#include "modules/battery.hpp" #if defined(__FreeBSD__) #include #endif #include #include waybar::modules::Battery::Battery(const std::string& id, const Json::Value& config) : ALabel(config, "battery", id, "{capacity}%", 60) { #if defined(__linux__) battery_watch_fd_ = inotify_init1(IN_CLOEXEC); if (battery_watch_fd_ == -1) { throw std::runtime_error("Unable to listen batteries."); } global_watch_fd_ = inotify_init1(IN_CLOEXEC); if (global_watch_fd_ == -1) { throw std::runtime_error("Unable to listen batteries."); } // Watch the directory for any added or removed batteries global_watch = inotify_add_watch(global_watch_fd_, data_dir_.c_str(), IN_CREATE | IN_DELETE); if (global_watch < 0) { throw std::runtime_error("Could not watch for battery plug/unplug"); } #endif worker(); } waybar::modules::Battery::~Battery() { #if defined(__linux__) std::lock_guard guard(battery_list_mutex_); if (global_watch >= 0) { inotify_rm_watch(global_watch_fd_, global_watch); } close(global_watch_fd_); for (auto it = batteries_.cbegin(), next_it = it; it != batteries_.cend(); it = next_it) { ++next_it; auto watch_id = (*it).second; if (watch_id >= 0) { inotify_rm_watch(battery_watch_fd_, watch_id); } batteries_.erase(it); } close(battery_watch_fd_); #endif } void waybar::modules::Battery::worker() { #if defined(__FreeBSD__) thread_timer_ = [this] { dp.emit(); thread_timer_.sleep_for(interval_); }; #else thread_timer_ = [this] { // Make sure we eventually update the list of batteries even if we miss an // inotify event for some reason refreshBatteries(); dp.emit(); thread_timer_.sleep_for(interval_); }; thread_ = [this] { struct inotify_event event = {0}; int nbytes = read(battery_watch_fd_, &event, sizeof(event)); if (nbytes != sizeof(event) || event.mask & IN_IGNORED) { thread_.stop(); return; } dp.emit(); }; thread_battery_update_ = [this] { struct inotify_event event = {0}; int nbytes = read(global_watch_fd_, &event, sizeof(event)); if (nbytes != sizeof(event) || event.mask & IN_IGNORED) { thread_.stop(); return; } refreshBatteries(); dp.emit(); }; #endif } void waybar::modules::Battery::refreshBatteries() { #if defined(__linux__) std::lock_guard guard(battery_list_mutex_); // Mark existing list of batteries as not necessarily found std::map check_map; for (auto const& bat : batteries_) { check_map[bat.first] = false; } try { for (auto& node : fs::directory_iterator(data_dir_)) { if (!fs::is_directory(node)) { continue; } auto dir_name = node.path().filename(); auto bat_defined = config_["bat"].isString(); if (((bat_defined && dir_name == config_["bat"].asString()) || !bat_defined) && (fs::exists(node.path() / "capacity") || fs::exists(node.path() / "charge_now")) && fs::exists(node.path() / "uevent") && fs::exists(node.path() / "status") && fs::exists(node.path() / "type")) { std::string type; std::ifstream(node.path() / "type") >> type; if (!type.compare("Battery")) { // Ignore non-system power supplies unless explicitly requested if (!bat_defined && fs::exists(node.path() / "scope")) { std::string scope; std::ifstream(node.path() / "scope") >> scope; if (g_ascii_strcasecmp(scope.data(), "device") == 0) { continue; } } check_map[node.path()] = true; auto search = batteries_.find(node.path()); if (search == batteries_.end()) { // We've found a new battery save it and start listening for events auto event_path = (node.path() / "uevent"); auto wd = inotify_add_watch(battery_watch_fd_, event_path.c_str(), IN_ACCESS); if (wd < 0) { throw std::runtime_error("Could not watch events for " + node.path().string()); } batteries_[node.path()] = wd; } } } auto adap_defined = config_["adapter"].isString(); if (((adap_defined && dir_name == config_["adapter"].asString()) || !adap_defined) && (fs::exists(node.path() / "online") || fs::exists(node.path() / "status"))) { adapter_ = node.path(); } } } catch (fs::filesystem_error& e) { throw std::runtime_error(e.what()); } if (warnFirstTime_ && batteries_.empty()) { if (config_["bat"].isString()) { spdlog::warn("No battery named {0}", config_["bat"].asString()); } else { spdlog::warn("No batteries."); } warnFirstTime_ = false; } // Remove any batteries that are no longer present and unwatch them for (auto const& check : check_map) { if (!check.second) { auto watch_id = batteries_[check.first]; if (watch_id >= 0) { inotify_rm_watch(battery_watch_fd_, watch_id); } batteries_.erase(check.first); } } #endif } // Unknown > Full > Not charging > Discharging > Charging static bool status_gt(const std::string& a, const std::string& b) { if (a == b) return false; else if (a == "Unknown") return true; else if (a == "Full" && b != "Unknown") return true; else if (a == "Not charging" && b != "Unknown" && b != "Full") return true; else if (a == "Discharging" && b != "Unknown" && b != "Full" && b != "Not charging") return true; return false; } const std::tuple waybar::modules::Battery::getInfos() { std::lock_guard guard(battery_list_mutex_); try { #if defined(__FreeBSD__) /* Allocate state of battery units reported via ACPI. */ int battery_units = 0; size_t battery_units_size = sizeof battery_units; if (sysctlbyname("hw.acpi.battery.units", &battery_units, &battery_units_size, NULL, 0) != 0) { throw std::runtime_error("sysctl hw.acpi.battery.units failed"); } if (battery_units < 0) { throw std::runtime_error("No battery units"); } int capacity; size_t size_capacity = sizeof capacity; if (sysctlbyname("hw.acpi.battery.life", &capacity, &size_capacity, NULL, 0) != 0) { throw std::runtime_error("sysctl hw.acpi.battery.life failed"); } int time; size_t size_time = sizeof time; if (sysctlbyname("hw.acpi.battery.time", &time, &size_time, NULL, 0) != 0) { throw std::runtime_error("sysctl hw.acpi.battery.time failed"); } int rate; size_t size_rate = sizeof rate; if (sysctlbyname("hw.acpi.battery.rate", &rate, &size_rate, NULL, 0) != 0) { throw std::runtime_error("sysctl hw.acpi.battery.rate failed"); } auto status = getAdapterStatus(capacity); // Handle full-at if (config_["full-at"].isUInt()) { auto full_at = config_["full-at"].asUInt(); if (full_at < 100) { capacity = 100.f * capacity / full_at; } } if (capacity > 100.f) { // This can happen when the battery is calibrating and goes above 100% // Handle it gracefully by clamping at 100% capacity = 100.f; } uint8_t cap = round(capacity); if (cap == 100 && status == "Plugged") { // If we've reached 100% just mark as full as some batteries can stay // stuck reporting they're still charging but not yet done status = "Full"; } // spdlog::info("{} {} {} {}", capacity,time,status,rate); return {capacity, time / 60.0, status, rate}; #elif defined(__linux__) uint32_t total_power = 0; // μW bool total_power_exists = false; uint32_t total_energy = 0; // μWh bool total_energy_exists = false; uint32_t total_energy_full = 0; bool total_energy_full_exists = false; uint32_t total_energy_full_design = 0; bool total_energy_full_design_exists = false; uint32_t total_capacity = 0; bool total_capacity_exists = false; uint32_t time_to_empty_now = 0; bool time_to_empty_now_exists = false; uint32_t time_to_full_now = 0; bool time_to_full_now_exists = false; std::string status = "Unknown"; for (auto const& item : batteries_) { auto bat = item.first; std::string _status; std::getline(std::ifstream(bat / "status"), _status); // Some battery will report current and charge in μA/μAh. // Scale these by the voltage to get μW/μWh. uint32_t capacity = 0; bool capacity_exists = false; if (fs::exists(bat / "capacity")) { capacity_exists = true; std::ifstream(bat / "capacity") >> capacity; } uint32_t current_now = 0; bool current_now_exists = false; if (fs::exists(bat / "current_now")) { current_now_exists = true; std::ifstream(bat / "current_now") >> current_now; } else if (fs::exists(bat / "current_avg")) { current_now_exists = true; std::ifstream(bat / "current_avg") >> current_now; } if (fs::exists(bat / "time_to_empty_now")) { time_to_empty_now_exists = true; std::ifstream(bat / "time_to_empty_now") >> time_to_empty_now; } if (fs::exists(bat / "time_to_full_now")) { time_to_full_now_exists = true; std::ifstream(bat / "time_to_full_now") >> time_to_full_now; } uint32_t voltage_now = 0; bool voltage_now_exists = false; if (fs::exists(bat / "voltage_now")) { voltage_now_exists = true; std::ifstream(bat / "voltage_now") >> voltage_now; } else if (fs::exists(bat / "voltage_avg")) { voltage_now_exists = true; std::ifstream(bat / "voltage_avg") >> voltage_now; } uint32_t charge_full = 0; bool charge_full_exists = false; if (fs::exists(bat / "charge_full")) { charge_full_exists = true; std::ifstream(bat / "charge_full") >> charge_full; } uint32_t charge_full_design = 0; bool charge_full_design_exists = false; if (fs::exists(bat / "charge_full_design")) { charge_full_design_exists = true; std::ifstream(bat / "charge_full_design") >> charge_full_design; } uint32_t charge_now = 0; bool charge_now_exists = false; if (fs::exists(bat / "charge_now")) { charge_now_exists = true; std::ifstream(bat / "charge_now") >> charge_now; } uint32_t power_now = 0; bool power_now_exists = false; if (fs::exists(bat / "power_now")) { power_now_exists = true; std::ifstream(bat / "power_now") >> power_now; } uint32_t energy_now = 0; bool energy_now_exists = false; if (fs::exists(bat / "energy_now")) { energy_now_exists = true; std::ifstream(bat / "energy_now") >> energy_now; } uint32_t energy_full = 0; bool energy_full_exists = false; if (fs::exists(bat / "energy_full")) { energy_full_exists = true; std::ifstream(bat / "energy_full") >> energy_full; } uint32_t energy_full_design = 0; bool energy_full_design_exists = false; if (fs::exists(bat / "energy_full_design")) { energy_full_design_exists = true; std::ifstream(bat / "energy_full_design") >> energy_full_design; } if (!voltage_now_exists) { if (power_now_exists && current_now_exists && current_now != 0) { voltage_now_exists = true; voltage_now = 1000000 * (uint64_t)power_now / (uint64_t)current_now; } else if (energy_full_design_exists && charge_full_design_exists && charge_full_design != 0) { voltage_now_exists = true; voltage_now = 1000000 * (uint64_t)energy_full_design / (uint64_t)charge_full_design; } else if (energy_now_exists) { if (charge_now_exists && charge_now != 0) { voltage_now_exists = true; voltage_now = 1000000 * (uint64_t)energy_now / (uint64_t)charge_now; } else if (capacity_exists && charge_full_exists) { charge_now_exists = true; charge_now = (uint64_t)charge_full * (uint64_t)capacity / 100; if (charge_full != 0 && capacity != 0) { voltage_now_exists = true; voltage_now = 1000000 * (uint64_t)energy_now * 100 / (uint64_t)charge_full / (uint64_t)capacity; } } } else if (energy_full_exists) { if (charge_full_exists && charge_full != 0) { voltage_now_exists = true; voltage_now = 1000000 * (uint64_t)energy_full / (uint64_t)charge_full; } else if (charge_now_exists && capacity_exists) { if (capacity != 0) { charge_full_exists = true; charge_full = 100 * (uint64_t)charge_now / (uint64_t)capacity; } if (charge_now != 0) { voltage_now_exists = true; voltage_now = 10000 * (uint64_t)energy_full * (uint64_t)capacity / (uint64_t)charge_now; } } } } if (!capacity_exists) { if (charge_now_exists && charge_full_exists && charge_full != 0) { capacity_exists = true; capacity = 100 * (uint64_t)charge_now / (uint64_t)charge_full; } else if (energy_now_exists && energy_full_exists && energy_full != 0) { capacity_exists = true; capacity = 100 * (uint64_t)energy_now / (uint64_t)energy_full; } else if (charge_now_exists && energy_full_exists && voltage_now_exists) { if (!charge_full_exists && voltage_now != 0) { charge_full_exists = true; charge_full = 1000000 * (uint64_t)energy_full / (uint64_t)voltage_now; } if (energy_full != 0) { capacity_exists = true; capacity = (uint64_t)charge_now * (uint64_t)voltage_now / 10000 / (uint64_t)energy_full; } } else if (charge_full_exists && energy_now_exists && voltage_now_exists) { if (!charge_now_exists && voltage_now != 0) { charge_now_exists = true; charge_now = 1000000 * (uint64_t)energy_now / (uint64_t)voltage_now; } if (voltage_now != 0 && charge_full != 0) { capacity_exists = true; capacity = 100 * 1000000 * (uint64_t)energy_now / (uint64_t)voltage_now / (uint64_t)charge_full; } } } if (!energy_now_exists && voltage_now_exists) { if (charge_now_exists) { energy_now_exists = true; energy_now = (uint64_t)charge_now * (uint64_t)voltage_now / 1000000; } else if (capacity_exists && charge_full_exists) { charge_now_exists = true; charge_now = (uint64_t)capacity * (uint64_t)charge_full / 100; energy_now_exists = true; energy_now = (uint64_t)voltage_now * (uint64_t)capacity * (uint64_t)charge_full / 1000000 / 100; } else if (capacity_exists && energy_full) { if (voltage_now != 0) { charge_full_exists = true; charge_full = 1000000 * (uint64_t)energy_full / (uint64_t)voltage_now; charge_now_exists = true; charge_now = (uint64_t)capacity * 10000 * (uint64_t)energy_full / (uint64_t)voltage_now; } energy_now_exists = true; energy_now = (uint64_t)capacity * (uint64_t)energy_full / 100; } } if (!energy_full_exists && voltage_now_exists) { if (charge_full_exists) { energy_full_exists = true; energy_full = (uint64_t)charge_full * (uint64_t)voltage_now / 1000000; } else if (charge_now_exists && capacity_exists && capacity != 0) { charge_full_exists = true; charge_full = 100 * (uint64_t)charge_now / (uint64_t)capacity; energy_full_exists = true; energy_full = (uint64_t)charge_now * (uint64_t)voltage_now / (uint64_t)capacity / 10000; } else if (capacity_exists && energy_now) { if (voltage_now != 0) { charge_now_exists = true; charge_now = 1000000 * (uint64_t)energy_now / (uint64_t)voltage_now; } if (capacity != 0) { energy_full_exists = true; energy_full = 100 * (uint64_t)energy_now / (uint64_t)capacity; if (voltage_now != 0) { charge_full_exists = true; charge_full = 100 * 1000000 * (uint64_t)energy_now / (uint64_t)voltage_now / (uint64_t)capacity; } } } } if (!power_now_exists && voltage_now_exists && current_now_exists) { power_now_exists = true; power_now = (uint64_t)voltage_now * (uint64_t)current_now / 1000000; } if (!energy_full_design_exists && voltage_now_exists && charge_full_design_exists) { energy_full_design_exists = true; energy_full_design = (uint64_t)voltage_now * (uint64_t)charge_full_design / 1000000; } // Show the "smallest" status among all batteries if (status_gt(status, _status)) status = _status; if (power_now_exists) { total_power_exists = true; total_power += power_now; } if (energy_now_exists) { total_energy_exists = true; total_energy += energy_now; } if (energy_full_exists) { total_energy_full_exists = true; total_energy_full += energy_full; } if (energy_full_design_exists) { total_energy_full_design_exists = true; total_energy_full_design += energy_full_design; } if (capacity_exists) { total_capacity_exists = true; total_capacity += capacity; } } // Give `Plugged` higher priority over `Not charging`. // So in a setting where TLP is used, `Plugged` is shown when the threshold is reached if (!adapter_.empty() && (status == "Discharging" || status == "Not charging")) { bool online; std::string current_status; std::ifstream(adapter_ / "online") >> online; std::getline(std::ifstream(adapter_ / "status"), current_status); if (online && current_status != "Discharging") status = "Plugged"; } float time_remaining{0.0f}; if (status == "Discharging" && time_to_empty_now_exists) { if (time_to_empty_now != 0) time_remaining = (float)time_to_empty_now / 3600.0f; } else if (status == "Discharging" && total_power_exists && total_energy_exists) { if (total_power != 0) time_remaining = (float)total_energy / total_power; } else if (status == "Charging" && time_to_full_now_exists) { if (time_to_full_now_exists && (time_to_full_now != 0)) time_remaining = -(float)time_to_full_now / 3600.0f; // If we've turned positive it means the battery is past 100% and so just report that as no // time remaining if (time_remaining > 0.0f) time_remaining = 0.0f; } else if (status == "Charging" && total_energy_exists && total_energy_full_exists && total_power_exists) { if (total_power != 0) time_remaining = -(float)(total_energy_full - total_energy) / total_power; // If we've turned positive it means the battery is past 100% and so just report that as no // time remaining if (time_remaining > 0.0f) time_remaining = 0.0f; } float calculated_capacity{0.0f}; if (total_capacity_exists) { if (total_capacity > 0.0f) calculated_capacity = (float)total_capacity / batteries_.size(); else if (total_energy_full_exists && total_energy_exists) { if (total_energy_full > 0.0f) calculated_capacity = ((float)total_energy * 100.0f / (float)total_energy_full); } } // Handle weighted-average if ((config_["weighted-average"].isBool() ? config_["weighted-average"].asBool() : false) && total_energy_exists && total_energy_full_exists) { if (total_energy_full > 0.0f) calculated_capacity = ((float)total_energy * 100.0f / (float)total_energy_full); } // Handle design-capacity if ((config_["design-capacity"].isBool() ? config_["design-capacity"].asBool() : false) && total_energy_exists && total_energy_full_design_exists) { if (total_energy_full_design > 0.0f) calculated_capacity = ((float)total_energy * 100.0f / (float)total_energy_full_design); } // Handle full-at if (config_["full-at"].isUInt()) { auto full_at = config_["full-at"].asUInt(); if (full_at < 100) calculated_capacity = 100.f * calculated_capacity / full_at; } // Handle it gracefully by clamping at 100% // This can happen when the battery is calibrating and goes above 100% if (calculated_capacity > 100.f) calculated_capacity = 100.f; uint8_t cap = round(calculated_capacity); // If we've reached 100% just mark as full as some batteries can stay stuck reporting they're // still charging but not yet done if (cap == 100 && status == "Charging") status = "Full"; return {cap, time_remaining, status, total_power / 1e6}; #endif } catch (const std::exception& e) { spdlog::error("Battery: {}", e.what()); return {0, 0, "Unknown", 0}; } } const std::string waybar::modules::Battery::getAdapterStatus(uint8_t capacity) const { #if defined(__FreeBSD__) int state; size_t size_state = sizeof state; if (sysctlbyname("hw.acpi.battery.state", &state, &size_state, NULL, 0) != 0) { throw std::runtime_error("sysctl hw.acpi.battery.state failed"); } bool online = state == 2; std::string status{"Unknown"}; // TODO: add status in FreeBSD { #else if (!adapter_.empty()) { bool online; std::string status; std::ifstream(adapter_ / "online") >> online; std::getline(std::ifstream(adapter_ / "status"), status); #endif if (capacity == 100) { return "Full"; } if (online && status != "Discharging") { return "Plugged"; } return "Discharging"; } return "Unknown"; } const std::string waybar::modules::Battery::formatTimeRemaining(float hoursRemaining) { hoursRemaining = std::fabs(hoursRemaining); uint16_t full_hours = static_cast(hoursRemaining); uint16_t minutes = static_cast(60 * (hoursRemaining - full_hours)); auto format = std::string("{H} h {M} min"); if (full_hours == 0 && minutes == 0) { // Migh as well not show "0h 0min" return ""; } if (config_["format-time"].isString()) { format = config_["format-time"].asString(); } std::string zero_pad_minutes = fmt::format("{:02d}", minutes); return fmt::format(fmt::runtime(format), fmt::arg("H", full_hours), fmt::arg("M", minutes), fmt::arg("m", zero_pad_minutes)); } auto waybar::modules::Battery::update() -> void { #if defined(__linux__) if (batteries_.empty()) { event_box_.hide(); return; } #endif auto [capacity, time_remaining, status, power] = getInfos(); if (status == "Unknown") { status = getAdapterStatus(capacity); } auto status_pretty = status; // Transform to lowercase and replace space with dash std::transform(status.begin(), status.end(), status.begin(), [](char ch) { return ch == ' ' ? '-' : std::tolower(ch); }); auto format = format_; auto state = getState(capacity, true); auto time_remaining_formatted = formatTimeRemaining(time_remaining); if (tooltipEnabled()) { std::string tooltip_text_default; std::string tooltip_format = "{timeTo}"; if (time_remaining != 0) { std::string time_to = std::string("Time to ") + ((time_remaining > 0) ? "empty" : "full"); tooltip_text_default = time_to + ": " + time_remaining_formatted; } else { tooltip_text_default = status_pretty; } if (!state.empty() && config_["tooltip-format-" + status + "-" + state].isString()) { tooltip_format = config_["tooltip-format-" + status + "-" + state].asString(); } else if (config_["tooltip-format-" + status].isString()) { tooltip_format = config_["tooltip-format-" + status].asString(); } else if (!state.empty() && config_["tooltip-format-" + state].isString()) { tooltip_format = config_["tooltip-format-" + state].asString(); } else if (config_["tooltip-format"].isString()) { tooltip_format = config_["tooltip-format"].asString(); } label_.set_tooltip_text(fmt::format(fmt::runtime(tooltip_format), fmt::arg("timeTo", tooltip_text_default), fmt::arg("power", power), fmt::arg("capacity", capacity), fmt::arg("time", time_remaining_formatted))); } if (!old_status_.empty()) { label_.get_style_context()->remove_class(old_status_); } label_.get_style_context()->add_class(status); old_status_ = status; if (!state.empty() && config_["format-" + status + "-" + state].isString()) { format = config_["format-" + status + "-" + state].asString(); } else if (config_["format-" + status].isString()) { format = config_["format-" + status].asString(); } else if (!state.empty() && config_["format-" + state].isString()) { format = config_["format-" + state].asString(); } if (format.empty()) { event_box_.hide(); } else { event_box_.show(); auto icons = std::vector{status + "-" + state, status, state}; label_.set_markup(fmt::format( fmt::runtime(format), fmt::arg("capacity", capacity), fmt::arg("power", power), fmt::arg("icon", getIcon(capacity, icons)), fmt::arg("time", time_remaining_formatted))); } // Call parent update ALabel::update(); }