// hkexnet.go - net.Conn compatible channel setup with encrypted/HMAC // negotiation // Copyright (c) 2017-2018 Russell Magee // Licensed under the terms of the MIT license (see LICENSE.mit in this // distribution) // // golang implementation by Russ Magee (rmagee_at_gmail.com) package hkexnet // Implementation of HKEx-wrapped versions of the golang standard // net package interfaces, allowing clients and servers to simply replace // 'net.Dial' and 'net.Listen' with 'hkex.Dial' and 'hkex.Listen' // (though some extra methods are implemented and must be used // for things outside of the scope of plain sockets). // DESIGN PRINCIPLE: There shall be no protocol features which enable // downgrade attacks. The server shall have final authority to accept or // reject any and all proposed KEx and connection parameters proposed by // clients at setup. Action on denial shall be a simple server disconnect // with possibly a status code sent so client can determine why connection // was denied (compare to how failed auth is communicated to client). import ( "bytes" "crypto/cipher" "encoding/binary" "encoding/hex" "errors" "fmt" "hash" "io" "io/ioutil" "log" "math/big" "math/rand" "net" "strings" "sync" "time" hkex "blitter.com/go/herradurakex" "blitter.com/go/hkexsh/logger" kyber "git.schwanenlied.me/yawning/kyber.git" newhope "git.schwanenlied.me/yawning/newhope.git" ) /*---------------------------------------------------------------------*/ const PAD_SZ = 32 // max size of padding applied to each packet const HMAC_CHK_SZ = 4 // leading bytes of HMAC to xmit for verification type ( WinSize struct { Rows uint16 Cols uint16 } // chaffconfig captures attributes used to send chaff packets betwixt // client and server connections, to obscure true traffic timing and // patterns // see: https://en.wikipedia.org/wiki/chaff_(countermeasure) ChaffConfig struct { shutdown bool //set to inform chaffHelper to shut down enabled bool msecsMin uint //msecs min interval msecsMax uint //msecs max interval szMax uint // max size in bytes } // Conn is a connection wrapping net.Conn with KEX & session state Conn struct { kex KEXAlg // KEX/KEM proposal (client -> server) m *sync.Mutex // (internal) c *net.Conn // which also implements io.Reader, io.Writer, ... logCipherText bool // somewhat expensive, for debugging logPlainText bool // INSECURE and somewhat expensive, for debugging logTunActivity bool cipheropts uint32 // post-KEx cipher/hmac options opts uint32 // post-KEx protocol options (caller-defined) WinCh chan WinSize Rows uint16 Cols uint16 chaff ChaffConfig tuns *map[uint16](*TunEndpoint) closeStat *CSOType // close status (CSOExitStatus) r cipher.Stream //read cipherStream rm hash.Hash w cipher.Stream //write cipherStream wm hash.Hash dBuf *bytes.Buffer //decrypt buffer for Read() } ) var ( Log *logger.Writer // reg. syslog output (no -d) ) // Return string (suitable as map key) for a tunnel endpoint func (t *TunEndpoint) String() string { return fmt.Sprintf("[%d:%s:%d]", t.Lport, t.Peer, t.Rport) } func _initLogging(d bool, c string, f logger.Priority) { if Log == nil { Log, _ = logger.New(f, fmt.Sprintf("%s:hkexnet", c)) } if d { log.SetFlags(0) // syslog will have date,time log.SetOutput(Log) } else { log.SetOutput(ioutil.Discard) } } func Init(d bool, c string, f logger.Priority) { _initLogging(d, c, f) } func (hc *Conn) Lock() { hc.m.Lock() } func (hc *Conn) Unlock() { hc.m.Unlock() } func (hc Conn) GetStatus() CSOType { return *hc.closeStat } func (hc *Conn) SetStatus(stat CSOType) { *hc.closeStat = stat log.Println("closeStat:", *hc.closeStat) } // ConnOpts returns the cipher/hmac options value, which is sent to the // peer but is not itself part of the KEx. // // (Used for protocol-level negotiations after KEx such as // cipher/HMAC algorithm options etc.) func (hc Conn) ConnOpts() uint32 { return hc.cipheropts } // SetConnOpts sets the cipher/hmac options value, which is sent to the // peer as part of KEx but not part of the KEx itself. // // opts - bitfields for cipher and hmac alg. to use after KEx func (hc *Conn) SetConnOpts(copts uint32) { hc.cipheropts = copts } // Opts returns the protocol options value, which is sent to the peer // but is not itself part of the KEx or connection (cipher/hmac) setup. // // Consumers of this lib may use this for protocol-level options not part // of the KEx or encryption info used by the connection. func (hc Conn) Opts() uint32 { return hc.opts } // SetOpts sets the protocol options value, which is sent to the peer // but is not itself part of the KEx or connection (cipher/hmac) setup. // // Consumers of this lib may use this for protocol-level options not part // of the KEx of encryption info used by the connection. // // opts - a uint32, caller-defined func (hc *Conn) SetOpts(opts uint32) { hc.opts = opts } // Return a new hkexnet.Conn // // Note this is internal: use Dial() or Accept() func _new(kexAlg KEXAlg, conn *net.Conn) (hc *Conn, e error) { // Set up stuff common to all KEx/KEM types hc = &Conn{kex: kexAlg, m: &sync.Mutex{}, c: conn, closeStat: new(CSOType), WinCh: make(chan WinSize, 1), dBuf: new(bytes.Buffer)} tempMap := make(map[uint16]*TunEndpoint) hc.tuns = &tempMap *hc.closeStat = CSEStillOpen // open or prematurely-closed status // Set up KEx/KEM-specifics switch kexAlg { case KEX_HERRADURA256: fallthrough case KEX_HERRADURA512: fallthrough case KEX_HERRADURA1024: fallthrough case KEX_HERRADURA2048: fallthrough case KEX_KYBER512: fallthrough case KEX_KYBER768: fallthrough case KEX_KYBER1024: fallthrough case KEX_NEWHOPE: fallthrough case KEX_NEWHOPE_SIMPLE: log.Printf("[KEx alg %d accepted]\n", kexAlg) default: // UNREACHABLE: _getkexalgnum() guarantees a valid KEX value hc.kex = KEX_HERRADURA512 log.Printf("[KEx alg %d ?? defaults to %d]\n", kexAlg, hc.kex) } return } // applyConnExtensions processes optional Dial() negotiation // parameters. See also getkexalgnum(). // // Currently defined extension values // // KEx algs // // KEX_HERRADURA256 KEX_HERRADURA512 KEX_HERRADURA1024 KEX_HERRADURA2048 // // KEX_KYBER512 KEX_KYBER768 KEX_KYBER1024 // // KEX_NEWHOPE KEX_NEWHOPE_SIMPLE // // Session (symmetric) crypto // // C_AES_256 C_TWOFISH_128 C_BLOWFISH_128 C_CRYPTMT1 // // Session HMACs // // H_SHA256 H_SHA512 func (hc *Conn) applyConnExtensions(extensions ...string) { for _, s := range extensions { switch s { case "C_AES_256": log.Println("[extension arg = C_AES_256]") hc.cipheropts &= (0xFFFFFF00) hc.cipheropts |= CAlgAES256 case "C_TWOFISH_128": log.Println("[extension arg = C_TWOFISH_128]") hc.cipheropts &= (0xFFFFFF00) hc.cipheropts |= CAlgTwofish128 case "C_BLOWFISH_64": log.Println("[extension arg = C_BLOWFISH_64]") hc.cipheropts &= (0xFFFFFF00) hc.cipheropts |= CAlgBlowfish64 case "C_CRYPTMT1": log.Println("[extension arg = C_CRYPTMT1]") hc.cipheropts &= (0xFFFFFF00) hc.cipheropts |= CAlgCryptMT1 case "C_WANDERER": log.Println("[extension arg = C_WANDERER]") hc.cipheropts &= (0xFFFFFF00) hc.cipheropts |= CAlgWanderer case "H_SHA256": log.Println("[extension arg = H_SHA256]") hc.cipheropts &= (0xFFFF00FF) hc.cipheropts |= (HmacSHA256 << 8) case "H_SHA512": log.Println("[extension arg = H_SHA512]") hc.cipheropts &= (0xFFFF00FF) hc.cipheropts |= (HmacSHA512 << 8) //default: // log.Printf("[Dial ext \"%s\" ignored]\n", s) } } } func getkexalgnum(extensions ...string) (k KEXAlg) { k = KEX_HERRADURA512 // default for _, s := range extensions { switch s { case "KEX_HERRADURA256": k = KEX_HERRADURA256 break //out of for case "KEX_HERRADURA512": k = KEX_HERRADURA512 break //out of for case "KEX_HERRADURA1024": k = KEX_HERRADURA1024 break //out of for case "KEX_HERRADURA2048": k = KEX_HERRADURA2048 break //out of for case "KEX_KYBER512": k = KEX_KYBER512 break //out of for case "KEX_KYBER768": k = KEX_KYBER768 break //out of for case "KEX_KYBER1024": k = KEX_KYBER1024 break //out of for case "KEX_NEWHOPE": k = KEX_NEWHOPE break //out of for case "KEX_NEWHOPE_SIMPLE": k = KEX_NEWHOPE_SIMPLE break //out of for } } return } // randReader wraps rand.Read() in a struct that implements io.Reader // for use by the Kyber and NEWHOPE/NEWHOPE_SIMPLE KEM methods. type randReader struct { } func (r randReader) Read(b []byte) (n int, e error) { n, e = rand.Read(b) return } func NewHopeDialSetup(c io.ReadWriter, hc *Conn) (err error) { // Send hkexnet.Conn parameters to remote side // Alice, step 1: Generate a key pair. r := new(randReader) rand.Seed(time.Now().UnixNano()) privKeyAlice, pubKeyAlice, err := newhope.GenerateKeyPairAlice(r) if err != nil { panic(err) } // Alice, step 2: Send the public key to Bob fmt.Fprintf(c, "0x%x\n0x%x:0x%x\n", pubKeyAlice.Send, hc.cipheropts, hc.opts) // [Bob does step 1-3], from which we read Bob's pubkey publicKeyBob := big.NewInt(0) fmt.Fscanf(c, "0x%x\n", publicKeyBob) var pubKeyBob newhope.PublicKeyBob for i := range pubKeyBob.Send { pubKeyBob.Send[i] = publicKeyBob.Bytes()[i] } log.Printf("[Got server pubKey[]:%v]\n", pubKeyBob) // Read cipheropts, session opts _, err = fmt.Fscanf(c, "0x%x:0x%x\n", &hc.cipheropts, &hc.opts) if err != nil { return err } // Alice, step 3: Derive shared secret // (NOTE: actual over-wire exchange was already done above. This is // the math voodoo 'exchange' done after receiving data from Bob.) aliceSharedSecret, err := newhope.KeyExchangeAlice(&pubKeyBob, privKeyAlice) if err != nil { panic(err) } log.Printf("[Derived sharedSecret:0x%x]\n", aliceSharedSecret) hc.r, hc.rm, err = hc.getStream(aliceSharedSecret) hc.w, hc.wm, err = hc.getStream(aliceSharedSecret) return } func NewHopeSimpleDialSetup(c io.ReadWriter, hc *Conn) (err error) { // Send hkexnet.Conn parameters to remote side // Alice, step 1: Generate a key pair. r := new(randReader) rand.Seed(time.Now().UnixNano()) privKeyAlice, pubKeyAlice, err := newhope.GenerateKeyPairSimpleAlice(r) if err != nil { panic(err) } // Alice, step 2: Send the public key to Bob fmt.Fprintf(c, "0x%x\n0x%x:0x%x\n", pubKeyAlice.Send, hc.cipheropts, hc.opts) // [Bob does step 1-3], from which we read Bob's pubkey publicKeyBob := big.NewInt(0) fmt.Fscanf(c, "0x%x\n", publicKeyBob) var pubKeyBob newhope.PublicKeySimpleBob for i := range pubKeyBob.Send { pubKeyBob.Send[i] = publicKeyBob.Bytes()[i] } log.Printf("[Got server pubKey[]:%v]\n", pubKeyBob) // Read cipheropts, session opts _, err = fmt.Fscanf(c, "0x%x:0x%x\n", &hc.cipheropts, &hc.opts) if err != nil { return err } // Alice, step 3: Derive shared secret // (NOTE: actual over-wire exchange was already done above. This is // the math voodoo 'exchange' done after receiving data from Bob.) aliceSharedSecret, err := newhope.KeyExchangeSimpleAlice(&pubKeyBob, privKeyAlice) if err != nil { panic(err) } log.Printf("[Derived sharedSecret:0x%x]\n", aliceSharedSecret) hc.r, hc.rm, err = hc.getStream(aliceSharedSecret) hc.w, hc.wm, err = hc.getStream(aliceSharedSecret) return } func KyberDialSetup(c io.ReadWriter /*net.Conn*/, hc *Conn) (err error) { // Send hkexnet.Conn parameters to remote side // Alice, step 1: Generate a key pair. r := new(randReader) rand.Seed(time.Now().UnixNano()) var alicePublicKey *kyber.PublicKey var alicePrivateKey *kyber.PrivateKey switch hc.kex { case KEX_KYBER512: alicePublicKey, alicePrivateKey, err = kyber.Kyber512.GenerateKeyPair(r) case KEX_KYBER768: alicePublicKey, alicePrivateKey, err = kyber.Kyber768.GenerateKeyPair(r) case KEX_KYBER1024: alicePublicKey, alicePrivateKey, err = kyber.Kyber1024.GenerateKeyPair(r) default: alicePublicKey, alicePrivateKey, err = kyber.Kyber768.GenerateKeyPair(r) } if err != nil { panic(err) } // Alice, step 2: Send the public key to Bob fmt.Fprintf(c, "0x%x\n0x%x:0x%x\n", alicePublicKey.Bytes(), hc.cipheropts, hc.opts) // [Bob, step 1-3], from which we read cipher text pubKeyB := make([]byte, 4096) fmt.Fscanf(c, "0x%x\n", &pubKeyB) //if err != nil { // return err //} log.Printf("[Got server pubKeyB[]:%v]\n", pubKeyB) // Read cipheropts, session opts _, err = fmt.Fscanf(c, "0x%x:0x%x\n", &hc.cipheropts, &hc.opts) if err != nil { return err } // Alice, step 3: Decrypt the KEM cipher text. aliceSharedSecret := alicePrivateKey.KEMDecrypt(pubKeyB) log.Printf("[Derived sharedSecret:0x%x]\n", aliceSharedSecret) hc.r, hc.rm, err = hc.getStream(aliceSharedSecret) hc.w, hc.wm, err = hc.getStream(aliceSharedSecret) return } func HKExDialSetup(c io.ReadWriter /*net.Conn*/, hc *Conn) (err error) { var h *hkex.HerraduraKEx switch hc.kex { case KEX_HERRADURA256: h = hkex.New(256, 64) case KEX_HERRADURA512: h = hkex.New(512, 128) case KEX_HERRADURA1024: h = hkex.New(1024, 256) case KEX_HERRADURA2048: h = hkex.New(2048, 512) default: h = hkex.New(256, 64) } // Send hkexnet.Conn parameters to remote side // d is value for Herradura key exchange fmt.Fprintf(c, "0x%s\n0x%x:0x%x\n", h.D().Text(16), hc.cipheropts, hc.opts) // Read peer D over net.Conn (c) d := big.NewInt(0) _, err = fmt.Fscanln(c, d) if err != nil { return err } _, err = fmt.Fscanf(c, "0x%x:0x%x\n", &hc.cipheropts, &hc.opts) if err != nil { return err } h.SetPeerD(d) log.Printf("** local D:%s\n", h.D().Text(16)) log.Printf("**(c)** peer D:%s\n", h.PeerD().Text(16)) h.ComputeFA() log.Printf("**(c)** FA:%s\n", h.FA()) hc.r, hc.rm, err = hc.getStream(h.FA().Bytes()) hc.w, hc.wm, err = hc.getStream(h.FA().Bytes()) return } func NewHopeAcceptSetup(c *net.Conn, hc *Conn) (err error) { r := new(randReader) rand.Seed(time.Now().UnixNano()) // Bob, step 1: Deserialize Alice's public key from the binary encoding. alicePublicKey := big.NewInt(0) _, err = fmt.Fscanln(*c, alicePublicKey) log.Printf("[Got client pubKey:0x%x\n]", alicePublicKey) if err != nil { return err } var pubKeyAlice newhope.PublicKeyAlice for i := range pubKeyAlice.Send { pubKeyAlice.Send[i] = alicePublicKey.Bytes()[i] } _, err = fmt.Fscanf(*c, "0x%x:0x%x\n", &hc.cipheropts, &hc.opts) log.Printf("[Got cipheropts, opts:%v, %v]", hc.cipheropts, hc.opts) if err != nil { return err } // Bob, step 2: Generate the KEM cipher text and shared secret. pubKeyBob, bobSharedSecret, err := newhope.KeyExchangeBob(r, &pubKeyAlice) if err != nil { panic(err) } // Bob, step 3: Send the cipher text to Alice. fmt.Fprintf(*c, "0x%x\n0x%x:0x%x\n", pubKeyBob.Send, hc.cipheropts, hc.opts) log.Printf("[Derived sharedSecret:0x%x]\n", bobSharedSecret) hc.r, hc.rm, err = hc.getStream(bobSharedSecret) hc.w, hc.wm, err = hc.getStream(bobSharedSecret) return } func NewHopeSimpleAcceptSetup(c *net.Conn, hc *Conn) (err error) { r := new(randReader) rand.Seed(time.Now().UnixNano()) // Bob, step 1: Deserialize Alice's public key from the binary encoding. alicePublicKey := big.NewInt(0) _, err = fmt.Fscanln(*c, alicePublicKey) log.Printf("[Got client pubKey:0x%x\n]", alicePublicKey) if err != nil { return err } var pubKeyAlice newhope.PublicKeySimpleAlice for i := range pubKeyAlice.Send { pubKeyAlice.Send[i] = alicePublicKey.Bytes()[i] } _, err = fmt.Fscanf(*c, "0x%x:0x%x\n", &hc.cipheropts, &hc.opts) log.Printf("[Got cipheropts, opts:%v, %v]", hc.cipheropts, hc.opts) if err != nil { return err } // Bob, step 2: Generate the KEM cipher text and shared secret. pubKeyBob, bobSharedSecret, err := newhope.KeyExchangeSimpleBob(r, &pubKeyAlice) if err != nil { panic(err) } // Bob, step 3: Send the cipher text to Alice. fmt.Fprintf(*c, "0x%x\n0x%x:0x%x\n", pubKeyBob.Send, hc.cipheropts, hc.opts) log.Printf("[Derived sharedSecret:0x%x]\n", bobSharedSecret) hc.r, hc.rm, err = hc.getStream(bobSharedSecret) hc.w, hc.wm, err = hc.getStream(bobSharedSecret) return } func KyberAcceptSetup(c *net.Conn, hc *Conn) (err error) { // Bob, step 1: Deserialize Alice's public key from the binary encoding. alicePublicKey := big.NewInt(0) _, err = fmt.Fscanln(*c, alicePublicKey) log.Printf("[Got client pubKey:0x%x\n]", alicePublicKey) if err != nil { return err } _, err = fmt.Fscanf(*c, "0x%x:0x%x\n", &hc.cipheropts, &hc.opts) log.Printf("[Got cipheropts, opts:%v, %v]", hc.cipheropts, hc.opts) if err != nil { return err } var peerPublicKey *kyber.PublicKey switch hc.kex { case KEX_KYBER512: peerPublicKey, err = kyber.Kyber512.PublicKeyFromBytes(alicePublicKey.Bytes()) case KEX_KYBER768: peerPublicKey, err = kyber.Kyber768.PublicKeyFromBytes(alicePublicKey.Bytes()) case KEX_KYBER1024: peerPublicKey, err = kyber.Kyber1024.PublicKeyFromBytes(alicePublicKey.Bytes()) default: peerPublicKey, err = kyber.Kyber768.PublicKeyFromBytes(alicePublicKey.Bytes()) } if err != nil { panic(err) } // Bob, step 2: Generate the KEM cipher text and shared secret. r := new(randReader) rand.Seed(time.Now().UnixNano()) cipherText, bobSharedSecret, err := peerPublicKey.KEMEncrypt(r) if err != nil { panic(err) } // Bob, step 3: Send the cipher text to Alice. fmt.Fprintf(*c, "0x%x\n0x%x:0x%x\n", cipherText, hc.cipheropts, hc.opts) log.Printf("[Derived sharedSecret:0x%x]\n", bobSharedSecret) hc.r, hc.rm, err = hc.getStream(bobSharedSecret) hc.w, hc.wm, err = hc.getStream(bobSharedSecret) return } func HKExAcceptSetup(c *net.Conn, hc *Conn) (err error) { var h *hkex.HerraduraKEx switch hc.kex { case KEX_HERRADURA256: h = hkex.New(256, 64) case KEX_HERRADURA512: h = hkex.New(512, 128) case KEX_HERRADURA1024: h = hkex.New(1024, 256) case KEX_HERRADURA2048: h = hkex.New(2048, 512) default: h = hkex.New(256, 64) } // Read in hkexnet.Conn parameters over raw Conn c // d is value for Herradura key exchange d := big.NewInt(0) _, err = fmt.Fscanln(*c, d) log.Printf("[Got d:%v]", d) if err != nil { return err } _, err = fmt.Fscanf(*c, "0x%x:0x%x\n", &hc.cipheropts, &hc.opts) log.Printf("[Got cipheropts, opts:%v, %v]", hc.cipheropts, hc.opts) if err != nil { return err } h.SetPeerD(d) log.Printf("** D:%s\n", h.D().Text(16)) log.Printf("**(s)** peerD:%s\n", h.PeerD().Text(16)) h.ComputeFA() log.Printf("**(s)** FA:%s\n", h.FA()) // Send D and cipheropts/conn_opts to peer fmt.Fprintf(*c, "0x%s\n0x%x:0x%x\n", h.D().Text(16), hc.cipheropts, hc.opts) hc.r, hc.rm, err = hc.getStream(h.FA().Bytes()) hc.w, hc.wm, err = hc.getStream(h.FA().Bytes()) return } // Dial as net.Dial(), but with implicit key exchange to set up secure // channel on connect // // Can be called like net.Dial(), defaulting to C_AES_256/H_SHA256, // or additional extensions can be passed amongst the following: // // "C_AES_256" | "C_TWOFISH_128" | ... // // "H_SHA256" | "H_SHA512" | ... // // See go doc -u hkexnet.applyConnExtensions func Dial(protocol string, ipport string, extensions ...string) (hc Conn, err error) { if Log == nil { Init(false, "client", logger.LOG_DAEMON|logger.LOG_DEBUG) } var c net.Conn if protocol == "kcp" { c, err = kcpDial(ipport, extensions) if err != nil { return Conn{}, err } } else { // Open raw Conn c c, err = net.Dial(protocol, ipport) if err != nil { return Conn{}, err } } // Init hkexnet.Conn hc over net.Conn c ret, err := _new(getkexalgnum(extensions...), &c) if err != nil { return Conn{}, err } hc = *ret // Client has full control over Conn extensions. It's the server's // responsibility to accept or reject the proposed parameters. hc.applyConnExtensions(extensions...) // Perform Key Exchange according to client-request algorithm fmt.Fprintf(c, "%02x\n", hc.kex) switch hc.kex { case KEX_HERRADURA256: fallthrough case KEX_HERRADURA512: fallthrough case KEX_HERRADURA1024: fallthrough case KEX_HERRADURA2048: log.Printf("[Setting up for KEX_HERRADURA %d]\n", hc.kex) if HKExDialSetup(c, &hc) != nil { return Conn{}, nil } case KEX_KYBER512: fallthrough case KEX_KYBER768: fallthrough case KEX_KYBER1024: log.Printf("[Setting up for KEX_KYBER %d]\n", hc.kex) if KyberDialSetup(c, &hc) != nil { return Conn{}, nil } case KEX_NEWHOPE: log.Printf("[Setting up for KEX_NEWHOPE %d]\n", hc.kex) if NewHopeDialSetup(c, &hc) != nil { return Conn{}, nil } case KEX_NEWHOPE_SIMPLE: log.Printf("[Setting up for KEX_NEWHOPE_SIMPLE %d]\n", hc.kex) if NewHopeSimpleDialSetup(c, &hc) != nil { return Conn{}, nil } default: return Conn{}, err } return } // Close a hkex.Conn func (hc *Conn) Close() (err error) { hc.DisableChaff() s := make([]byte, 4) binary.BigEndian.PutUint32(s, uint32(*hc.closeStat)) log.Printf("** Writing closeStat %d at Close()\n", *hc.closeStat) //(*hc.c).SetWriteDeadline(time.Now().Add(500 * time.Millisecond)) hc.WritePacket(s, CSOExitStatus) err = (*hc.c).Close() logger.LogDebug(fmt.Sprintln("[Conn Closing]")) return } // LocalAddr returns the local network address. func (hc *Conn) LocalAddr() net.Addr { return (*hc.c).LocalAddr() } // RemoteAddr returns the remote network address. func (hc *Conn) RemoteAddr() net.Addr { return (*hc.c).RemoteAddr() } // SetDeadline sets the read and write deadlines associated // with the connection. It is equivalent to calling both // SetReadDeadline and SetWriteDeadline. // // A deadline is an absolute time after which I/O operations // fail with a timeout (see type Error) instead of // blocking. The deadline applies to all future and pending // I/O, not just the immediately following call to Read or // Write. After a deadline has been exceeded, the connection // can be refreshed by setting a deadline in the future. // // An idle timeout can be implemented by repeatedly extending // the deadline after successful Read or Write calls. // // A zero value for t means I/O operations will not time out. func (hc *Conn) SetDeadline(t time.Time) error { return (*hc.c).SetDeadline(t) } // SetWriteDeadline sets the deadline for future Write calls // and any currently-blocked Write call. // Even if write times out, it may return n > 0, indicating that // some of the data was successfully written. // A zero value for t means Write will not time out. func (hc *Conn) SetWriteDeadline(t time.Time) error { return (*hc.c).SetWriteDeadline(t) } // SetReadDeadline sets the deadline for future Read calls // and any currently-blocked Read call. // A zero value for t means Read will not time out. func (hc *Conn) SetReadDeadline(t time.Time) error { return (*hc.c).SetReadDeadline(t) } /*---------------------------------------------------------------------*/ // HKExListener is a Listener conforming to net.Listener // // See go doc net.Listener type HKExListener struct { l net.Listener proto string } // Listen for a connection // // See go doc net.Listen func Listen(proto string, ipport string, extensions ...string) (hl HKExListener, e error) { if Log == nil { Init(false, "server", logger.LOG_DAEMON|logger.LOG_DEBUG) } var lErr error var l net.Listener if proto == "kcp" { l, lErr = kcpListen(ipport, extensions) } else { l, lErr = net.Listen(proto, ipport) } if lErr != nil { return HKExListener{nil, proto}, lErr } logger.LogDebug(fmt.Sprintf("[Listening (proto '%s') on %s]\n", proto, ipport)) hl.l = l hl.proto = proto return } // Close a hkex Listener - closes the Listener. // Any blocked Accept operations will be unblocked and return errors. // // See go doc net.Listener.Close func (hl HKExListener) Close() error { logger.LogDebug(fmt.Sprintln("[Listener Closed]")) return hl.l.Close() } // Addr returns a the listener's network address. // // See go doc net.Listener.Addr func (hl HKExListener) Addr() net.Addr { return hl.l.Addr() } // Accept a client connection, conforming to net.Listener.Accept() // // See go doc net.Listener.Accept func (hl *HKExListener) Accept() (hc Conn, err error) { var c net.Conn if hl.proto == "kcp" { c, err = hl.AcceptKCP() if err != nil { return Conn{}, err } logger.LogDebug(fmt.Sprintln("[kcp.Listener Accepted]")) } else { // Open raw Conn c c, err = hl.l.Accept() if err != nil { return Conn{}, err } logger.LogDebug(fmt.Sprintln("[net.Listener Accepted]")) } // Read KEx alg proposed by client var kexAlg KEXAlg //! NB. Was using fmt.FScanln() here, but integers with a leading zero // were being mis-scanned? (is it an octal thing? Investigate.) _, err = fmt.Fscanf(c, "%02x\n", &kexAlg) if err != nil { return Conn{}, err } log.Printf("[Client proposed KEx alg: %v]\n", kexAlg) // -- ret, err := _new(kexAlg, &c) if err != nil { return Conn{}, err } hc = *ret switch hc.kex { case KEX_HERRADURA256: fallthrough case KEX_HERRADURA512: fallthrough case KEX_HERRADURA1024: fallthrough case KEX_HERRADURA2048: log.Printf("[Setting up for KEX_HERRADURA %d]\n", hc.kex) if HKExAcceptSetup(&c, &hc) != nil { return Conn{}, err } case KEX_KYBER512: fallthrough case KEX_KYBER768: fallthrough case KEX_KYBER1024: log.Printf("[Setting up for KEX_KYBER %d]\n", hc.kex) if KyberAcceptSetup(&c, &hc) != nil { return Conn{}, err } case KEX_NEWHOPE: log.Printf("[Setting up for KEX_NEWHOPE %d]\n", hc.kex) if NewHopeAcceptSetup(&c, &hc) != nil { return Conn{}, err } case KEX_NEWHOPE_SIMPLE: log.Printf("[Setting up for KEX_NEWHOPE_SIMPLE %d]\n", hc.kex) if NewHopeSimpleAcceptSetup(&c, &hc) != nil { return Conn{}, err } default: return Conn{}, err } log.Println("[hc.Accept successful]") return } /*---------------------------------------------------------------------*/ // Read into a byte slice // // In addition to regular io.Reader behaviour this does demultiplexing of // secured terminal comms and (if defined) tunnel traffic and session control // packet processing. // // See go doc io.Reader func (hc Conn) Read(b []byte) (n int, err error) { for { if hc.dBuf.Len() > 0 { break } var ctrlStatOp uint8 var hmacIn [HMAC_CHK_SZ]uint8 var payloadLen uint32 // Read ctrl/status opcode (CSOHmacInvalid on hmac mismatch) err = binary.Read(*hc.c, binary.BigEndian, &ctrlStatOp) if err != nil { if err.Error() == "EOF" { return 0, io.EOF } if strings.HasSuffix(err.Error(), "use of closed network connection") { logger.LogDebug(fmt.Sprintln("[Client hung up]")) return 0, io.EOF } etxt := fmt.Sprintf("** Failed read:%s (%s) **", "ctrlStatOp", err) logger.LogDebug(etxt) return 0, errors.New(etxt) } log.Printf("[ctrlStatOp: %v]\n", ctrlStatOp) if ctrlStatOp == CSOHmacInvalid { // Other side indicated channel tampering, close channel hc.Close() return 0, errors.New("** ALERT - remote end detected HMAC mismatch - possible channel tampering **") } // Read the hmac and payload len first err = binary.Read(*hc.c, binary.BigEndian, &hmacIn) if err != nil { if err.Error() == "EOF" { return 0, io.EOF } if strings.HasSuffix(err.Error(), "use of closed network connection") { logger.LogDebug(fmt.Sprintln("[Client hung up]")) return 0, io.EOF } etxt := fmt.Sprintf("** Failed read:%s (%s) **", "HMAC", err) logger.LogDebug(etxt) return 0, errors.New(etxt) } err = binary.Read(*hc.c, binary.BigEndian, &payloadLen) if err != nil { if err.Error() == "EOF" { return 0, io.EOF } if strings.HasSuffix(err.Error(), "use of closed network connection") { logger.LogDebug(fmt.Sprintln("[Client hung up]")) return 0, io.EOF } etxt := fmt.Sprintf("** Failed read:%s (%s) **", "payloadLen", err) logger.LogDebug(etxt) return 0, errors.New(etxt) } if payloadLen > MAX_PAYLOAD_LEN { logger.LogDebug(fmt.Sprintf("[Insane payloadLen:%v]\n", payloadLen)) hc.Close() return 1, errors.New("Insane payloadLen") } var payloadBytes = make([]byte, payloadLen) n, err = io.ReadFull(*hc.c, payloadBytes) if err != nil { if err.Error() == "EOF" { return 0, io.EOF } if strings.HasSuffix(err.Error(), "use of closed network connection") { logger.LogDebug(fmt.Sprintln("[Client hung up]")) return 0, io.EOF } etxt := fmt.Sprintf("** Failed read:%s (%s) **", "payloadBytes", err) logger.LogDebug(etxt) return 0, errors.New(etxt) } if hc.logCipherText { log.Printf(" <:ctext:\r\n%s\r\n", hex.Dump(payloadBytes[:n])) } db := bytes.NewBuffer(payloadBytes[:n]) //copying payloadBytes to db // The StreamReader acts like a pipe, decrypting // whatever is available and forwarding the result // to the parameter of Read() as a normal io.Reader rs := &cipher.StreamReader{S: hc.r, R: db} // The caller isn't necessarily reading the full payload so we need // to decrypt to an intermediate buffer, draining it on demand of caller decryptN, err := rs.Read(payloadBytes) if hc.logPlainText { log.Printf(" <-ptext:\r\n%s\r\n", hex.Dump(payloadBytes[:n])) } if err != nil { log.Println("hkexnet.Read():", err) //panic(err) } else { hc.rm.Write(payloadBytes) // Calc hmac on received data // Padding: Read padSide, padLen, (padding | d) or (d | padding) padSide := payloadBytes[0] padLen := payloadBytes[1] payloadBytes = payloadBytes[2:] if padSide == 0 { payloadBytes = payloadBytes[padLen:] } else { payloadBytes = payloadBytes[0 : len(payloadBytes)-int(padLen)] } //fmt.Printf("padSide:%d padLen:%d payloadBytes:%s\n", // padSide, padLen, hex.Dump(payloadBytes)) // Throw away pkt if it's chaff (ie., caller to Read() won't see this data) if ctrlStatOp == CSOChaff { log.Printf("[Chaff pkt, discarded (len %d)]\n", decryptN) } else if ctrlStatOp == CSOTermSize { fmt.Sscanf(string(payloadBytes), "%d %d", &hc.Rows, &hc.Cols) log.Printf("[TermSize pkt: rows %v cols %v]\n", hc.Rows, hc.Cols) hc.WinCh <- WinSize{hc.Rows, hc.Cols} } else if ctrlStatOp == CSOExitStatus { if len(payloadBytes) > 0 { hc.SetStatus(CSOType(binary.BigEndian.Uint32(payloadBytes))) } else { logger.LogDebug(fmt.Sprintln("[truncated payload, cannot determine CSOExitStatus]")) hc.SetStatus(CSETruncCSO) } hc.Close() } else if ctrlStatOp == CSOTunSetup { // server side tunnel setup in response to client lport := binary.BigEndian.Uint16(payloadBytes[0:2]) rport := binary.BigEndian.Uint16(payloadBytes[2:4]) if _, ok := (*hc.tuns)[rport]; !ok { // tunnel first-time open logger.LogDebug(fmt.Sprintf("[Server] Got Initial CSOTunSetup [%d:%d]", lport, rport)) hc.StartServerTunnel(lport, rport) } else { logger.LogDebug(fmt.Sprintf("[Server] Got CSOTunSetup [%d:%d]", lport, rport)) } (*hc.tuns)[rport].Ctl <- 'd' // Dial() rport } else if ctrlStatOp == CSOTunSetupAck { lport := binary.BigEndian.Uint16(payloadBytes[0:2]) rport := binary.BigEndian.Uint16(payloadBytes[2:4]) if _, ok := (*hc.tuns)[rport]; !ok { // tunnel first-time open logger.LogDebug(fmt.Sprintf("[Client] Got Initial CSOTunSetupAck [%d:%d]", lport, rport)) hc.StartClientTunnel(lport, rport) } else { logger.LogDebug(fmt.Sprintf("[Client] Got CSOTunSetupAck [%d:%d]", lport, rport)) } (*hc.tuns)[rport].Ctl <- 'a' // Listen() for lport connection } else if ctrlStatOp == CSOTunRefused { // client side receiving CSOTunRefused means the remote side // could not dial() rport. So we cannot yet listen() // for client-side on lport. lport := binary.BigEndian.Uint16(payloadBytes[0:2]) rport := binary.BigEndian.Uint16(payloadBytes[2:4]) logger.LogDebug(fmt.Sprintf("[Client] Got CSOTunRefused [%d:%d]", lport, rport)) if _, ok := (*hc.tuns)[rport]; ok { hc.MarkTunDead(rport) } else { logger.LogDebug(fmt.Sprintf("[Client] CSOTunRefused on already-closed tun [%d:%d]", lport, rport)) } } else if ctrlStatOp == CSOTunDisconn { // server side's rport has disconnected (server lost) lport := binary.BigEndian.Uint16(payloadBytes[0:2]) rport := binary.BigEndian.Uint16(payloadBytes[2:4]) logger.LogDebug(fmt.Sprintf("[Client] Got CSOTunDisconn [%d:%d]", lport, rport)) if _, ok := (*hc.tuns)[rport]; ok { hc.MarkTunDead(rport) } else { logger.LogDebug(fmt.Sprintf("[Client] CSOTunDisconn on already-closed tun [%d:%d]", lport, rport)) } } else if ctrlStatOp == CSOTunHangup { // client side's lport has hung up lport := binary.BigEndian.Uint16(payloadBytes[0:2]) rport := binary.BigEndian.Uint16(payloadBytes[2:4]) logger.LogDebug(fmt.Sprintf("[Server] Got CSOTunHangup [%d:%d]", lport, rport)) if _, ok := (*hc.tuns)[rport]; ok { hc.MarkTunDead(rport) } else { logger.LogDebug(fmt.Sprintf("[Server] CSOTunHangup to already-closed tun [%d:%d]", lport, rport)) } } else if ctrlStatOp == CSOTunData { lport := binary.BigEndian.Uint16(payloadBytes[0:2]) rport := binary.BigEndian.Uint16(payloadBytes[2:4]) //fmt.Printf("[Got CSOTunData: [lport %d:rport %d] data:%v\n", lport, rport, payloadBytes[4:]) if _, ok := (*hc.tuns)[rport]; ok { if hc.logTunActivity { logger.LogDebug(fmt.Sprintf("[Writing data to rport [%d:%d]", lport, rport)) } (*hc.tuns)[rport].Data <- payloadBytes[4:] hc.ResetTunnelAge(rport) } else { logger.LogDebug(fmt.Sprintf("[Attempt to write data to closed tun [%d:%d]", lport, rport)) } } else if ctrlStatOp == CSOTunKeepAlive { // client side has sent keepalive for tunnels -- if client // dies or exits unexpectedly the absence of this will // let the server know to hang up on Dial()ed server rports. _ = binary.BigEndian.Uint16(payloadBytes[0:2]) //logger.LogDebug(fmt.Sprintf("[Server] Got CSOTunKeepAlive")) for _, t := range *hc.tuns { hc.Lock() t.KeepAlive = 0 hc.Unlock() } } else if ctrlStatOp == CSONone { hc.dBuf.Write(payloadBytes) } else { logger.LogDebug(fmt.Sprintf("[Unknown CSOType:%d]", ctrlStatOp)) } hTmp := hc.rm.Sum(nil)[0:HMAC_CHK_SZ] log.Printf("<%04x) HMAC:(i)%s (c)%02x\r\n", decryptN, hex.EncodeToString([]byte(hmacIn[0:])), hTmp) if *hc.closeStat == CSETruncCSO { logger.LogDebug(fmt.Sprintln("[cannot verify HMAC]")) } else { // Log alert if hmac didn't match, corrupted channel if !bytes.Equal(hTmp, []byte(hmacIn[0:])) /*|| hmacIn[0] > 0xf8*/ { logger.LogDebug(fmt.Sprintln("** ALERT - detected HMAC mismatch, possible channel tampering **")) _, _ = (*hc.c).Write([]byte{CSOHmacInvalid}) } } } } retN := hc.dBuf.Len() if retN > len(b) { retN = len(b) } log.Printf("Read() got %d bytes\n", retN) copy(b, hc.dBuf.Next(retN)) return retN, nil } // Write a byte slice // // See go doc io.Writer func (hc Conn) Write(b []byte) (n int, err error) { //fmt.Printf("WRITE(%d)\n", len(b)) n, err = hc.WritePacket(b, CSONone) //fmt.Printf("WROTE(%d)\n", n) return n, err } // Write a byte slice with specified ctrlStatOp byte func (hc *Conn) WritePacket(b []byte, ctrlStatOp byte) (n int, err error) { //log.Printf("[Encrypting...]\r\n") var hmacOut []uint8 var payloadLen uint32 if hc.m == nil || hc.wm == nil { return 0, errors.New("Secure chan not ready for writing") } //Padding prior to encryption padSz := (rand.Intn(PAD_SZ) / 2) + (PAD_SZ / 2) padLen := padSz - ((len(b) + padSz) % padSz) if padLen == padSz { // No padding required padLen = 0 } padBytes := make([]byte, padLen) rand.Read(padBytes) // For a little more confusion let's support padding either before // or after the payload. padSide := rand.Intn(2) //fmt.Printf("--\n") //fmt.Printf("PRE_PADDING:%s\r\n", hex.Dump(b)) //fmt.Printf("padSide:%d padLen:%d\r\n", padSide, padLen) if padSide == 0 { b = append([]byte{byte(padSide)}, append([]byte{byte(padLen)}, append(padBytes, b...)...)...) } else { b = append([]byte{byte(padSide)}, append([]byte{byte(padLen)}, append(b, padBytes...)...)...) } //fmt.Printf("POST_PADDING:%s\r\n", hex.Dump(b)) //fmt.Printf("--\r\n") // N.B. Originally this Lock() surrounded only the // calls to binary.Write(hc.c ..) however there appears // to be some other unshareable state in the Conn // struct that must be protected to serialize main and // chaff data written to it. // // Would be nice to determine if the mutex scope // could be tightened. hc.Lock() payloadLen = uint32(len(b)) //!fmt.Printf(" --== payloadLen:%d\n", payloadLen) if hc.logPlainText { log.Printf(" :>ptext:\r\n%s\r\n", hex.Dump(b[0:payloadLen])) } // Calculate hmac on payload hc.wm.Write(b[0:payloadLen]) hmacOut = hc.wm.Sum(nil)[0:HMAC_CHK_SZ] log.Printf(" (%04x> HMAC(o):%s\r\n", payloadLen, hex.EncodeToString(hmacOut)) var wb bytes.Buffer // The StreamWriter acts like a pipe, forwarding whatever is // written to it through the cipher, encrypting as it goes ws := &cipher.StreamWriter{S: hc.w, W: &wb} _, err = ws.Write(b[0:payloadLen]) if err != nil { panic(err) } if hc.logCipherText { log.Printf(" ->ctext:\r\n%s\r\n", hex.Dump(wb.Bytes())) } err = binary.Write(*hc.c, binary.BigEndian, &ctrlStatOp) if err == nil { // Write hmac LSB, payloadLen followed by payload err = binary.Write(*hc.c, binary.BigEndian, hmacOut) if err == nil { err = binary.Write(*hc.c, binary.BigEndian, payloadLen) if err == nil { n, err = (*hc.c).Write(wb.Bytes()) } else { //fmt.Println("[c]WriteError!") } } else { //fmt.Println("[b]WriteError!") } } else { //fmt.Println("[a]WriteError!") } hc.Unlock() if err != nil { log.Println(err) } // We must 'lie' to caller indicating the length of THEIR // data written (ie., not including the padding and padding headers) return n - 2 - int(padLen), err } func (hc *Conn) EnableChaff() { hc.chaff.shutdown = false hc.chaff.enabled = true log.Println("Chaffing ENABLED") hc.chaffHelper() } func (hc *Conn) DisableChaff() { hc.chaff.enabled = false log.Println("Chaffing DISABLED") } func (hc *Conn) ShutdownChaff() { hc.chaff.shutdown = true log.Println("Chaffing SHUTDOWN") } func (hc *Conn) SetupChaff(msecsMin uint, msecsMax uint, szMax uint) { hc.chaff.msecsMin = msecsMin //move these to params of chaffHelper() ? hc.chaff.msecsMax = msecsMax hc.chaff.szMax = szMax } // Helper routine to spawn a chaffing goroutine for each Conn func (hc *Conn) chaffHelper() { go func() { for { var nextDuration int if hc.chaff.enabled { var bufTmp []byte bufTmp = make([]byte, rand.Intn(int(hc.chaff.szMax))) min := int(hc.chaff.msecsMin) nextDuration = rand.Intn(int(hc.chaff.msecsMax)-min) + min _, _ = rand.Read(bufTmp) _, err := hc.WritePacket(bufTmp, CSOChaff) if err != nil { log.Println("[ *** error - chaffHelper quitting *** ]") hc.chaff.enabled = false break } } time.Sleep(time.Duration(nextDuration) * time.Millisecond) if hc.chaff.shutdown { log.Println("*** chaffHelper shutting down") break } } }() }