/* Herradura - a Key exchange scheme in the style of Diffie-Hellman Key Exchange. Copyright (C) 2017 Omar Alejandro Herrera Reyna This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . golang implementation by Russ Magee (rmagee_at_gmail.com) */ package herradurakex // Implementation of HKEx-wrapped versions of the golang standard // net package interfaces, allowing clients and servers to simply replace // 'net.Dial' and 'net.Listen' with 'hkex.Dial' and 'hkex.Listen'. import ( "bytes" "crypto/cipher" "fmt" "math/big" "net" ) /*---------------------------------------------------------------------*/ // Conn is a HKex connection - a drop-in replacement for net.Conn type Conn struct { c net.Conn // which also implements io.Reader, io.Writer, ... h *HerraduraKEx cipheropts uint32 // post-KEx cipher/hmac options opts uint32 // post-KEx protocol options r cipher.Stream w cipher.Stream } // ConnOpts returns the cipher/hmac options value, which is sent to the // peer but is not itself part of the KEx. // // (Used for protocol-level negotiations after KEx such as // cipher/HMAC algorithm options etc.) func (c *Conn) ConnOpts() uint32 { return c.cipheropts } // SetConnOpts sets the cipher/hmac options value, which is sent to the // peer as part of KEx but not part of the KEx itself. // // opts - bitfields for cipher and hmac alg. to use after KEx func (c *Conn) SetConnOpts(copts uint32) { c.cipheropts = copts } // Opts returns the protocol options value, which is sent to the peer // but is not itself part of the KEx or connection (cipher/hmac) setup. // // Consumers of this lib may use this for protocol-level options not part // of the KEx or encryption info used by the connection. func (c *Conn) Opts() uint32 { return c.opts } // SetOpts sets the protocol options value, which is sent to the peer // but is not itself part of the KEx or connection (cipher/hmac) setup. // // Consumers of this lib may use this for protocol-level options not part // of the KEx of encryption info used by the connection. // // opts - a uint32, caller-defined func (c *Conn) SetOpts(opts uint32) { c.opts = opts } func (c *Conn) applyConnExtensions(extensions ...string) { for _, s := range extensions { switch s { case "C_AES_256": fmt.Println("[extension arg = C_AES_256]") c.cipheropts &= (0xFFFFFF00) c.cipheropts |= CAlgAES256 break case "C_TWOFISH_128": fmt.Println("[extension arg = C_TWOFISH_128]") c.cipheropts &= (0xFFFFFF00) c.cipheropts |= CAlgTwofish128 break case "C_BLOWFISH_64": fmt.Println("[extension arg = C_BLOWFISH_64]") c.cipheropts &= (0xFFFFFF00) c.cipheropts |= CAlgBlowfish64 break case "H_SHA256": fmt.Println("[extension arg = H_SHA256]") c.cipheropts &= (0xFFFF00FF) c.cipheropts |= (HmacSHA256 << 8) break default: fmt.Printf("[Dial ext \"%s\" ignored]\n", s) break } } } // Dial as net.Dial(), but with implicit HKEx PeerD read on connect // Can be called like net.Dial(), defaulting to C_AES_256/H_SHA256, // or additional option arguments can be passed amongst the following: // // "C_AES_256" | "C_TWOFISH_128" // // "H_SHA256" func Dial(protocol string, ipport string, extensions ...string) (hc *Conn, err error) { c, err := net.Dial(protocol, ipport) if err != nil { return nil, err } hc = &Conn{c: c, h: New(0, 0), cipheropts: 0, opts: 0, r: nil, w: nil} hc.applyConnExtensions(extensions...) fmt.Fprintf(c, "0x%s\n%08x:%08x\n", hc.h.d.Text(16), hc.cipheropts, hc.opts) d := big.NewInt(0) _, err = fmt.Fscanln(c, d) if err != nil { return nil, err } _, err = fmt.Fscanf(c, "%08x:%08x\n", &hc.cipheropts, &hc.opts) if err != nil { return nil, err } hc.h.PeerD = d fmt.Printf("** D:%s\n", hc.h.d.Text(16)) fmt.Printf("**(c)** peerD:%s\n", hc.h.PeerD.Text(16)) hc.h.FA() fmt.Printf("**(c)** FA:%s\n", hc.h.fa) hc.r = hc.getStream(hc.h.fa) hc.w = hc.getStream(hc.h.fa) return } // Close a hkex.Conn func (c *Conn) Close() (err error) { err = c.c.Close() fmt.Println("[Conn Closing]") return } /*---------------------------------------------------------------------*/ // HKExListener is a Listener conforming to net.Listener // // See go doc net.Listener type HKExListener struct { l net.Listener } // Listen for a connection // // See go doc net.Listen func Listen(protocol string, ipport string) (hl HKExListener, e error) { l, err := net.Listen(protocol, ipport) if err != nil { return HKExListener{nil}, err } fmt.Println("[Listening]") hl.l = l return } // Close a hkex Listener // // See go doc io.Close func (hl *HKExListener) Close() error { fmt.Println("[Listener Closed]") return hl.l.Close() } // Accept a client connection, conforming to net.Listener.Accept() // // See go doc net.Listener.Accept func (hl *HKExListener) Accept() (hc Conn, err error) { c, err := hl.l.Accept() if err != nil { return Conn{c: nil, h: nil, cipheropts: 0, opts: 0, r: nil, w: nil}, err } fmt.Println("[Accepted]") hc = Conn{c: c, h: New(0, 0), cipheropts: 0, opts: 0, r: nil, w: nil} d := big.NewInt(0) _, err = fmt.Fscanln(c, d) if err != nil { return hc, err } _, err = fmt.Fscanf(c, "%08x:%08x\n", &hc.cipheropts, &hc.opts) if err != nil { return hc, err } hc.h.PeerD = d fmt.Printf("** D:%s\n", hc.h.d.Text(16)) fmt.Printf("**(s)** peerD:%s\n", hc.h.PeerD.Text(16)) hc.h.FA() fmt.Printf("**(s)** FA:%s\n", hc.h.fa) fmt.Fprintf(c, "0x%s\n%08x:%08x\n", hc.h.d.Text(16), hc.cipheropts, hc.opts) hc.r = hc.getStream(hc.h.fa) hc.w = hc.getStream(hc.h.fa) return } /*---------------------------------------------------------------------*/ // Read into a byte slice // // See go doc io.Reader func (c Conn) Read(b []byte) (n int, err error) { fmt.Printf("[Decrypting...]\n") n, err = c.c.Read(b) if err != nil && err.Error() != "EOF" { panic(err) } fmt.Printf(" ctext:%+v\n", b[:n]) // print only used portion db := bytes.NewBuffer(b[:n]) // The StreamReader acts like a pipe, decrypting // whatever is available and forwarding the result // to the parameter of Read() as a normal io.Reader rs := &cipher.StreamReader{S: c.r, R: db} n, err = rs.Read(b) fmt.Printf(" ptext:%+v\n", b[:n]) return } // Write a byte slice // // See go doc io.Writer func (c Conn) Write(b []byte) (n int, err error) { fmt.Printf("[Encrypting...]\n") fmt.Printf(" ptext:%+v\n", b) var wb bytes.Buffer // The StreamWriter acts like a pipe, forwarding whatever is // written to it through the cipher, encrypting as it goes ws := &cipher.StreamWriter{S: c.w, W: &wb} _, err = ws.Write(b) if err != nil { panic(err) } fmt.Printf(" ctext:%+v\n", wb.Bytes()) n, err = c.c.Write(wb.Bytes()) return } // Return c coerced into a HKEx Conn (which implements interface net.Conn) // Only useful if one wants to convert an open connection later to HKEx // (Use Dial() instead to start with HKEx automatically.) /* func NewHKExConn(c *net.Conn) (hc *Conn) { hc = new(Conn) hc.c = *c hc.h = New(0, 0) d := big.NewInt(0) _, err := fmt.Fscanln(hc.c, d) if err != nil { // } hc.h.PeerD = d fmt.Printf("** D:%s\n", hc.h.d.Text(16)) fmt.Printf("** peerD:%s\n", hc.h.PeerD.Text(16)) return } */