mirror of https://gogs.blitter.com/RLabs/xs
				
				
				
			
		
			
				
	
	
		
			1776 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			Go
		
	
	
		
			Executable File
		
	
	
			
		
		
	
	
			1776 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			Go
		
	
	
		
			Executable File
		
	
	
// xsnet.go - net.Conn compatible channel setup with encrypted/HMAC
 | 
						|
// negotiation
 | 
						|
 | 
						|
// Copyright (c) 2017-2020 Russell Magee
 | 
						|
// Licensed under the terms of the MIT license (see LICENSE.mit in this
 | 
						|
// distribution)
 | 
						|
//
 | 
						|
// golang implementation by Russ Magee (rmagee_at_gmail.com)
 | 
						|
 | 
						|
package xsnet
 | 
						|
 | 
						|
// Implementation of key-exchange-wrapped versions of the golang standard
 | 
						|
// net package interfaces, allowing clients and servers to simply replace
 | 
						|
// 'net.Dial' and 'net.Listen' with 'hkex.Dial' and 'hkex.Listen'
 | 
						|
// (though some extra methods are implemented and must be used
 | 
						|
//  for things outside of the scope of plain sockets).
 | 
						|
 | 
						|
// DESIGN PRINCIPLE: There shall be no protocol features which enable
 | 
						|
// downgrade attacks. The server shall have final authority to accept or
 | 
						|
// reject any and all proposed KEx and connection parameters proposed by
 | 
						|
// clients at setup. Action on denial shall be a simple server disconnect
 | 
						|
// with possibly a status code sent so client can determine why connection
 | 
						|
// was denied (compare to how failed auth is communicated to client).
 | 
						|
 | 
						|
import (
 | 
						|
	"bytes"
 | 
						|
	"crypto/cipher"
 | 
						|
	crand "crypto/rand"
 | 
						|
	"encoding/binary"
 | 
						|
	"encoding/hex"
 | 
						|
	"errors"
 | 
						|
	"fmt"
 | 
						|
	"hash"
 | 
						|
	"io"
 | 
						|
	"io/ioutil"
 | 
						|
	"log"
 | 
						|
	"math/big"
 | 
						|
	"math/rand"
 | 
						|
	"net"
 | 
						|
	"strings"
 | 
						|
	"sync"
 | 
						|
	"time"
 | 
						|
 | 
						|
	hkex "blitter.com/go/herradurakex"
 | 
						|
	"blitter.com/go/kyber"
 | 
						|
	"blitter.com/go/newhope"
 | 
						|
	"blitter.com/go/xs/logger"
 | 
						|
	frodo "github.com/kuking/go-frodokem"
 | 
						|
)
 | 
						|
 | 
						|
/*---------------------------------------------------------------------*/
 | 
						|
const PAD_SZ = 32     // max size of padding applied to each packet
 | 
						|
const HMAC_CHK_SZ = 8 // leading bytes of HMAC to xmit for verification
 | 
						|
 | 
						|
type (
 | 
						|
	WinSize struct {
 | 
						|
		Rows uint16
 | 
						|
		Cols uint16
 | 
						|
	}
 | 
						|
 | 
						|
	// chaffconfig captures attributes used to send chaff packets betwixt
 | 
						|
	// client and server connections, to obscure true traffic timing and
 | 
						|
	// patterns
 | 
						|
	// see: https://en.wikipedia.org/wiki/chaff_(countermeasure)
 | 
						|
	ChaffConfig struct {
 | 
						|
		shutdown bool //set to inform chaffHelper to shut down
 | 
						|
		msecsMin uint //msecs min interval
 | 
						|
		msecsMax uint //msecs max interval
 | 
						|
		szMax    uint // max size in bytes
 | 
						|
	}
 | 
						|
 | 
						|
	// Conn is a connection wrapping net.Conn with KEX & session state
 | 
						|
	Conn struct {
 | 
						|
		kex KEXAlg // KEX/KEM proposal (client -> server)
 | 
						|
 | 
						|
		m *sync.Mutex // (internal)
 | 
						|
		c *net.Conn   // which also implements io.Reader, io.Writer, ...
 | 
						|
 | 
						|
		logCipherText  bool // somewhat expensive, for debugging
 | 
						|
		logPlainText   bool // INSECURE and somewhat expensive, for debugging
 | 
						|
		logTunActivity bool
 | 
						|
 | 
						|
		cipheropts uint32 // post-KEx cipher/hmac options
 | 
						|
		opts       uint32 // post-KEx protocol options (caller-defined)
 | 
						|
		WinCh      chan WinSize
 | 
						|
		Rows       uint16
 | 
						|
		Cols       uint16
 | 
						|
 | 
						|
		keepalive uint // if this reaches zero, conn is considered dead
 | 
						|
		rekey     uint // if nonzero, rekeying interval in seconds
 | 
						|
		Pproc     int  // proc ID of command run on this conn
 | 
						|
		chaff     ChaffConfig
 | 
						|
		tuns      *map[uint16](*TunEndpoint)
 | 
						|
 | 
						|
		closeStat *CSOType      // close status (CSOExitStatus)
 | 
						|
		r         cipher.Stream //read cipherStream
 | 
						|
		rm        hash.Hash
 | 
						|
		w         cipher.Stream //write cipherStream
 | 
						|
		wm        hash.Hash
 | 
						|
		dBuf      *bytes.Buffer //decrypt buffer for Read()
 | 
						|
	}
 | 
						|
)
 | 
						|
 | 
						|
var (
 | 
						|
	Log *logger.Writer // reg. syslog output (no -d)
 | 
						|
)
 | 
						|
 | 
						|
// Return string (suitable as map key) for a tunnel endpoint
 | 
						|
func (t *TunEndpoint) String() string {
 | 
						|
	return fmt.Sprintf("[%d:%s:%d]", t.Lport, t.Peer, t.Rport)
 | 
						|
}
 | 
						|
 | 
						|
func (k *KEXAlg) String() string {
 | 
						|
	switch *k {
 | 
						|
	case KEX_HERRADURA256:
 | 
						|
		return "KEX_HERRADURA256"
 | 
						|
	case KEX_HERRADURA512:
 | 
						|
		return "KEX_HERRADURA512"
 | 
						|
	case KEX_HERRADURA1024:
 | 
						|
		return "KEX_HERRADURA1024"
 | 
						|
	case KEX_HERRADURA2048:
 | 
						|
		return "KEX_HERRADURA2048"
 | 
						|
	case KEX_KYBER512:
 | 
						|
		return "KEX_KYBER512"
 | 
						|
	case KEX_KYBER768:
 | 
						|
		return "KEX_KYBER768"
 | 
						|
	case KEX_KYBER1024:
 | 
						|
		return "KEX_KYBER1024"
 | 
						|
	case KEX_NEWHOPE:
 | 
						|
		return "KEX_NEWHOPE"
 | 
						|
	case KEX_NEWHOPE_SIMPLE:
 | 
						|
		return "KEX_NEWHOPE_SIMPLE"
 | 
						|
	case KEX_FRODOKEM_1344AES:
 | 
						|
		return "KEX_FRODOKEM_1344AES"
 | 
						|
	case KEX_FRODOKEM_1344SHAKE:
 | 
						|
		return "KEX_FRODOKEM_1344SHAKE"
 | 
						|
	case KEX_FRODOKEM_976AES:
 | 
						|
		return "KEX_FRODOKEM_976AES"
 | 
						|
	case KEX_FRODOKEM_976SHAKE:
 | 
						|
		return "KEX_FRODOKEM_976SHAKE"
 | 
						|
	default:
 | 
						|
		return "KEX_ERR_UNK"
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func (hc *Conn) CAlg() CSCipherAlg {
 | 
						|
	return CSCipherAlg(hc.cipheropts & 0x0FF)
 | 
						|
}
 | 
						|
 | 
						|
func (c *CSCipherAlg) String() string {
 | 
						|
	switch *c & 0x0FF {
 | 
						|
	case CAlgAES256:
 | 
						|
		return "C_AES_256"
 | 
						|
	case CAlgTwofish128:
 | 
						|
		return "C_TWOFISH_128"
 | 
						|
	case CAlgBlowfish64:
 | 
						|
		return "C_BLOWFISH_64"
 | 
						|
	case CAlgCryptMT1:
 | 
						|
		return "C_CRYPTMT1"
 | 
						|
	case CAlgHopscotch:
 | 
						|
		return "C_HOPSCOTCH"
 | 
						|
	case CAlgChaCha20_12:
 | 
						|
		return "C_CHACHA20_12"
 | 
						|
	default:
 | 
						|
		return "C_ERR_UNK"
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func (hc *Conn) HAlg() CSHmacAlg {
 | 
						|
	return CSHmacAlg((hc.cipheropts >> 8) & 0x0FF)
 | 
						|
}
 | 
						|
 | 
						|
func (h *CSHmacAlg) String() string {
 | 
						|
	switch *h & 0x0FF {
 | 
						|
	case HmacSHA256:
 | 
						|
		return "H_SHA256"
 | 
						|
	case HmacSHA512:
 | 
						|
		return "H_SHA512"
 | 
						|
	case HmacWHIRLPOOL:
 | 
						|
		return "H_WHIRLPOOL"
 | 
						|
	default:
 | 
						|
		return "H_ERR_UNK"
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func _initLogging(d bool, c string, f logger.Priority) {
 | 
						|
	if Log == nil {
 | 
						|
		Log, _ = logger.New(f, fmt.Sprintf("%s:xsnet", c))
 | 
						|
	}
 | 
						|
	if d {
 | 
						|
		log.SetFlags(0) // syslog will have date,time
 | 
						|
		log.SetOutput(Log)
 | 
						|
	} else {
 | 
						|
		log.SetOutput(ioutil.Discard)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func Init(d bool, c string, f logger.Priority) {
 | 
						|
	_initLogging(d, c, f)
 | 
						|
}
 | 
						|
 | 
						|
func (hc *Conn) Lock() {
 | 
						|
	hc.m.Lock()
 | 
						|
}
 | 
						|
 | 
						|
func (hc *Conn) Unlock() {
 | 
						|
	hc.m.Unlock()
 | 
						|
}
 | 
						|
 | 
						|
func (hc *Conn) KEX() KEXAlg {
 | 
						|
	return hc.kex
 | 
						|
}
 | 
						|
 | 
						|
func (hc *Conn) GetStatus() CSOType {
 | 
						|
	return *hc.closeStat
 | 
						|
}
 | 
						|
 | 
						|
func (hc *Conn) SetStatus(stat CSOType) {
 | 
						|
	*hc.closeStat = stat
 | 
						|
	log.Println("closeStat:", *hc.closeStat)
 | 
						|
}
 | 
						|
 | 
						|
// ConnOpts returns the cipher/hmac options value, which is sent to the
 | 
						|
// peer but is not itself part of the KEx.
 | 
						|
//
 | 
						|
// (Used for protocol-level negotiations after KEx such as
 | 
						|
// cipher/HMAC algorithm options etc.)
 | 
						|
func (hc *Conn) ConnOpts() uint32 {
 | 
						|
	return hc.cipheropts
 | 
						|
}
 | 
						|
 | 
						|
// SetConnOpts sets the cipher/hmac options value, which is sent to the
 | 
						|
// peer as part of KEx but not part of the KEx itself.
 | 
						|
//
 | 
						|
// opts - bitfields for cipher and hmac alg. to use after KEx
 | 
						|
func (hc *Conn) SetConnOpts(copts uint32) {
 | 
						|
	hc.cipheropts = copts
 | 
						|
}
 | 
						|
 | 
						|
// Opts returns the protocol options value, which is sent to the peer
 | 
						|
// but is not itself part of the KEx or connection (cipher/hmac) setup.
 | 
						|
//
 | 
						|
// Consumers of this lib may use this for protocol-level options not part
 | 
						|
// of the KEx or encryption info used by the connection.
 | 
						|
func (hc *Conn) Opts() uint32 {
 | 
						|
	return hc.opts
 | 
						|
}
 | 
						|
 | 
						|
// SetOpts sets the protocol options value, which is sent to the peer
 | 
						|
// but is not itself part of the KEx or connection (cipher/hmac) setup.
 | 
						|
//
 | 
						|
// Consumers of this lib may use this for protocol-level options not part
 | 
						|
// of the KEx of encryption info used by the connection.
 | 
						|
//
 | 
						|
// opts - a uint32, caller-defined
 | 
						|
func (hc *Conn) SetOpts(opts uint32) {
 | 
						|
	hc.opts = opts
 | 
						|
}
 | 
						|
 | 
						|
// Return a new xsnet.Conn
 | 
						|
//
 | 
						|
// Note this is internal: use Dial() or Accept()
 | 
						|
func _new(kexAlg KEXAlg, conn *net.Conn) (hc *Conn, e error) {
 | 
						|
	// Set up KEx/KEM-specifics
 | 
						|
	switch kexAlg {
 | 
						|
	case KEX_HERRADURA256:
 | 
						|
		fallthrough
 | 
						|
	case KEX_HERRADURA512:
 | 
						|
		fallthrough
 | 
						|
	case KEX_HERRADURA1024:
 | 
						|
		fallthrough
 | 
						|
	case KEX_HERRADURA2048:
 | 
						|
		fallthrough
 | 
						|
	case KEX_KYBER512:
 | 
						|
		fallthrough
 | 
						|
	case KEX_KYBER768:
 | 
						|
		fallthrough
 | 
						|
	case KEX_KYBER1024:
 | 
						|
		fallthrough
 | 
						|
	case KEX_NEWHOPE:
 | 
						|
		fallthrough
 | 
						|
	case KEX_NEWHOPE_SIMPLE:
 | 
						|
		fallthrough
 | 
						|
	case KEX_FRODOKEM_1344AES:
 | 
						|
		fallthrough
 | 
						|
	case KEX_FRODOKEM_1344SHAKE:
 | 
						|
		fallthrough
 | 
						|
	case KEX_FRODOKEM_976AES:
 | 
						|
		fallthrough
 | 
						|
	case KEX_FRODOKEM_976SHAKE:
 | 
						|
		log.Printf("[KEx alg %d specified]\n", kexAlg)
 | 
						|
	default:
 | 
						|
		// UNREACHABLE(?): _getkexalgnum() SHOULD guarantee a valid KEX value
 | 
						|
		log.Printf("[KEx alg %d ?? - REPORT A BUG IF YOU SEE THIS]", kexAlg)
 | 
						|
		kexAlg = KEX_HERRADURA1024
 | 
						|
		log.Printf(" defaulting to %d]\n", kexAlg)
 | 
						|
	}
 | 
						|
 | 
						|
	//hc.logCipherText = true // !!! DEBUGGING ONLY !!! NEVER DEPLOY this uncommented !!!
 | 
						|
 | 
						|
	hc = &Conn{kex: kexAlg,
 | 
						|
		m:         &sync.Mutex{},
 | 
						|
		c:         conn,
 | 
						|
		closeStat: new(CSOType),
 | 
						|
		WinCh:     make(chan WinSize, 1),
 | 
						|
		dBuf:      new(bytes.Buffer)}
 | 
						|
	tempMap := make(map[uint16]*TunEndpoint)
 | 
						|
	hc.tuns = &tempMap
 | 
						|
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// applyConnExtensions processes optional Dial() negotiation
 | 
						|
// parameters. See also getkexalgnum().
 | 
						|
//
 | 
						|
// # Currently defined extension values
 | 
						|
//
 | 
						|
// # KEx algs
 | 
						|
//
 | 
						|
// KEX_HERRADURA256 KEX_HERRADURA512 KEX_HERRADURA1024 KEX_HERRADURA2048
 | 
						|
//
 | 
						|
// KEX_KYBER512 KEX_KYBER768 KEX_KYBER1024
 | 
						|
//
 | 
						|
// KEX_NEWHOPE KEX_NEWHOPE_SIMPLE
 | 
						|
//
 | 
						|
// # Session (symmetric) crypto
 | 
						|
//
 | 
						|
// C_AES_256 C_TWOFISH_128 C_BLOWFISH_128 C_CRYPTMT1 C_CHACHA20_12 C_HOPSCOTCH
 | 
						|
//
 | 
						|
// # Session HMACs
 | 
						|
//
 | 
						|
// H_SHA256 H_SHA512
 | 
						|
func (hc *Conn) applyConnExtensions(extensions ...string) {
 | 
						|
	for _, s := range extensions {
 | 
						|
		switch s {
 | 
						|
		case "C_AES_256":
 | 
						|
			log.Println("[extension arg = C_AES_256]")
 | 
						|
			hc.cipheropts &= (0xFFFFFF00)
 | 
						|
			hc.cipheropts |= CAlgAES256
 | 
						|
		case "C_TWOFISH_128":
 | 
						|
			log.Println("[extension arg = C_TWOFISH_128]")
 | 
						|
			hc.cipheropts &= (0xFFFFFF00)
 | 
						|
			hc.cipheropts |= CAlgTwofish128
 | 
						|
		case "C_BLOWFISH_64":
 | 
						|
			log.Println("[extension arg = C_BLOWFISH_64]")
 | 
						|
			hc.cipheropts &= (0xFFFFFF00)
 | 
						|
			hc.cipheropts |= CAlgBlowfish64
 | 
						|
		case "C_CRYPTMT1":
 | 
						|
			log.Println("[extension arg = C_CRYPTMT1]")
 | 
						|
			hc.cipheropts &= (0xFFFFFF00)
 | 
						|
			hc.cipheropts |= CAlgCryptMT1
 | 
						|
		case "C_HOPSCOTCH":
 | 
						|
			log.Println("[extension arg = C_HOPSCOTCH]")
 | 
						|
			hc.cipheropts &= (0xFFFFFF00)
 | 
						|
			hc.cipheropts |= CAlgHopscotch
 | 
						|
		case "C_CHACHA20_12":
 | 
						|
			log.Println("[extension arg = C_CHACHA20_12]")
 | 
						|
			hc.cipheropts &= (0xFFFFFF00)
 | 
						|
			hc.cipheropts |= CAlgChaCha20_12
 | 
						|
		case "H_SHA256":
 | 
						|
			log.Println("[extension arg = H_SHA256]")
 | 
						|
			hc.cipheropts &= (0xFFFF00FF)
 | 
						|
			hc.cipheropts |= (HmacSHA256 << 8)
 | 
						|
		case "H_SHA512":
 | 
						|
			log.Println("[extension arg = H_SHA512]")
 | 
						|
			hc.cipheropts &= (0xFFFF00FF)
 | 
						|
			hc.cipheropts |= (HmacSHA512 << 8)
 | 
						|
		case "H_WHIRLPOOL":
 | 
						|
			log.Println("[extension arg = H_WHIRLPOOL]")
 | 
						|
			hc.cipheropts &= (0xFFFF00FF)
 | 
						|
			hc.cipheropts |= (HmacWHIRLPOOL << 8)
 | 
						|
		case "OPT_REMOD":
 | 
						|
			log.Println("[extension arg = OPT_REMOD]")
 | 
						|
			hc.opts |= CORemodulateShields
 | 
						|
			//default:
 | 
						|
			//	log.Printf("[Dial ext \"%s\" ignored]\n", s)
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func getkexalgnum(extensions ...string) (k KEXAlg) {
 | 
						|
	for _, s := range extensions {
 | 
						|
		switch s {
 | 
						|
		case "KEX_HERRADURA256":
 | 
						|
			k = KEX_HERRADURA256
 | 
						|
			break //out of for
 | 
						|
		case "KEX_HERRADURA512":
 | 
						|
			k = KEX_HERRADURA512
 | 
						|
			break //out of for
 | 
						|
		case "KEX_HERRADURA1024":
 | 
						|
			k = KEX_HERRADURA1024
 | 
						|
			break //out of for
 | 
						|
		case "KEX_HERRADURA2048":
 | 
						|
			k = KEX_HERRADURA2048
 | 
						|
			break //out of for
 | 
						|
		case "KEX_KYBER512":
 | 
						|
			k = KEX_KYBER512
 | 
						|
			break //out of for
 | 
						|
		case "KEX_KYBER768":
 | 
						|
			k = KEX_KYBER768
 | 
						|
			break //out of for
 | 
						|
		case "KEX_KYBER1024":
 | 
						|
			k = KEX_KYBER1024
 | 
						|
			break //out of for
 | 
						|
		case "KEX_NEWHOPE":
 | 
						|
			k = KEX_NEWHOPE
 | 
						|
			break //out of for
 | 
						|
		case "KEX_NEWHOPE_SIMPLE":
 | 
						|
			k = KEX_NEWHOPE_SIMPLE
 | 
						|
			break //out of for
 | 
						|
		case "KEX_FRODOKEM_1344AES":
 | 
						|
			k = KEX_FRODOKEM_1344AES
 | 
						|
			break //out of for
 | 
						|
		case "KEX_FRODOKEM_1344SHAKE":
 | 
						|
			k = KEX_FRODOKEM_1344SHAKE
 | 
						|
			break //out of for
 | 
						|
		case "KEX_FRODOKEM_976AES":
 | 
						|
			k = KEX_FRODOKEM_976AES
 | 
						|
			break //out of for
 | 
						|
		case "KEX_FRODOKEM_976SHAKE":
 | 
						|
			k = KEX_FRODOKEM_976SHAKE
 | 
						|
			break //out of for
 | 
						|
		default:
 | 
						|
			k = KEX_HERRADURA1024 // default
 | 
						|
			//fmt.Printf("[INFO: defaulting to %s\n", k.String())
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
func FrodoKEMDialSetup(c io.ReadWriter, hc *Conn) (err error) {
 | 
						|
	// Send xsnet.Conn parameters to remote side
 | 
						|
 | 
						|
	// Alice, step 1: Generate a key pair.
 | 
						|
	var kem frodo.FrodoKEM
 | 
						|
 | 
						|
	switch hc.kex {
 | 
						|
	case KEX_FRODOKEM_1344AES:
 | 
						|
		kem = frodo.Frodo1344AES()
 | 
						|
	case KEX_FRODOKEM_1344SHAKE:
 | 
						|
		kem = frodo.Frodo1344SHAKE()
 | 
						|
	case KEX_FRODOKEM_976AES:
 | 
						|
		kem = frodo.Frodo976AES()
 | 
						|
	default:
 | 
						|
		kem = frodo.Frodo976SHAKE()
 | 
						|
	}
 | 
						|
	pubA, secA := kem.Keygen() // pA
 | 
						|
 | 
						|
	// Alice, step 2: Send the public key (na,ea) to Bob
 | 
						|
	n, err := fmt.Fprintf(c, "0x%x\n", pubA)
 | 
						|
	if err != nil {
 | 
						|
		panic(err)
 | 
						|
	}
 | 
						|
	if n < len(pubA) {
 | 
						|
		panic(errors.New("incomplete Fprintf() of pubA"))
 | 
						|
	}
 | 
						|
 | 
						|
	// (... and send cipher, connection opts)
 | 
						|
	fmt.Fprintf(c, "0x%x:0x%x\n", hc.cipheropts, hc.opts)
 | 
						|
 | 
						|
	// [Bob does the same and sends use a public key (nb, eb)
 | 
						|
	pubB_bigint := big.NewInt(0)
 | 
						|
	_, err = fmt.Fscanf(c, "0x%x\n", pubB_bigint)
 | 
						|
	pubB := pubB_bigint.Bytes()
 | 
						|
 | 
						|
	// (... and sends us cipher, connection opts)
 | 
						|
	_, err = fmt.Fscanf(c, "0x%x:0x%x\n",
 | 
						|
		&hc.cipheropts, &hc.opts)
 | 
						|
	if err != nil {
 | 
						|
		return err
 | 
						|
	}
 | 
						|
 | 
						|
	// Alice, step 3: Create ctAtoB, shareA
 | 
						|
	ctAtoB, shareA, err := kem.Encapsulate(pubB)
 | 
						|
	if err != nil {
 | 
						|
		return err
 | 
						|
	}
 | 
						|
 | 
						|
	// Alice, step 4: Send ctAtoB to Bob
 | 
						|
	fmt.Fprintf(c, "0x%x\n", ctAtoB)
 | 
						|
 | 
						|
	// Alice, step 5: Receive ctBtoA from Bob
 | 
						|
	ctBtoA_bigint := big.NewInt(0)
 | 
						|
	_, err = fmt.Fscanf(c, "0x%x\n", ctBtoA_bigint)
 | 
						|
	ctBtoA := ctBtoA_bigint.Bytes()
 | 
						|
 | 
						|
	// Alice, step 6: compute Bob's share
 | 
						|
	shareB, err := kem.Dencapsulate(secA, ctBtoA)
 | 
						|
	sessionKey := append(shareA, shareB...)
 | 
						|
 | 
						|
	hc.r, hc.rm, err = hc.getStream(sessionKey)
 | 
						|
	hc.w, hc.wm, err = hc.getStream(sessionKey)
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
func NewHopeDialSetup(c io.ReadWriter, hc *Conn) (err error) {
 | 
						|
	// Send xsnet.Conn parameters to remote side
 | 
						|
 | 
						|
	// Alice, step 1: Generate a key pair.
 | 
						|
	privKeyAlice, pubKeyAlice, err := newhope.GenerateKeyPairAlice(crand.Reader)
 | 
						|
	if err != nil {
 | 
						|
		panic(err)
 | 
						|
	}
 | 
						|
 | 
						|
	// Alice, step 2: Send the public key to Bob
 | 
						|
	fmt.Fprintf(c, "0x%x\n0x%x:0x%x\n", pubKeyAlice.Send,
 | 
						|
		hc.cipheropts, hc.opts)
 | 
						|
 | 
						|
	// [Bob does step 1-3], from which we read Bob's pubkey
 | 
						|
	publicKeyBob := big.NewInt(0)
 | 
						|
	fmt.Fscanf(c, "0x%x\n", publicKeyBob)
 | 
						|
	var pubKeyBob newhope.PublicKeyBob
 | 
						|
	for i := range pubKeyBob.Send {
 | 
						|
		pubKeyBob.Send[i] = publicKeyBob.Bytes()[i]
 | 
						|
	}
 | 
						|
	//log.Printf("[Got server pubKey[]:%v]\n", pubKeyBob)
 | 
						|
 | 
						|
	// Read cipheropts, session opts
 | 
						|
	_, err = fmt.Fscanf(c, "0x%x:0x%x\n",
 | 
						|
		&hc.cipheropts, &hc.opts)
 | 
						|
	if err != nil {
 | 
						|
		return err
 | 
						|
	}
 | 
						|
 | 
						|
	// Alice, step 3: Derive shared secret
 | 
						|
	// (NOTE: actual over-wire exchange was already done above. This is
 | 
						|
	//  the math voodoo 'exchange' done after receiving data from Bob.)
 | 
						|
	aliceSharedSecret, err := newhope.KeyExchangeAlice(&pubKeyBob, privKeyAlice)
 | 
						|
	if err != nil {
 | 
						|
		panic(err)
 | 
						|
	}
 | 
						|
 | 
						|
	hc.r, hc.rm, err = hc.getStream(aliceSharedSecret)
 | 
						|
	hc.w, hc.wm, err = hc.getStream(aliceSharedSecret)
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
func NewHopeSimpleDialSetup(c io.ReadWriter, hc *Conn) (err error) {
 | 
						|
	// Send xsnet.Conn parameters to remote side
 | 
						|
 | 
						|
	// Alice, step 1: Generate a key pair.
 | 
						|
	privKeyAlice, pubKeyAlice, err := newhope.GenerateKeyPairSimpleAlice(crand.Reader)
 | 
						|
	if err != nil {
 | 
						|
		panic(err)
 | 
						|
	}
 | 
						|
 | 
						|
	// Alice, step 2: Send the public key to Bob
 | 
						|
	fmt.Fprintf(c, "0x%x\n0x%x:0x%x\n", pubKeyAlice.Send,
 | 
						|
		hc.cipheropts, hc.opts)
 | 
						|
 | 
						|
	// [Bob does step 1-3], from which we read Bob's pubkey
 | 
						|
	publicKeyBob := big.NewInt(0)
 | 
						|
	fmt.Fscanf(c, "0x%x\n", publicKeyBob)
 | 
						|
	var pubKeyBob newhope.PublicKeySimpleBob
 | 
						|
	for i := range pubKeyBob.Send {
 | 
						|
		pubKeyBob.Send[i] = publicKeyBob.Bytes()[i]
 | 
						|
	}
 | 
						|
	//log.Printf("[Got server pubKey[]:%v]\n", pubKeyBob)
 | 
						|
 | 
						|
	// Read cipheropts, session opts
 | 
						|
	_, err = fmt.Fscanf(c, "0x%x:0x%x\n",
 | 
						|
		&hc.cipheropts, &hc.opts)
 | 
						|
	if err != nil {
 | 
						|
		return err
 | 
						|
	}
 | 
						|
 | 
						|
	// Alice, step 3: Derive shared secret
 | 
						|
	// (NOTE: actual over-wire exchange was already done above. This is
 | 
						|
	//  the math voodoo 'exchange' done after receiving data from Bob.)
 | 
						|
	aliceSharedSecret, err := newhope.KeyExchangeSimpleAlice(&pubKeyBob, privKeyAlice)
 | 
						|
	if err != nil {
 | 
						|
		panic(err)
 | 
						|
	}
 | 
						|
 | 
						|
	hc.r, hc.rm, err = hc.getStream(aliceSharedSecret)
 | 
						|
	hc.w, hc.wm, err = hc.getStream(aliceSharedSecret)
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
func KyberDialSetup(c io.ReadWriter /*net.Conn*/, hc *Conn) (err error) {
 | 
						|
	// Send xsnet.Conn parameters to remote side
 | 
						|
 | 
						|
	// Alice, step 1: Generate a key pair.
 | 
						|
	var alicePublicKey *kyber.PublicKey
 | 
						|
	var alicePrivateKey *kyber.PrivateKey
 | 
						|
	switch hc.kex {
 | 
						|
	case KEX_KYBER512:
 | 
						|
		alicePublicKey, alicePrivateKey, err = kyber.Kyber512.GenerateKeyPair(crand.Reader)
 | 
						|
	case KEX_KYBER768:
 | 
						|
		alicePublicKey, alicePrivateKey, err = kyber.Kyber768.GenerateKeyPair(crand.Reader)
 | 
						|
	case KEX_KYBER1024:
 | 
						|
		alicePublicKey, alicePrivateKey, err = kyber.Kyber1024.GenerateKeyPair(crand.Reader)
 | 
						|
	default:
 | 
						|
		alicePublicKey, alicePrivateKey, err = kyber.Kyber768.GenerateKeyPair(crand.Reader)
 | 
						|
	}
 | 
						|
 | 
						|
	if err != nil {
 | 
						|
		panic(err)
 | 
						|
	}
 | 
						|
 | 
						|
	// Alice, step 2: Send the public key to Bob
 | 
						|
	fmt.Fprintf(c, "0x%x\n0x%x:0x%x\n", alicePublicKey.Bytes(),
 | 
						|
		hc.cipheropts, hc.opts)
 | 
						|
 | 
						|
	// [Bob, step 1-3], from which we read cipher text
 | 
						|
	pubKeyB := make([]byte, 4096)
 | 
						|
	fmt.Fscanf(c, "0x%x\n", &pubKeyB)
 | 
						|
	//if err != nil {
 | 
						|
	//	return err
 | 
						|
	//}
 | 
						|
	//log.Printf("[Got server pubKeyB[]:%v]\n", pubKeyB)
 | 
						|
 | 
						|
	// Read cipheropts, session opts
 | 
						|
	_, err = fmt.Fscanf(c, "0x%x:0x%x\n",
 | 
						|
		&hc.cipheropts, &hc.opts)
 | 
						|
	if err != nil {
 | 
						|
		return err
 | 
						|
	}
 | 
						|
 | 
						|
	// Alice, step 3: Decrypt the KEM cipher text.
 | 
						|
	aliceSharedSecret := alicePrivateKey.KEMDecrypt(pubKeyB)
 | 
						|
 | 
						|
	hc.r, hc.rm, err = hc.getStream(aliceSharedSecret)
 | 
						|
	hc.w, hc.wm, err = hc.getStream(aliceSharedSecret)
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
func HKExDialSetup(c io.ReadWriter /*net.Conn*/, hc *Conn) (err error) {
 | 
						|
	var h *hkex.HerraduraKEx
 | 
						|
	switch hc.kex {
 | 
						|
	case KEX_HERRADURA256:
 | 
						|
		h = hkex.New(256, 64)
 | 
						|
	case KEX_HERRADURA512:
 | 
						|
		h = hkex.New(512, 128)
 | 
						|
	case KEX_HERRADURA1024:
 | 
						|
		h = hkex.New(1024, 256)
 | 
						|
	case KEX_HERRADURA2048:
 | 
						|
		h = hkex.New(2048, 512)
 | 
						|
	default:
 | 
						|
		h = hkex.New(256, 64)
 | 
						|
	}
 | 
						|
 | 
						|
	// Send xsnet.Conn parameters to remote side
 | 
						|
	// d is value for Herradura key exchange
 | 
						|
	fmt.Fprintf(c, "0x%s\n0x%x:0x%x\n", h.D().Text(16),
 | 
						|
		hc.cipheropts, hc.opts)
 | 
						|
 | 
						|
	// Read peer D over net.Conn (c)
 | 
						|
	d := big.NewInt(0)
 | 
						|
	_, err = fmt.Fscanln(c, d)
 | 
						|
	if err != nil {
 | 
						|
		return err
 | 
						|
	}
 | 
						|
	_, err = fmt.Fscanf(c, "0x%x:0x%x\n",
 | 
						|
		&hc.cipheropts, &hc.opts)
 | 
						|
	if err != nil {
 | 
						|
		return err
 | 
						|
	}
 | 
						|
 | 
						|
	h.SetPeerD(d)
 | 
						|
	log.Printf("** local D:%s\n", h.D().Text(16))
 | 
						|
	log.Printf("**(c)** peer D:%s\n", h.PeerD().Text(16))
 | 
						|
	h.ComputeFA()
 | 
						|
	log.Printf("**(c)** FA:%s\n", h.FA())
 | 
						|
 | 
						|
	hc.r, hc.rm, err = hc.getStream(h.FA().Bytes())
 | 
						|
	hc.w, hc.wm, err = hc.getStream(h.FA().Bytes())
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
func FrodoKEMAcceptSetup(c *net.Conn, hc *Conn) (err error) {
 | 
						|
	// Bob, step 1: Generate a key pair.
 | 
						|
	var kem frodo.FrodoKEM
 | 
						|
 | 
						|
	switch hc.kex {
 | 
						|
	case KEX_FRODOKEM_1344AES:
 | 
						|
		kem = frodo.Frodo1344AES()
 | 
						|
	case KEX_FRODOKEM_1344SHAKE:
 | 
						|
		kem = frodo.Frodo1344SHAKE()
 | 
						|
	case KEX_FRODOKEM_976AES:
 | 
						|
		kem = frodo.Frodo976AES()
 | 
						|
	default:
 | 
						|
		kem = frodo.Frodo976SHAKE()
 | 
						|
	}
 | 
						|
	pubB, secB := kem.Keygen()
 | 
						|
 | 
						|
	// [Alice sends use a public key (na, ea)
 | 
						|
	pubA_bigint := big.NewInt(0)
 | 
						|
	_, err = fmt.Fscanf(*c, "0x%x\n", pubA_bigint)
 | 
						|
	pubA := pubA_bigint.Bytes()
 | 
						|
 | 
						|
	// (... and sends us cipher, connection opts)
 | 
						|
	_, err = fmt.Fscanf(*c, "0x%x:0x%x\n",
 | 
						|
		&hc.cipheropts, &hc.opts)
 | 
						|
	if err != nil {
 | 
						|
		return err
 | 
						|
	}
 | 
						|
 | 
						|
	// Bob, step 2: Send the public key (nb,eb) to Alice
 | 
						|
	n, err := fmt.Fprintf(*c, "0x%x\n", pubB)
 | 
						|
	if err != nil {
 | 
						|
		panic(err)
 | 
						|
	}
 | 
						|
	if n < len(pubB) {
 | 
						|
		panic(errors.New("incomplete Fprintf() of pubB"))
 | 
						|
	}
 | 
						|
 | 
						|
	// (... and send cipher, connection opts)
 | 
						|
	fmt.Fprintf(*c, "0x%x:0x%x\n", hc.cipheropts, hc.opts)
 | 
						|
 | 
						|
	// Bob, step 3: Create ctBtoA, shareB
 | 
						|
	ctBtoA, shareB, err := kem.Encapsulate(pubA)
 | 
						|
	if err != nil {
 | 
						|
		return err
 | 
						|
	}
 | 
						|
 | 
						|
	// Bob, step 4: Send ctBtoA to Alice
 | 
						|
	fmt.Fprintf(*c, "0x%x\n", ctBtoA)
 | 
						|
 | 
						|
	// Bob, step 5: Receive ctAtoB from Alice
 | 
						|
	ctAtoB_bigint := big.NewInt(0)
 | 
						|
	_, err = fmt.Fscanf(*c, "0x%x\n", ctAtoB_bigint)
 | 
						|
	ctAtoB := ctAtoB_bigint.Bytes()
 | 
						|
 | 
						|
	// Alice, step 6: compute Bob's share
 | 
						|
	shareA, err := kem.Dencapsulate(secB, ctAtoB)
 | 
						|
	sessionKey := append(shareA, shareB...)
 | 
						|
 | 
						|
	hc.r, hc.rm, err = hc.getStream(sessionKey)
 | 
						|
	hc.w, hc.wm, err = hc.getStream(sessionKey)
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
func NewHopeAcceptSetup(c *net.Conn, hc *Conn) (err error) {
 | 
						|
	// Bob, step 1: Deserialize Alice's public key from the binary encoding.
 | 
						|
	alicePublicKey := big.NewInt(0)
 | 
						|
	_, err = fmt.Fscanln(*c, alicePublicKey)
 | 
						|
	//log.Printf("[Got client pubKey:0x%x\n]", alicePublicKey)
 | 
						|
	if err != nil {
 | 
						|
		return err
 | 
						|
	}
 | 
						|
 | 
						|
	var pubKeyAlice newhope.PublicKeyAlice
 | 
						|
	for i := range pubKeyAlice.Send {
 | 
						|
		pubKeyAlice.Send[i] = alicePublicKey.Bytes()[i]
 | 
						|
	}
 | 
						|
 | 
						|
	_, err = fmt.Fscanf(*c, "0x%x:0x%x\n",
 | 
						|
		&hc.cipheropts, &hc.opts)
 | 
						|
	log.Printf("[Got cipheropts, opts:%v, %v]", hc.cipheropts, hc.opts)
 | 
						|
	if err != nil {
 | 
						|
		return err
 | 
						|
	}
 | 
						|
 | 
						|
	// Bob, step 2: Generate the KEM cipher text and shared secret.
 | 
						|
	pubKeyBob, bobSharedSecret, err := newhope.KeyExchangeBob(crand.Reader, &pubKeyAlice)
 | 
						|
	if err != nil {
 | 
						|
		panic(err)
 | 
						|
	}
 | 
						|
 | 
						|
	// Bob, step 3: Send the cipher text to Alice.
 | 
						|
	fmt.Fprintf(*c, "0x%x\n0x%x:0x%x\n", pubKeyBob.Send,
 | 
						|
		hc.cipheropts, hc.opts)
 | 
						|
 | 
						|
	hc.r, hc.rm, err = hc.getStream(bobSharedSecret)
 | 
						|
	hc.w, hc.wm, err = hc.getStream(bobSharedSecret)
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
func NewHopeSimpleAcceptSetup(c *net.Conn, hc *Conn) (err error) {
 | 
						|
	// Bob, step 1: Deserialize Alice's public key from the binary encoding.
 | 
						|
	alicePublicKey := big.NewInt(0)
 | 
						|
	_, err = fmt.Fscanln(*c, alicePublicKey)
 | 
						|
	//log.Printf("[Got client pubKey:0x%x\n]", alicePublicKey)
 | 
						|
	if err != nil {
 | 
						|
		return err
 | 
						|
	}
 | 
						|
 | 
						|
	var pubKeyAlice newhope.PublicKeySimpleAlice
 | 
						|
	for i := range pubKeyAlice.Send {
 | 
						|
		pubKeyAlice.Send[i] = alicePublicKey.Bytes()[i]
 | 
						|
	}
 | 
						|
 | 
						|
	_, err = fmt.Fscanf(*c, "0x%x:0x%x\n",
 | 
						|
		&hc.cipheropts, &hc.opts)
 | 
						|
	log.Printf("[Got cipheropts, opts:%v, %v]", hc.cipheropts, hc.opts)
 | 
						|
	if err != nil {
 | 
						|
		return err
 | 
						|
	}
 | 
						|
 | 
						|
	// Bob, step 2: Generate the KEM cipher text and shared secret.
 | 
						|
	pubKeyBob, bobSharedSecret, err := newhope.KeyExchangeSimpleBob(crand.Reader, &pubKeyAlice)
 | 
						|
	if err != nil {
 | 
						|
		panic(err)
 | 
						|
	}
 | 
						|
 | 
						|
	// Bob, step 3: Send the cipher text to Alice.
 | 
						|
	fmt.Fprintf(*c, "0x%x\n0x%x:0x%x\n", pubKeyBob.Send,
 | 
						|
		hc.cipheropts, hc.opts)
 | 
						|
 | 
						|
	hc.r, hc.rm, err = hc.getStream(bobSharedSecret)
 | 
						|
	hc.w, hc.wm, err = hc.getStream(bobSharedSecret)
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
func KyberAcceptSetup(c *net.Conn, hc *Conn) (err error) {
 | 
						|
	// Bob, step 1: Deserialize Alice's public key from the binary encoding.
 | 
						|
	alicePublicKey := big.NewInt(0)
 | 
						|
	_, err = fmt.Fscanln(*c, alicePublicKey)
 | 
						|
	//log.Printf("[Got client pubKey:0x%x\n]", alicePublicKey)
 | 
						|
	if err != nil {
 | 
						|
		return err
 | 
						|
	}
 | 
						|
	_, err = fmt.Fscanf(*c, "0x%x:0x%x\n",
 | 
						|
		&hc.cipheropts, &hc.opts)
 | 
						|
	log.Printf("[Got cipheropts, opts:%v, %v]", hc.cipheropts, hc.opts)
 | 
						|
	if err != nil {
 | 
						|
		return err
 | 
						|
	}
 | 
						|
 | 
						|
	var peerPublicKey *kyber.PublicKey
 | 
						|
	switch hc.kex {
 | 
						|
	case KEX_KYBER512:
 | 
						|
		peerPublicKey, err = kyber.Kyber512.PublicKeyFromBytes(alicePublicKey.Bytes())
 | 
						|
	case KEX_KYBER768:
 | 
						|
		peerPublicKey, err = kyber.Kyber768.PublicKeyFromBytes(alicePublicKey.Bytes())
 | 
						|
	case KEX_KYBER1024:
 | 
						|
		peerPublicKey, err = kyber.Kyber1024.PublicKeyFromBytes(alicePublicKey.Bytes())
 | 
						|
	default:
 | 
						|
		peerPublicKey, err = kyber.Kyber768.PublicKeyFromBytes(alicePublicKey.Bytes())
 | 
						|
	}
 | 
						|
 | 
						|
	if err != nil {
 | 
						|
		panic(err)
 | 
						|
	}
 | 
						|
 | 
						|
	// Bob, step 2: Generate the KEM cipher text and shared secret.
 | 
						|
	cipherText, bobSharedSecret, err := peerPublicKey.KEMEncrypt(crand.Reader)
 | 
						|
	if err != nil {
 | 
						|
		panic(err)
 | 
						|
	}
 | 
						|
 | 
						|
	// Bob, step 3: Send the cipher text to Alice.
 | 
						|
	fmt.Fprintf(*c, "0x%x\n0x%x:0x%x\n", cipherText,
 | 
						|
		hc.cipheropts, hc.opts)
 | 
						|
 | 
						|
	hc.r, hc.rm, err = hc.getStream(bobSharedSecret)
 | 
						|
	hc.w, hc.wm, err = hc.getStream(bobSharedSecret)
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
func HKExAcceptSetup(c *net.Conn, hc *Conn) (err error) {
 | 
						|
	var h *hkex.HerraduraKEx
 | 
						|
	switch hc.kex {
 | 
						|
	case KEX_HERRADURA256:
 | 
						|
		h = hkex.New(256, 64)
 | 
						|
	case KEX_HERRADURA512:
 | 
						|
		h = hkex.New(512, 128)
 | 
						|
	case KEX_HERRADURA1024:
 | 
						|
		h = hkex.New(1024, 256)
 | 
						|
	case KEX_HERRADURA2048:
 | 
						|
		h = hkex.New(2048, 512)
 | 
						|
	default:
 | 
						|
		h = hkex.New(256, 64)
 | 
						|
	}
 | 
						|
 | 
						|
	// Read in xsnet.Conn parameters over raw Conn c
 | 
						|
	// d is value for Herradura key exchange
 | 
						|
	d := big.NewInt(0)
 | 
						|
	_, err = fmt.Fscanln(*c, d)
 | 
						|
	log.Printf("[Got d:%v]", d)
 | 
						|
	if err != nil {
 | 
						|
		return err
 | 
						|
	}
 | 
						|
	_, err = fmt.Fscanf(*c, "0x%x:0x%x\n",
 | 
						|
		&hc.cipheropts, &hc.opts)
 | 
						|
	log.Printf("[Got cipheropts, opts:%v, %v]", hc.cipheropts, hc.opts)
 | 
						|
	if err != nil {
 | 
						|
		return err
 | 
						|
	}
 | 
						|
	h.SetPeerD(d)
 | 
						|
	log.Printf("** D:%s\n", h.D().Text(16))
 | 
						|
	log.Printf("**(s)** peerD:%s\n", h.PeerD().Text(16))
 | 
						|
	h.ComputeFA()
 | 
						|
	log.Printf("**(s)** FA:%s\n", h.FA())
 | 
						|
 | 
						|
	// Send D and cipheropts/conn_opts to peer
 | 
						|
	fmt.Fprintf(*c, "0x%s\n0x%x:0x%x\n", h.D().Text(16),
 | 
						|
		hc.cipheropts, hc.opts)
 | 
						|
 | 
						|
	hc.r, hc.rm, err = hc.getStream(h.FA().Bytes())
 | 
						|
	hc.w, hc.wm, err = hc.getStream(h.FA().Bytes())
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// Dial as net.Dial(), but with implicit key exchange to set up secure
 | 
						|
// channel on connect
 | 
						|
//
 | 
						|
//	Can be called like net.Dial(), defaulting to C_AES_256/H_SHA256,
 | 
						|
//	or additional extensions can be passed amongst the following:
 | 
						|
//
 | 
						|
//	"C_AES_256" | "C_TWOFISH_128" | ...
 | 
						|
//
 | 
						|
//	"H_SHA256" | "H_SHA512" | ...
 | 
						|
//
 | 
						|
// See go doc -u xsnet.applyConnExtensions
 | 
						|
func Dial(protocol string, ipport string, extensions ...string) (hc Conn, err error) {
 | 
						|
	if Log == nil {
 | 
						|
		Init(false, "client", logger.LOG_DAEMON|logger.LOG_DEBUG)
 | 
						|
	}
 | 
						|
 | 
						|
	var c net.Conn
 | 
						|
	if protocol == "kcp" {
 | 
						|
		c, err = kcpDial(ipport, extensions)
 | 
						|
		if err != nil {
 | 
						|
			return Conn{}, err
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		// Open raw Conn c
 | 
						|
		c, err = net.Dial(protocol, ipport)
 | 
						|
		if err != nil {
 | 
						|
			return Conn{}, err
 | 
						|
		}
 | 
						|
	}
 | 
						|
	// Init xsnet.Conn hc over net.Conn c
 | 
						|
	ret, err := _new(getkexalgnum(extensions...), &c)
 | 
						|
	if err != nil {
 | 
						|
		return Conn{}, err
 | 
						|
	}
 | 
						|
	hc = *ret
 | 
						|
 | 
						|
	// Client has full control over Conn extensions. It's the server's
 | 
						|
	// responsibility to accept or reject the proposed parameters.
 | 
						|
	hc.applyConnExtensions(extensions...)
 | 
						|
 | 
						|
	// Perform Key Exchange according to client-request algorithm
 | 
						|
	fmt.Fprintf(c, "%02x\n", hc.kex)
 | 
						|
	switch hc.kex {
 | 
						|
	case KEX_HERRADURA256:
 | 
						|
		fallthrough
 | 
						|
	case KEX_HERRADURA512:
 | 
						|
		fallthrough
 | 
						|
	case KEX_HERRADURA1024:
 | 
						|
		fallthrough
 | 
						|
	case KEX_HERRADURA2048:
 | 
						|
		log.Printf("[Setting up for KEX_HERRADURA %d]\n", hc.kex)
 | 
						|
		if HKExDialSetup(c, &hc) != nil {
 | 
						|
			return Conn{}, nil
 | 
						|
		}
 | 
						|
	case KEX_KYBER512:
 | 
						|
		fallthrough
 | 
						|
	case KEX_KYBER768:
 | 
						|
		fallthrough
 | 
						|
	case KEX_KYBER1024:
 | 
						|
		log.Printf("[Setting up for KEX_KYBER %d]\n", hc.kex)
 | 
						|
		if KyberDialSetup(c, &hc) != nil {
 | 
						|
			return Conn{}, nil
 | 
						|
		}
 | 
						|
	case KEX_NEWHOPE:
 | 
						|
		log.Printf("[Setting up for KEX_NEWHOPE %d]\n", hc.kex)
 | 
						|
		if NewHopeDialSetup(c, &hc) != nil {
 | 
						|
			return Conn{}, nil
 | 
						|
		}
 | 
						|
	case KEX_NEWHOPE_SIMPLE:
 | 
						|
		log.Printf("[Setting up for KEX_NEWHOPE_SIMPLE %d]\n", hc.kex)
 | 
						|
		if NewHopeSimpleDialSetup(c, &hc) != nil {
 | 
						|
			return Conn{}, nil
 | 
						|
		}
 | 
						|
	case KEX_FRODOKEM_1344AES:
 | 
						|
		fallthrough
 | 
						|
	case KEX_FRODOKEM_1344SHAKE:
 | 
						|
		fallthrough
 | 
						|
	case KEX_FRODOKEM_976AES:
 | 
						|
		fallthrough
 | 
						|
	case KEX_FRODOKEM_976SHAKE:
 | 
						|
		log.Printf("[Setting up for KEX_FRODOKEM %d]\n", hc.kex)
 | 
						|
		if FrodoKEMDialSetup(c, &hc) != nil {
 | 
						|
			return Conn{}, nil
 | 
						|
		}
 | 
						|
	default:
 | 
						|
		return Conn{}, err
 | 
						|
	}
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// Close a hkex.Conn
 | 
						|
func (hc *Conn) Close() (err error) {
 | 
						|
	hc.ShutdownChaff()
 | 
						|
	s := make([]byte, 4)
 | 
						|
	binary.BigEndian.PutUint32(s, uint32(*hc.closeStat))
 | 
						|
	log.Printf("** Writing closeStat %d at Close()\n", *hc.closeStat)
 | 
						|
	//(*hc.c).SetWriteDeadline(time.Now().Add(500 * time.Millisecond))
 | 
						|
	hc.WritePacket(s, CSOExitStatus)
 | 
						|
 | 
						|
	// HACK: Bug #22,#33: Need to wait for rcvr to get final data
 | 
						|
	// TODO: Find a way to explicitly check if any outgoing data is pending
 | 
						|
 | 
						|
	//Ensure socket has sent all data to client prior to closing
 | 
						|
	//NOTE: This is not ideal, as it would be better to somehow
 | 
						|
	//determine if there is any pending outgoing (write) data to the
 | 
						|
	//underlying socket (TCP/KCP) prior to closing; however Go's net pkg
 | 
						|
	//completely hides lower-level stuff. net.Conn.Close() according to
 | 
						|
	//docs sends written data in the background, so how best to determine
 | 
						|
	//all data has been sent? -rlm 2022-10-04
 | 
						|
	time.Sleep(10 * time.Millisecond) //nolint:gomnd
 | 
						|
 | 
						|
	err = (*hc.c).Close()
 | 
						|
	logger.LogDebug(fmt.Sprintln("[Conn Closing]"))
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// LocalAddr returns the local network address.
 | 
						|
func (hc *Conn) LocalAddr() net.Addr {
 | 
						|
	return (*hc.c).LocalAddr()
 | 
						|
}
 | 
						|
 | 
						|
// RemoteAddr returns the remote network address.
 | 
						|
func (hc *Conn) RemoteAddr() net.Addr {
 | 
						|
	return (*hc.c).RemoteAddr()
 | 
						|
}
 | 
						|
 | 
						|
// SetDeadline sets the read and write deadlines associated
 | 
						|
// with the connection. It is equivalent to calling both
 | 
						|
// SetReadDeadline and SetWriteDeadline.
 | 
						|
//
 | 
						|
// A deadline is an absolute time after which I/O operations
 | 
						|
// fail with a timeout (see type Error) instead of
 | 
						|
// blocking. The deadline applies to all future and pending
 | 
						|
// I/O, not just the immediately following call to Read or
 | 
						|
// Write. After a deadline has been exceeded, the connection
 | 
						|
// can be refreshed by setting a deadline in the future.
 | 
						|
//
 | 
						|
// An idle timeout can be implemented by repeatedly extending
 | 
						|
// the deadline after successful Read or Write calls.
 | 
						|
//
 | 
						|
// A zero value for t means I/O operations will not time out.
 | 
						|
func (hc *Conn) SetDeadline(t time.Time) error {
 | 
						|
	return (*hc.c).SetDeadline(t)
 | 
						|
}
 | 
						|
 | 
						|
// SetWriteDeadline sets the deadline for future Write calls
 | 
						|
// and any currently-blocked Write call.
 | 
						|
// Even if write times out, it may return n > 0, indicating that
 | 
						|
// some of the data was successfully written.
 | 
						|
// A zero value for t means Write will not time out.
 | 
						|
func (hc *Conn) SetWriteDeadline(t time.Time) error {
 | 
						|
	return (*hc.c).SetWriteDeadline(t)
 | 
						|
}
 | 
						|
 | 
						|
// SetReadDeadline sets the deadline for future Read calls
 | 
						|
// and any currently-blocked Read call.
 | 
						|
// A zero value for t means Read will not time out.
 | 
						|
func (hc *Conn) SetReadDeadline(t time.Time) error {
 | 
						|
	return (*hc.c).SetReadDeadline(t)
 | 
						|
}
 | 
						|
 | 
						|
/*---------------------------------------------------------------------*/
 | 
						|
 | 
						|
// HKExListener is a Listener conforming to net.Listener
 | 
						|
//
 | 
						|
// See go doc net.Listener
 | 
						|
type HKExListener struct {
 | 
						|
	l     net.Listener
 | 
						|
	proto string
 | 
						|
}
 | 
						|
 | 
						|
// Listen for a connection
 | 
						|
//
 | 
						|
// See go doc net.Listen
 | 
						|
func Listen(proto string, ipport string, extensions ...string) (hl HKExListener, e error) {
 | 
						|
	if Log == nil {
 | 
						|
		Init(false, "server", logger.LOG_DAEMON|logger.LOG_DEBUG)
 | 
						|
	}
 | 
						|
 | 
						|
	var lErr error
 | 
						|
	var l net.Listener
 | 
						|
 | 
						|
	if proto == "kcp" {
 | 
						|
		l, lErr = kcpListen(ipport, extensions)
 | 
						|
	} else {
 | 
						|
		l, lErr = net.Listen(proto, ipport)
 | 
						|
	}
 | 
						|
	if lErr != nil {
 | 
						|
		return HKExListener{nil, proto}, lErr
 | 
						|
	}
 | 
						|
	logger.LogDebug(fmt.Sprintf("[Listening (proto '%s') on %s]\n", proto, ipport))
 | 
						|
	hl.l = l
 | 
						|
	hl.proto = proto
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// Close a hkex Listener - closes the Listener.
 | 
						|
// Any blocked Accept operations will be unblocked and return errors.
 | 
						|
//
 | 
						|
// See go doc net.Listener.Close
 | 
						|
func (hl HKExListener) Close() error {
 | 
						|
	logger.LogDebug(fmt.Sprintln("[Listener Closed]"))
 | 
						|
	return hl.l.Close()
 | 
						|
}
 | 
						|
 | 
						|
// Addr returns the listener's network address.
 | 
						|
//
 | 
						|
// See go doc net.Listener.Addr
 | 
						|
func (hl HKExListener) Addr() net.Addr {
 | 
						|
	return hl.l.Addr()
 | 
						|
}
 | 
						|
 | 
						|
// Accept a client connection, conforming to net.Listener.Accept()
 | 
						|
//
 | 
						|
// See go doc net.Listener.Accept
 | 
						|
func (hl *HKExListener) Accept() (hc Conn, err error) {
 | 
						|
	var c net.Conn
 | 
						|
	if hl.proto == "kcp" {
 | 
						|
		c, err = hl.AcceptKCP()
 | 
						|
		if err != nil {
 | 
						|
			return Conn{}, err
 | 
						|
		}
 | 
						|
		logger.LogDebug(fmt.Sprintln("[kcp.Listener Accepted]"))
 | 
						|
	} else {
 | 
						|
		// Open raw Conn c
 | 
						|
		c, err = hl.l.Accept()
 | 
						|
		if err != nil {
 | 
						|
			return Conn{}, err
 | 
						|
		}
 | 
						|
 | 
						|
		logger.LogDebug(fmt.Sprintf("[net.Listener Accepted %v]\n", c.RemoteAddr()))
 | 
						|
	}
 | 
						|
	// Read KEx alg proposed by client
 | 
						|
	var kexAlg KEXAlg
 | 
						|
	//! NB. Was using fmt.FScanln() here, but integers with a leading zero
 | 
						|
	//  were being mis-scanned? (is it an octal thing? Investigate.)
 | 
						|
	_, err = fmt.Fscanf(c, "%02x\n", &kexAlg)
 | 
						|
	if err != nil {
 | 
						|
		return Conn{}, err
 | 
						|
	}
 | 
						|
	log.Printf("[Client proposed KEx alg: %v]\n", kexAlg)
 | 
						|
	// --
 | 
						|
 | 
						|
	ret, err := _new(kexAlg, &c)
 | 
						|
	if err != nil {
 | 
						|
		return Conn{}, err
 | 
						|
	}
 | 
						|
	hc = *ret
 | 
						|
 | 
						|
	switch hc.kex {
 | 
						|
	case KEX_HERRADURA256:
 | 
						|
		fallthrough
 | 
						|
	case KEX_HERRADURA512:
 | 
						|
		fallthrough
 | 
						|
	case KEX_HERRADURA1024:
 | 
						|
		fallthrough
 | 
						|
	case KEX_HERRADURA2048:
 | 
						|
		log.Printf("[Setting up for KEX_HERRADURA %d]\n", hc.kex)
 | 
						|
		if HKExAcceptSetup(&c, &hc) != nil {
 | 
						|
			return Conn{}, err
 | 
						|
		}
 | 
						|
	case KEX_KYBER512:
 | 
						|
		fallthrough
 | 
						|
	case KEX_KYBER768:
 | 
						|
		fallthrough
 | 
						|
	case KEX_KYBER1024:
 | 
						|
		log.Printf("[Setting up for KEX_KYBER %d]\n", hc.kex)
 | 
						|
		if KyberAcceptSetup(&c, &hc) != nil {
 | 
						|
			return Conn{}, err
 | 
						|
		}
 | 
						|
	case KEX_NEWHOPE:
 | 
						|
		log.Printf("[Setting up for KEX_NEWHOPE %d]\n", hc.kex)
 | 
						|
		if NewHopeAcceptSetup(&c, &hc) != nil {
 | 
						|
			return Conn{}, err
 | 
						|
		}
 | 
						|
	case KEX_NEWHOPE_SIMPLE:
 | 
						|
		log.Printf("[Setting up for KEX_NEWHOPE_SIMPLE %d]\n", hc.kex)
 | 
						|
		if NewHopeSimpleAcceptSetup(&c, &hc) != nil {
 | 
						|
			return Conn{}, err
 | 
						|
		}
 | 
						|
	case KEX_FRODOKEM_1344AES:
 | 
						|
		log.Printf("[Setting up for KEX_FRODOKEM_1344AES %d]\n", hc.kex)
 | 
						|
		if FrodoKEMAcceptSetup(&c, &hc) != nil {
 | 
						|
			return Conn{}, err
 | 
						|
		}
 | 
						|
	case KEX_FRODOKEM_1344SHAKE:
 | 
						|
		log.Printf("[Setting up for KEX_FRODOKEM_1344SHAKE %d]\n", hc.kex)
 | 
						|
		if FrodoKEMAcceptSetup(&c, &hc) != nil {
 | 
						|
			return Conn{}, err
 | 
						|
		}
 | 
						|
	case KEX_FRODOKEM_976AES:
 | 
						|
		log.Printf("[Setting up for KEX_FRODOKEM_976AES %d]\n", hc.kex)
 | 
						|
		if FrodoKEMAcceptSetup(&c, &hc) != nil {
 | 
						|
			return Conn{}, err
 | 
						|
		}
 | 
						|
	case KEX_FRODOKEM_976SHAKE:
 | 
						|
		log.Printf("[Setting up for KEX_FRODOKEM_976SHAKE %d]\n", hc.kex)
 | 
						|
		if FrodoKEMAcceptSetup(&c, &hc) != nil {
 | 
						|
			return Conn{}, err
 | 
						|
		}
 | 
						|
	default:
 | 
						|
		return Conn{}, err
 | 
						|
	}
 | 
						|
 | 
						|
	log.Println("[hc.Accept successful]")
 | 
						|
	return hc, err
 | 
						|
}
 | 
						|
 | 
						|
/*---------------------------------------------------------------------*/
 | 
						|
 | 
						|
// Read into a byte slice
 | 
						|
//
 | 
						|
// In addition to regular io.Reader behaviour this does demultiplexing of
 | 
						|
// secured terminal comms and (if defined) tunnel traffic and session control
 | 
						|
// packet processing.
 | 
						|
//
 | 
						|
// See go doc io.Reader
 | 
						|
func (hc *Conn) Read(b []byte) (n int, err error) {
 | 
						|
	for {
 | 
						|
		if hc.dBuf.Len() > 0 {
 | 
						|
			break
 | 
						|
		}
 | 
						|
 | 
						|
		var ctrlStatOp uint8
 | 
						|
		var hmacIn [HMAC_CHK_SZ]uint8
 | 
						|
		var payloadLen uint32
 | 
						|
 | 
						|
		//------------- Read ctrl/status opcode --------------------
 | 
						|
		// Read ctrl/status opcode (CSOHmacInvalid on hmac mismatch)
 | 
						|
		err = binary.Read(*hc.c, binary.BigEndian, &ctrlStatOp)
 | 
						|
		if err != nil {
 | 
						|
			if err.Error() == "EOF" {
 | 
						|
				return 0, io.EOF
 | 
						|
			}
 | 
						|
			if strings.HasSuffix(err.Error(), "use of closed network connection") {
 | 
						|
				logger.LogDebug(fmt.Sprintln("[Client hung up(1)]"))
 | 
						|
				//!rlm hc.SetStatus(CSENone) //FIXME: re-examine this (exit 9 w/o it - 2023-11-05)
 | 
						|
				return 0, io.EOF
 | 
						|
			}
 | 
						|
			etxt := fmt.Sprintf("** Failed read:%s (%s) **", "ctrlStatOp", err)
 | 
						|
			logger.LogDebug(etxt)
 | 
						|
			return 0, errors.New(etxt)
 | 
						|
		}
 | 
						|
		log.Printf("[ctrlStatOp: %v]\n", ctrlStatOp)
 | 
						|
		if ctrlStatOp == CSOHmacInvalid {
 | 
						|
			// Other side indicated channel tampering, close channel
 | 
						|
			hc.Close()
 | 
						|
			return 0, errors.New("** ALERT - remote end detected HMAC mismatch - possible channel tampering **")
 | 
						|
		}
 | 
						|
		//----------------------------------------------------------
 | 
						|
 | 
						|
		//------------------ Read HMAC len  ------------------------
 | 
						|
		// Read the hmac and payload len first
 | 
						|
		err = binary.Read(*hc.c, binary.BigEndian, &hmacIn)
 | 
						|
		if err != nil {
 | 
						|
			if err.Error() == "EOF" {
 | 
						|
				return 0, io.EOF
 | 
						|
			}
 | 
						|
			if strings.HasSuffix(err.Error(), "use of closed network connection") {
 | 
						|
				logger.LogDebug(fmt.Sprintln("[Client hung up(2)]"))
 | 
						|
				return 0, io.EOF
 | 
						|
			}
 | 
						|
			etxt := fmt.Sprintf("** Failed read:%s (%s) **", "HMAC", err)
 | 
						|
			logger.LogDebug(etxt)
 | 
						|
			return 0, errors.New(etxt)
 | 
						|
		}
 | 
						|
		//----------------------------------------------------------
 | 
						|
 | 
						|
		//------------------ Read Payload len  ---------------------
 | 
						|
		err = binary.Read(*hc.c, binary.BigEndian, &payloadLen)
 | 
						|
		if err != nil {
 | 
						|
			if err.Error() == "EOF" {
 | 
						|
				return 0, io.EOF
 | 
						|
			}
 | 
						|
			if strings.HasSuffix(err.Error(), "use of closed network connection") {
 | 
						|
				logger.LogDebug(fmt.Sprintln("[Client hung up(3)]"))
 | 
						|
				return 0, io.EOF
 | 
						|
			}
 | 
						|
			etxt := fmt.Sprintf("** Failed read:%s (%s) **", "payloadLen", err)
 | 
						|
			logger.LogDebug(etxt)
 | 
						|
			return 0, errors.New(etxt)
 | 
						|
		}
 | 
						|
		//----------------------------------------------------------
 | 
						|
 | 
						|
		if payloadLen > MAX_PAYLOAD_LEN {
 | 
						|
			logger.LogDebug(fmt.Sprintf("[Insane payloadLen:%v]\n", payloadLen))
 | 
						|
			hc.Close()
 | 
						|
			return 1, errors.New("Insane payloadLen")
 | 
						|
		}
 | 
						|
 | 
						|
		//-------------------- Read Payload ------------------------
 | 
						|
		var payloadBytes = make([]byte, payloadLen)
 | 
						|
		n, err = io.ReadFull(*hc.c, payloadBytes)
 | 
						|
		if err != nil {
 | 
						|
			if err.Error() == "EOF" {
 | 
						|
				return 0, io.EOF
 | 
						|
			}
 | 
						|
			if strings.HasSuffix(err.Error(), "use of closed network connection") {
 | 
						|
				logger.LogDebug(fmt.Sprintln("[Client hung up(4)]"))
 | 
						|
				return 0, io.EOF
 | 
						|
			}
 | 
						|
			etxt := fmt.Sprintf("** Failed read:%s (%s) **", "payloadBytes", err)
 | 
						|
			logger.LogDebug(etxt)
 | 
						|
			return 0, errors.New(etxt)
 | 
						|
		}
 | 
						|
		//----------------------------------------------------------
 | 
						|
 | 
						|
		if hc.logCipherText {
 | 
						|
			log.Printf("  <:ctext:\r\n%s\r\n", hex.Dump(payloadBytes[:n]))
 | 
						|
		}
 | 
						|
		//fmt.Printf("  <:ctext:\r\n%s\r\n", hex.Dump(payloadBytes[:n]))
 | 
						|
 | 
						|
		//---------------- Verify Payload via HMAC -----------------
 | 
						|
		hc.rm.Write(payloadBytes) // Calc hmac on received data
 | 
						|
		hTmp := hc.rm.Sum(nil)[0:HMAC_CHK_SZ]
 | 
						|
		//log.Printf("<%04x) HMAC:(i)%s (c)%02x\r\n", decryptN, hex.EncodeToString([]byte(hmacIn[0:])), hTmp)
 | 
						|
 | 
						|
		// Log alert if hmac didn't match, corrupted channel
 | 
						|
		if !bytes.Equal(hTmp, []byte(hmacIn[0:])) /*|| hmacIn[0] > 0xf8*/ {
 | 
						|
			logger.LogDebug(fmt.Sprintln("** ALERT - detected HMAC mismatch, possible channel tampering **"))
 | 
						|
			_, _ = (*hc.c).Write([]byte{CSOHmacInvalid})
 | 
						|
		}
 | 
						|
		//----------------------------------------------------------
 | 
						|
 | 
						|
		//------------------- Decrypt Payload ----------------------
 | 
						|
		db := bytes.NewBuffer(payloadBytes[:n]) //copying payloadBytes to db
 | 
						|
		// The StreamReader acts like a pipe, decrypting
 | 
						|
		// whatever is available and forwarding the result
 | 
						|
		// to the parameter of Read() as a normal io.Reader
 | 
						|
		rs := &cipher.StreamReader{S: hc.r, R: db}
 | 
						|
		// The caller isn't necessarily reading the full payload so we need
 | 
						|
		// to decrypt to an intermediate buffer, draining it on demand of caller
 | 
						|
		decryptN, err := rs.Read(payloadBytes)
 | 
						|
		//----------------------------------------------------------
 | 
						|
 | 
						|
		if hc.logPlainText {
 | 
						|
			log.Printf("  <:ptext:\r\n%s\r\n", hex.Dump(payloadBytes[:n]))
 | 
						|
		}
 | 
						|
		if err != nil {
 | 
						|
			log.Println("xsnet.Read():", err)
 | 
						|
			//panic(err)
 | 
						|
		} else {
 | 
						|
			//------------ Discard Padding ---------------------
 | 
						|
			// Padding: Read padSide, padLen, (padding | d) or (d | padding)
 | 
						|
			padSide := payloadBytes[0]
 | 
						|
			padLen := payloadBytes[1]
 | 
						|
 | 
						|
			payloadBytes = payloadBytes[2:]
 | 
						|
			if padSide == 0 {
 | 
						|
				payloadBytes = payloadBytes[padLen:]
 | 
						|
			} else {
 | 
						|
				payloadBytes = payloadBytes[0 : len(payloadBytes)-int(padLen)]
 | 
						|
			}
 | 
						|
			//--------------------------------------------------
 | 
						|
 | 
						|
			switch ctrlStatOp {
 | 
						|
			case CSOChaff:
 | 
						|
				// Throw away pkt if it's chaff (ie., caller to Read() won't see this data)
 | 
						|
				log.Printf("[Chaff pkt, discarded (len %d)]\n", decryptN)
 | 
						|
			case CSOKeepAlive:
 | 
						|
				//logger.LogDebug(fmt.Sprintf("[got keepAlive pkt, discarded (len %d)]\n", decryptN))
 | 
						|
				// payload of keepalive (2 bytes) is not currently used (0x55aa fixed)
 | 
						|
				_ = binary.BigEndian.Uint16(payloadBytes[0:2])
 | 
						|
				hc.ResetKeepAlive()
 | 
						|
			case CSORekey:
 | 
						|
				// rekey
 | 
						|
				//logger.LogDebug(fmt.Sprintf("[Got rekey [%02x %02x %02x ...]\n",
 | 
						|
				//	payloadBytes[0], payloadBytes[1], payloadBytes[2]))
 | 
						|
				rekeyData := payloadBytes
 | 
						|
				if (hc.opts & CORemodulateShields) != 0 {
 | 
						|
					hc.Lock()
 | 
						|
					hc.cipheropts = getNewStreamAlgs(rekeyData[0], rekeyData[1])
 | 
						|
					hc.Unlock()
 | 
						|
				}
 | 
						|
				hc.r, hc.rm, err = hc.getStream(rekeyData)
 | 
						|
			case CSOTermSize:
 | 
						|
				fmt.Sscanf(string(payloadBytes), "%d %d", &hc.Rows, &hc.Cols)
 | 
						|
				log.Printf("[TermSize pkt: rows %v cols %v]\n", hc.Rows, hc.Cols)
 | 
						|
				hc.WinCh <- WinSize{hc.Rows, hc.Cols}
 | 
						|
			case CSOExitStatus:
 | 
						|
				if len(payloadBytes) > 0 {
 | 
						|
					hc.SetStatus(CSOType(binary.BigEndian.Uint32(payloadBytes)))
 | 
						|
				} else {
 | 
						|
					logger.LogDebug(fmt.Sprintln("[truncated payload, cannot determine CSOExitStatus]"))
 | 
						|
					hc.SetStatus(CSETruncCSO)
 | 
						|
				}
 | 
						|
				hc.Close()
 | 
						|
			case CSOTunSetup:
 | 
						|
				// server side tunnel setup in response to client
 | 
						|
				lport := binary.BigEndian.Uint16(payloadBytes[0:2])
 | 
						|
				rport := binary.BigEndian.Uint16(payloadBytes[2:4])
 | 
						|
				if _, ok := (*hc.tuns)[rport]; !ok {
 | 
						|
					// tunnel first-time open
 | 
						|
					logger.LogDebug(fmt.Sprintf("[Server] Got Initial CSOTunSetup [%d:%d]", lport, rport))
 | 
						|
					hc.StartServerTunnel(lport, rport)
 | 
						|
				} else {
 | 
						|
					logger.LogDebug(fmt.Sprintf("[Server] Got CSOTunSetup [%d:%d]", lport, rport))
 | 
						|
				}
 | 
						|
				(*hc.tuns)[rport].Ctl <- 'd' // Dial() rport
 | 
						|
			case CSOTunSetupAck:
 | 
						|
				lport := binary.BigEndian.Uint16(payloadBytes[0:2])
 | 
						|
				rport := binary.BigEndian.Uint16(payloadBytes[2:4])
 | 
						|
				if _, ok := (*hc.tuns)[rport]; !ok {
 | 
						|
					// tunnel first-time open
 | 
						|
					logger.LogDebug(fmt.Sprintf("[Client] Got Initial CSOTunSetupAck [%d:%d]", lport, rport))
 | 
						|
					hc.StartClientTunnel(lport, rport)
 | 
						|
				} else {
 | 
						|
					logger.LogDebug(fmt.Sprintf("[Client] Got CSOTunSetupAck [%d:%d]", lport, rport))
 | 
						|
				}
 | 
						|
				(*hc.tuns)[rport].Ctl <- 'a' // Listen() for lport connection
 | 
						|
			case CSOTunRefused:
 | 
						|
				// client side receiving CSOTunRefused means the remote side
 | 
						|
				// could not dial() rport. So we cannot yet listen()
 | 
						|
				// for client-side on lport.
 | 
						|
				lport := binary.BigEndian.Uint16(payloadBytes[0:2])
 | 
						|
				rport := binary.BigEndian.Uint16(payloadBytes[2:4])
 | 
						|
				logger.LogDebug(fmt.Sprintf("[Client] Got CSOTunRefused [%d:%d]", lport, rport))
 | 
						|
				if _, ok := (*hc.tuns)[rport]; ok {
 | 
						|
					hc.MarkTunDead(rport)
 | 
						|
				} else {
 | 
						|
					logger.LogDebug(fmt.Sprintf("[Client] CSOTunRefused on already-closed tun [%d:%d]", lport, rport))
 | 
						|
				}
 | 
						|
			case CSOTunDisconn:
 | 
						|
				// server side's rport has disconnected (server lost)
 | 
						|
				lport := binary.BigEndian.Uint16(payloadBytes[0:2])
 | 
						|
				rport := binary.BigEndian.Uint16(payloadBytes[2:4])
 | 
						|
				logger.LogDebug(fmt.Sprintf("[Client] Got CSOTunDisconn [%d:%d]", lport, rport))
 | 
						|
				if _, ok := (*hc.tuns)[rport]; ok {
 | 
						|
					hc.MarkTunDead(rport)
 | 
						|
				} else {
 | 
						|
					logger.LogDebug(fmt.Sprintf("[Client] CSOTunDisconn on already-closed tun [%d:%d]", lport, rport))
 | 
						|
				}
 | 
						|
			case CSOTunHangup:
 | 
						|
				// client side's lport has hung up
 | 
						|
				lport := binary.BigEndian.Uint16(payloadBytes[0:2])
 | 
						|
				rport := binary.BigEndian.Uint16(payloadBytes[2:4])
 | 
						|
				logger.LogDebug(fmt.Sprintf("[Server] Got CSOTunHangup [%d:%d]", lport, rport))
 | 
						|
				if _, ok := (*hc.tuns)[rport]; ok {
 | 
						|
					hc.MarkTunDead(rport)
 | 
						|
				} else {
 | 
						|
					logger.LogDebug(fmt.Sprintf("[Server] CSOTunHangup to already-closed tun [%d:%d]", lport, rport))
 | 
						|
				}
 | 
						|
			case CSOTunData:
 | 
						|
				lport := binary.BigEndian.Uint16(payloadBytes[0:2])
 | 
						|
				rport := binary.BigEndian.Uint16(payloadBytes[2:4])
 | 
						|
				//fmt.Printf("[Got CSOTunData: [lport %d:rport %d] data:%v\n", lport, rport, payloadBytes[4:])
 | 
						|
				if _, ok := (*hc.tuns)[rport]; ok {
 | 
						|
					if hc.logTunActivity {
 | 
						|
						logger.LogDebug(fmt.Sprintf("[Writing data to rport [%d:%d]", lport, rport))
 | 
						|
					}
 | 
						|
					(*hc.tuns)[rport].Data <- payloadBytes[4:]
 | 
						|
					hc.ResetTunnelAge(rport)
 | 
						|
				} else {
 | 
						|
					logger.LogDebug(fmt.Sprintf("[Attempt to write data to closed tun [%d:%d]", lport, rport))
 | 
						|
				}
 | 
						|
			case CSOTunKeepAlive:
 | 
						|
				// client side has sent keepalive for tunnels -- if client
 | 
						|
				// dies or exits unexpectedly the absence of this will
 | 
						|
				// let the server know to hang up on Dial()ed server rports.
 | 
						|
				_ = binary.BigEndian.Uint16(payloadBytes[0:2])
 | 
						|
				//logger.LogDebug(fmt.Sprintf("[Server] Got CSOTunKeepAlive"))
 | 
						|
				// though CSOTunKeepAlive sends an endp (uint16), we don't use it,
 | 
						|
				// preferring to refresh *all* tunnels on the message.
 | 
						|
				// (?rlm 2023-11-04 -- TODO: verify this, it's been a while.)
 | 
						|
				for _, t := range *hc.tuns {
 | 
						|
					hc.Lock()
 | 
						|
					t.KeepAlive = 0
 | 
						|
					hc.Unlock()
 | 
						|
				}
 | 
						|
			case CSONone:
 | 
						|
				hc.dBuf.Write(payloadBytes)
 | 
						|
			default:
 | 
						|
				logger.LogDebug(fmt.Sprintf("[Unknown CSOType:%d]", ctrlStatOp))
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	retN := hc.dBuf.Len()
 | 
						|
	if retN > len(b) {
 | 
						|
		retN = len(b)
 | 
						|
	}
 | 
						|
 | 
						|
	log.Printf("Read() got %d bytes\n", retN)
 | 
						|
 | 
						|
	copy(b, hc.dBuf.Next(retN))
 | 
						|
	return retN, nil
 | 
						|
}
 | 
						|
 | 
						|
// Write a byte slice
 | 
						|
//
 | 
						|
// See go doc io.Writer
 | 
						|
func (hc *Conn) Write(b []byte) (n int, err error) {
 | 
						|
	//logger.LogDebug("[+Write]")
 | 
						|
	n, err = hc.WritePacket(b, CSONone)
 | 
						|
	//logger.LogDebug("[-Write]")
 | 
						|
	return n, err
 | 
						|
}
 | 
						|
 | 
						|
// Write a byte slice with specified ctrlStatOp byte
 | 
						|
func (hc *Conn) WritePacket(b []byte, ctrlStatOp byte) (n int, err error) {
 | 
						|
	hc.Lock()
 | 
						|
	defer hc.Unlock()
 | 
						|
 | 
						|
	//log.Printf("[Encrypting...]\r\n")
 | 
						|
	var hmacOut []uint8
 | 
						|
	var payloadLen uint32
 | 
						|
 | 
						|
	if hc.m == nil || hc.wm == nil {
 | 
						|
		return 0, errors.New("Secure chan not ready for writing")
 | 
						|
	}
 | 
						|
 | 
						|
	//Padding prior to encryption
 | 
						|
	padSz := rand.Intn(PAD_SZ-1) + 1 /*(rand.Intn(PAD_SZ) / 2) + (PAD_SZ / 2)*/
 | 
						|
	padLen := padSz - ((len(b) + padSz) % padSz)
 | 
						|
	if padLen == padSz {
 | 
						|
		// No padding required
 | 
						|
		padLen = 0
 | 
						|
	}
 | 
						|
 | 
						|
	padBytes := make([]byte, padLen)
 | 
						|
	rand.Read(padBytes)
 | 
						|
	// For a little more confusion let's support padding either before
 | 
						|
	// or after the payload.
 | 
						|
	padSide := rand.Intn(2)
 | 
						|
	if padSide == 0 {
 | 
						|
		b = append([]byte{byte(padSide)}, append([]byte{byte(padLen)}, append(padBytes, b...)...)...)
 | 
						|
	} else {
 | 
						|
		b = append([]byte{byte(padSide)}, append([]byte{byte(padLen)}, append(b, padBytes...)...)...)
 | 
						|
	}
 | 
						|
 | 
						|
	payloadLen = uint32(len(b))
 | 
						|
	if hc.logPlainText {
 | 
						|
		log.Printf("  >:ptext:\r\n%s\r\n", hex.Dump(b[0:payloadLen]))
 | 
						|
	}
 | 
						|
 | 
						|
	// NOTE releases prior to v0.9 used Authenticate-then-Encrypt,
 | 
						|
	// which in block modes is insecure; however
 | 
						|
	// 1) we use exclusively XOR-stream modes with random padding,
 | 
						|
	// 2) are padding randomly either before or after the real payload, and
 | 
						|
	// 3) the padding side indicator value itself is part of the ciphertext
 | 
						|
	// ... thus are not subject to oracle attacks of the type used on SSL
 | 
						|
	// (described in (Krawczyk 2001/2014,
 | 
						|
	// https://link.springer.com/content/pdf/10.1007%2F3-540-44647-8_19.pdf)
 | 
						|
	//
 | 
						|
	// Nevertheless, to address any future concerns v0.9 onwards switches to
 | 
						|
	// Encrypt-then-Auth and breaks interop with earlier versions.
 | 
						|
	// -rlm 2020-12-15
 | 
						|
 | 
						|
	var wb bytes.Buffer
 | 
						|
	// The StreamWriter acts like a pipe, forwarding whatever is
 | 
						|
	// written to it through the cipher, encrypting as it goes
 | 
						|
	ws := &cipher.StreamWriter{S: hc.w, W: &wb}
 | 
						|
	wN, err := ws.Write(b[0:payloadLen])
 | 
						|
	if err != nil {
 | 
						|
		panic(err)
 | 
						|
	}
 | 
						|
	if wN < int(payloadLen) {
 | 
						|
		panic("truncated Write to cipher *****")
 | 
						|
	}
 | 
						|
 | 
						|
	if hc.logCipherText {
 | 
						|
		log.Printf("  >:ctext:\r\n%s\r\n", hex.Dump(wb.Bytes()))
 | 
						|
	}
 | 
						|
	//fmt.Printf("  >:ctext:\r\n%s\r\n", hex.Dump(wb.Bytes()))
 | 
						|
 | 
						|
	// Calculate hmac on cipher payload
 | 
						|
	hc.wm.Write(wb.Bytes())
 | 
						|
	hmacOut = hc.wm.Sum(nil)[0:HMAC_CHK_SZ] //finalize
 | 
						|
	//log.Printf("  (%08x> HMAC(o):%s\r\n", payloadLen, hex.EncodeToString(hmacOut))
 | 
						|
 | 
						|
	err = binary.Write(*hc.c, binary.BigEndian, &ctrlStatOp)
 | 
						|
	if err == nil {
 | 
						|
		// Write hmac LSB, payloadLen followed by payload
 | 
						|
		err = binary.Write(*hc.c, binary.BigEndian, hmacOut)
 | 
						|
		if err == nil {
 | 
						|
			err = binary.Write(*hc.c, binary.BigEndian, payloadLen)
 | 
						|
			if err == nil {
 | 
						|
				n, err = (*hc.c).Write(wb.Bytes())
 | 
						|
			} else {
 | 
						|
				//fmt.Println("[c]WriteError!")
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			//fmt.Println("[b]WriteError!")
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		//fmt.Println("[a]WriteError!")
 | 
						|
	}
 | 
						|
 | 
						|
	if err != nil {
 | 
						|
		log.Println(err)
 | 
						|
	}
 | 
						|
 | 
						|
	// We must 'lie' to caller indicating the length of THEIR
 | 
						|
	// data written (ie., not including the padding and padding headers)
 | 
						|
	retN := n - 2 - int(padLen)
 | 
						|
	if retN <= 0 {
 | 
						|
		retN = 0
 | 
						|
	}
 | 
						|
	return retN, err
 | 
						|
}
 | 
						|
 | 
						|
func (hc *Conn) StartupChaff() {
 | 
						|
	hc.chaff.shutdown = false
 | 
						|
	log.Println("Chaffing ENABLED")
 | 
						|
	hc.chaffHelper()
 | 
						|
}
 | 
						|
 | 
						|
func (hc *Conn) ShutdownChaff() {
 | 
						|
	hc.Lock()
 | 
						|
	hc.chaff.shutdown = true
 | 
						|
	hc.Unlock()
 | 
						|
	log.Println("Chaffing SHUTDOWN")
 | 
						|
}
 | 
						|
 | 
						|
func (hc *Conn) SetupChaff(msecsMin uint, msecsMax uint, szMax uint) {
 | 
						|
	// Enforce bounds on chaff frequency and pkt size
 | 
						|
	hc.Lock()
 | 
						|
	if hc.chaff.msecsMin < CHAFF_FREQ_MSECS_MIN {
 | 
						|
		hc.chaff.msecsMin = CHAFF_FREQ_MSECS_MIN
 | 
						|
	}
 | 
						|
	if hc.chaff.msecsMax > CHAFF_FREQ_MSECS_MAX {
 | 
						|
		hc.chaff.msecsMax = CHAFF_FREQ_MSECS_MAX
 | 
						|
	}
 | 
						|
	hc.Unlock()
 | 
						|
 | 
						|
	hc.chaff.msecsMin = msecsMin //move these to params of chaffHelper() ?
 | 
						|
	hc.chaff.msecsMax = msecsMax
 | 
						|
	hc.chaff.szMax = szMax
 | 
						|
}
 | 
						|
 | 
						|
func (hc *Conn) ShutdownRekey() {
 | 
						|
	hc.Lock()
 | 
						|
	hc.rekey = 0
 | 
						|
	hc.Unlock()
 | 
						|
}
 | 
						|
 | 
						|
func (hc *Conn) RekeyHelper(intervalSecs uint) {
 | 
						|
	if intervalSecs < REKEY_SECS_MIN {
 | 
						|
		intervalSecs = REKEY_SECS_MIN
 | 
						|
	}
 | 
						|
	if intervalSecs > REKEY_SECS_MAX {
 | 
						|
		intervalSecs = REKEY_SECS_MAX
 | 
						|
	}
 | 
						|
 | 
						|
	go func() {
 | 
						|
		hc.Lock()
 | 
						|
		hc.rekey = intervalSecs
 | 
						|
		hc.Unlock()
 | 
						|
 | 
						|
		for {
 | 
						|
			hc.Lock()
 | 
						|
			rekey := hc.rekey
 | 
						|
			hc.Unlock()
 | 
						|
 | 
						|
			if rekey != 0 {
 | 
						|
				jitter := rand.Intn(int(rekey)) / 4
 | 
						|
				rekey = rekey - uint(jitter)
 | 
						|
				if rekey < 1 {
 | 
						|
					rekey = 1
 | 
						|
				}
 | 
						|
 | 
						|
				//logger.LogDebug(fmt.Sprintf("[rekeyHelper Loop]\n"))
 | 
						|
				time.Sleep(time.Duration(rekey) * time.Second)
 | 
						|
 | 
						|
				// Send rekey to other end
 | 
						|
				rekeyData := make([]byte, 64)
 | 
						|
				_, err := crand.Read(rekeyData)
 | 
						|
				//logger.LogDebug(fmt.Sprintf("[rekey [%02x %02x %02x ...]\n",
 | 
						|
				//	rekeyData[0], rekeyData[1], rekeyData[2]))
 | 
						|
				//logger.LogDebug("[+rekeyHelper]")
 | 
						|
				_, err = hc.WritePacket(rekeyData, CSORekey)
 | 
						|
				hc.Lock()
 | 
						|
				if (hc.opts & CORemodulateShields) != 0 {
 | 
						|
					hc.cipheropts = getNewStreamAlgs(rekeyData[0], rekeyData[1])
 | 
						|
				}
 | 
						|
				hc.w, hc.wm, err = hc.getStream(rekeyData)
 | 
						|
				//logger.LogDebug("[-rekeyHelper]")
 | 
						|
				hc.Unlock()
 | 
						|
				if err != nil {
 | 
						|
					log.Printf("[rekey WritePacket err! (%v) rekey dying ...]\n", err)
 | 
						|
					return
 | 
						|
				}
 | 
						|
			} else {
 | 
						|
				return
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}()
 | 
						|
}
 | 
						|
 | 
						|
// Helper routine to spawn a chaffing goroutine for each Conn
 | 
						|
func (hc *Conn) chaffHelper() {
 | 
						|
	go func() {
 | 
						|
		var nextDuration int
 | 
						|
		for {
 | 
						|
			//logger.LogDebug(fmt.Sprintf("[chaffHelper Loop]\n"))
 | 
						|
			hc.Lock()
 | 
						|
			shutdown := hc.chaff.shutdown
 | 
						|
			hc.Unlock()
 | 
						|
			if !shutdown {
 | 
						|
				var bufTmp []byte
 | 
						|
				bufTmp = make([]byte, rand.Intn(int(hc.chaff.szMax)))
 | 
						|
				min := int(hc.chaff.msecsMin)
 | 
						|
				nextDuration = rand.Intn(int(hc.chaff.msecsMax)-min) + min
 | 
						|
				_, _ = rand.Read(bufTmp)
 | 
						|
				//logger.LogDebug("[+chaffHelper]")
 | 
						|
				_, err := hc.WritePacket(bufTmp, CSOChaff)
 | 
						|
				//logger.LogDebug("[-chaffHelper]")
 | 
						|
				if err != nil {
 | 
						|
					log.Println("[ *** error - chaffHelper shutting down *** ]")
 | 
						|
					hc.Lock()
 | 
						|
					hc.chaff.shutdown = true
 | 
						|
					hc.Unlock()
 | 
						|
					break
 | 
						|
				}
 | 
						|
			} else {
 | 
						|
				log.Println("[ *** chaffHelper shutting down *** ]")
 | 
						|
				break
 | 
						|
			}
 | 
						|
			time.Sleep(time.Duration(nextDuration) * time.Millisecond)
 | 
						|
		}
 | 
						|
	}()
 | 
						|
}
 | 
						|
 | 
						|
func (hc *Conn) StartupKeepAlive() {
 | 
						|
	hc.ResetKeepAlive()
 | 
						|
	log.Println("KeepAlive ENABLED")
 | 
						|
	hc.keepaliveHelper()
 | 
						|
}
 | 
						|
 | 
						|
func (hc *Conn) ShutdownKeepAlive() {
 | 
						|
	log.Println("Conn SHUTDOWN")
 | 
						|
	hc.Close()
 | 
						|
}
 | 
						|
 | 
						|
func (hc *Conn) ResetKeepAlive() {
 | 
						|
	hc.Lock()
 | 
						|
	hc.keepalive = 3
 | 
						|
	hc.Unlock()
 | 
						|
	log.Println("KeepAlive RESET")
 | 
						|
}
 | 
						|
 | 
						|
// Helper routine to spawn a keepalive goroutine for each Conn
 | 
						|
func (hc *Conn) keepaliveHelper() {
 | 
						|
	go func() {
 | 
						|
		for {
 | 
						|
			nextDuration := 10000
 | 
						|
			bufTmp := []byte{0x55, 0xaa}
 | 
						|
			//logger.LogDebug("[+keepaliveHelper]")
 | 
						|
			_, err := hc.WritePacket(bufTmp, CSOKeepAlive)
 | 
						|
			//logger.LogDebug("[-keepaliveHelper]")
 | 
						|
			//logger.LogDebug(fmt.Sprintf("[keepalive]\n"))
 | 
						|
			if err != nil {
 | 
						|
				logger.LogDebug(fmt.Sprintf("[ *** error - keepaliveHelper quitting *** ]\n"))
 | 
						|
				break
 | 
						|
			}
 | 
						|
			time.Sleep(time.Duration(nextDuration) * time.Millisecond)
 | 
						|
			hc.Lock()
 | 
						|
			hc.keepalive -= 1
 | 
						|
			hc.Unlock()
 | 
						|
			//logger.LogDebug(fmt.Sprintf("[keepAlive is now %d]\n", hc.keepalive))
 | 
						|
 | 
						|
			//if rand.Intn(8) == 0 {
 | 
						|
			//	hc.keepalive = 0
 | 
						|
			//}
 | 
						|
 | 
						|
			if hc.keepalive == 0 {
 | 
						|
				logger.LogDebug(fmt.Sprintf("*** keepaliveHelper shutting down\n"))
 | 
						|
				hc.SetStatus(CSEConnDead)
 | 
						|
				hc.ShutdownKeepAlive()
 | 
						|
				if hc.Pproc != 0 {
 | 
						|
					//fmt.Printf("[pid %d needs to be killed]\n", hc.Pproc)
 | 
						|
					//syscall.Kill(hc.Pproc, syscall.SIGABRT) //nolint:errcheck
 | 
						|
					//exec.Command("taskkill", "/f", "/pid", strconv.Itoa(hc.Pproc)).Run()
 | 
						|
					hc.kill()
 | 
						|
				}
 | 
						|
				break
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}()
 | 
						|
}
 |