// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Linux system calls. // This file is compiled as ordinary Go code, // but it is also input to mksyscall, // which parses the //sys lines and generates system call stubs. // Note that sometimes we use a lowercase //sys name and // wrap it in our own nicer implementation. package unix import ( "encoding/binary" "syscall" "time" "unsafe" ) /* * Wrapped */ func Access(path string, mode uint32) (err error) { return Faccessat(AT_FDCWD, path, mode, 0) } func Chmod(path string, mode uint32) (err error) { return Fchmodat(AT_FDCWD, path, mode, 0) } func Chown(path string, uid int, gid int) (err error) { return Fchownat(AT_FDCWD, path, uid, gid, 0) } func Creat(path string, mode uint32) (fd int, err error) { return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode) } func EpollCreate(size int) (fd int, err error) { if size <= 0 { return -1, EINVAL } return EpollCreate1(0) } //sys FanotifyInit(flags uint, event_f_flags uint) (fd int, err error) //sys fanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname *byte) (err error) func FanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname string) (err error) { if pathname == "" { return fanotifyMark(fd, flags, mask, dirFd, nil) } p, err := BytePtrFromString(pathname) if err != nil { return err } return fanotifyMark(fd, flags, mask, dirFd, p) } //sys fchmodat(dirfd int, path string, mode uint32) (err error) func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) { // Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior // and check the flags. Otherwise the mode would be applied to the symlink // destination which is not what the user expects. if flags&^AT_SYMLINK_NOFOLLOW != 0 { return EINVAL } else if flags&AT_SYMLINK_NOFOLLOW != 0 { return EOPNOTSUPP } return fchmodat(dirfd, path, mode) } func InotifyInit() (fd int, err error) { return InotifyInit1(0) } //sys ioctl(fd int, req uint, arg uintptr) (err error) = SYS_IOCTL //sys ioctlPtr(fd int, req uint, arg unsafe.Pointer) (err error) = SYS_IOCTL // ioctl itself should not be exposed directly, but additional get/set functions // for specific types are permissible. These are defined in ioctl.go and // ioctl_linux.go. // // The third argument to ioctl is often a pointer but sometimes an integer. // Callers should use ioctlPtr when the third argument is a pointer and ioctl // when the third argument is an integer. // // TODO: some existing code incorrectly uses ioctl when it should use ioctlPtr. //sys Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error) func Link(oldpath string, newpath string) (err error) { return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0) } func Mkdir(path string, mode uint32) (err error) { return Mkdirat(AT_FDCWD, path, mode) } func Mknod(path string, mode uint32, dev int) (err error) { return Mknodat(AT_FDCWD, path, mode, dev) } func Open(path string, mode int, perm uint32) (fd int, err error) { return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm) } //sys openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) { return openat(dirfd, path, flags|O_LARGEFILE, mode) } //sys openat2(dirfd int, path string, open_how *OpenHow, size int) (fd int, err error) func Openat2(dirfd int, path string, how *OpenHow) (fd int, err error) { return openat2(dirfd, path, how, SizeofOpenHow) } func Pipe(p []int) error { return Pipe2(p, 0) } //sysnb pipe2(p *[2]_C_int, flags int) (err error) func Pipe2(p []int, flags int) error { if len(p) != 2 { return EINVAL } var pp [2]_C_int err := pipe2(&pp, flags) if err == nil { p[0] = int(pp[0]) p[1] = int(pp[1]) } return err } //sys ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error) func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) { if len(fds) == 0 { return ppoll(nil, 0, timeout, sigmask) } return ppoll(&fds[0], len(fds), timeout, sigmask) } func Poll(fds []PollFd, timeout int) (n int, err error) { var ts *Timespec if timeout >= 0 { ts = new(Timespec) *ts = NsecToTimespec(int64(timeout) * 1e6) } return Ppoll(fds, ts, nil) } //sys Readlinkat(dirfd int, path string, buf []byte) (n int, err error) func Readlink(path string, buf []byte) (n int, err error) { return Readlinkat(AT_FDCWD, path, buf) } func Rename(oldpath string, newpath string) (err error) { return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath) } func Rmdir(path string) error { return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR) } //sys Symlinkat(oldpath string, newdirfd int, newpath string) (err error) func Symlink(oldpath string, newpath string) (err error) { return Symlinkat(oldpath, AT_FDCWD, newpath) } func Unlink(path string) error { return Unlinkat(AT_FDCWD, path, 0) } //sys Unlinkat(dirfd int, path string, flags int) (err error) func Utimes(path string, tv []Timeval) error { if tv == nil { err := utimensat(AT_FDCWD, path, nil, 0) if err != ENOSYS { return err } return utimes(path, nil) } if len(tv) != 2 { return EINVAL } var ts [2]Timespec ts[0] = NsecToTimespec(TimevalToNsec(tv[0])) ts[1] = NsecToTimespec(TimevalToNsec(tv[1])) err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0) if err != ENOSYS { return err } return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0]))) } //sys utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error) func UtimesNano(path string, ts []Timespec) error { return UtimesNanoAt(AT_FDCWD, path, ts, 0) } func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error { if ts == nil { return utimensat(dirfd, path, nil, flags) } if len(ts) != 2 { return EINVAL } return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags) } func Futimesat(dirfd int, path string, tv []Timeval) error { if tv == nil { return futimesat(dirfd, path, nil) } if len(tv) != 2 { return EINVAL } return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0]))) } func Futimes(fd int, tv []Timeval) (err error) { // Believe it or not, this is the best we can do on Linux // (and is what glibc does). return Utimes("/proc/self/fd/"+itoa(fd), tv) } const ImplementsGetwd = true //sys Getcwd(buf []byte) (n int, err error) func Getwd() (wd string, err error) { var buf [PathMax]byte n, err := Getcwd(buf[0:]) if err != nil { return "", err } // Getcwd returns the number of bytes written to buf, including the NUL. if n < 1 || n > len(buf) || buf[n-1] != 0 { return "", EINVAL } // In some cases, Linux can return a path that starts with the // "(unreachable)" prefix, which can potentially be a valid relative // path. To work around that, return ENOENT if path is not absolute. if buf[0] != '/' { return "", ENOENT } return string(buf[0 : n-1]), nil } func Getgroups() (gids []int, err error) { n, err := getgroups(0, nil) if err != nil { return nil, err } if n == 0 { return nil, nil } // Sanity check group count. Max is 1<<16 on Linux. if n < 0 || n > 1<<20 { return nil, EINVAL } a := make([]_Gid_t, n) n, err = getgroups(n, &a[0]) if err != nil { return nil, err } gids = make([]int, n) for i, v := range a[0:n] { gids[i] = int(v) } return } func Setgroups(gids []int) (err error) { if len(gids) == 0 { return setgroups(0, nil) } a := make([]_Gid_t, len(gids)) for i, v := range gids { a[i] = _Gid_t(v) } return setgroups(len(a), &a[0]) } type WaitStatus uint32 // Wait status is 7 bits at bottom, either 0 (exited), // 0x7F (stopped), or a signal number that caused an exit. // The 0x80 bit is whether there was a core dump. // An extra number (exit code, signal causing a stop) // is in the high bits. At least that's the idea. // There are various irregularities. For example, the // "continued" status is 0xFFFF, distinguishing itself // from stopped via the core dump bit. const ( mask = 0x7F core = 0x80 exited = 0x00 stopped = 0x7F shift = 8 ) func (w WaitStatus) Exited() bool { return w&mask == exited } func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited } func (w WaitStatus) Stopped() bool { return w&0xFF == stopped } func (w WaitStatus) Continued() bool { return w == 0xFFFF } func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 } func (w WaitStatus) ExitStatus() int { if !w.Exited() { return -1 } return int(w>>shift) & 0xFF } func (w WaitStatus) Signal() syscall.Signal { if !w.Signaled() { return -1 } return syscall.Signal(w & mask) } func (w WaitStatus) StopSignal() syscall.Signal { if !w.Stopped() { return -1 } return syscall.Signal(w>>shift) & 0xFF } func (w WaitStatus) TrapCause() int { if w.StopSignal() != SIGTRAP { return -1 } return int(w>>shift) >> 8 } //sys wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error) func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) { var status _C_int wpid, err = wait4(pid, &status, options, rusage) if wstatus != nil { *wstatus = WaitStatus(status) } return } //sys Waitid(idType int, id int, info *Siginfo, options int, rusage *Rusage) (err error) func Mkfifo(path string, mode uint32) error { return Mknod(path, mode|S_IFIFO, 0) } func Mkfifoat(dirfd int, path string, mode uint32) error { return Mknodat(dirfd, path, mode|S_IFIFO, 0) } func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) { if sa.Port < 0 || sa.Port > 0xFFFF { return nil, 0, EINVAL } sa.raw.Family = AF_INET p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port)) p[0] = byte(sa.Port >> 8) p[1] = byte(sa.Port) sa.raw.Addr = sa.Addr return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil } func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) { if sa.Port < 0 || sa.Port > 0xFFFF { return nil, 0, EINVAL } sa.raw.Family = AF_INET6 p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port)) p[0] = byte(sa.Port >> 8) p[1] = byte(sa.Port) sa.raw.Scope_id = sa.ZoneId sa.raw.Addr = sa.Addr return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil } func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) { name := sa.Name n := len(name) if n >= len(sa.raw.Path) { return nil, 0, EINVAL } sa.raw.Family = AF_UNIX for i := 0; i < n; i++ { sa.raw.Path[i] = int8(name[i]) } // length is family (uint16), name, NUL. sl := _Socklen(2) if n > 0 { sl += _Socklen(n) + 1 } if sa.raw.Path[0] == '@' { sa.raw.Path[0] = 0 // Don't count trailing NUL for abstract address. sl-- } return unsafe.Pointer(&sa.raw), sl, nil } // SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets. type SockaddrLinklayer struct { Protocol uint16 Ifindex int Hatype uint16 Pkttype uint8 Halen uint8 Addr [8]byte raw RawSockaddrLinklayer } func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) { if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff { return nil, 0, EINVAL } sa.raw.Family = AF_PACKET sa.raw.Protocol = sa.Protocol sa.raw.Ifindex = int32(sa.Ifindex) sa.raw.Hatype = sa.Hatype sa.raw.Pkttype = sa.Pkttype sa.raw.Halen = sa.Halen sa.raw.Addr = sa.Addr return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil } // SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets. type SockaddrNetlink struct { Family uint16 Pad uint16 Pid uint32 Groups uint32 raw RawSockaddrNetlink } func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) { sa.raw.Family = AF_NETLINK sa.raw.Pad = sa.Pad sa.raw.Pid = sa.Pid sa.raw.Groups = sa.Groups return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil } // SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets // using the HCI protocol. type SockaddrHCI struct { Dev uint16 Channel uint16 raw RawSockaddrHCI } func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) { sa.raw.Family = AF_BLUETOOTH sa.raw.Dev = sa.Dev sa.raw.Channel = sa.Channel return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil } // SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets // using the L2CAP protocol. type SockaddrL2 struct { PSM uint16 CID uint16 Addr [6]uint8 AddrType uint8 raw RawSockaddrL2 } func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) { sa.raw.Family = AF_BLUETOOTH psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm)) psm[0] = byte(sa.PSM) psm[1] = byte(sa.PSM >> 8) for i := 0; i < len(sa.Addr); i++ { sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i] } cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid)) cid[0] = byte(sa.CID) cid[1] = byte(sa.CID >> 8) sa.raw.Bdaddr_type = sa.AddrType return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil } // SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets // using the RFCOMM protocol. // // Server example: // // fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM) // _ = unix.Bind(fd, &unix.SockaddrRFCOMM{ // Channel: 1, // Addr: [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00 // }) // _ = Listen(fd, 1) // nfd, sa, _ := Accept(fd) // fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd) // Read(nfd, buf) // // Client example: // // fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM) // _ = Connect(fd, &SockaddrRFCOMM{ // Channel: 1, // Addr: [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11 // }) // Write(fd, []byte(`hello`)) type SockaddrRFCOMM struct { // Addr represents a bluetooth address, byte ordering is little-endian. Addr [6]uint8 // Channel is a designated bluetooth channel, only 1-30 are available for use. // Since Linux 2.6.7 and further zero value is the first available channel. Channel uint8 raw RawSockaddrRFCOMM } func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) { sa.raw.Family = AF_BLUETOOTH sa.raw.Channel = sa.Channel sa.raw.Bdaddr = sa.Addr return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil } // SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets. // The RxID and TxID fields are used for transport protocol addressing in // (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with // zero values for CAN_RAW and CAN_BCM sockets as they have no meaning. // // The SockaddrCAN struct must be bound to the socket file descriptor // using Bind before the CAN socket can be used. // // // Read one raw CAN frame // fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW) // addr := &SockaddrCAN{Ifindex: index} // Bind(fd, addr) // frame := make([]byte, 16) // Read(fd, frame) // // The full SocketCAN documentation can be found in the linux kernel // archives at: https://www.kernel.org/doc/Documentation/networking/can.txt type SockaddrCAN struct { Ifindex int RxID uint32 TxID uint32 raw RawSockaddrCAN } func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) { if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff { return nil, 0, EINVAL } sa.raw.Family = AF_CAN sa.raw.Ifindex = int32(sa.Ifindex) rx := (*[4]byte)(unsafe.Pointer(&sa.RxID)) for i := 0; i < 4; i++ { sa.raw.Addr[i] = rx[i] } tx := (*[4]byte)(unsafe.Pointer(&sa.TxID)) for i := 0; i < 4; i++ { sa.raw.Addr[i+4] = tx[i] } return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil } // SockaddrCANJ1939 implements the Sockaddr interface for AF_CAN using J1939 // protocol (https://en.wikipedia.org/wiki/SAE_J1939). For more information // on the purposes of the fields, check the official linux kernel documentation // available here: https://www.kernel.org/doc/Documentation/networking/j1939.rst type SockaddrCANJ1939 struct { Ifindex int Name uint64 PGN uint32 Addr uint8 raw RawSockaddrCAN } func (sa *SockaddrCANJ1939) sockaddr() (unsafe.Pointer, _Socklen, error) { if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff { return nil, 0, EINVAL } sa.raw.Family = AF_CAN sa.raw.Ifindex = int32(sa.Ifindex) n := (*[8]byte)(unsafe.Pointer(&sa.Name)) for i := 0; i < 8; i++ { sa.raw.Addr[i] = n[i] } p := (*[4]byte)(unsafe.Pointer(&sa.PGN)) for i := 0; i < 4; i++ { sa.raw.Addr[i+8] = p[i] } sa.raw.Addr[12] = sa.Addr return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil } // SockaddrALG implements the Sockaddr interface for AF_ALG type sockets. // SockaddrALG enables userspace access to the Linux kernel's cryptography // subsystem. The Type and Name fields specify which type of hash or cipher // should be used with a given socket. // // To create a file descriptor that provides access to a hash or cipher, both // Bind and Accept must be used. Once the setup process is complete, input // data can be written to the socket, processed by the kernel, and then read // back as hash output or ciphertext. // // Here is an example of using an AF_ALG socket with SHA1 hashing. // The initial socket setup process is as follows: // // // Open a socket to perform SHA1 hashing. // fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0) // addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"} // unix.Bind(fd, addr) // // Note: unix.Accept does not work at this time; must invoke accept() // // manually using unix.Syscall. // hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0) // // Once a file descriptor has been returned from Accept, it may be used to // perform SHA1 hashing. The descriptor is not safe for concurrent use, but // may be re-used repeatedly with subsequent Write and Read operations. // // When hashing a small byte slice or string, a single Write and Read may // be used: // // // Assume hashfd is already configured using the setup process. // hash := os.NewFile(hashfd, "sha1") // // Hash an input string and read the results. Each Write discards // // previous hash state. Read always reads the current state. // b := make([]byte, 20) // for i := 0; i < 2; i++ { // io.WriteString(hash, "Hello, world.") // hash.Read(b) // fmt.Println(hex.EncodeToString(b)) // } // // Output: // // 2ae01472317d1935a84797ec1983ae243fc6aa28 // // 2ae01472317d1935a84797ec1983ae243fc6aa28 // // For hashing larger byte slices, or byte streams such as those read from // a file or socket, use Sendto with MSG_MORE to instruct the kernel to update // the hash digest instead of creating a new one for a given chunk and finalizing it. // // // Assume hashfd and addr are already configured using the setup process. // hash := os.NewFile(hashfd, "sha1") // // Hash the contents of a file. // f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz") // b := make([]byte, 4096) // for { // n, err := f.Read(b) // if err == io.EOF { // break // } // unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr) // } // hash.Read(b) // fmt.Println(hex.EncodeToString(b)) // // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5 // // For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html. type SockaddrALG struct { Type string Name string Feature uint32 Mask uint32 raw RawSockaddrALG } func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) { // Leave room for NUL byte terminator. if len(sa.Type) > 13 { return nil, 0, EINVAL } if len(sa.Name) > 63 { return nil, 0, EINVAL } sa.raw.Family = AF_ALG sa.raw.Feat = sa.Feature sa.raw.Mask = sa.Mask typ, err := ByteSliceFromString(sa.Type) if err != nil { return nil, 0, err } name, err := ByteSliceFromString(sa.Name) if err != nil { return nil, 0, err } copy(sa.raw.Type[:], typ) copy(sa.raw.Name[:], name) return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil } // SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets. // SockaddrVM provides access to Linux VM sockets: a mechanism that enables // bidirectional communication between a hypervisor and its guest virtual // machines. type SockaddrVM struct { // CID and Port specify a context ID and port address for a VM socket. // Guests have a unique CID, and hosts may have a well-known CID of: // - VMADDR_CID_HYPERVISOR: refers to the hypervisor process. // - VMADDR_CID_LOCAL: refers to local communication (loopback). // - VMADDR_CID_HOST: refers to other processes on the host. CID uint32 Port uint32 Flags uint8 raw RawSockaddrVM } func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) { sa.raw.Family = AF_VSOCK sa.raw.Port = sa.Port sa.raw.Cid = sa.CID sa.raw.Flags = sa.Flags return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil } type SockaddrXDP struct { Flags uint16 Ifindex uint32 QueueID uint32 SharedUmemFD uint32 raw RawSockaddrXDP } func (sa *SockaddrXDP) sockaddr() (unsafe.Pointer, _Socklen, error) { sa.raw.Family = AF_XDP sa.raw.Flags = sa.Flags sa.raw.Ifindex = sa.Ifindex sa.raw.Queue_id = sa.QueueID sa.raw.Shared_umem_fd = sa.SharedUmemFD return unsafe.Pointer(&sa.raw), SizeofSockaddrXDP, nil } // This constant mirrors the #define of PX_PROTO_OE in // linux/if_pppox.h. We're defining this by hand here instead of // autogenerating through mkerrors.sh because including // linux/if_pppox.h causes some declaration conflicts with other // includes (linux/if_pppox.h includes linux/in.h, which conflicts // with netinet/in.h). Given that we only need a single zero constant // out of that file, it's cleaner to just define it by hand here. const px_proto_oe = 0 type SockaddrPPPoE struct { SID uint16 Remote []byte Dev string raw RawSockaddrPPPoX } func (sa *SockaddrPPPoE) sockaddr() (unsafe.Pointer, _Socklen, error) { if len(sa.Remote) != 6 { return nil, 0, EINVAL } if len(sa.Dev) > IFNAMSIZ-1 { return nil, 0, EINVAL } *(*uint16)(unsafe.Pointer(&sa.raw[0])) = AF_PPPOX // This next field is in host-endian byte order. We can't use the // same unsafe pointer cast as above, because this value is not // 32-bit aligned and some architectures don't allow unaligned // access. // // However, the value of px_proto_oe is 0, so we can use // encoding/binary helpers to write the bytes without worrying // about the ordering. binary.BigEndian.PutUint32(sa.raw[2:6], px_proto_oe) // This field is deliberately big-endian, unlike the previous // one. The kernel expects SID to be in network byte order. binary.BigEndian.PutUint16(sa.raw[6:8], sa.SID) copy(sa.raw[8:14], sa.Remote) for i := 14; i < 14+IFNAMSIZ; i++ { sa.raw[i] = 0 } copy(sa.raw[14:], sa.Dev) return unsafe.Pointer(&sa.raw), SizeofSockaddrPPPoX, nil } // SockaddrTIPC implements the Sockaddr interface for AF_TIPC type sockets. // For more information on TIPC, see: http://tipc.sourceforge.net/. type SockaddrTIPC struct { // Scope is the publication scopes when binding service/service range. // Should be set to TIPC_CLUSTER_SCOPE or TIPC_NODE_SCOPE. Scope int // Addr is the type of address used to manipulate a socket. Addr must be // one of: // - *TIPCSocketAddr: "id" variant in the C addr union // - *TIPCServiceRange: "nameseq" variant in the C addr union // - *TIPCServiceName: "name" variant in the C addr union // // If nil, EINVAL will be returned when the structure is used. Addr TIPCAddr raw RawSockaddrTIPC } // TIPCAddr is implemented by types that can be used as an address for // SockaddrTIPC. It is only implemented by *TIPCSocketAddr, *TIPCServiceRange, // and *TIPCServiceName. type TIPCAddr interface { tipcAddrtype() uint8 tipcAddr() [12]byte } func (sa *TIPCSocketAddr) tipcAddr() [12]byte { var out [12]byte copy(out[:], (*(*[unsafe.Sizeof(TIPCSocketAddr{})]byte)(unsafe.Pointer(sa)))[:]) return out } func (sa *TIPCSocketAddr) tipcAddrtype() uint8 { return TIPC_SOCKET_ADDR } func (sa *TIPCServiceRange) tipcAddr() [12]byte { var out [12]byte copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceRange{})]byte)(unsafe.Pointer(sa)))[:]) return out } func (sa *TIPCServiceRange) tipcAddrtype() uint8 { return TIPC_SERVICE_RANGE } func (sa *TIPCServiceName) tipcAddr() [12]byte { var out [12]byte copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceName{})]byte)(unsafe.Pointer(sa)))[:]) return out } func (sa *TIPCServiceName) tipcAddrtype() uint8 { return TIPC_SERVICE_ADDR } func (sa *SockaddrTIPC) sockaddr() (unsafe.Pointer, _Socklen, error) { if sa.Addr == nil { return nil, 0, EINVAL } sa.raw.Family = AF_TIPC sa.raw.Scope = int8(sa.Scope) sa.raw.Addrtype = sa.Addr.tipcAddrtype() sa.raw.Addr = sa.Addr.tipcAddr() return unsafe.Pointer(&sa.raw), SizeofSockaddrTIPC, nil } // SockaddrL2TPIP implements the Sockaddr interface for IPPROTO_L2TP/AF_INET sockets. type SockaddrL2TPIP struct { Addr [4]byte ConnId uint32 raw RawSockaddrL2TPIP } func (sa *SockaddrL2TPIP) sockaddr() (unsafe.Pointer, _Socklen, error) { sa.raw.Family = AF_INET sa.raw.Conn_id = sa.ConnId sa.raw.Addr = sa.Addr return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP, nil } // SockaddrL2TPIP6 implements the Sockaddr interface for IPPROTO_L2TP/AF_INET6 sockets. type SockaddrL2TPIP6 struct { Addr [16]byte ZoneId uint32 ConnId uint32 raw RawSockaddrL2TPIP6 } func (sa *SockaddrL2TPIP6) sockaddr() (unsafe.Pointer, _Socklen, error) { sa.raw.Family = AF_INET6 sa.raw.Conn_id = sa.ConnId sa.raw.Scope_id = sa.ZoneId sa.raw.Addr = sa.Addr return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP6, nil } // SockaddrIUCV implements the Sockaddr interface for AF_IUCV sockets. type SockaddrIUCV struct { UserID string Name string raw RawSockaddrIUCV } func (sa *SockaddrIUCV) sockaddr() (unsafe.Pointer, _Socklen, error) { sa.raw.Family = AF_IUCV // These are EBCDIC encoded by the kernel, but we still need to pad them // with blanks. Initializing with blanks allows the caller to feed in either // a padded or an unpadded string. for i := 0; i < 8; i++ { sa.raw.Nodeid[i] = ' ' sa.raw.User_id[i] = ' ' sa.raw.Name[i] = ' ' } if len(sa.UserID) > 8 || len(sa.Name) > 8 { return nil, 0, EINVAL } for i, b := range []byte(sa.UserID[:]) { sa.raw.User_id[i] = int8(b) } for i, b := range []byte(sa.Name[:]) { sa.raw.Name[i] = int8(b) } return unsafe.Pointer(&sa.raw), SizeofSockaddrIUCV, nil } type SockaddrNFC struct { DeviceIdx uint32 TargetIdx uint32 NFCProtocol uint32 raw RawSockaddrNFC } func (sa *SockaddrNFC) sockaddr() (unsafe.Pointer, _Socklen, error) { sa.raw.Sa_family = AF_NFC sa.raw.Dev_idx = sa.DeviceIdx sa.raw.Target_idx = sa.TargetIdx sa.raw.Nfc_protocol = sa.NFCProtocol return unsafe.Pointer(&sa.raw), SizeofSockaddrNFC, nil } type SockaddrNFCLLCP struct { DeviceIdx uint32 TargetIdx uint32 NFCProtocol uint32 DestinationSAP uint8 SourceSAP uint8 ServiceName string raw RawSockaddrNFCLLCP } func (sa *SockaddrNFCLLCP) sockaddr() (unsafe.Pointer, _Socklen, error) { sa.raw.Sa_family = AF_NFC sa.raw.Dev_idx = sa.DeviceIdx sa.raw.Target_idx = sa.TargetIdx sa.raw.Nfc_protocol = sa.NFCProtocol sa.raw.Dsap = sa.DestinationSAP sa.raw.Ssap = sa.SourceSAP if len(sa.ServiceName) > len(sa.raw.Service_name) { return nil, 0, EINVAL } copy(sa.raw.Service_name[:], sa.ServiceName) sa.raw.SetServiceNameLen(len(sa.ServiceName)) return unsafe.Pointer(&sa.raw), SizeofSockaddrNFCLLCP, nil } var socketProtocol = func(fd int) (int, error) { return GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL) } func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) { switch rsa.Addr.Family { case AF_NETLINK: pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa)) sa := new(SockaddrNetlink) sa.Family = pp.Family sa.Pad = pp.Pad sa.Pid = pp.Pid sa.Groups = pp.Groups return sa, nil case AF_PACKET: pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa)) sa := new(SockaddrLinklayer) sa.Protocol = pp.Protocol sa.Ifindex = int(pp.Ifindex) sa.Hatype = pp.Hatype sa.Pkttype = pp.Pkttype sa.Halen = pp.Halen sa.Addr = pp.Addr return sa, nil case AF_UNIX: pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa)) sa := new(SockaddrUnix) if pp.Path[0] == 0 { // "Abstract" Unix domain socket. // Rewrite leading NUL as @ for textual display. // (This is the standard convention.) // Not friendly to overwrite in place, // but the callers below don't care. pp.Path[0] = '@' } // Assume path ends at NUL. // This is not technically the Linux semantics for // abstract Unix domain sockets--they are supposed // to be uninterpreted fixed-size binary blobs--but // everyone uses this convention. n := 0 for n < len(pp.Path) && pp.Path[n] != 0 { n++ } bytes := (*[len(pp.Path)]byte)(unsafe.Pointer(&pp.Path[0]))[0:n] sa.Name = string(bytes) return sa, nil case AF_INET: proto, err := socketProtocol(fd) if err != nil { return nil, err } switch proto { case IPPROTO_L2TP: pp := (*RawSockaddrL2TPIP)(unsafe.Pointer(rsa)) sa := new(SockaddrL2TPIP) sa.ConnId = pp.Conn_id sa.Addr = pp.Addr return sa, nil default: pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa)) sa := new(SockaddrInet4) p := (*[2]byte)(unsafe.Pointer(&pp.Port)) sa.Port = int(p[0])<<8 + int(p[1]) sa.Addr = pp.Addr return sa, nil } case AF_INET6: proto, err := socketProtocol(fd) if err != nil { return nil, err } switch proto { case IPPROTO_L2TP: pp := (*RawSockaddrL2TPIP6)(unsafe.Pointer(rsa)) sa := new(SockaddrL2TPIP6) sa.ConnId = pp.Conn_id sa.ZoneId = pp.Scope_id sa.Addr = pp.Addr return sa, nil default: pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa)) sa := new(SockaddrInet6) p := (*[2]byte)(unsafe.Pointer(&pp.Port)) sa.Port = int(p[0])<<8 + int(p[1]) sa.ZoneId = pp.Scope_id sa.Addr = pp.Addr return sa, nil } case AF_VSOCK: pp := (*RawSockaddrVM)(unsafe.Pointer(rsa)) sa := &SockaddrVM{ CID: pp.Cid, Port: pp.Port, Flags: pp.Flags, } return sa, nil case AF_BLUETOOTH: proto, err := socketProtocol(fd) if err != nil { return nil, err } // only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections switch proto { case BTPROTO_L2CAP: pp := (*RawSockaddrL2)(unsafe.Pointer(rsa)) sa := &SockaddrL2{ PSM: pp.Psm, CID: pp.Cid, Addr: pp.Bdaddr, AddrType: pp.Bdaddr_type, } return sa, nil case BTPROTO_RFCOMM: pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa)) sa := &SockaddrRFCOMM{ Channel: pp.Channel, Addr: pp.Bdaddr, } return sa, nil } case AF_XDP: pp := (*RawSockaddrXDP)(unsafe.Pointer(rsa)) sa := &SockaddrXDP{ Flags: pp.Flags, Ifindex: pp.Ifindex, QueueID: pp.Queue_id, SharedUmemFD: pp.Shared_umem_fd, } return sa, nil case AF_PPPOX: pp := (*RawSockaddrPPPoX)(unsafe.Pointer(rsa)) if binary.BigEndian.Uint32(pp[2:6]) != px_proto_oe { return nil, EINVAL } sa := &SockaddrPPPoE{ SID: binary.BigEndian.Uint16(pp[6:8]), Remote: pp[8:14], } for i := 14; i < 14+IFNAMSIZ; i++ { if pp[i] == 0 { sa.Dev = string(pp[14:i]) break } } return sa, nil case AF_TIPC: pp := (*RawSockaddrTIPC)(unsafe.Pointer(rsa)) sa := &SockaddrTIPC{ Scope: int(pp.Scope), } // Determine which union variant is present in pp.Addr by checking // pp.Addrtype. switch pp.Addrtype { case TIPC_SERVICE_RANGE: sa.Addr = (*TIPCServiceRange)(unsafe.Pointer(&pp.Addr)) case TIPC_SERVICE_ADDR: sa.Addr = (*TIPCServiceName)(unsafe.Pointer(&pp.Addr)) case TIPC_SOCKET_ADDR: sa.Addr = (*TIPCSocketAddr)(unsafe.Pointer(&pp.Addr)) default: return nil, EINVAL } return sa, nil case AF_IUCV: pp := (*RawSockaddrIUCV)(unsafe.Pointer(rsa)) var user [8]byte var name [8]byte for i := 0; i < 8; i++ { user[i] = byte(pp.User_id[i]) name[i] = byte(pp.Name[i]) } sa := &SockaddrIUCV{ UserID: string(user[:]), Name: string(name[:]), } return sa, nil case AF_CAN: proto, err := socketProtocol(fd) if err != nil { return nil, err } pp := (*RawSockaddrCAN)(unsafe.Pointer(rsa)) switch proto { case CAN_J1939: sa := &SockaddrCANJ1939{ Ifindex: int(pp.Ifindex), } name := (*[8]byte)(unsafe.Pointer(&sa.Name)) for i := 0; i < 8; i++ { name[i] = pp.Addr[i] } pgn := (*[4]byte)(unsafe.Pointer(&sa.PGN)) for i := 0; i < 4; i++ { pgn[i] = pp.Addr[i+8] } addr := (*[1]byte)(unsafe.Pointer(&sa.Addr)) addr[0] = pp.Addr[12] return sa, nil default: sa := &SockaddrCAN{ Ifindex: int(pp.Ifindex), } rx := (*[4]byte)(unsafe.Pointer(&sa.RxID)) for i := 0; i < 4; i++ { rx[i] = pp.Addr[i] } tx := (*[4]byte)(unsafe.Pointer(&sa.TxID)) for i := 0; i < 4; i++ { tx[i] = pp.Addr[i+4] } return sa, nil } case AF_NFC: proto, err := socketProtocol(fd) if err != nil { return nil, err } switch proto { case NFC_SOCKPROTO_RAW: pp := (*RawSockaddrNFC)(unsafe.Pointer(rsa)) sa := &SockaddrNFC{ DeviceIdx: pp.Dev_idx, TargetIdx: pp.Target_idx, NFCProtocol: pp.Nfc_protocol, } return sa, nil case NFC_SOCKPROTO_LLCP: pp := (*RawSockaddrNFCLLCP)(unsafe.Pointer(rsa)) if uint64(pp.Service_name_len) > uint64(len(pp.Service_name)) { return nil, EINVAL } sa := &SockaddrNFCLLCP{ DeviceIdx: pp.Dev_idx, TargetIdx: pp.Target_idx, NFCProtocol: pp.Nfc_protocol, DestinationSAP: pp.Dsap, SourceSAP: pp.Ssap, ServiceName: string(pp.Service_name[:pp.Service_name_len]), } return sa, nil default: return nil, EINVAL } } return nil, EAFNOSUPPORT } func Accept(fd int) (nfd int, sa Sockaddr, err error) { var rsa RawSockaddrAny var len _Socklen = SizeofSockaddrAny nfd, err = accept4(fd, &rsa, &len, 0) if err != nil { return } sa, err = anyToSockaddr(fd, &rsa) if err != nil { Close(nfd) nfd = 0 } return } func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) { var rsa RawSockaddrAny var len _Socklen = SizeofSockaddrAny nfd, err = accept4(fd, &rsa, &len, flags) if err != nil { return } if len > SizeofSockaddrAny { panic("RawSockaddrAny too small") } sa, err = anyToSockaddr(fd, &rsa) if err != nil { Close(nfd) nfd = 0 } return } func Getsockname(fd int) (sa Sockaddr, err error) { var rsa RawSockaddrAny var len _Socklen = SizeofSockaddrAny if err = getsockname(fd, &rsa, &len); err != nil { return } return anyToSockaddr(fd, &rsa) } func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) { var value IPMreqn vallen := _Socklen(SizeofIPMreqn) err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen) return &value, err } func GetsockoptUcred(fd, level, opt int) (*Ucred, error) { var value Ucred vallen := _Socklen(SizeofUcred) err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen) return &value, err } func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) { var value TCPInfo vallen := _Socklen(SizeofTCPInfo) err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen) return &value, err } // GetsockoptString returns the string value of the socket option opt for the // socket associated with fd at the given socket level. func GetsockoptString(fd, level, opt int) (string, error) { buf := make([]byte, 256) vallen := _Socklen(len(buf)) err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen) if err != nil { if err == ERANGE { buf = make([]byte, vallen) err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen) } if err != nil { return "", err } } return string(buf[:vallen-1]), nil } func GetsockoptTpacketStats(fd, level, opt int) (*TpacketStats, error) { var value TpacketStats vallen := _Socklen(SizeofTpacketStats) err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen) return &value, err } func GetsockoptTpacketStatsV3(fd, level, opt int) (*TpacketStatsV3, error) { var value TpacketStatsV3 vallen := _Socklen(SizeofTpacketStatsV3) err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen) return &value, err } func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) { return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq)) } func SetsockoptPacketMreq(fd, level, opt int, mreq *PacketMreq) error { return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq)) } // SetsockoptSockFprog attaches a classic BPF or an extended BPF program to a // socket to filter incoming packets. See 'man 7 socket' for usage information. func SetsockoptSockFprog(fd, level, opt int, fprog *SockFprog) error { return setsockopt(fd, level, opt, unsafe.Pointer(fprog), unsafe.Sizeof(*fprog)) } func SetsockoptCanRawFilter(fd, level, opt int, filter []CanFilter) error { var p unsafe.Pointer if len(filter) > 0 { p = unsafe.Pointer(&filter[0]) } return setsockopt(fd, level, opt, p, uintptr(len(filter)*SizeofCanFilter)) } func SetsockoptTpacketReq(fd, level, opt int, tp *TpacketReq) error { return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp)) } func SetsockoptTpacketReq3(fd, level, opt int, tp *TpacketReq3) error { return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp)) } func SetsockoptTCPRepairOpt(fd, level, opt int, o []TCPRepairOpt) (err error) { if len(o) == 0 { return EINVAL } return setsockopt(fd, level, opt, unsafe.Pointer(&o[0]), uintptr(SizeofTCPRepairOpt*len(o))) } // Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html) // KeyctlInt calls keyctl commands in which each argument is an int. // These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK, // KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT, // KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT, // KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT. //sys KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL // KeyctlBuffer calls keyctl commands in which the third and fourth // arguments are a buffer and its length, respectively. // These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE. //sys KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL // KeyctlString calls keyctl commands which return a string. // These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY. func KeyctlString(cmd int, id int) (string, error) { // We must loop as the string data may change in between the syscalls. // We could allocate a large buffer here to reduce the chance that the // syscall needs to be called twice; however, this is unnecessary as // the performance loss is negligible. var buffer []byte for { // Try to fill the buffer with data length, err := KeyctlBuffer(cmd, id, buffer, 0) if err != nil { return "", err } // Check if the data was written if length <= len(buffer) { // Exclude the null terminator return string(buffer[:length-1]), nil } // Make a bigger buffer if needed buffer = make([]byte, length) } } // Keyctl commands with special signatures. // KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command. // See the full documentation at: // http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) { createInt := 0 if create { createInt = 1 } return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0) } // KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the // key handle permission mask as described in the "keyctl setperm" section of // http://man7.org/linux/man-pages/man1/keyctl.1.html. // See the full documentation at: // http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html func KeyctlSetperm(id int, perm uint32) error { _, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0) return err } //sys keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL // KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command. // See the full documentation at: // http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html func KeyctlJoinSessionKeyring(name string) (ringid int, err error) { return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name) } //sys keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL // KeyctlSearch implements the KEYCTL_SEARCH command. // See the full documentation at: // http://man7.org/linux/man-pages/man3/keyctl_search.3.html func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) { return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid) } //sys keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL // KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This // command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice // of Iovec (each of which represents a buffer) instead of a single buffer. // See the full documentation at: // http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error { return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid) } //sys keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL // KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command // computes a Diffie-Hellman shared secret based on the provide params. The // secret is written to the provided buffer and the returned size is the number // of bytes written (returning an error if there is insufficient space in the // buffer). If a nil buffer is passed in, this function returns the minimum // buffer length needed to store the appropriate data. Note that this differs // from KEYCTL_READ's behavior which always returns the requested payload size. // See the full documentation at: // http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) { return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer) } // KeyctlRestrictKeyring implements the KEYCTL_RESTRICT_KEYRING command. This // command limits the set of keys that can be linked to the keyring, regardless // of keyring permissions. The command requires the "setattr" permission. // // When called with an empty keyType the command locks the keyring, preventing // any further keys from being linked to the keyring. // // The "asymmetric" keyType defines restrictions requiring key payloads to be // DER encoded X.509 certificates signed by keys in another keyring. Restrictions // for "asymmetric" include "builtin_trusted", "builtin_and_secondary_trusted", // "key_or_keyring:", and "key_or_keyring::chain". // // As of Linux 4.12, only the "asymmetric" keyType defines type-specific // restrictions. // // See the full documentation at: // http://man7.org/linux/man-pages/man3/keyctl_restrict_keyring.3.html // http://man7.org/linux/man-pages/man2/keyctl.2.html func KeyctlRestrictKeyring(ringid int, keyType string, restriction string) error { if keyType == "" { return keyctlRestrictKeyring(KEYCTL_RESTRICT_KEYRING, ringid) } return keyctlRestrictKeyringByType(KEYCTL_RESTRICT_KEYRING, ringid, keyType, restriction) } //sys keyctlRestrictKeyringByType(cmd int, arg2 int, keyType string, restriction string) (err error) = SYS_KEYCTL //sys keyctlRestrictKeyring(cmd int, arg2 int) (err error) = SYS_KEYCTL func recvmsgRaw(fd int, p, oob []byte, flags int, rsa *RawSockaddrAny) (n, oobn int, recvflags int, err error) { var msg Msghdr msg.Name = (*byte)(unsafe.Pointer(rsa)) msg.Namelen = uint32(SizeofSockaddrAny) var iov Iovec if len(p) > 0 { iov.Base = &p[0] iov.SetLen(len(p)) } var dummy byte if len(oob) > 0 { if len(p) == 0 { var sockType int sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE) if err != nil { return } // receive at least one normal byte if sockType != SOCK_DGRAM { iov.Base = &dummy iov.SetLen(1) } } msg.Control = &oob[0] msg.SetControllen(len(oob)) } msg.Iov = &iov msg.Iovlen = 1 if n, err = recvmsg(fd, &msg, flags); err != nil { return } oobn = int(msg.Controllen) recvflags = int(msg.Flags) return } func sendmsgN(fd int, p, oob []byte, ptr unsafe.Pointer, salen _Socklen, flags int) (n int, err error) { var msg Msghdr msg.Name = (*byte)(ptr) msg.Namelen = uint32(salen) var iov Iovec if len(p) > 0 { iov.Base = &p[0] iov.SetLen(len(p)) } var dummy byte if len(oob) > 0 { if len(p) == 0 { var sockType int sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE) if err != nil { return 0, err } // send at least one normal byte if sockType != SOCK_DGRAM { iov.Base = &dummy iov.SetLen(1) } } msg.Control = &oob[0] msg.SetControllen(len(oob)) } msg.Iov = &iov msg.Iovlen = 1 if n, err = sendmsg(fd, &msg, flags); err != nil { return 0, err } if len(oob) > 0 && len(p) == 0 { n = 0 } return n, nil } // BindToDevice binds the socket associated with fd to device. func BindToDevice(fd int, device string) (err error) { return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device) } //sys ptrace(request int, pid int, addr uintptr, data uintptr) (err error) func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) { // The peek requests are machine-size oriented, so we wrap it // to retrieve arbitrary-length data. // The ptrace syscall differs from glibc's ptrace. // Peeks returns the word in *data, not as the return value. var buf [SizeofPtr]byte // Leading edge. PEEKTEXT/PEEKDATA don't require aligned // access (PEEKUSER warns that it might), but if we don't // align our reads, we might straddle an unmapped page // boundary and not get the bytes leading up to the page // boundary. n := 0 if addr%SizeofPtr != 0 { err = ptrace(req, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0]))) if err != nil { return 0, err } n += copy(out, buf[addr%SizeofPtr:]) out = out[n:] } // Remainder. for len(out) > 0 { // We use an internal buffer to guarantee alignment. // It's not documented if this is necessary, but we're paranoid. err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0]))) if err != nil { return n, err } copied := copy(out, buf[0:]) n += copied out = out[copied:] } return n, nil } func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) { return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out) } func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) { return ptracePeek(PTRACE_PEEKDATA, pid, addr, out) } func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) { return ptracePeek(PTRACE_PEEKUSR, pid, addr, out) } func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) { // As for ptracePeek, we need to align our accesses to deal // with the possibility of straddling an invalid page. // Leading edge. n := 0 if addr%SizeofPtr != 0 { var buf [SizeofPtr]byte err = ptrace(peekReq, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0]))) if err != nil { return 0, err } n += copy(buf[addr%SizeofPtr:], data) word := *((*uintptr)(unsafe.Pointer(&buf[0]))) err = ptrace(pokeReq, pid, addr-addr%SizeofPtr, word) if err != nil { return 0, err } data = data[n:] } // Interior. for len(data) > SizeofPtr { word := *((*uintptr)(unsafe.Pointer(&data[0]))) err = ptrace(pokeReq, pid, addr+uintptr(n), word) if err != nil { return n, err } n += SizeofPtr data = data[SizeofPtr:] } // Trailing edge. if len(data) > 0 { var buf [SizeofPtr]byte err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0]))) if err != nil { return n, err } copy(buf[0:], data) word := *((*uintptr)(unsafe.Pointer(&buf[0]))) err = ptrace(pokeReq, pid, addr+uintptr(n), word) if err != nil { return n, err } n += len(data) } return n, nil } func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) { return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data) } func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) { return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data) } func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) { return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data) } func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) { return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout))) } func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) { return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs))) } func PtraceSetOptions(pid int, options int) (err error) { return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options)) } func PtraceGetEventMsg(pid int) (msg uint, err error) { var data _C_long err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data))) msg = uint(data) return } func PtraceCont(pid int, signal int) (err error) { return ptrace(PTRACE_CONT, pid, 0, uintptr(signal)) } func PtraceSyscall(pid int, signal int) (err error) { return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal)) } func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) } func PtraceInterrupt(pid int) (err error) { return ptrace(PTRACE_INTERRUPT, pid, 0, 0) } func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) } func PtraceSeize(pid int) (err error) { return ptrace(PTRACE_SEIZE, pid, 0, 0) } func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) } //sys reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error) func Reboot(cmd int) (err error) { return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "") } func direntIno(buf []byte) (uint64, bool) { return readInt(buf, unsafe.Offsetof(Dirent{}.Ino), unsafe.Sizeof(Dirent{}.Ino)) } func direntReclen(buf []byte) (uint64, bool) { return readInt(buf, unsafe.Offsetof(Dirent{}.Reclen), unsafe.Sizeof(Dirent{}.Reclen)) } func direntNamlen(buf []byte) (uint64, bool) { reclen, ok := direntReclen(buf) if !ok { return 0, false } return reclen - uint64(unsafe.Offsetof(Dirent{}.Name)), true } //sys mount(source string, target string, fstype string, flags uintptr, data *byte) (err error) func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) { // Certain file systems get rather angry and EINVAL if you give // them an empty string of data, rather than NULL. if data == "" { return mount(source, target, fstype, flags, nil) } datap, err := BytePtrFromString(data) if err != nil { return err } return mount(source, target, fstype, flags, datap) } //sys mountSetattr(dirfd int, pathname string, flags uint, attr *MountAttr, size uintptr) (err error) = SYS_MOUNT_SETATTR // MountSetattr is a wrapper for mount_setattr(2). // https://man7.org/linux/man-pages/man2/mount_setattr.2.html // // Requires kernel >= 5.12. func MountSetattr(dirfd int, pathname string, flags uint, attr *MountAttr) error { return mountSetattr(dirfd, pathname, flags, attr, unsafe.Sizeof(*attr)) } func Sendfile(outfd int, infd int, offset *int64, count int) (written int, err error) { if raceenabled { raceReleaseMerge(unsafe.Pointer(&ioSync)) } return sendfile(outfd, infd, offset, count) } // Sendto // Recvfrom // Socketpair /* * Direct access */ //sys Acct(path string) (err error) //sys AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error) //sys Adjtimex(buf *Timex) (state int, err error) //sysnb Capget(hdr *CapUserHeader, data *CapUserData) (err error) //sysnb Capset(hdr *CapUserHeader, data *CapUserData) (err error) //sys Chdir(path string) (err error) //sys Chroot(path string) (err error) //sys ClockGetres(clockid int32, res *Timespec) (err error) //sys ClockGettime(clockid int32, time *Timespec) (err error) //sys ClockNanosleep(clockid int32, flags int, request *Timespec, remain *Timespec) (err error) //sys Close(fd int) (err error) //sys CloseRange(first uint, last uint, flags uint) (err error) //sys CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error) //sys DeleteModule(name string, flags int) (err error) //sys Dup(oldfd int) (fd int, err error) func Dup2(oldfd, newfd int) error { return Dup3(oldfd, newfd, 0) } //sys Dup3(oldfd int, newfd int, flags int) (err error) //sysnb EpollCreate1(flag int) (fd int, err error) //sysnb EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error) //sys Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2 //sys Exit(code int) = SYS_EXIT_GROUP //sys Fallocate(fd int, mode uint32, off int64, len int64) (err error) //sys Fchdir(fd int) (err error) //sys Fchmod(fd int, mode uint32) (err error) //sys Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error) //sys Fdatasync(fd int) (err error) //sys Fgetxattr(fd int, attr string, dest []byte) (sz int, err error) //sys FinitModule(fd int, params string, flags int) (err error) //sys Flistxattr(fd int, dest []byte) (sz int, err error) //sys Flock(fd int, how int) (err error) //sys Fremovexattr(fd int, attr string) (err error) //sys Fsetxattr(fd int, attr string, dest []byte, flags int) (err error) //sys Fsync(fd int) (err error) //sys Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64 //sysnb Getpgid(pid int) (pgid int, err error) func Getpgrp() (pid int) { pid, _ = Getpgid(0) return } //sysnb Getpid() (pid int) //sysnb Getppid() (ppid int) //sys Getpriority(which int, who int) (prio int, err error) //sys Getrandom(buf []byte, flags int) (n int, err error) //sysnb Getrusage(who int, rusage *Rusage) (err error) //sysnb Getsid(pid int) (sid int, err error) //sysnb Gettid() (tid int) //sys Getxattr(path string, attr string, dest []byte) (sz int, err error) //sys InitModule(moduleImage []byte, params string) (err error) //sys InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error) //sysnb InotifyInit1(flags int) (fd int, err error) //sysnb InotifyRmWatch(fd int, watchdesc uint32) (success int, err error) //sysnb Kill(pid int, sig syscall.Signal) (err error) //sys Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG //sys Lgetxattr(path string, attr string, dest []byte) (sz int, err error) //sys Listxattr(path string, dest []byte) (sz int, err error) //sys Llistxattr(path string, dest []byte) (sz int, err error) //sys Lremovexattr(path string, attr string) (err error) //sys Lsetxattr(path string, attr string, data []byte, flags int) (err error) //sys MemfdCreate(name string, flags int) (fd int, err error) //sys Mkdirat(dirfd int, path string, mode uint32) (err error) //sys Mknodat(dirfd int, path string, mode uint32, dev int) (err error) //sys MoveMount(fromDirfd int, fromPathName string, toDirfd int, toPathName string, flags int) (err error) //sys Nanosleep(time *Timespec, leftover *Timespec) (err error) //sys OpenTree(dfd int, fileName string, flags uint) (r int, err error) //sys PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error) //sys PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT //sysnb Prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64 //sys Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error) //sys Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6 //sys read(fd int, p []byte) (n int, err error) //sys Removexattr(path string, attr string) (err error) //sys Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error) //sys RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error) //sys Setdomainname(p []byte) (err error) //sys Sethostname(p []byte) (err error) //sysnb Setpgid(pid int, pgid int) (err error) //sysnb Setsid() (pid int, err error) //sysnb Settimeofday(tv *Timeval) (err error) //sys Setns(fd int, nstype int) (err error) // PrctlRetInt performs a prctl operation specified by option and further // optional arguments arg2 through arg5 depending on option. It returns a // non-negative integer that is returned by the prctl syscall. func PrctlRetInt(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (int, error) { ret, _, err := Syscall6(SYS_PRCTL, uintptr(option), uintptr(arg2), uintptr(arg3), uintptr(arg4), uintptr(arg5), 0) if err != 0 { return 0, err } return int(ret), nil } // issue 1435. // On linux Setuid and Setgid only affects the current thread, not the process. // This does not match what most callers expect so we must return an error // here rather than letting the caller think that the call succeeded. func Setuid(uid int) (err error) { return EOPNOTSUPP } func Setgid(uid int) (err error) { return EOPNOTSUPP } // SetfsgidRetGid sets fsgid for current thread and returns previous fsgid set. // setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability. // If the call fails due to other reasons, current fsgid will be returned. func SetfsgidRetGid(gid int) (int, error) { return setfsgid(gid) } // SetfsuidRetUid sets fsuid for current thread and returns previous fsuid set. // setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability // If the call fails due to other reasons, current fsuid will be returned. func SetfsuidRetUid(uid int) (int, error) { return setfsuid(uid) } func Setfsgid(gid int) error { _, err := setfsgid(gid) return err } func Setfsuid(uid int) error { _, err := setfsuid(uid) return err } func Signalfd(fd int, sigmask *Sigset_t, flags int) (newfd int, err error) { return signalfd(fd, sigmask, _C__NSIG/8, flags) } //sys Setpriority(which int, who int, prio int) (err error) //sys Setxattr(path string, attr string, data []byte, flags int) (err error) //sys signalfd(fd int, sigmask *Sigset_t, maskSize uintptr, flags int) (newfd int, err error) = SYS_SIGNALFD4 //sys Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error) //sys Sync() //sys Syncfs(fd int) (err error) //sysnb Sysinfo(info *Sysinfo_t) (err error) //sys Tee(rfd int, wfd int, len int, flags int) (n int64, err error) //sysnb TimerfdCreate(clockid int, flags int) (fd int, err error) //sysnb TimerfdGettime(fd int, currValue *ItimerSpec) (err error) //sysnb TimerfdSettime(fd int, flags int, newValue *ItimerSpec, oldValue *ItimerSpec) (err error) //sysnb Tgkill(tgid int, tid int, sig syscall.Signal) (err error) //sysnb Times(tms *Tms) (ticks uintptr, err error) //sysnb Umask(mask int) (oldmask int) //sysnb Uname(buf *Utsname) (err error) //sys Unmount(target string, flags int) (err error) = SYS_UMOUNT2 //sys Unshare(flags int) (err error) //sys write(fd int, p []byte) (n int, err error) //sys exitThread(code int) (err error) = SYS_EXIT //sys readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ //sys writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE //sys readv(fd int, iovs []Iovec) (n int, err error) = SYS_READV //sys writev(fd int, iovs []Iovec) (n int, err error) = SYS_WRITEV //sys preadv(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PREADV //sys pwritev(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PWRITEV //sys preadv2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PREADV2 //sys pwritev2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PWRITEV2 func bytes2iovec(bs [][]byte) []Iovec { iovecs := make([]Iovec, len(bs)) for i, b := range bs { iovecs[i].SetLen(len(b)) if len(b) > 0 { iovecs[i].Base = &b[0] } else { iovecs[i].Base = (*byte)(unsafe.Pointer(&_zero)) } } return iovecs } // offs2lohi splits offs into its lower and upper unsigned long. On 64-bit // systems, hi will always be 0. On 32-bit systems, offs will be split in half. // preadv/pwritev chose this calling convention so they don't need to add a // padding-register for alignment on ARM. func offs2lohi(offs int64) (lo, hi uintptr) { return uintptr(offs), uintptr(uint64(offs) >> SizeofLong) } func Readv(fd int, iovs [][]byte) (n int, err error) { iovecs := bytes2iovec(iovs) n, err = readv(fd, iovecs) readvRacedetect(iovecs, n, err) return n, err } func Preadv(fd int, iovs [][]byte, offset int64) (n int, err error) { iovecs := bytes2iovec(iovs) lo, hi := offs2lohi(offset) n, err = preadv(fd, iovecs, lo, hi) readvRacedetect(iovecs, n, err) return n, err } func Preadv2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) { iovecs := bytes2iovec(iovs) lo, hi := offs2lohi(offset) n, err = preadv2(fd, iovecs, lo, hi, flags) readvRacedetect(iovecs, n, err) return n, err } func readvRacedetect(iovecs []Iovec, n int, err error) { if !raceenabled { return } for i := 0; n > 0 && i < len(iovecs); i++ { m := int(iovecs[i].Len) if m > n { m = n } n -= m if m > 0 { raceWriteRange(unsafe.Pointer(iovecs[i].Base), m) } } if err == nil { raceAcquire(unsafe.Pointer(&ioSync)) } } func Writev(fd int, iovs [][]byte) (n int, err error) { iovecs := bytes2iovec(iovs) if raceenabled { raceReleaseMerge(unsafe.Pointer(&ioSync)) } n, err = writev(fd, iovecs) writevRacedetect(iovecs, n) return n, err } func Pwritev(fd int, iovs [][]byte, offset int64) (n int, err error) { iovecs := bytes2iovec(iovs) if raceenabled { raceReleaseMerge(unsafe.Pointer(&ioSync)) } lo, hi := offs2lohi(offset) n, err = pwritev(fd, iovecs, lo, hi) writevRacedetect(iovecs, n) return n, err } func Pwritev2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) { iovecs := bytes2iovec(iovs) if raceenabled { raceReleaseMerge(unsafe.Pointer(&ioSync)) } lo, hi := offs2lohi(offset) n, err = pwritev2(fd, iovecs, lo, hi, flags) writevRacedetect(iovecs, n) return n, err } func writevRacedetect(iovecs []Iovec, n int) { if !raceenabled { return } for i := 0; n > 0 && i < len(iovecs); i++ { m := int(iovecs[i].Len) if m > n { m = n } n -= m if m > 0 { raceReadRange(unsafe.Pointer(iovecs[i].Base), m) } } } // mmap varies by architecture; see syscall_linux_*.go. //sys munmap(addr uintptr, length uintptr) (err error) var mapper = &mmapper{ active: make(map[*byte][]byte), mmap: mmap, munmap: munmap, } func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) { return mapper.Mmap(fd, offset, length, prot, flags) } func Munmap(b []byte) (err error) { return mapper.Munmap(b) } //sys Madvise(b []byte, advice int) (err error) //sys Mprotect(b []byte, prot int) (err error) //sys Mlock(b []byte) (err error) //sys Mlockall(flags int) (err error) //sys Msync(b []byte, flags int) (err error) //sys Munlock(b []byte) (err error) //sys Munlockall() (err error) // Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd, // using the specified flags. func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) { var p unsafe.Pointer if len(iovs) > 0 { p = unsafe.Pointer(&iovs[0]) } n, _, errno := Syscall6(SYS_VMSPLICE, uintptr(fd), uintptr(p), uintptr(len(iovs)), uintptr(flags), 0, 0) if errno != 0 { return 0, syscall.Errno(errno) } return int(n), nil } func isGroupMember(gid int) bool { groups, err := Getgroups() if err != nil { return false } for _, g := range groups { if g == gid { return true } } return false } //sys faccessat(dirfd int, path string, mode uint32) (err error) //sys Faccessat2(dirfd int, path string, mode uint32, flags int) (err error) func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) { if flags == 0 { return faccessat(dirfd, path, mode) } if err := Faccessat2(dirfd, path, mode, flags); err != ENOSYS && err != EPERM { return err } // The Linux kernel faccessat system call does not take any flags. // The glibc faccessat implements the flags itself; see // https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD // Because people naturally expect syscall.Faccessat to act // like C faccessat, we do the same. if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 { return EINVAL } var st Stat_t if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil { return err } mode &= 7 if mode == 0 { return nil } var uid int if flags&AT_EACCESS != 0 { uid = Geteuid() } else { uid = Getuid() } if uid == 0 { if mode&1 == 0 { // Root can read and write any file. return nil } if st.Mode&0111 != 0 { // Root can execute any file that anybody can execute. return nil } return EACCES } var fmode uint32 if uint32(uid) == st.Uid { fmode = (st.Mode >> 6) & 7 } else { var gid int if flags&AT_EACCESS != 0 { gid = Getegid() } else { gid = Getgid() } if uint32(gid) == st.Gid || isGroupMember(gid) { fmode = (st.Mode >> 3) & 7 } else { fmode = st.Mode & 7 } } if fmode&mode == mode { return nil } return EACCES } //sys nameToHandleAt(dirFD int, pathname string, fh *fileHandle, mountID *_C_int, flags int) (err error) = SYS_NAME_TO_HANDLE_AT //sys openByHandleAt(mountFD int, fh *fileHandle, flags int) (fd int, err error) = SYS_OPEN_BY_HANDLE_AT // fileHandle is the argument to nameToHandleAt and openByHandleAt. We // originally tried to generate it via unix/linux/types.go with "type // fileHandle C.struct_file_handle" but that generated empty structs // for mips64 and mips64le. Instead, hard code it for now (it's the // same everywhere else) until the mips64 generator issue is fixed. type fileHandle struct { Bytes uint32 Type int32 } // FileHandle represents the C struct file_handle used by // name_to_handle_at (see NameToHandleAt) and open_by_handle_at (see // OpenByHandleAt). type FileHandle struct { *fileHandle } // NewFileHandle constructs a FileHandle. func NewFileHandle(handleType int32, handle []byte) FileHandle { const hdrSize = unsafe.Sizeof(fileHandle{}) buf := make([]byte, hdrSize+uintptr(len(handle))) copy(buf[hdrSize:], handle) fh := (*fileHandle)(unsafe.Pointer(&buf[0])) fh.Type = handleType fh.Bytes = uint32(len(handle)) return FileHandle{fh} } func (fh *FileHandle) Size() int { return int(fh.fileHandle.Bytes) } func (fh *FileHandle) Type() int32 { return fh.fileHandle.Type } func (fh *FileHandle) Bytes() []byte { n := fh.Size() if n == 0 { return nil } return (*[1 << 30]byte)(unsafe.Pointer(uintptr(unsafe.Pointer(&fh.fileHandle.Type)) + 4))[:n:n] } // NameToHandleAt wraps the name_to_handle_at system call; it obtains // a handle for a path name. func NameToHandleAt(dirfd int, path string, flags int) (handle FileHandle, mountID int, err error) { var mid _C_int // Try first with a small buffer, assuming the handle will // only be 32 bytes. size := uint32(32 + unsafe.Sizeof(fileHandle{})) didResize := false for { buf := make([]byte, size) fh := (*fileHandle)(unsafe.Pointer(&buf[0])) fh.Bytes = size - uint32(unsafe.Sizeof(fileHandle{})) err = nameToHandleAt(dirfd, path, fh, &mid, flags) if err == EOVERFLOW { if didResize { // We shouldn't need to resize more than once return } didResize = true size = fh.Bytes + uint32(unsafe.Sizeof(fileHandle{})) continue } if err != nil { return } return FileHandle{fh}, int(mid), nil } } // OpenByHandleAt wraps the open_by_handle_at system call; it opens a // file via a handle as previously returned by NameToHandleAt. func OpenByHandleAt(mountFD int, handle FileHandle, flags int) (fd int, err error) { return openByHandleAt(mountFD, handle.fileHandle, flags) } // Klogset wraps the sys_syslog system call; it sets console_loglevel to // the value specified by arg and passes a dummy pointer to bufp. func Klogset(typ int, arg int) (err error) { var p unsafe.Pointer _, _, errno := Syscall(SYS_SYSLOG, uintptr(typ), uintptr(p), uintptr(arg)) if errno != 0 { return errnoErr(errno) } return nil } // RemoteIovec is Iovec with the pointer replaced with an integer. // It is used for ProcessVMReadv and ProcessVMWritev, where the pointer // refers to a location in a different process' address space, which // would confuse the Go garbage collector. type RemoteIovec struct { Base uintptr Len int } //sys ProcessVMReadv(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_READV //sys ProcessVMWritev(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_WRITEV //sys PidfdOpen(pid int, flags int) (fd int, err error) = SYS_PIDFD_OPEN //sys PidfdGetfd(pidfd int, targetfd int, flags int) (fd int, err error) = SYS_PIDFD_GETFD //sys PidfdSendSignal(pidfd int, sig Signal, info *Siginfo, flags int) (err error) = SYS_PIDFD_SEND_SIGNAL //sys shmat(id int, addr uintptr, flag int) (ret uintptr, err error) //sys shmctl(id int, cmd int, buf *SysvShmDesc) (result int, err error) //sys shmdt(addr uintptr) (err error) //sys shmget(key int, size int, flag int) (id int, err error) //sys getitimer(which int, currValue *Itimerval) (err error) //sys setitimer(which int, newValue *Itimerval, oldValue *Itimerval) (err error) // MakeItimerval creates an Itimerval from interval and value durations. func MakeItimerval(interval, value time.Duration) Itimerval { return Itimerval{ Interval: NsecToTimeval(interval.Nanoseconds()), Value: NsecToTimeval(value.Nanoseconds()), } } // A value which may be passed to the which parameter for Getitimer and // Setitimer. type ItimerWhich int // Possible which values for Getitimer and Setitimer. const ( ItimerReal ItimerWhich = ITIMER_REAL ItimerVirtual ItimerWhich = ITIMER_VIRTUAL ItimerProf ItimerWhich = ITIMER_PROF ) // Getitimer wraps getitimer(2) to return the current value of the timer // specified by which. func Getitimer(which ItimerWhich) (Itimerval, error) { var it Itimerval if err := getitimer(int(which), &it); err != nil { return Itimerval{}, err } return it, nil } // Setitimer wraps setitimer(2) to arm or disarm the timer specified by which. // It returns the previous value of the timer. // // If the Itimerval argument is the zero value, the timer will be disarmed. func Setitimer(which ItimerWhich, it Itimerval) (Itimerval, error) { var prev Itimerval if err := setitimer(int(which), &it, &prev); err != nil { return Itimerval{}, err } return prev, nil } /* * Unimplemented */ // AfsSyscall // ArchPrctl // Brk // ClockNanosleep // ClockSettime // Clone // EpollCtlOld // EpollPwait // EpollWaitOld // Execve // Fork // Futex // GetKernelSyms // GetMempolicy // GetRobustList // GetThreadArea // Getpmsg // IoCancel // IoDestroy // IoGetevents // IoSetup // IoSubmit // IoprioGet // IoprioSet // KexecLoad // LookupDcookie // Mbind // MigratePages // Mincore // ModifyLdt // Mount // MovePages // MqGetsetattr // MqNotify // MqOpen // MqTimedreceive // MqTimedsend // MqUnlink // Mremap // Msgctl // Msgget // Msgrcv // Msgsnd // Nfsservctl // Personality // Pselect6 // Ptrace // Putpmsg // Quotactl // Readahead // Readv // RemapFilePages // RestartSyscall // RtSigaction // RtSigpending // RtSigprocmask // RtSigqueueinfo // RtSigreturn // RtSigsuspend // RtSigtimedwait // SchedGetPriorityMax // SchedGetPriorityMin // SchedGetparam // SchedGetscheduler // SchedRrGetInterval // SchedSetparam // SchedYield // Security // Semctl // Semget // Semop // Semtimedop // SetMempolicy // SetRobustList // SetThreadArea // SetTidAddress // Sigaltstack // Swapoff // Swapon // Sysfs // TimerCreate // TimerDelete // TimerGetoverrun // TimerGettime // TimerSettime // Tkill (obsolete) // Tuxcall // Umount2 // Uselib // Utimensat // Vfork // Vhangup // Vserver // _Sysctl