api. The default configuration is to use
* the api when available. But it can also be deactivated with config.use_native
* @returns {Object} The crypto module or 'undefined'
*/
getNodeCrypto: function getNodeCrypto() {
if (!_config2.default.use_native) {
return;
}
return _util2.default.nodeRequire('crypto');
},
getNodeZlib: function getNodeZlib() {
if (!_config2.default.use_native) {
return;
}
return _util2.default.nodeRequire('zlib');
},
/**
* Get native Node.js Buffer constructor. This should be used since
* Buffer is not available under browserify.
* @returns {Function} The Buffer constructor or 'undefined'
*/
getNodeBuffer: function getNodeBuffer() {
return (_util2.default.nodeRequire('buffer') || {}).Buffer;
},
getNodeStream: function getNodeStream() {
return (_util2.default.nodeRequire('stream') || {}).Readable;
},
getHardwareConcurrency: function getHardwareConcurrency() {
if (_util2.default.detectNode()) {
const os = _util2.default.nodeRequire('os');
return os.cpus().length;
}
return navigator.hardwareConcurrency || 1;
},
isEmailAddress: function isEmailAddress(data) {
if (!_util2.default.isString(data)) {
return false;
}
const re = /^(([^<>()[\]\\.,;:\s@"]+(\.[^<>()[\]\\.,;:\s@"]+)*)|(".+"))@((\[[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\])|(([a-zA-Z\-0-9]+\.)+([a-zA-Z]{2,}|xn--[a-zA-Z\-0-9]+)))$/;
return re.test(data);
},
/**
* Format user id for internal use.
*/
formatUserId: function formatUserId(id) {
// name, email address and comment can be empty but must be of the correct type
if (id.name && !_util2.default.isString(id.name) || id.email && !_util2.default.isEmailAddress(id.email) || id.comment && !_util2.default.isString(id.comment)) {
throw new Error('Invalid user id format');
}
const components = [];
if (id.name) {
components.push(id.name);
}
if (id.comment) {
components.push(`(${id.comment})`);
}
if (id.email) {
components.push(`<${id.email}>`);
}
return components.join(' ');
},
/**
* Parse user id.
*/
parseUserId: function parseUserId(userid) {
if (userid.length > _config2.default.max_userid_length) {
throw new Error('User id string is too long');
}
try {
var _rfc2822$parse = _addressRfc2.default.parse(userid),
_rfc2822$parse2 = _slicedToArray(_rfc2822$parse, 1),
_rfc2822$parse2$ = _rfc2822$parse2[0];
const name = _rfc2822$parse2$.phrase,
email = _rfc2822$parse2$.address,
comment = _rfc2822$parse2$.comment;
return { name, email, comment: comment.replace(/^\(|\)$/g, '') };
} catch (e) {
throw new Error('Invalid user id format');
}
},
/**
* Normalize line endings to \r\n
*/
canonicalizeEOL: function canonicalizeEOL(text) {
return _webStreamTools2.default.transform(_util2.default.nativeEOL(text), value => value.replace(/\r/g, "\n").replace(/\n/g, "\r\n"));
},
/**
* Convert line endings from canonicalized \r\n to native \n
*/
nativeEOL: function nativeEOL(text) {
let lastChar = '';
return _webStreamTools2.default.transform(text, value => {
value = lastChar + value;
if (value[value.length - 1] === '\r') {
lastChar = '\r';
value = value.slice(0, -1);
} else {
lastChar = '';
}
return value.replace(/\r\n/g, '\n');
}, () => lastChar);
},
/**
* Remove trailing spaces and tabs from each line
*/
removeTrailingSpaces: function removeTrailingSpaces(text) {
return text.split('\n').map(line => {
let i = line.length - 1;
for (; i >= 0 && (line[i] === ' ' || line[i] === '\t'); i--);
return line.substr(0, i + 1);
}).join('\n');
},
/**
* Encode input buffer using Z-Base32 encoding.
* See: https://tools.ietf.org/html/rfc6189#section-5.1.6
*
* @param {Uint8Array} data The binary data to encode
* @returns {String} Binary data encoded using Z-Base32
*/
encodeZBase32: function encodeZBase32(data) {
if (data.length === 0) {
return "";
}
const ALPHABET = "ybndrfg8ejkmcpqxot1uwisza345h769";
const SHIFT = 5;
const MASK = 31;
let buffer = data[0];
let index = 1;
let bitsLeft = 8;
let result = '';
while (bitsLeft > 0 || index < data.length) {
if (bitsLeft < SHIFT) {
if (index < data.length) {
buffer <<= 8;
buffer |= data[index++] & 0xff;
bitsLeft += 8;
} else {
const pad = SHIFT - bitsLeft;
buffer <<= pad;
bitsLeft += pad;
}
}
bitsLeft -= SHIFT;
result += ALPHABET[MASK & buffer >> bitsLeft];
}
return result;
}
};
},{"./config":80,"./encoding/base64":113,"./util":153,"address-rfc2822":2,"web-stream-tools":76}],154:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _slicedToArray = function () { function sliceIterator(arr, i) { var _arr = []; var _n = true; var _d = false; var _e = undefined; try { for (var _i = arr[Symbol.iterator](), _s; !(_n = (_s = _i.next()).done); _n = true) { _arr.push(_s.value); if (i && _arr.length === i) break; } } catch (err) { _d = true; _e = err; } finally { try { if (!_n && _i["return"]) _i["return"](); } finally { if (_d) throw _e; } } return _arr; } return function (arr, i) { if (Array.isArray(arr)) { return arr; } else if (Symbol.iterator in Object(arr)) { return sliceIterator(arr, i); } else { throw new TypeError("Invalid attempt to destructure non-iterable instance"); } }; }(); // OpenPGP.js - An OpenPGP implementation in javascript
// Copyright (C) 2018 Wiktor Kwapisiewicz
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @fileoverview This class implements a client for the Web Key Directory (wkd) protocol
* in order to lookup keys on designated servers.
* See: https://datatracker.ietf.org/doc/draft-koch-openpgp-webkey-service/
* @module wkd
*/
var _util = require('./util');
var _util2 = _interopRequireDefault(_util);
var _crypto = require('./crypto');
var _crypto2 = _interopRequireDefault(_crypto);
var _key = require('./key');
var keyMod = _interopRequireWildcard(_key);
function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* Initialize the WKD client
* @constructor
*/
function WKD() {
this._fetch = typeof window !== 'undefined' ? window.fetch : require('node-fetch');
}
/**
* Search for a public key using Web Key Directory protocol.
* @param {String} options.email User's email.
* @param {Boolean} options.rawBytes Returns Uint8Array instead of parsed key.
* @returns {Promise<Uint8Array|
* {keys: Array<module:key.Key>,
* err: (Array<Error>|null)}>} The public key.
* @async
*/
WKD.prototype.lookup = async function (options) {
const fetch = this._fetch;
if (!options.email) {
throw new Error('You must provide an email parameter!');
}
if (!_util2.default.isEmailAddress(options.email)) {
throw new Error('Invalid e-mail address.');
}
var _$exec = /(.*)@(.*)/.exec(options.email),
_$exec2 = _slicedToArray(_$exec, 3);
const localPart = _$exec2[1],
domain = _$exec2[2];
const localEncoded = _util2.default.encodeZBase32((await _crypto2.default.hash.sha1(_util2.default.str_to_Uint8Array(localPart.toLowerCase()))));
const url = `https://${domain}/.well-known/openpgpkey/hu/${localEncoded}`;
return fetch(url).then(function (response) {
if (response.status === 200) {
return response.arrayBuffer();
}
}).then(function (publicKey) {
if (publicKey) {
const rawBytes = new Uint8Array(publicKey);
if (options.rawBytes) {
return rawBytes;
}
return keyMod.read(rawBytes);
}
});
};
exports.default = WKD;
},{"./crypto":95,"./key":117,"./util":153,"node-fetch":"node-fetch"}],155:[function(require,module,exports){
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _util = require('../util.js');
var _util2 = _interopRequireDefault(_util);
var _config = require('../config');
var _config2 = _interopRequireDefault(_config);
var _crypto = require('../crypto');
var _crypto2 = _interopRequireDefault(_crypto);
var _packet = require('../packet');
var _packet2 = _interopRequireDefault(_packet);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* Initializes a new proxy and loads the web worker
* @param {String} path The path to the worker or 'openpgp.worker.js' by default
* @param {Number} n number of workers to initialize if path given
* @param {Object} config config The worker configuration
* @param {Array<Object>} worker alternative to path parameter: web worker initialized with 'openpgp.worker.js'
* @constructor
*/
// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @fileoverview Provides functions for maintaining browser workers
* @see module:openpgp.initWorker
* @see module:openpgp.getWorker
* @see module:openpgp.destroyWorker
* @see module:worker/worker
* @requires util
* @requires config
* @requires crypto
* @requires packet
* @module worker/async_proxy
*/
function AsyncProxy({ path = 'openpgp.worker.js', n = 1, workers = [], config } = {}) {
/**
* Message handling
*/
const handleMessage = workerId => event => {
const msg = event.data;
switch (msg.event) {
case 'loaded':
this.workers[workerId].loadedResolve(true);
break;
case 'method-return':
if (msg.err) {
// fail
const err = new Error(msg.err);
// add worker stack
err.workerStack = msg.stack;
this.tasks[msg.id].reject(err);
} else {
// success
this.tasks[msg.id].resolve(msg.data);
}
delete this.tasks[msg.id];
this.workers[workerId].requests--;
break;
case 'request-seed':
this.seedRandom(workerId, msg.amount);
break;
default:
throw new Error('Unknown Worker Event.');
}
};
if (workers.length) {
this.workers = workers;
} else {
this.workers = [];
while (this.workers.length < n) {
this.workers.push(new Worker(path));
}
}
let workerId = 0;
this.workers.forEach(worker => {
worker.loadedPromise = new Promise(resolve => {
worker.loadedResolve = resolve;
});
worker.requests = 0;
worker.onmessage = handleMessage(workerId++);
worker.onerror = e => {
worker.loadedResolve(false);
console.error('Unhandled error in openpgp worker: ' + e.message + ' (' + e.filename + ':' + e.lineno + ')');
return false;
};
if (config) {
worker.postMessage({ event: 'configure', config });
}
});
// Cannot rely on task order being maintained, use object keyed by request ID to track tasks
this.tasks = {};
this.currentID = 0;
}
/**
* Returns a promise that resolves when all workers have finished loading
* @returns {Promise<Boolean>} Resolves to true if all workers have loaded succesfully; false otherwise
*/
AsyncProxy.prototype.loaded = async function () {
const loaded = await Promise.all(this.workers.map(worker => worker.loadedPromise));
return loaded.every(Boolean);
};
/**
* Get new request ID
* @returns {integer} New unique request ID
*/
AsyncProxy.prototype.getID = function () {
return this.currentID++;
};
/**
* Send message to worker with random data
* @param {Integer} size Number of bytes to send
* @async
*/
AsyncProxy.prototype.seedRandom = async function (workerId, size) {
const buf = await _crypto2.default.random.getRandomBytes(size);
this.workers[workerId].postMessage({ event: 'seed-random', buf }, _util2.default.getTransferables(buf, true));
};
/**
* Terminates the workers
*/
AsyncProxy.prototype.terminate = function () {
this.workers.forEach(worker => {
worker.terminate();
});
};
/**
* Generic proxy function that handles all commands from the public api.
* @param {String} method the public api function to be delegated to the worker thread
* @param {Object} options the api function's options
* @returns {Promise} see the corresponding public api functions for their return types
* @async
*/
AsyncProxy.prototype.delegate = function (method, options) {
const id = this.getID();
const requests = this.workers.map(worker => worker.requests);
const minRequests = Math.min(...requests);
let workerId = 0;
for (; workerId < this.workers.length; workerId++) {
if (this.workers[workerId].requests === minRequests) {
break;
}
}
return new Promise((_resolve, reject) => {
// clone packets (for web worker structured cloning algorithm)
this.workers[workerId].postMessage({ id: id, event: method, options: _packet2.default.clone.clonePackets(options) }, _util2.default.getTransferables(options, _config2.default.zero_copy));
this.workers[workerId].requests++;
// remember to handle parsing cloned packets from worker
this.tasks[id] = { resolve: data => _resolve(_packet2.default.clone.parseClonedPackets(_util2.default.restoreStreams(data), method)), reject };
});
};
exports.default = AsyncProxy;
},{"../config":80,"../crypto":95,"../packet":126,"../util.js":153}]},{},[116])(116)
});