xs/xsnet/chan.go

170 lines
5.3 KiB
Go

package xsnet
// Copyright (c) 2017-2020 Russell Magee
// Licensed under the terms of the MIT license (see LICENSE.mit in this
// distribution)
//
// golang implementation by Russ Magee (rmagee_at_gmail.com)
/* Support functions to set up encryption once an HKEx Conn has been
established with FA exchange and support channel operations
(echo, file-copy, remote-cmd, ...) */
import (
"crypto"
"crypto/aes"
"crypto/cipher"
"encoding/hex"
"errors"
"fmt"
"hash"
"log"
"blitter.com/go/cryptmt"
"blitter.com/go/hopscotch"
"github.com/aead/chacha20/chacha"
"golang.org/x/crypto/blowfish"
"golang.org/x/crypto/twofish"
// hash algos must be manually imported thusly:
// (Would be nice if the golang pkg docs were more clear
// on this...)
_ "crypto/sha256"
_ "crypto/sha512"
groestl "groestl/pkg/groestl"
)
// Expand keymat, if necessary, to a minimum of 2x(blocksize).
// Keymat is used for initial key and the IV, hence the 2x.
// This is occasionally necessary for smaller modes of KEX algorithms
// (eg., KEX_HERRADURA256); perhaps an indication these should be
// avoided in favour of larger modes.
//
// This is used for block ciphers; stream ciphers should do their
// own key expansion.
func expandKeyMat(keymat []byte, blocksize int) []byte {
if len(keymat) < 2*blocksize {
halg := crypto.SHA256
mc := halg.New()
if !halg.Available() {
log.Fatal("hash not available!")
}
_, _ = mc.Write(keymat)
var xpand []byte
xpand = mc.Sum(xpand)
keymat = append(keymat, xpand...)
log.Println("[NOTE: keymat short - applying key expansion using SHA256]")
}
return keymat
}
/* Support functionality to set up encryption after a channel has
been negotiated via xsnet.go
*/
func (hc *Conn) getStream(keymat []byte) (rc cipher.Stream, mc hash.Hash, err error) {
var key []byte
var block cipher.Block
var iv []byte
var ivlen int
copts := hc.cipheropts & 0xFF
// TODO: each cipher alg case should ensure len(keymat.Bytes())
// is >= 2*cipher.BlockSize (enough for both key and iv)
switch copts {
case CAlgAES256:
keymat = expandKeyMat(keymat, aes.BlockSize)
key = keymat[0:aes.BlockSize]
block, err = aes.NewCipher(key)
ivlen = aes.BlockSize
iv = keymat[aes.BlockSize : aes.BlockSize+ivlen]
rc = cipher.NewOFB(block, iv)
log.Printf("[cipher AES_256 (%d)]\n", copts)
case CAlgTwofish128:
keymat = expandKeyMat(keymat, twofish.BlockSize)
key = keymat[0:twofish.BlockSize]
block, err = twofish.NewCipher(key)
ivlen = twofish.BlockSize
iv = keymat[twofish.BlockSize : twofish.BlockSize+ivlen]
rc = cipher.NewOFB(block, iv)
log.Printf("[cipher TWOFISH_128 (%d)]\n", copts)
case CAlgBlowfish64:
keymat = expandKeyMat(keymat, blowfish.BlockSize)
key = keymat[0:blowfish.BlockSize]
block, err = blowfish.NewCipher(key)
ivlen = blowfish.BlockSize
// N.b. Bounds enforcement of differing cipher algorithms
// ------------------------------------------------------
// cipher/aes and x/cipher/twofish appear to allow one to
// pass an iv larger than the blockSize harmlessly to
// cipher.NewOFB(); x/cipher/blowfish implementation will
// segfault here if len(iv) is not exactly blowfish.BlockSize.
//
// I assume the other two check bounds and only
// copy what's needed whereas blowfish does no such check.
iv = keymat[blowfish.BlockSize : blowfish.BlockSize+ivlen]
rc = cipher.NewOFB(block, iv)
log.Printf("[cipher BLOWFISH_64 (%d)]\n", copts)
case CAlgCryptMT1:
rc = cryptmt.New(nil, nil, keymat)
log.Printf("[cipher CRYPTMT1 (%d)]\n", copts)
case CAlgHopscotch:
rc = hopscotch.New(nil, nil, 4, keymat)
log.Printf("[cipher HOPSCOTCH (%d)]\n", copts)
case CAlgChaCha20_12:
keymat = expandKeyMat(keymat, chacha.KeySize)
key = keymat[0:chacha.KeySize]
ivlen = chacha.INonceSize
iv = keymat[chacha.KeySize : chacha.KeySize+ivlen]
rc, err = chacha.NewCipher(iv, key, chacha.INonceSize)
if err != nil {
log.Printf("[ChaCha20 config error]\n")
fmt.Printf("[ChaCha20 config error]\n")
}
// TODO: SetCounter() to something derived from key or nonce or extra keymat?
log.Printf("[cipher CHACHA20_12 (%d)]\n", copts)
default:
log.Printf("[invalid cipher (%d)]\n", copts)
fmt.Printf("DOOFUS SET A VALID CIPHER ALG (%d)\n", copts)
err = errors.New("hkexchan: INVALID CIPHER ALG")
//os.Exit(1)
}
hopts := (hc.cipheropts >> 8) & 0xFF
switch hopts {
case HmacSHA256:
log.Printf("[hash HmacSHA256 (%d)]\n", hopts)
halg := crypto.SHA256
mc = halg.New()
if !halg.Available() {
log.Fatal("hash not available!")
}
case HmacSHA512:
log.Printf("[hash HmacSHA512 (%d)]\n", hopts)
halg := crypto.SHA512
mc = halg.New()
if !halg.Available() {
log.Fatal("hash not available!")
}
case HmacGroestl256:
log.Printf("[hash HmacGroestl256 (%d)]\n", hopts)
mc = groestl.New256()
default:
log.Printf("[invalid hmac (%d)]\n", hopts)
fmt.Printf("DOOFUS SET A VALID HMAC ALG (%d)\n", hopts)
err = errors.New("hkexchan: INVALID HMAC ALG")
return
//os.Exit(1)
}
if err != nil {
// Feed the IV into the hmac: all traffic in the connection must
// feed its data into the hmac afterwards, so both ends can xor
// that with the stream to detect corruption.
_, _ = mc.Write(iv)
var currentHash []byte
currentHash = mc.Sum(currentHash)
log.Printf("Channel init hmac(iv):%s\n", hex.EncodeToString(currentHash))
}
return
}