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Abstract 
Remote wiping allows the device owner to send a remote command to wipe the contents on the 

lost or stolen device. Previous studies have shown that remote wiping is ineffective in Android 

devices which allows user data to be recovered. This thesis expands the scope of previous 

studies by measuring the effectiveness of remote wiping by third-party app. Seven third-party 

apps are compared against the built-in remote wiping app, Android Device Manager. The 

preliminary result suggests that some app has less effective remote wiping than what was 

claimed by app’s creator. The data analysis shows different implementation by each app and 

capability of each forensic tool. 

The user data remnant left after factory reset or remote wipe could still be useful for forensic 

purpose. However, an investigator still faces another challenge of recovering fragmented 

image. Instead of recovering image fragments, “thumbnail”, a smaller version of the original 

image can be targeted. A thumbnail is marginally smaller than the original image and is also 

less likely to be fragmented. In addition to benchmark test, this thesis also describes thumbnail 

forensic recovery process for Android devices.  
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1 Introduction 
Computing power has been doubling on average every 1.5 years since 1975, 

outperforming Moore's Law (Intel 2006). This trend is partly due to ever increasing computing 

power including mobile devices at lower cost (Markoff 2007; The Economist 2009). Mobile 

devices are increasingly ubiquitous and no longer used only for making and receiving phone 

calls. Example usage include receiving and sending email and instant messages, making VoIP 

calls, taking and uploading of photos and video clips, and finding one’s way around using 

mapping apps, which results in an increasing amount of data (and metadata such as 

geolocation) stored and transmitted from such devices. Due to the size of such devices, they 

can be easily lost or stolen. For example, an estimated 150,000 mobile device were reported 

lost or stolen every year in Australia (AMTA 2011) , and more than 30,000 mobile device were 

reportedly stolen in London alone at 2013 (Lynn & Davey 2014) .  

With the advent of cloud storage services (e.g. Dropbox1, Apple's iCloud2, and Google Drive3), 

mobile device users are able to synchronise the data stored on their devices to their cloud 

storage accounts. There is, however, potential for information leakage should the account be 

compromised (e.g. the incident involving the compromising of several celebrities' online 

accounts (Anderson 2012; Greenberg 2014; Gallagher 2014)) or when the device is lost, stolen 

or compromised (e.g. malware). Physical theft and loss of devices are among the most common 

cause of data leakage in organizations according to the 2014 study by Verizon (2014). The cost 

of the hardware and software due to lost or stolen devices is generally less than the direct and 

indirect cost resulting from the leakage of the information. In a study by Symantec (2012) 

where 50 mobile devices were intentionally “lost” and then monitored for any access attempt, 

for example, 96 percent of these devices were reportedly accessed by the finders of the devices 

(perhaps due to the inherent curiosity of human nature). The study also highlighted the 

difficulty for device owner to regain possession of the devices as only 50 percent of the “lost” 

devices in the study were recovered, although the owner's contact information was clearly 

shown on the device.  

To mitigate the issue of data leakage due to lost or stolen device, remote wiping feature has 

been introduced to modern mobile devices such as iOS, Android, Windows Phone and 

 
1 https://www.dropbox.com/ 
2 https://www.icloud.com/ 
3 https://drive.google.com/ 
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BlackBerry devices. This feature allows the device owner to send a remote command to wipe 

the contents on the lost or stolen device. Such command has been referred to as “kill pill” 

(Caldwell 2011, p. 8) or “poison pill” (Hansen 2010, p. 3; Burnett et al. 2011, p. 57) in the 

literature.  

The earliest implementations of remote wiping feature were on Blackberry devices (Punja & 

Mislan 2008; Evers & Johnston 2005) and the now defunct Microsoft Windows Mobile 

(succeeded by Windows Phone) (Munro 2008; Microsoft 2009; Microsoft 2005) in 2005. It is 

not surprising as BlackBerry devices are known for their security features and one of the first 

devices to be approved by government use (Erlichman & Miller 2014; Harauz & Kaufman 

2009; Morrison 2005). Remote wiping was introduced to Apple’s iPhones in 2009 through a 

service known as “Find My iPhone4” (Ogg 2009). “Find My iPhone” service was initially only 

available to now defunct MobileMe (replaced by iCloud and discontinued from June 2012 

(Mayers & Lee 2011)) subscription. It was not until the release of iOS 4.2 released in November 

2010 (Apple 2010) that “Find My iPhone” service becomes a free service (Aomoth 2010). In 

August 2013, Google introduced remote wiping feature through Android Device Manager 

(ADM) to devices running Android 2.2 or above (Poiesz 2013). This has become an official 

feature of Android devices, which was previously only available to Google Apps customer 

(Zhang 2012) or via a third-party app (e.g. Cerberus5, SeekDroid6). 

Remote wipe functionality can be very useful to prevent information leakage when mobile 

device is no longer in owner’s possession due to theft, robbery, or simply misplaced. Given its 

usefulness, evaluating the effectiveness can help forensic investigator to understand its 

implication. Any shortcomings identified also can help product vendor as a room of 

improvement.  

1.1 Research Questions 
This thesis aims to answer following research question: 

• What is the difference between remote wiping apps in terms of removing user data? 

If there is any user data left even after factory reset, it could be utilised by forensic investigator. 

Therefore the secondary question for this thesis is: 

 
4 https://www.apple.com/icloud/find-my-iphone.html 
5 https://www.cerberusapp.com/ 
6 https://seekdroid.com/ 
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• What is the potential user data that can be easily recovered after factory reset/remote 

wipe? 

1.2 Thesis Structure 
Chapter 2 discusses the different forensic approaches in acquiring data from Android device, 

as well as a survey existing literatures on remote wiping and secure deletion. Material presented 

in this chapter is based on the following publication: 

• Leom, MD & Choo, K-KR & Hunt, R 2016, ‘Remote wiping and secure deletion on 

mobile devices: a review’, Journal of Forensic Sciences, pp. 1-20, doi: 10.1111/1556-

4029.13203. 

Chapter 3 compared the effectiveness of seven third-party remote wiping app against Android 

built-in’s. Chapter 4 describes forensic collection and analysis of thumbnail. Material presented 

in this chapter is based on the following publication: 

• Leom, MD, D’Orazio, CJ, Deegan, G & Choo, K-KR 2015, ‘Forensic collection and 

analysis of thumbnails in Android’, Trustcom/BigDataSE/ISPA, IEEE, pp. 1059-66, 

doi: 10.1109/Trustcom.2015.483. 

Finally, Chapter 5 concludes this thesis and outlines some future work. 
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2 Background 
 

Material presented in this chapter is based on the following publication: 

• Leom, MD & Choo, K-KR & Hunt, R 2016, ‘Remote wiping and secure deletion on 

mobile devices: a review’, Journal of Forensic Sciences, pp. 1-20, doi: 10.1111/1556-

4029.13203. 

 

The purpose of this chapter is to provide an in-depth understanding of the current state of play. 

First the different forensic approaches in acquiring data from Android device are discussed. 

Then existing literatures on remote wiping and secure deletion are surveyed. Once a mobile 

device has been remotely wiped, the deleted data should be irrecoverable. Since majority of 

the mobile device found today use flash storage, also known as NAND flash memory (Shin 

2005), we then discuss how secure deletion is addressed on this particular type of storage. 

Remote wiping is one of several anti-theft methods for mobile device. Other anti-theft methods 

include remote tracking, data loss prevention (DLP) system deployed in an enterprise 

environment, and tools that activate self-destruction upon predetermined conditions. In this 

survey, discussion is limited to system that wipes itself only when the user triggers it.  

One common approach to mitigate data leakage is through storage encryption (i.e. encrypting 

data-at-rest on the device). In mobile device, storage encryption has been available to 

BlackBerry version 4.0 or above (BlackBerry 2010), Apple iOS since introduction of iPhone 

3GS (Teufl et al. 2013; Götzfried & Müller 2013), Windows Mobile 6.5 (Microsoft 2010) and 

reintroduced back in Windows Phone 8 (Belfiore 2012; Godfrey 2012). Storage encryption is 

also available to Android device users since version 3.0 (Honeycomb) (Elenkov 2014a; 

Götzfried & Müller 2014; Elenkov 2014b). Google initially announced that all devices shipped 

with version 5.0 (Lollipop) would have storage encryption enabled by default (Google 2014a; 

Timberg 2014). Due to performance issue (Chester & Ho 2014), it is not enabled on every new 

Lollipop device (2014), despite the optimisations implemented later (Malchev 2014; Franco 

2015; Elenkov 2015). Despite the initial announcement, storage encryption was never 

mandatory for existing device upgrading to Lollipop. So, the Lollipop device used for the 

experiment, Moto G is not encrypted by default and not enabled. 
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Prior to version 4.4 (KitKat), encryption key is stored in flash memory and encrypted with 

weak key derivation function (KDF), PBKDF2 with 2000 iterations only. This made extraction 

and bruteforcing the encrypted key fairly trivial. KitKat replaced the KDF with scrypt to make 

bruteforcing more expensive (Percival 2009). On Lollipop, the key is encrypted with master 

key that is not in flash memory and cannot be extracted even with root access (Elenkov 2014b). 

This has made unauthorised access to encrypted flash memory much more difficult. 

However, no matter how secure is the key, existing law can compel a person to surrender the 

key (e.g. Australia Crimes Act 1914 (Cwlth); Ockenden & Sveen 2015). There is also 

misconception that secure deletion is unnecessary when storage encryption is available since 

all the data is secured. Secure deletion is a condition where “adversary is given access to system 

but not able to recover the deleted data from the system” (Reardon et al. 2013a, p. 301). 

However, cryptography is only effective due to computation cost (Storer et al. 2006) given the 

best cryptanalysis efforts at that point. Given advances in cryptanalysis and technological 

advances, there is no guarantee that the data resided even in encrypted form, could not be 

deciphered by an adversary in the near future. Any future vulnerability(ies) in the device 

hardware or software may be exploited by an adversary to gain unauthorised access to the 

decryption key. Thus, secure deletion methods that can ensure deleted data removed from 

storage is still relevant even data-at-rest are encrypted on the mobile device. Therefore, in this 

literature review, secure deletion methods are also discussed. 

For this literature survey, 15 patents and 18 academic publications published in English 

between November 1999 and June 2014 are located. On remote wiping topic, materials were 

located using Google Scholar (including Google Patents) and academic databases such as 

ScienceDirect, ACM Digital Library, IEEE, and Springer using search terms such as remote 

(wipe OR wiping), (sanitize OR sanitization) mobile phone, secure (erase OR delete) (flash OR 

NAND). 

Past surveys on secure deletion (Reardon et al. 2013a; Diesburg 2012) investigated two 

common types of non-volatile memory, namely; magnetic hard drive and flash memory. The 

discussion in Section Secure flash storage deletion, however, focuses on flash memory only. 

Similar to Reardon et al. (2013a), the discussion on secure deletion does not include 

information deletion, which encompasses searching and removing all traces of some 

information. There are two approaches to secure deletion, namely; data overwriting or 

encryption, and physical destruction (e.g. disk crusher, degaussing, incineration) (DON CIO 
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Privacy Team 2010). The main difference is that the second approach will render the drive 

unusable; thus, irrecoverable (Hughes & Coughlin 2006) while the first approach does not. The 

discussion on this thesis is, therefore, limited to the first approach and does not focus on any 

specific data type such as database or cloud storage.  

This chapter is organised as follows. Section 1 outlines the existing approach in forensic 

acquisition from Android device. Section 2 reviews existing approaches to remote wiping, 

while Section 3 on secure deletion techniques. Section 4 discusses the limitation of existing 

approaches on remote wiping, and Section 5 concludes discussion on this section. 
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Figure 1: Android version history (adapted from Armadeo, 2014)
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2.1 Android Forensics 

Name Mount point Description 

Recovery N/A Recovery mode 

Boot N/A Linux kernel 

System /system Operating system files, system apps 

Cache /cache Cache files 

User data /data User installed apps 

Internal SDcard (Media) /mnt/sdcard 

/storage/sdcardX 

/data/media/X 

User-accessible storage to store media files. 

Table 1: Partition layout of typical Android device. Adapted from (Vidas, Zhang & Christin 2011). 

Android mobile devices typically consist of several partitions (Table 1). Partitioning schemes 

may differ between Android devices due to vendor customization but there are generally six 

partitions and each partition stores data specific to a particular function. This information 

would be useful to a forensic investigator as it allows the forensic investigator to focus only on 

the relevant partition during the evidence identification process. Majority of user’s data is 

stored in “user data” (/data) partition, internal SDcard, and cache partition. 

The recovery partition is used by the Android device to boot into “recovery mode”, which is a 

minimal environment with its own kernel. Recovery mode can be used to wipe user data and 

update the Android OS since such operations can usually only be performed “offline” due to 

file locking.  

The /boot partition stores the Linux kernel image. This partition is not used during normal 

system operation, but only during initial boot. The /system partition contains (most of) the 

Android OS, including built-in apps. This partition is read-only and any new version of the 

built-in app will be installed in the /data partition. The latter /data partition also stores user 

personal information (e.g. Google account) and, user-installed apps, and updated version of 

built-in apps. During a factory reset, both data and cache partitions are formatted and, 

optionally, the media partition (also known as internal SD card7). Generally, the media partition 

is the largest partition and stores multimedia files (e.g. songs, pictures, and videos), which are 

accessible from a desktop via a USB connection. 

 
7 Despite its name, it is not an SD card, but a partition instead. Thus, we call it media partition for clarity. 
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Prior to Android 3.0 (Honeycomb), /data and media are two separate partitions. The media 

partition generally uses FAT32, which can be mounted and accessed from a host computer 

through USB Mass Storage (UMS), just like a USB flash drive. The problem with this layout 

is that /data partition has limited size since majority of storage space is allocated to media 

partition. This limits the amount and size of apps a user can install. In Android Honeycomb, 

media becomes a subfolder in /data as /data/media, not as a separate partition. In this layout, 

/data partition is allocated with a larger storage space. Since /data partition is in ext4 file system 

and the file system is not natively supported in Microsoft Windows (requires third-party file 

system driver, e.g. Ext2Fsd, Explore2fs, Ext2IFS, Ext2Read), a user can no longer mount the 

storage through UMS. A user needs to access the Android device from a host computer through 

Media Transfer Protocol (MTP) or Picture Transfer Protocol (PTP). Android 4.2 introduced 

multi-user support, where each user is assigned a subfolder in /data/media. The default user is 

assigned to /data/media/0. Each new user is subsequently assigned to /data/media/10, 

/data/media/11, /data/media/12 and so on. 

 

2.1.1 Physical acquisition 

Data acquisition from storage media can be either logical or physical. Logical acquisition 

copies allocated data that is accessible on the file system. Physical acquisition, on the other 

hand, copies every single bit of entire storage media or partition including allocated and 

unallocated data regardless of file system. Typically, whenever a file is deleted, file system 

simply un-allocate the space used to store the file so it is available to store new data. As physical 

acquisition through bit-by-bit copy provide access to unallocated space, it is possible to recover 

deleted data. 

There are several techniques for performing physical acquisition from Android devices. The 

approach is different from traditional desktop environment where the hard disk can easily be 

removed and connected to forensic workstation for duplication. In mobile device, flash 

memory is typically soldered onto the printed circuit board (PCB). These techniques as outlined 

by Hoog (2011c) are divided into two categories: 

1. Hardware-based method involves direct access to the hardware component and usually 

requires some disassembly.  

2. Software-based method involves running forensic tools on the device itself. 
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Hardware-based physical acquisition techniques consist of JTAG and chip-off. Mobile device 

typically has JTAG test access port (TAP) for manufacturer to test the PCB (Breeuwsma 2006). 

Flash memory can be directly accessed through JTAG and has been utilised to recover user 

data from dead or faulty mobile phones (Al-Zarouni 2007). JTAG can be connected through 

flasher box (e.g. RIFF Box (2014)) which is then connected to workstation to receive data. A 

major difficulty to JTAG is locating the TAP on the PCB. Connecting to the TAP also requires 

soldering cable onto the connector PIN. There is also compatibility of flasher box to mobile 

device because each mobile device has different memory interface in a memory chip (Kim et 

al. 2007b). 

Chip-off is an acquisition technique akin to desktop forensic where physical storage media is 

removed. In this case, the flash memory chip is de-soldered from the PCB and inserted into 

memory chip reader, so that the memory content can be extracted. The removal process could 

damage the memory chip due to high heat of soldering. 

Hardware-based technique has the advantage of being least intrusive to the data since no 

software is running on the mobile device. This property also means root access is irrelevant 

thus not required compared to software-based. However, there is risk of physically damaging 

the mobile device, in addition to requiring significant electronic skill and specialised equipment 

to perform. Interested reader can refer to (Breeuwsma et al. 2007) for more details on the 

hardware-based techniques discussed. 

In software-based technique, the forensic tools must be executed with root privilege in order to 

access the physical image. By default, user is restricted to reading only allocated data in 

userdata and media partitions. Data acquisition can be performed either (1) when the system is 

running (live acquisition) (Aouad & Kechadi 2012; Lessard & Kessler 2010; Lim et al. 2013; 

Simão, André Morum de Lima et al. 2011) or (2) recovery mode (Vidas, Zhang & Christin 

2011; Cannon 2012; Tsai & Yang 2013). Live acquisition is preferred in some situation due to 

ability to capture volatile data (e.g. network packet and RAM content). Although capturing 

RAM content is possible in recovery mode, it requires freezing the mobile device and capture 

the content fast enough to get any valuable data left by OS (Müller & Spreitzenbarth 2013). In 

addition, RAM acquisition requires loading a custom kernel module that is specific to the Linux 

kernel version running (Sylve et al. 2012). Every device has different kernel version. OS update 

could update the kernel as well, so even each device has different kernel version. User also 
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could be installing custom kernel. Although the RAM acquisition is available for Android, but 

running it is not straightforward.  

Rooting is generally considered intrusive due to installation of su binary, thus introducing new 

data. However, in live acquisition, rooting only affects system partition, while recovery mode 

only affects recovery partition. Since userdata and media partition are not involved in the 

preparation, it is unlikely to change user content on the device.  

Although user content is not altered during preparation, having a normal system running would 

use userdata and media partitions. OS can write data to these partitions even without explicit 

user action. For instance, even when auto-update feature of Play Store has been disabled, OS 

app like Google Play Service is still updated automatically without user action. This would 

affect data integrity during acquisition. In contrast, recovery mode is a minimal operating 

environment that uses only recovery partition and do not depend on other partitions. Thus, 

when recovery mode is used, data acquisition can be performed with minimal interaction with 

user data. In forensic cases, live acquisition might run the risk of remote wiping unless the 

communication can be shielded (i.e. faraday cage). Since any form of wireless communication 

is not activated in recovery mode, so it is safer in that case. 

 

2.1.2 Custom recovery 

The structure of recovery partition is actually similar to boot partition. Both contain bootable 

image (bootimg) which basically consist of header, Linux kernel, and initial-RAM disk (initrd) 

(Android Wiki 2013). The header has pointers to locate the kernel and initrd. Once kernel is 

loaded, the kernel unpack initrd into RAM. initrd is a compressed archive file which contains 

program (e.g. init) and instruction to continue the rest of booting process. Boot partition simply 

contains different initrd that has instruction to load the Android OS image while recovery 

partition’s initrd loads a minimal environment, the “recovery mode”. Reader interested in 

Android boot process may refer to (Björnheden 2009; Hoog 2011a; Jones 2006). 

User can customise the recovery unpack the initrd (after unpack from bootimg) and append 

additional binary programs (e.g. forensic tools) for more functionality. The bootimg is then 

repacked back to become a custom recovery. Instead of creating it ourselves (Vidas, Zhang & 

Christin 2011; Son et al. 2013), existing custom recovery Team Win Recovery Project (TWRP 

2015) is used which is able to serve the purpose of experiment. TWRP has ADB root shell and 
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include BusyBox binary. BusyBox include common Unix utility tools especially nc and dd that 

are used in data acquisition. 

Custom recovery can be installed (or flashed) to these locations: 

1. Recovery partition (default) 

2. Boot partition 

3. RAM 

Custom recovery can be flashed to boot partition as well due to aforementioned similarity with 

recovery partition. Son et al. (2013) preferred this approach because if the custom recovery fail 

to load, the device will proceed to boot normally which would affect user data partition. On the 

other hand, failing to boot boot partition would simply halt since in this case, the instruction to 

boot the ROM in normal boot process has been replaced with recovery mode’s. This approach 

is useful when user is not sure the custom recovery can actually load especially when user 

customise it from scratch. Besides, the device can enter recovery mode straightaway in this 

case without manual control since the bootloader loads the boot partition by default. 

2.1.3 Bootloader 

Most bootloaders support fastboot mode which allows for flashing the bootimg from user’s 

machine to the Android device’s partition. Alternative to fastboot mode is download mode, 

commonly found in Samsung devices. fastboot also allow booting transient bootimg without 

flashing to partition, essentially “flashing” it directly to the device RAM. Since there is no data 

written to the flash memory, it can be considered as least intrusive to the whole data content. 

Even so, there is minimal impact on user data when using any of install location of custom 

recovery. 

In order to ensure device integrity, most of the Android devices shipped with locked bootloader, 

including the mobile devices used in case studies and experiments for this thesis (test devices). 

A locked bootloader will only load or flash bootimg that has been signed by the device 

manufacturer (Elenkov 2014a), similar concept to UEFI’s secure boot. So, using a custom 

recovery requires unlocked bootloader. Most of the devices allow for unlocking the bootloader, 

which removes signature checks. Instruction to unlock is easily found online (Moto G – see 

(Motorola n.d.), Nexus S - see (Nickinson 2010), Nexus 4 - see (Hildenbrand 2012)). 

Additionally, do note that unlocking bootloader will trigger factory reset (Google n.d.a). This 

is to prevent unauthorized access to user data as unlocked bootloader can grant more access. 
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In addition to triggering factory reset, unlocking bootloader might not even possible in some 

devices. There is another alternative approach to rooting a device that without unlocking 

bootloader or installing custom recovery, by running root exploit. This approach is similar to 

iDevice’s jailbreaking. However this method is not very reliable as not all devices is affected 

by certain vulnerabilities. Vulnerability also already been patched through software update 

although it might not be frequent. 

2.1.4 Transferring physical image 

Aside from data acquisition approaches, there are two methods of saving the acquired physical 

image: 

1. Place an SD card into the device, mount, and save it there. The content is then transfer 

to workstation through SD card reader. (Aouad & Kechadi 2012; Lessard & Kessler 

2010; Simão, André Morum de Lima et al. 2011) 

2. Use ADB port forward to create a network between the Android device and the 

workstation over USB. 

SD card method is not applicable to the test devices because none of them has SD card slot. 

ADB method also has the advantage of transferring physical image directly to workstation. 

Android Debug Bridge (ADB) consists of software component on the USB-connected Android 

device (ADB daemon) that can communicate with another ADB instance on a workstation 

(ADB client). ADB is usually utilised for debugging purpose. The interactive remote shell and 

TCP port forwarding functionalities can be utilised for data acquisition purpose. ADB port 

forwarding essentially connects TCP port on the Android device and workstation. Any input 

to the device’s TCP port will be sent over via USB connection to workstation’s TCP port and 

vice versa. 

The overall process of data acquisition using ADB method is as such, a data dumping utility 

(dd) reads binary content of storage media and output to a network utility (netcat/nc) connected 

to ADB TCP port on Android device. Another netcat instance connected to ADB TCP port on 

workstation receives the data and the data is then saved. This process is reversed when restoring 

data. 

In addition to dd, nanddump is another data dumping utility. nanddump is able to capture spare 

area also known as out-of-band (OOB) area of flash memory which is not reachable by dd. 

nanddump is only applicable in MTD. There are two methods of handling data access in flash 

memory: Memory Technology Device (MTD) and Flash Translation Layout (FTL). Before 
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Android version 3.0 (Honeycomb), file system accesses the flash storage through MTD 

(Woodhouse 2008). MTD is simplistic and does not offer garbage collection and wear-

levelling. Yet Another Flash File System 2 (YAFFS2) is one such file system that has these 

features (Zimmermann et al. 2012). YAFFS2 identify dirty pages8 (or garbage) by writing 

metadata to OOB. Since dd could not acquire the metadata of YAFFS2, nanddump is necessary 

to be able to reconstruct the YAFFS2 later from the acquired image (Hoog 2011b; Quick & 

Alzaabi 2011). However, since Android version 3.0, MTD interface has been replaced by 

embedded multi-media card (eMMC) and secure digital (SD) (Skillen & Mannan 2013). Both 

eMMC and SD have integrated FTL implemented in the hardware controller and has built-in 

garbage collection and wear levelling. This allows common block file system (e.g. ext4 and 

FAT32) that was not designed for flash memory to operate properly9. YAFFS2 becomes 

obsolete due to built-in features of FTL. Since OOB is not used by EXT4 nor F2FS, dd is 

sufficient for physical acquisition. 

Discussion on Android forensic so far is summarised in following diagram: 

 
8 A block is made up to multiple pages. Page is the smallest unit of I/O operation in flash memory. OOB is 

located at the end of each page. 
9 MTD does have software-based FTL to emulate block device so block file system can operate. However, it is 

not ideal due to aforementioned limitation of MTD. 
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Figure 2: Android physical acquisition approach. 

 

To demonstrate the different approaches to physical acquisition in Android, Chapter 3 would 

be using recovery mode, while Chapter 4 would be using live acquisition approach.  



Background 

 16 

2.2 Remote wiping 
In this section, located publications on remote wiping – 8 patents and 5 academic 

publications are discussed. 

 
Figure 3: Remote wiping process and security considerations in remote wiping process.  

Legend: (a) Authenticate reporter 

 (b) Authenticate origin of wipe command 

 (c) Secure wipe command 

 (d) Transmission channel 

 (e) Secure delete 

 (f) Ensure wiping operation is completed 

 (g) Acknowledge source that wipe is completed 

 (h) Replay attack mitigation 

 

Remote wiping process (Figure 3) generally can be described as follow: 

1. User enrols into the remote wiping system maintained by an organisation. When the 

mobile device is lost, the user reports it to the same organisation and request for the 

mobile device to be wiped. 

2. The organisation sends the wiping command to the intended mobile device. Depending 

on the transmission channel, the command may be sent through wireless access point 

(AP) in Internet connection, or cell tower in telecommunication channel (e.g. 3G/4G). 

3. Upon receiving the wipe command, the mobile device erases the data. 
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Feature (Angelo et 

al. 2003) 

(Brown et 

al. 2011) 

(Walker & 

Fyke 2013) 

(Kenney 

2005) 

(Hasebe 

1999) 

(Sennett & 

Daly 2013) 

(Onyon et 

al. 2007) 

(Gajdos & 

Kretz 2006) 

(Yu et al. 2014) (Park et al. 

2011) 

(Kuppusamy et 

al. 2012) 

(Joe & Lee 

2011) 

(Adusumalli 

2014) 

Authenticate reporter Y Y Y Y Y Y N Y Y Y Y Y N 

Authenticate origin of 

wipe command 

Y Y N N N Y Y Y Y N Y N N 

Secure wipe command N Y N N N N N N N N N N N 

Transmission channel Internet Internet Cellular Cellular Internet Cellular Internet Internet Cellular 

(Emergency 

call) 

Cellular 

(SMS) 

Cellular (SMS) Internet Cellular 

(SMS) 

Secure delete N Y N N N Y Y Y Y N N N N 

Ensure wiping 

operation is completed 

N Y N N N N N N Y N N N N 

Acknowledge source 

that wipe is completed 

N N N Y N N N Y N N N Y Y 

Replay attack 

mitigation 

Y N N N N N N N N Y N Y N 

Table 2: Security considerations mentioned in existing literature (illustrated in Figure 3). 
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2.2.1 Authenticate reporter 

System should verify the identity of the reporter and the device’s owner when a mobile device 

is reported lost or stolen. This can be done either through information known only to the user 

(e.g. account number, address, and last bill number). Existing authentication methods 

considered by the literature are summarised in Table 3. 

 Biometrics Certificate Password Secret 

question 

Username 

and password 

Identification 

information 

Angelo et al. (2003) ●   ●   

Brown et al. (2011)       

Walker & Fyke 

(2013) 

  ●    

Kenney (2005)    ● ●  

Hasebe (1999)   ●    

Sennett & Daly 

(2013) 

    ●  

Gajdos & Kretz 

(2006) 

    ●  

Yu et al. (2014)   ●   ● 

Park et al. and 

Kuppusamy et al. 

(2011; 2012) 

  ●    

Joe & Lee (2011)  ●   ●  

Adusumalli (2014)   ●    

Table 3: Authentication methods 

 

Brown et al. (2011) considered only the authorisation level to determine the data type that the 

reporter or any person who initiate the remote wipe, allowed to wipe. The proposed scheme 

did not indicate any means of authenticating the identity of the reporter.  

Several high-profile hacks (Anderson 2012; Gallagher 2014; Honan 2012a; Zetter 2008) have 

shown using secret question or personal identifiable information alone is not sufficient to 

authenticate a person. The victims’ account was compromised because an adversary is able to 

answer secret question by supplying publicly available information deduced from the Internet. 

Those incidents could have been prevented with two-factor authentication. 

Nearly half of the proposals specified more than one mechanism of authenticating the reporter 

but they did not consider multi-factor authentication. Of those proposals, only Yu et al. (2014) 

proposal include two-factor authentication even though it is not explicitly indicated in the 

original proposal. In Yu et al. (2014), the authentication process involves two steps; first 

reporter submits personal identifiable information to identify himself to the service provider, 
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then he provides the PIN code to be verified by the mobile device. Thus, it can be considered 

as two-factor authentication, even though the authentication is performed by two entities; 

service provider and mobile device. 

 

2.2.2 Authenticate origin of wipe command 

When receiving the wipe command from any channel (e.g. cell tower or web server), the mobile 

device should check whether the source is authorised to send the command or instruction. 

 Public key 

cryptography 

Shared code / 

password 

Incoming 

number 

Angelo et al. (2003) ●   

Brown et al. (2011) ● ●  

Sennett & Daly (2013)  ●  

Onyon et al. (2007) ● ●  

Gajdos & Kretz (2006) ● ●  

Yu et al. (2014)  ●  

Kuppusamy et al. 

(2012) 

  ● 

Table 4: Summary of methods used to authenticate origin of wipe command. 

Existing literature generally prefer the use of public key cryptography. Pretty Good Privacy 

(PGP) is one such popular encryption program - a sender first creates a digital signature by 

hashing the message and encrypts the hash with its private key to sign the message. The sender 

then encrypts the signed message with the recipient’s public key. Only the recipient can decrypt 

the message with its private key and verify the message using the sender’s public key.  

Onyon (2007) suggested storing the sender’s public key when enrolling into the remote wiping 

system. Brown et al. (2011) and Gajdos & Kretz (2006) assumed the sender’s public key has 

been stored on the mobile device during manufacturing. Angelo et al. (2003) suggested a 

signature-based approach whereby the sender encrypts the message with the recipient’s private 

key. The signed message can then be decrypted by the recipient using its own public key. 

Authentication can also be established using a shared code between the sender and the 

recipient. In SSL/TLS, for example, a symmetric key is exchanged using public key 

cryptography. However, Brown et al. (2011), Onyon et al. (2007) and Gajdos & Kretz (2006) 

did not consider the need to protect the shared code. Without any protection, the shared code 

could be exposed allowing an adversary to spoof as a valid sender or recipient. 

Park et al. (2011) and Yu et al. (2014) proposed a mechanism to request password from the 

reporter, which will be sent with the wipe command. The mobile device authenticates the 
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password to determine authenticity of the wipe command. But this mechanism could only 

authenticate the reporter, since if a correct password is provided, then any server can send the 

command, and the mobile device will simply accept. Thus, this mechanism is considered to be 

more suitable to authenticate the reporter. Additionally, it is important to consider the response 

mechanism when dealing with incorrect password. If there is no limit to the number of failed 

attempts, this will allow online brute-force dictionary attack. Therefore, it is recommended for 

the system to lock the account should the number of failed attempted exceeds a predetermined 

limit. 

Kuppusamy et al. (2012) proposed a system that checks the incoming telephone number of the 

received SMS against trusted numbers. This is a failback mechanism when the message is not 

secured through the authentication method proposed by Park et al. (2011). Instead of using as 

a failback mechanism, the system should always check the incoming number as origin 

authentication, with trusted number set beforehand. This mechanism can reduce the possibility 

of replay attack (see Section Replay attack mitigation) unless the number is spoofed (2004), 

assuming the telephone number is checked separately and not embedded inside the encrypted 

or encoded message. 

 

2.2.3 Secure wipe command 

The “wipe” command sent as a message or packet should be secured against sniffing to avoid 

tampering. Surprisingly, only Brown et al. (2011) considered encrypting the wipe command 

despite the potential for the wipe command to be hijacked and modified. 

 

2.2.4 Secure delete 

The wiping process should result in the wiped data being irrecoverable, and secure deletion is 

discussed further in Section Secure flash storage deletion. 

Brown et al. (Brown et al. 2011) and Onyon et al. (Onyon et al. 2007) proposed overwriting 

with zeroes, ones, or random combination of them. Sennett and Daly (2013) proposed 

permanent physical self-destruction. Gajdos and Kretz (2006) proposed self-destruction by 

overwriting the firmware. Yu et al. (2014) only mentioned future possibility of incorporating 

secure deletion solution. Although the patent by Kenney (2005) does not provide secure 

deletion, it proposed a method to render data stored on the device inaccessible. The latter is 

similar to the approach undertaken by Apple where data is ‘wiped’ by rendering all files 
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cryptographically inaccessible when the file system key used to encrypt the files is deleted 

(Apple 2014).  

The secure deletion method described in the patent by Brown et al. (2011), owned by 

BlackBerry, Inc10 (formerly known as Research In Motion, RIM), is deployed on BlackBerry 

devices. The pattern or process differs between the OS version, type of storage, and type of 

data (BlackBerry 2011; BlackBerry 2014c). The difference of “flash storage” and “user files” 

is that user files refer to a portion of storage that allow user file-level access. Typical, “user 

files” is used to store media files such as pictures and videos. “Flash storage” in this case 

include the rest of user’s data11 (contacts, SMS, e-mail, calendar entries, etc), but does not 

include the operating system (OS). This level of wiping is also commonly known as factory 

reset. 

 

 

2.2.5 Ensure wiping operation is completed 

This feature if implemented ensures that the wiping process is completed successfully, even 

when it is interrupted by switching off the mobile device as the process will resume once the 

mobile device is switched back on. When a device is switched off, it would be challenging for 

an adversary to gain access to the data stored on the device even though the wiping process 

might be interrupted. Only Brown et al. (2011) and Yu et al. (Yu et al. 2014) considered this 

aspect in their approaches. 

 

2.2.6 Acknowledge source that wipe is completed 

The lost mobile device informs the owner or the system operator that the wiping operation has 

been completed successfully. 

Kenney (2005) suggested using handshake, ACK or NACK (Negative ACK, also known as 

NAK), or ping. These are commonly found in TCP/IP. Sennett and Daly (2013) suggested 

broadcasting a signal to indicate that the mobile device has received a valid command and will 

proceed to execute the command. The latter, however, does not specifically check that the 

mobile device has successfully completed the task. Adusumalli (2014) and Joe and Lee (2011) 

 
10 http://www.blackberry.com/ 
11 For full list of data type, see Blackberry (2011, p. 45) 
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suggested using SMS and “service complete code” to confirm successful execution of 

command respectively. 

 

2.2.7 Replay attack mitigation 

If an adversary manages to capture the command, the adversary can send the same command 

to another device to wipe it. In other words, conduct a “Replay attack” by replaying a previous 

request made by reporter to wipe the new (replacement) device.  

Angelo et al. (2003) proposed using timestamp, non-repeating sequence number, and randomly 

generated number to mitigate replay attack. Similarly, Park et al. (2011) also suggest using a 

concatenation of the wipe command and the timestamp using Base64 encoding to mitigate 

replay attack (referred to as reply attack). This measure is, however, ineffective as an adversary 

is able to decode the message, modify the timestamp so that the timestamp fulfils the 

requirement, and re-encode the modified concatenated message. It is recommended that the 

suggested approaches of Angelo et al. (2003) and Park et al. (2011) be deployed using 

encryption to avoid modification of the wipe command. 

 

2.2.8 Vendor implementation 

2.2.8.1 Android 

Remote wiping feature was officially introduced to Android via ADM (Poiesz 2013) which 

was previously only available via a third-party app. ADM is remotely controlled via Google 

Cloud Messaging (GCM). GCM is a push messaging service used in Android platform that 

enables developers of mobile apps deliver data to their apps running on their customers’ mobile 

device. With push messaging, developer can conveniently push notifications, messages and 

even commands to the apps, without continuous polling from the apps which consume more 

resource. Developer operates a server (referred as app server) to send data to the app installed 

in particular user’s device. In push messaging, the app server does not directly initiate the 

connection to the mobile device. Instead, the data is relayed through the provider of push 

messaging service (referred as connection server). In addition, any message received from 

connection server is processed by service client (akin to OS service) before passing to the app 

(Figure 4). Connection server usually restricts the data size, and in this case, the mobile device 

can be instructed to download the data from an app server. Before an app can receive data 

through GCM, it needs to register itself to the service with a registration ID and also the app 
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server’s sender ID. This allows the cloud server to associate an app server with an app installed 

on a particular mobile device. Thus, only app server with authorised sender ID can push 

message to app with related registration ID (Li et al. 2014a).  

 

Figure 4: Push messaging architecture. Adapted from ManageEngine (n.d.) and Li et al. (2014a) 

 

ADM utilises Android Device Administration API to execute wiping operation (Google n.d.c; 

Google n.d.d). This API is also available to third-party app to provide mobile device 

management (MDM) features at the system level. IT administrator can write app that user 

installs on the mobile device to enrol into MDM system of the company. The API only provides 

factory reset functionality via “wipe-data” policy, and developer could choose to use GCM or 

any other method to trigger the wipe remotely. Any app utilising the API must have “device 

administrator” permission granted (Figure 5). 
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Figure 5: Device administrator 

2.2.8.2 BlackBerry 

Remote wiping can be triggered via BlackBerry Enterprise Server (BES) for corporate 

environment or BlackBerry Protect for personal customer. The device is preloaded with a root 

certificate during manufacturing, to authenticate BES (BlackBerry 2014b). BES also has the 

ability to track wiping status of the device (BlackBerry 2014a), a property discussed earlier 

(Chapter 2.2.6).  

Device enrolled in BlackBerry Protect cannot be associated with BES. In BlackBerry Protect, 

user has the ability to instruct the lost device to perform back-up (to BlackBerry Protect service) 

before full wiping when running BlackBerry OS version 7.1 or earlier (BlackBerry 2013). Later 

version does not have the feature. 

 

2.2.8.3 iOS 

Remote wiping can be triggered via iCloud (for personal consumer) or third-party mobile 

device management (MDM) system (for corporate environment). Third-party MDM utilises 

either Apple’s MDM API or Exchange ActiveSync (EAS) (Apple 2014). In third-party MDM 

system, employee’s mobile device is managed from a MDM server installed with software 

provided by MDM provider. The server creates configuration profile (Apple n.d.a) which is 

uploaded to Apple’s server. User then downloads and installs the configuration profile to enrol 

into the system. Configuration profile allows the system administrator to have control over the 

employee’s iOS device including ability to remotely wipe. Subsequently, whenever the MDM 

server wants to communicate with an iOS device, it does so via Apple Push Notification 

Service (APNS), a push messaging protocol (ManageEngine n.d.) secured with SSL/TLS 
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(Apple n.d.b), instructing the device to check in. The iOS device then initiates SSL/TLS 

connection with the server to check in. The server uses the connection to perform 

administrative task including remote wiping. According to official Apple (2014) 

documentation, when performing remote wipe, the mobile device will reply with an 

acknowledgement upon receiving the wipe command. The device only checks in when using 

EAS; thus, it appears that the wipe command via a single “push” message is sent by the MDM 

server through APNS without the device checking in. 

 

2.2.8.4 Windows Phone 

Remote wipe can be initiated via Exchange Management Console (EMC)12, Microsoft Outlook 

Web Access (OWA), or third-party MDM system depending how the mobile device was 

enrolled initially. The wipe command is sent via ActiveSync protocol. ActiveSync is a push 

messaging protocol used for exchanging messages in Microsoft Exchange environment 

(Microsoft 2013).  

The mobile device can either be partially wiped or fully wiped. Partial wipe applies whenever 

the device “un-enrols” or “retires” from the corporate MDM system. All the corporate 

information, email accounts, VPN connections, Wi-Fi connections, policy settings, apps, and 

data that the apps deployed are removed, except for personal apps or data on the device that 

the user installed. Full wipe removes all the apps and information on a device and returns the 

device to factory settings. (Microsoft 2014) 

 

2.2.8.5 Vulnerabilities 

Implementations of ActiveSync protocol in Android and iOS were discovered to be flawed 

(Hannay et al. 2013). The implementations failed to warn the user when presented with 

untrusted SSL certificates and in some cases, accept any certificate presented to it. This 

vulnerability can be exploited to spoof an Exchange server to initiate unauthorised policy 

enforcement such as performing remote factory reset on a mobile device. Similar flaw was also 

discovered in some Android apps due to incorrect use of Android API when implementing 

SSL, and consequently, these apps are insecure against man-in-the-middle (MitM) attack 

(Hubbard, Weimer & Yu Chen 2014; Fahl et al. 2012). SSL certificate validation was also 

found to be broken in Amazon’s EC2 Java library (Georgiev et al. 2012) and Apple’s 

 
12 http://technet.microsoft.com/en-us/library/bb123762%28v=exchg.141%29.aspx 
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SecureTransport library (Ducklin 2014). These flaws highlighted the potential risk posed by 

SSL implementation in non-browser application, which has not evolved as much as Web 

browser’s implementation (Georgiev et al. 2012). Such risk could extend to remote wiping app 

that utilises SSL. 

There was a flaw previously found in Google Cloud Messaging (GCM) that allowed an 

adversary to control the ADM installed on the victim’s device (Li et al. 2014a). As mentioned 

in Section Android, before an app can receive message through GCM, it needs to register itself 

to the service with a registration ID and also app server’s sender ID. This allows connection 

server to identify which mobile device and app to push message to. With a malicious app 

installed on the victim’s device which acts as a man-in-the-middle (MitM), an adversary can 

intercept the registration request and steal the registration ID, in this case registration ID of 

ADM. The adversary can then proceed to control the ADM with the stolen registration ID. In 

addition, connection server is supposed to only allow authorised app server to push message 

by checking sender ID. However, this policy is not enforced and hence, allowing an adversary 

to push message from his “unauthorised” app server (Li et al. 2014b). 

Apple’s iCloud allegedly allowed unlimited password attempts, and thus, is vulnerable to 

brute-force attack (Greenberg 2014). This vulnerability was apparently responsible for 

compromising several celebrities' iCloud account that ultimately leads to their photo leaks 

(Greenberg 2014). Proof-of-concept code to launch brute-force attack on iCloud service was 

published on August 30, 201413. The vulnerability was apparently fixed two days later 

(Kingsley-Hughes 2014). Apple denied that the incident was due to vulnerability of iCloud 

service, and instead claimed that it was a result of “very targeted attack on user names, 

passwords and security questions,” (Gallagher 2014). Although the photo leaks incident was 

about exposure of private data, it could have been abused to erase victim’s data stored on their 

mobile devices. 

Another recent high profile incident involves the unauthorised reactivation of iOS devices 

which were locked using the “Activation Lock” feature (Pagliery 2014). This feature is 

introduced to deter theft by rendering stolen device unusable. Unauthorised reactivation is 

performed by redirecting the iCloud connection to spoofed iCloud server. The server will then 

send unlock command to the locked device. Normally, reactivation requires sign-in to the 

iCloud account associated with the mobile device. The existence of spoofed iCloud server 

 
13 https://github.com/hackappcom/ibrute 
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suggests that “Activation Lock” command might have been successfully reverse-engineered. 

Such feat could also extend to replicating remote wipe command, at least in theory. 

Cross-site request forgery (CSRF) (OWASP 2014) vulnerability was discovered in Samsung’s 

“Find My Mobile”. This vulnerability is identified as CVE-2014-8346 (US-CERT 2014). The 

vulnerability allows unauthorised remote locking of mobile device by sending specially crafted 

link with embedded remote lock command to the victim. Assuming that the victim is logged 

on to “Find My Mobile” service, when a victim clicks on the malicious link, the web browser 

would send a remote lock request, in which the service proceeds to lock victim’s mobile device. 

The attacker can customise the link to lock and change the unlock PIN, resulting in the victim 

not able to unlock his mobile device.  

The implications of unauthorised remote wipe is potentially damaging with increasing reliance 

on digital devices in modern society. For example, a journalist described that his “entire digital 

life was destroyed” when his online accounts were compromised (Honan 2012a). He reportedly 

lost “more than a year’s worth of photos, emails, documents, and more.” after an attacker 

remotely wiped all his devices, and could not “send or receive text messages or phone calls” 

after his Google Voice account was deleted (Honan 2012b). His accounts were compromised 

due to weakness in the password reset policy adopted by customer service representative. Such 

incidents highlighted the heterogeneity of threats in online services, and the attack vectors are 

not restricted to web application flaws (OWASP 2013) or technical vulnerabilities. 

 

2.2.9 Summary 

This concludes survey of existing proposals on remote wiping for this chapter. Existing 

proposals generally do not consider securing the wipe command nor provide any mechanism 

to automatically resume interrupted wiping process. Secure deletion is seldom used on mobile 

devices. “Factory reset” serves as a simple method to remove all user data from mobile device. 

However, studies have shown that factory reset does not sufficiently remove personal data from 

mobile devices (Simon and Anderson 2015a; Schwamm 2014; Schwamm and Rowe 2014; 

McColgan 2014; The Guardian 2013; Siciliano 2012; Honan 2013). Factory reset typically just 

logically delete data, leaving data residue that could be forensically recovered. Secure deletion 

seems to be a clear solution to this issue, but it is actually not that straightforward due to the 

use of flash storage in mobile device. Various challenges of secure flash storage deletion and 

how existing proposal attempts to overcome them shall be examined in the next section. 
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2.3 Secure flash storage deletion 
Secure deletion is sometimes referred to as forgotten, erased, deleted, completely 

removed, reliably removed, purged, self-destructed, sanitized, revoked, assuredly deleted, and 

destroyed in literature (Reardon et al. 2013a, p. 301). Before existing secure flash storage 

deletion approaches are discussed, an overview of flash storage is presented. 

 

2.3.1 Flash storage: An overview 

2.3.1.1 Flash storage layers and structures 

The process of storing new or deleting existing data by an app usually takes place over different 

layers as outlined in Figure 6. For example, an app usually modifies data by calling the 

Application Programming Interface (API) function provided by the OS. The data modification 

is then processed by the file system, and in the Android environment, there are actually 

different ways for the file system to handle the data.  

Before Android version 3.0 (Honeycomb), file system accesses the flash storage through 

memory technology device (MTD) (Woodhouse 2008). There is a built-in software flash 

translation layer (FTL) responsible for remapping logical block address to physical location 

(Intel 1998). FTL emulates a normal block device like magnetic hard drive to enable the use of 

common block file system (e.g. ext4 and FAT32) (Ma et al. 2014; Skillen & Mannan 2013). 

Unsorted block image (UBI) is an alternative interface to access flash memory, functioning as 

a layer on top of MTD. UBI implements a FTL separate from the FTL in the OS (Reardon et 

al. 2013b). In Android version 3.0, MTD interface is replaced by embedded multi-media card 

(eMMC) and secure digital (SD). Both eMMC and SD have integrated FTL implemented in 

the hardware controller, and therefore, software FTL is no longer necessary (Skillen & Mannan 

2013). 

Like a magnetic hard drive, the flash storage is connected via the host interface connection 

(e.g. SATA, PCI-Express, SCSI, Fibre Channel and USB). All data input/output (I/O) is 

processed by the processor regardless of the type of FTL. The processor translates binary data 

to electrical voltage to store data in the flash package.  

The structure of flash package is as follows; each package is made up of multiple dies, each 

die consists of multiple planes, each plan comprises multiple blocks, and finally, each block is 

made up of multiple pages (Ma et al. 2014). Page is the smallest unit of I/O operation, and the 
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flash storage is accessed through the page unit (Kim et al. 2007a).  Each page has a spare area, 

known as out-of-band (OOB), which is used to store the error correcting code (ECC) (Huang 

et al. 2011). 

 

 

2.3.1.2 Data overwriting in flash storage 

 Secure deletion usually involves overwriting the original data to make it unrecoverable 

(Hughes & Coughlin 2006; Gutmann 1996; Garfinkel & Shelat 2003; Wei et al. 2011), and 

data overwriting can be performed through software running on OS (Cornell University 2012) 

or firmware-based such as ATA's Secure Erase (Hughes & Coughlin 2002).  

Government standards such as the US (Kissel et al. 2012) and Australia (Australian Signals 

Directorate 2014) recommend using ATA's Secure Erase command or overwrite the media at 

least once in its entirety. Researchers such as Garfinkel & Shelat (2003), Joukov et al. (2006) 

agreed that overwriting once is probably adequately secure, although this view is not 

necessarily shared by others (Wright et al. 2008). Gutmann (1996), for example, suggested a 

35-pass overwriting pattern and subsequently he clarified that a few passes (rather than 35 

passes) should be adequate in most situations (Gutmann 2003). Garfinkel and Shelat (2003) 

also explained that Gutmann’s (1996) demonstration that it is possible to recover data using a 

one-pass wipe is due to older hard drives having gaps between “tracks” and such gaps are not 

found in modern high-density magnetic hard drives. However, in recent work, Quick and Choo 

(2013b; 2013a; 2014) demonstrated that data artefacts could be forensically recovered from 

devices, even after the original data has been securely deleted using tools such as Eraser14 and 

CCleaner15. For example, they noted that “there was enough information in prefetch files, such 

as notepad.exe.pf, wordpad.exe.pf, explorer.exe.pf and dllhost.exe.pf to indicate the presence 

and path of the Enron sample data files and the sample Dropbox files” (Quick & Choo 2013b, 

p. 10). 

However, flash storage could not rely on simple data overwriting for secure deletion. FTL not 

just remaps logical block address, but also distributes write access across flash storage 

(Spreitzenbarth & Holz 2010). In flash storage, newer data is written to another valid block 

while the original block is simply marked as “invalid” (Shin 2012). This is known as out-of-

place update; whilst an in-place update writes new data on top of previous. Therefore, in an 

 
14 http://eraser.heidi.ie/ 
15 http://www.piriform.com/ccleaner 

http://eraser.heidi.ie/
http://www.piriform.com/ccleaner
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out-of-place update, the original content is preserved even with an overwrite request. Wei et 

al. (Wei et al. 2011) demonstrated that existing single-file secure deletion tools are ineffective 

in securely deleting file content in flash storage. To truly overwrite the data, flash storage must 

erase the block prior to overwriting with new data. However, an erase operation is significantly 

slower than write operation (Choi et al. 2014) and the number of erase operation allowed on a 

single block is limited, ranging from 10,000 to 100,000 before it becomes a bad block - a block 

that cannot store data anymore (Reardon et al. 2013b; Qin et al. 2013). 

 

2.3.2 Classification of secure flash storage deletion  

In this survey, the categorisation approach proposed by Diesburg’s (2012) and Reardon et al. 

(2013a) are adapted. This discussion broadly categorised secure deletion approaches into the 

user-space layer, the file system layer and the physical layer (Figure 6). An alternative approach 

is to organise them into complete overwrite, random overwrite, delete sensitive, and block 

deletion (Gupta et al. 2011). However, the latter approach is more appropriate in describing 

features provided by a secure deletion method. Thus, it is not suitable to classify each secure 

deletion method distinctly because each method described in this work most likely incorporates 

more than one feature. 
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Figure 6: Data access layers in flash storage. (Adapted from Reardon et al. (2013a), Agrawal et al. (2008)) 

 

2.3.2.1 User-space layer 

Spreitzenbarth and Holz (2010) developed a secure deletion tool for Symbian OS, which 

overwrites personal data (e.g. contacts, calendar entries, and SMS message) using the OS API. 

Since the tool utilised OS API, it can be easily ported to other platform. Wear levelling 

techniques to prolong the service life of the storage media (e.g. flash memory) that have a 

limited number of erase cycles before being rendered unreliable was not considered in this 

work, and therefore, limiting its widespread adoption. 
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Reardon et al. (2012) developed a secure deletion tool for Android OS that will monitor the 

amount of free space and fill it with random data. This ensures unwanted data marked as invalid 

is filled with random data to achieve random deletion. 

Albano et al. (2011) proposed using standard Linux commands (e.g. cp, rm and dd) to delete 

data of interest in Android devices, without using any cryptographic primitives or kernel 

modules that will raise suspicion during a forensics analysis. The deletion process is 

summarised as follows: 

1. Copy /data partition to an external SD card. 

2. Zero the partition while deleting the data of interest on external SD. 

3. Move the remaining data on external SD back to the /data partition. 

4. Zero the external SD.  

The proposed method requires BusyBox (Perens 2014) to be installed (which provides the 

standard Linux commands). Installing BusyBox requires the user to have root privilege, but 

such an approach will void the warranty and result in the device being vulnerable to other 

malicious threat (Pieterse & Olivier 2013). 

Kang et al. (2013) proposed another method of data wiping for mobile phone, which overwrites 

only part of the data that will render it unidentifiable instead of overwriting the entire data. 

Their approach is designed only for data of the following file formats, namely; JPEG, BMP, 

FLV, DOC and XLS. 

Steele et al. (2009) proposed a system to wipe several USB flash drives simultaneously. The 

system checks the pre-set status of the drive upon insertion to determine whether to wipe the 

drive. Data overwriting defaults to zero-overwriting but it is able to accommodate user-defined 

pattern. The proposed system did not take into consideration wear-levelling or FTL since the 

motivation behind the publication is simply because “there is literature on the Internet that 

suggests that such recovery is possible for the dedicated hacker up to at least 10 layers of 

previously written data in some versions of solid state memory”. However, such literature could 

not be located. 

The secure deletion approach proposed by Jevans et al. (2007) uses either overwriting with 

zeroes and ones, or cryptographic secure bit patterns. The proposed approach is designed with 

a mechanism to resume interrupted wiping after the device is subsequently powering on, and 
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to ensure wear levelling. The approach described in this patent was implemented in IronKey’s 

product16. 

 

2.3.2.2 File system layer 

Weng and Wu (2012) proposed using data encryption for secure flash storage deletion. Each 

data block is encrypted with a key and whenever the data needs to be deleted, the key will be 

removed. The work did not mention any mechanism to securely erase the key. The proposed 

method of Lee et al. (2010a) has a similar concept but their method ensures that keys are stored 

in the same block using “unbalanced binary hash tree” algorithm. Thus, a file can be securely 

deleted by erasing the file header block which deletes the key. This work has been patented 

(Park et al. 2012). Lee et al. (2011) extended their previous work (Lee et al. 2010a) to include 

US government standards on data sanitisation. It will overwrite the data before erase operation 

whereas previous work was erase operation only. This is without additional operations required 

in their previous work; and thus, the claim that the newer scheme is more secure and efficient 

than the previous scheme. The proposal by Guyot et al. (2012) is also based on data encryption. 

The proposed method not only deletes the keys but includes garbage collection to remove 

duplicate keys due to wear-levelling effect. 

Reardon et al. (2013b) criticised that Lee et al. (2010a) proposal is only conceptual and that if 

implemented will cause too much wear on flash memory. They then proposed a scheme that is 

similar to Lee et al. (2010a) where each data block is encrypted with a key and the key is purged 

through erase operation when the data is no longer needed. The proposed scheme encrypts 

each block of data with distinct 128-bit AES key in counter mode. IV (initialisation vector) is 

not used due to distinct key. The scheme is implemented in UBIFS (Unsorted Block Image File 

System), a log-structured file system that builds upon UBI and is tested on Android. The 

authors conducted various tests including wear analysis, power consumption, and I/O 

performance. However, Skillen and Mannan (2013) argued that Reardon et al. (2013b) 

proposed method could only work with memory technology device (MTD) due to dependency 

on UBI.  

Sun et al. (2008) proposed a hybrid secure deletion scheme that utilises two techniques; block 

cleaning and zero overwriting. Block cleaning is basically an “erase” operation (Section Data 

overwriting in flash storage). The proposed scheme calculates the cost of each technique before 

 
16 http://www.ironkey.com/en-US/ 
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performing the secure delete and choosing the technique with a lower cost. There are different 

scenarios which can affect the cost of each technique. In block cleaning, any valid pages (pages 

that are storing valid data) residing inside a block have to be copied somewhere else before 

erasing the block. Thus, the cost of block cleaning increases as the number of valid pages in a 

block increases. In contrast, zero overwriting can selectively overwrite affected pages (pages 

that store the data user wants to delete) only. Thus, block cleaning tends to be slower whenever 

large amount of valid pages are involved since the operation has to copy them first. Lee et at. 

(2011) argued that block erasure does not involve overwriting; thus does not meet US 

government standard. Subha (2009) further pointed out that the calculation introduces latency. 

Choi et al. (2014) proposed a scheme involving password-based per-file encryption and secure 

data deletion. The proposed encryption scheme encrypts file name and file data separately. 

When user wants to delete particular file, the process is as follow: 

1. Write zeroes to all spaces occupied by file name, file address, and file data. 

2. Read the spaces and verify that it is “0x00”. 

3. Execute TRIM function that allows an operating system to inform the flash storage that 

the spaces are no longer used and can be erased. 

4. Finally, erase the space(s) so that new data can be stored. 

Choi et al. (2014) criticised that Truecrypt, a software-based full disk encryption, for storing 

secret information (e.g. encryption/decryption key, user’s password, and master key) while 

their proposed solution does not. The key problem with this criticism is that Truecrypt securely 

stores the master key encrypted using header key. The header key is not stored but derived 

either from user’s password or keyfile or both (Brož & Matyáš 2014). This is similar to the 

proposed file encryption scheme of Choi et al. (2014), but simpler (Figure 7). 
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Figure 7: Decryption process in Truecrypt and Choi et al. 

 

Choi et al. chose to use single file encryption because only important data is targeted and that 

full disk encryption is significantly slower. The advantage is protection against cold-boot attack 

(Halderman et al. 2009; Müller & Spreitzenbarth 2013) because user’s password and key 

created temporarily in RAM can be safely disposed after the encryption or decryption process 

(Choi et al. 2014). Compared to full disk encryption where data is encrypted and decrypted on-

the-fly, the key has to be stored in RAM or cached somewhere else to encrypt and decrypt data. 

However, important data does not constitute just a single file but may encompass multiple files. 

In the proposed method, if a user wants to access multiple files, the user has to provide 

individual passwords for decryption of each file, which is inefficient. 

 

2.3.2.3 Physical layer 

Shin (2012) explored the feasibility of implementing secure deletion in different FTL schemes. 

Shin claimed that current approaches are effective but suffered from low performance due to 

the design limitation in existing FTL schemes, and suggested the need for new FTL scheme 

that is both effective and achieves good performance. Wei et al. (2011) developed a new FTL 

scheme that zero-overwrite unused copies of data. The scheme works by re-programming 

unused cell to flip remaining ones to zeroes. Wei et al. (2011) cautioned that this approach 

could trigger a ‘Program Disturb’ error (i.e. memory cells that are not being programmed 

receiving elevated voltage stress).  Reardon et al (2012) criticised such an approach as 

reprogramming operates outside existing specification, but Wei et al. (2011) claimed that the 

‘Program Disturb’ issue will not affect all drives.  
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Qin et al. (2013) also adopted a similar approach as of Wei et al. (2011) in their proposal to 

ensure traditional data overwriting is still effective. In order to mitigate the negative effect of 

reprogramming, RAID-5 is suggested. Although RAID-5 is generally found in corporate 

environment, it is widely supported in consumer product without using dedicated RAID 

hardware (Intel 2014; AMD 2010). Despite RAID-5 being able to provide fault tolerance, there 

are several disadvantages. For example, a typical RAID-5 setup requires at least three disks 

(Vantage Technologies n.d.), and part of the storage capacity is allocated to store parity to 

achieve fault tolerance. Therefore, RAID-5 is not suitable for the general consumer (due to the 

expenses involved). 

Rather than overwriting the data to be deleted, Subha (2009) proposed to render the data 

inaccessible. The error correcting code (ECC) is stored in a reserved area known as out-of-

band (OOB), and Subha proposed to overwrite certain parts of ECC to introduce read error, 

and therefore, rendering the data that reside in the block inaccessible. This results in a faster 

secure deletion time since the size of ECC is typical very small. However, it is yet unknown 

whether data overwritten using ECC can be subsequently accessible by the OS. 

Diesburg et al. (2012) proposed TrueErase, an approach to correctly propagate secure deletion 

information across layers. The approach considered the full data-paths from user-space down 

to physical layer. Reardon et al. (2013a) liken this approach to a TRIM command but argued 

that TrueErase is more efficient as it can target only sensitive part of file instead of the entire 

file. Due to consideration of all layers involved, it is the most comprehensive approach but 

such an approach is complex to implement (Bonetti et al. 2014). 

Linnell (2012) proposed a block erasure method whereby a block is erased by reprogramming 

all pages into zeroes, similar to Wei et al. (2011). Before the block is erased, any pages still 

holding valid data (i.e. valid page) are copied to another block. However, such an approach 

was pointed out in earlier work (Sun et al. 2008) to be slower than zero-overwriting when there 

is a large number of valid pages to be copied. 

Rather than using a series of write commands from OS or host interface, Koren et al. (2006) 

proposed wiping flash storage using a single command from the host device, which will trigger 

the flash storage to wipe itself. The command can also be sent wirelessly via Bluetooth or 

infrared. Logical conditions such as higher than usual read operation can be used to trigger the 

self-wiping to mitigate unauthorised disk duplication. The proposed method includes a 

mechanism to automatically resume interrupted wiping process (described in Section Ensure 
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wiping operation is completed). After the entire flash storage has been wiped, the flash storage 

has a built-in status to indicate the process completion. 

2.3.3 Android implementation 

According to concurrent work by Simon and Anderson (2015a), flash memory can be erased 

through ioctl() system call provided by Linux kernel. On MTD interface, ioctl(MEMERASE) 

method is used to erase flash blocks so that they are available to store new data (Sang 2012; 

Jangir 2012). When eMMC was introduced to Android device, Android uses 

ioctl(BLKDISCARD) to send “TRIM” command to the flash controller. It is not considered as 

secure deletion because it simply marks the block as available for new data. 

ioctl(BLKSEDISCARD) was later implemented in version 4.0 (Ice Cream Sandwich) for secure 

deletion. This system call will pass “SECURE ERASE” OR “SECURE TRIM” to flash 

controller. The flash controller would execute “ERASE” or “TRIM” operation followed by 

“SANITIZE” (Google n.d.a). This is akin to ATA/ATAPI Command Set-2 (ACS-2) 

“SANITIZE BLOCK ERASE” used in desktop drive (Wei et al. 2011). Table 5 summarise the 

deletion method implemented throughout history of Android as identified by Simon and 

Anderson (2015a). Deletion method for media partition is only applicable when it is standalone 

partition. Most devices with Honeycomb or later would have ‘media’ folder under data 

partition (/data/media) instead of separate partition. 

  Android version 

Code Partitio

n 

Froyo GB IC

S 

JB KK 

Android media format() ioctl(BLKDISCAR

D) 

External 

SD 

None 

Recover

y 

data ioctl(MEMERAS

E) 

ioctl(BLKDISCAR

D) 

ioctl(BLKSEDISCARD) 

Table 5: Deletion method of factory reset in AOSP (adapted from Simon and Anderson (2015a)) 
 

2.4 Discussion 
This section discusses the various limitations in existing approaches (Chapter 2.2 & 2.3) 

before summarising this chapter. 
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Technique Advantages Disadvantages Evaluation criteria / claimed features (for approaches 

without an experiment) 

Research set-up 

User-space   

Spreitzenbarth 
& Holz (2010) 

• Simple to implement. 

• No OS modification required. 

• Cross-platform. 

• Does not provide wear-levelling. 

• Limited data type support. 

• Data recoverability • Experiment using Nokia E90 (Symbian 

9.2)/S60 platform 

Reardon et al. 

(2012) 
• Data type agnostic. 

• Provides wear-levelling. 

• Excessive writes or wear on storage. 

• Slow 

• Effects of different parameter on deletion 

latency and lifetime. 

• Battery consumption. 

• HTC Nexus One 

Albano et al. 

(2011) 
• Simple operation. 

• Data type agnostic, 

• No OS modification required. 

• Does not provide wear-levelling. 

• Works on Android or any Linux-based OS 

only. 

• Requires root and BusyBox installed on 

Android. 

• Slow. 

• Data recoverability • HTC Nexus One (MIUI ROM based on 

Android v2.3.4) 

Kang et al. 

(2013) 
• Efficiency as only parts of data 

needs to be overwritten. 

• Does not provide wear-levelling. 

• Limited data type support. 

• Data recoverability 

• Deletion time 

• Samsung Galaxy S3 

Steele et al. 

(2009) 
• Wipe several USB flash drives 

simultaneously. 

• Questionable motivation behind 

the proposal. 

• Does not address wear-levelling. NA NA 

Jevans et al. 
(2007) 

• Resume interrupted wiping. • Limited wear levelling. NA NA 

File system   

Weng & Wu 

(2012) 
• Only small data (key) needs to be 

deleted. 

• No mention of secure deletion for keys. NA NA 

Lee et al. 

(2010a) and 

Park et al. 
(2012) 

• Encryption keys are arranged 

closely for faster delete operation. 

• Excessive wear on flash storage. 

• Conceptual (yet to be implemented / 

evaluated). 

• Amortized number of block erase • No experiment conducted 

Lee et al. 

(2011) 
• Incorporate US government 

standards 

• More efficient than (Lee et al. 

2010a) and introduce less wear on 
flash storage. 

• Conceptual (yet to be implemented / 

evaluated).   

• Amortized number of block erase • No experiment conducted 

Guyot et al. 

(2012) 
• Method to remove duplicates of 

deleted data provided. 

• Latency of garbage collection operation. NA NA 

Reardon et al. 

(2013b) 
• Can be modified into full disk 

encryption for confidentiality. 

• Designed for UBIFS, a file system not 

found in Android but supported by the 
Linux kernel. 

• Depends on now defunct MTD 

• Execution time for various file system 

functionality (e.g. mount/unmount, 

read/write) 

• Power consumption 

• HTC Nexus One (Linux v2.6.35.7) 

Sun et al. 

(2008) 
• Hybrid scheme which chooses 

faster method by evaluating the 

nature of data location. 

• Latency during cost calculation. • Time taken to complete various 

workloads. 

• Embedded board 400MHz Intel XScale 

CPU, 64MB SDRAM, 64MB Samsung 

NAND flash memory. 

Choi et al. 

(2014) 
• Compatibility with TRIM 

• Verify the data has been 

overwritten 

• Additional operations increase deletion 

time. 

NA NA 

Physical   

Wei et al. 

(2011) 
• Almost native performance • May result in writing error. • Write latency • Custom-built FPGA-based flash testing 

hardware on 16 chips spanning 6 
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• Possible violation of flash storage’s 

specification. 

• Secure deletion latency on different flash 

storage and applications 

manufacturers, 5 technology nodes 

covering both MLC and SLC chips 

Qin et al. 
(2013) 

• Use RAID-5 to mitigate negative 

effect of reprogram. 

• Require multiple drives for RAID; thus 

not cost-effective / suitable for general 

consumer usage. 

• Read/write response time • Simulator SSDsim 

Subha (2009) • Least data to be affected thus very 

fast deletion time. 

• Access to ECC is questionable. • Deletion time • C program running on Linux file system 

to simulate ECC, with a Rich Text File 

(RTF) as input data. 

Diesburg et al. 

(2012) 
• Most comprehensive approach • Complex to implement • Data recoverability 

• Disk performance 

SanDisk’s DiskOnChip with Inverse NAND 

• File Translation Layer (INFTL) kernel 

module on Linux 2.6.25.6 

Linnell (2012) • FTL compatibility. • Slower than simple zeroes overwriting in 

some cases. 

NA NA 

Koren et al. 

(2006) 
• Erase operation is independent 

from host device (OS and 
motherboard). 

• Resume interrupted wiping. 

• Does not provide wear-levelling NA NA 

Table 6: Comparative summary of existing secure deletion techniques.
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2.4.1 Limitations of existing literature 

2.4.1.1 Lack of data recovery evaluation 

It is clear that most existing approaches focus on data recoverability testing, but there is a lack 

of data recovery evaluation particularly at the file system and physical layers. 

Almost all existing approaches had limited evaluations to determine their suitability (i.e. one 

experiment per device in most proposals) which brings into question whether the approach can 

be widely deployed over the wide range of mobile devices. For example, Wei et al. (2011) 

argued that different flash storage media could exhibit different behaviours and, therefore, 

conducted tests on a wide range of commercially available consumer hardware. In addition, the 

findings are dated, many of the devices tested such as HTC Nexus One are either discontinued 

(Gross 2010) or no longer available. Therefore, findings from Albano et al. (2011), Reardon et 

al. (2012), Reardon et al. (2013b) and others may no longer be applicable to newer devices and 

OS. 

2.4.1.2 Limitation of using simulation in evaluations 

A number of proposals was evaluated in the simulated environment (Qin et al. 2013; Subha 

2009). While there are advantages in using a simulated environment such as a mobile emulator 

(e.g. ease of use, without the need for custom-build hardware platform, and ability to evaluate 

approach for an expensive or yet to be available commercial flash technology as outlined by 

Grupp et al. (2010), simulation results are likely to be less reliable than actual hardware-based 

evaluations, and hence, limit our understanding of the resulting real-world implications 

(Saxena et al. 2013). 

2.4.1.3 Performance 

Modification on hardware-level does not necessarily mean modifying the flash memory cell or 

the processor of the SSD controller; in this paper, this refers to the modifying the software or 

the firmware running at the physical level. Thus, the software-based approach referred in 

Error! Reference source not found. is implemented above the physical level, namely file s

ystem and user-space layers. 

 

Software-based implementation generally has a lower throughput due to the number of layers 

involved; whilst a hardware-based implementation operates on the disk’s firmware which 

allows it to run at the disk’s full bandwidth (Reddy & Rao 2014). For instance, software-based 

full disk encryption (FDE) generally impacts on the disk’s performance even in flash storage 

(Larabel 2014). 
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2.4.1.4 Possible attacks  

Hardware-based secure deletion approach can perform erasure on all memory blocks (Wei et 

al. 2011), but software-based solution may not be able to access some of the blocks. ATA’s 

Secure Erase function is the most commonly available hardware-based secure deletion method, 

which can be found in most drives manufactured on or after year 2001. However, researchers 

such as Wei et al. (2011) and Swanson & Wei (2010) found that some drives either fail to 

complete the deletion process required in the Secure Erase function or do not erase the data at 

all after executing that function. 

Data can also be protected using encryption, such as hardware-based drive encryption (also 

known as self-encrypting drive – SED). Müller et al. (2012) proposed a hot plug attack, where 

an adversary is able to gain unauthorised access to the data residing in the SED. In short, this 

is due to the fact that when using the SED, a user unlocks the drive when powering on the 

machine. After the disk is unlocked, and while the disk is still running (“hot”), an adversary 

simply re-plugs the SATA cable from the original machine to the adversary’s machine to access 

the SED without knowing the password. An adversary can also access the drive directly by 

attaching a USB drive into the original machine if it is not screen locked. 

To ensure high security compliance, there are several industry standards for SED, such as Opal 

Security Subsystem Class (Opal SSC) by Trusted Computing Group (TCG) (2012) and 

“Encrypted Hard Drive” (eDrive) by Microsoft (2012). The latter, for example, is partly based 

on Opal SSC and IEEE 1667 (Rich 2007). Major SED manufacturers offer OPAL-compliant 

products (Müller et al. 2012; TCG n.d.; Kingston 2013; Intel 2013). Müller et al. (2012) did 

not evaluate Opal-compliant SEDs, but claimed that hot plug attack affects such drives too. 

Since then, there had been no major revision to the Opal SSC standard, and it is unknown 

whether such attack claimed by Müller et al. (2012) is valid. 

On the other hand, software-based disk encryption may be vulnerable to cold boot attack 

(Halderman et al. 2009; Müller & Spreitzenbarth 2013) because the encryption key is cached 

in RAM. In such an attack, an adversary removes the RAM, re-plugs into another machine, and 

extracts the key from the RAM. Such an attack is, however, difficult to carry out and can be 

mitigated by keeping the key outside of RAM (Wetzels 2014). In addition, software-based disk 

encryption does not encrypt the boot sector, therefore, an adversary is able to launch a evil maid 

attack (Rutkowska 2009) by installing a bootkit (boot sector rootkit) into the victim’s machine 

to capture the password entry. Another form of evil maid attack can be launched against 

hardware-based disk encryption. In this case, an adversary removes the victim’s disk and 
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replaces it with another disk loaded with the adversary’s modified OS designed to capture 

password entry (Müller et al. 2012; Rutkowska 2011). In this case, it can be thwarted using 

ATA’s password. Evil maid attack is possible in both software-based and hardware-based due 

to a lack of trusted boot environment (Tereshkin 2010) to authenticate the boot sector or the 

disk to the user (Rutkowska 2011).  

2.4.2 Summary  

Table 7 summarises the key differences between hardware- and software-based 

implementations of secure flash storage deletion. 

 Hardware-based approach Software-based approach 

Performance Generally higher Slower 

Security issue ‘Hot plug’ attack ‘Cold boot’ and related attacks 

Verifiability Difficult Possible 

Ease of implementation Hard Easy 

Cost High Low 

Table 7: Key differences between hardware- and software-based implementations (Adapted from Choi et al. (2014)) 

The advantage in using a software-based approach as it allows easy verifiability. For example, 

if the source code is available, then a public security audit can be conducted using forensic 

techniques as demonstrated on TrueCrypt (Brož & Matyáš 2014). Hardware-based verification 

may require not only building a customised platform to access the memory directly but also 

dismantling the device (Swanson & Wei 2010). 

Modification on the hardware level can be very challenging, as one would generally require 

having access to the source code of the firmware or the specification of the disk controller. It 

may be possible to replace the firmware, but there is the risk of bricking the device. Software-

based solutions have a lower risk of damaging the hardware. Software-based modification, 

especially file system layer, usually builds on an existing open source file system. The 

improvement can be implemented simply by installing a new patch. Even in the case of a new 

software component, existing data can be migrated with relative ease.  

In addition, software-based modification is generally hardware independent. Implementation 

on hardware-level, however, may require compatibility at the higher layers. User needs to 

install new software, for example to support Opal SSC (Sophos 2014), and acquires new 

hardware. For example, in Intel SED, the drive is encrypted by default using the unique key 

generated during manufacturing (Intel 2012). It is activated simply by using the drive. This 
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mechanism could only protect in situation where the NAND chip has been removed, assuming 

that the key is not stored in the NAND chip or the location is only known to the controller. 

Thus, SED behaves more like “self-decrypting disk” (Müller et al. 2012) in the default 

configuration. To protect the drive, the user would need to set the ATA password which 

controls access to the drive, and consequently the data. This mechanism requires ATA 

specification compatibility. Although the majority of consumer hard drives use SATA (Serial 

ATA) interface, there are drives that utilise SCSI/SAS, Fibre Channel, or PCIe host interface. 

Some new hardware-based features require installation of new hardware, and therefore, and a 

more expensive option. In software-based approach, a user can take advantage of new features 

via software updates.  

 

2.5 Summary 
This chapter examined (the limited) literature on remote wiping, particularly secure deletion 

on flash storage. Despite the prevalence of remote wiping, most existing literature provided a 

high-level approach to remote wiping and secure data deletion. There are relatively few 

technical papers evaluating the implementation of such approaches or techniques on a wide 

range of popular mobile devices. One reason this may not have been thoroughly explored is 

due to the cost and efforts associated with such evaluations.  
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In addition to conducting a comparative summary of existing approaches (see Table 6), 

following table (Table 8) identified existing limitations and the research trends over the years. 

Publications Years Research focus 

Angelo et al. (2003), Kenney (2005), Hasebe (1999) 1999-2005 Remote wiping 

Onyon et al. (2007), Gajdos & Kretz (2006) 2006-2010 

Brown et al. (2011), Park et al. (Park et al. 2011), Joe 

& Lee (2011) 

2011 

Kuppusamy et al. (2012) 2012 

Walker & Fyke (2013) 2013 

Yu et al. (2014), Adusumalli (2014) 2014 

Sun et al. (2008), Jevans et al. (2007), Koren et al. 

(2006) 

2006-2008 Secure flash 

storage deletion 

Spreitzenbarth & Holz (2010), Steele et al. (2009), Lee 

et al. (2010a), Subha (2009) 

2009-2010 

Wei et al. (2011), Albano et al. (2011), Lee et al. 

(2011) 

2011 

Linnell (2012), Reardon et al. (2012), Weng & Wu 

(2012), Park et al. (2012), Guyot et al. (2012) 

2012 

Reardon et al. (2013b), Qin et al. (2013), Kang et al. 

(2013) 

2013 

Choi et al. (2014) 2014 

Table 8: Remote wiping and secure flash storage deletion publications by research focus 

 

As shown in Table 8, majority of remote wiping patents were filed prior to 2010, although 

academic interest on the topic appears to have increase since then. Similar trend was observed 

on secure flash storage deletion, where there are at least three publications annually since 2010.  

This review highlights a number of literature gaps which are as follow: 

• The need to provide message confidentiality using encryption and ensure that wiping 

process cannot be interrupted. From the survey described, existing proposals generally 

do not consider securing the wipe command (Section Secure wipe command) nor 

provide any mechanism to automatically resume interrupted wiping process (Section 

2.1.5). 
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• The need for comprehensive evaluations on the security and effectiveness based on 

real-world implementations of remote wiping. It is essential to ensure that remote 

wiping command cannot be hijacked by attackers (e.g. to prevent the wiping of lost or 

stolen devices) or initiated by attackers (e.g. to remotely wipe contents from victim’s 

device) and wiped data cannot be recovered using contemporary forensic techniques. 

• Real world implementation that mitigate some of the shortcomings. 

• The need for evaluation of physical layer implementation on actual hardware. As 

discussed in Section Limitation of using simulation in evaluations, evaluations of 

existing hardware-level research on flash storage are generally conducted on simulator. 

The findings may not take into consideration internal workings of the flash storage (as 

manufacturers may be hesitant to provide such information to protect their intellectual 

property) (Saxena et al. 2013; Swanson & Wei 2010). To overcome this limitation, 

Diesburg et al. (2012) suggested using OpenSSD (Lee & Kim 2011), a research 

platform designed for flash storage research. There are also a few alternative platforms, 

such as FRP (Davis & Zhang 2009), BlueSSD (Lee et al. 2010b), and Ming II (Bunker 

et al. 2012). These open platforms allow researchers to have unfettered access to the 

hardware especially the FTL, which is not possible on commercial flash storage.  

• The need for stronger collaboration between manufacturer and academic researcher. 

This review highlighted the importance of FTL as a vital factor in secure flash storage 

deletion. For instance, Diesburg et al. (2012) acknowledged their work is only possible 

due to access to software FTL and pointed out the trend of hardware FTL in recent 

times. For example, newer Android versions have started utilising hardware FTL 

(Section Flash storage layers and structures). Since hardware FTL is not accessible in 

commercial hardware or the open research platforms mentioned earlier, any research or 

evaluation on FTL could not be conducted without the involvement and collaboration 

of a manufacturer. Therefore, it is argued that a stronger collaboration between 

manufacturer and academic researcher will result in a more secure product. Researchers 

can work with Open NAND Flash Interface (ONFi)17, a consortium of flash memory 

manufacturer, to incorporate secure deletion method into ONFi specification to 

facilitate wider adoption. 

• Does stronger security hinder law enforcement? Stronger security on remote wiping 

mechanism can help protect the privacy of consumer. However, such benefit could also 

 
17 http://www.onfi.org/ 
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be abused by criminal to remove incriminating evidence (Mislan et al. 2010; Wakefield 

2014). In addition, law enforcement have explained that they could not extract useful 

evidence from mobile devices due to storage encryption (Timberg & Miller 2014; 

Hattem 2014; Barrett et al. 2014), particularly in the post NSA revelations as mobile 

device vendors and other technology companies  enforce encryption by default in their 

products (Frizell 2014; Gustin 2013). Whether such trend really does hinder law 

enforcement is the subject of controversy and, perhaps, worthy of discussion. For 

example, how do we balance the need for user privacy with the legitimate needs of 

government and law enforcement agencies to access data to facilitate their 

investigations? This issue is briefly explored in Chapter 3 where user data could not be 

recovered due to secure deletion in Android device. 
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3 Effectiveness of remote wiping 
 

This chapter compares the effectiveness of seven third-party remote wiping app against 

Android built-in’s, Android Device Manager. Three mobile devices with vary Android version 

are used: Motorola Moto G, Samsung Nexus S, and LG Nexus 4.  

Nexus S was purchased 3 years ago and had been author’s primary phone for 2 years. The Moto 

G was a newly acquired (less than 4 months) mobile device. The Nexus 4 has 2 years of usage. 

Both phones have prior limited use with student experiments. 

All three devices were installed with different Android version. Moto G uses version 4.4.2 

KitKat (KK). Nexus S that was initially shipped with 2.3 Gingerbread (GB) has been upgraded 

to 4.1.2 Jellybean (JB). Nexus 4 was shipped with 4.2 JB has been upgraded to 5.1 Lollipop 

(LP). 

Device Motorola Moto G Samsung Nexus S LG Nexus 4 

Model XT1033 GT-I9020T LGE960 

Android OS 4.4.2 4.1.2 5.1 

Android Build KXB20.25-1.31 JZO54K LMY47O 

Linux kernel 3.4.0 3.0.31 3.4.0 

Storage 8 GB 16 GB 8GB 

RAM 1 GB 512 MB 2 GB 
Table 9: Device specification. 

 

Moto G uses F2FS file system for userdata partition. F2FS was released back in February 2013 

(Larabel 2013; Kim 2012; Lee et al. 2015). F2FS is specifically designed for NAND flash 

memory-based storage devices which is commonly used in mobile device. F2FS is relatively 

new compared to EXT4 (released in December 2008, (Larabel 2008)). EXT4 has been the 

default file system for Android device since Android 2.3 (Google 2010). 

Partition Moto G Nexus S Nexus 4 

File system 

Recovery Unknown 

Boot 

Cache EXT4 YAFFS2 EXT4 

System EXT4 

Userdata F2FS 

Internal SDcard/Media FAT32 
Table 10: Partition layout. 
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3.1 Preparation 
Each mobile device was restored to factory image. Set of apps and data are loaded onto the 

mobile devices as follow: 

1. Sign into Google account and connect to “unisa” wireless network. 

2. Save 30 contacts and call 10 of them. 

3. Sync email. (Emails were generated on the Google account beforehand) 

4. Install Google Drive, Dropbox, Box, & OneDrive. 

5. Download documents: 

a. 30 DOCX through Google Drive. 

b. 30 PPTX through Dropbox. 

c. 30 XLSX through Box. 

d. 30 PDF through OneDrive. 

6. Transfer following files to the mobile device: 

a. 120 JPEG pictures. 

b. 35 MP4 videos. 

c. 30 MP3 audios. 

7. Browse to 50 websites and bookmark them. 

8. Sign into Reddit (www.reddit.com) and save login. 

9. Install and sign into Facebook app. 

10. Install and sign into Skype app (except for Nexus S). 

“Baseline” dd physical image is then taken. Remote wiping is initiated and another physical 

image is acquired. Experiment is repeated by using different app to initiate remote wipe and 

physical image is acquired after each wipe.  Before each experiment, the mobile device is 

restored back to “baseline”. More detailed steps and command used are described at Appendix: 

Table 38 and Appendix: Figure 13. 

The experiment tests the default built-in remote wipe app, Android Device Manager, but also 

seven third-party apps (Table 11). These apps are chosen based on preference towards cloud 

anti-virus app and free trial offer. 

# App Note Moto G Nexus S Nexus 4 

Version 

A Baseline  N/A 

B Android Device Manger (ADM)  N/A 

C Avast  3.0.7650 3.0.7756 3.0.7756 
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D (S) 

E AVG  4.3 4.3.1.1 4.3.1.1 

F Avira  3.9 4.0 4.0 

G Cheetah Mobile (CM) (W) 2.4.4 2.4.9 2.5.0 

H  

I Panda  2.1.4 2.2.1 2.2.1 

J Sophos (S) 4.0.1435 5.0.1515 5.0.1515 

K Trustlook  2.5.5 2.5.10 2.6.0 

L (W) 

Table 11: List of apps tested. 

Legend: (S) Secure deletion enabled 

 (W) Without factory reset 

 

3.2 Mobile forensic tool used 
Physical image collected on each experiment would be analysed by following mobile forensic 

tools. Four forensic tools were used to analyse userdata partition of Moto G and Nexus 4 and 

media partition of Nexus S where most of user data would be stored. 

UFED Physical Analyzer (4.1 Trial). A commercial forensics tool from Cellebrite was used 

for analysing the physical images collected. Cellebrite offered 30-day free trial for the 

application. The application can analyse Cellebrite’s proprietary disk image (.UFD), dd raw 

disk image and logical file system dump. Cellebrite also offers separate hardware and software 

for data acquisition and save the acquired image in proprietary format (.UFD). The hardware 

was previously used in Schwamm’s research (2014). 

Internet Evidence Finder (IEF 6.5 Trial). A commercial forensics tool from Magnetic 

Forensics was used in the experiment. 30-day free trial is also offered. The application supports 

reading from Encase (.E01), FTK (.AD1) proprietary image, virtual machine images (.VDI, 

.VMDK), DMG images, and dd raw image. As the product name implies, the application focus 

on recovering Internet-related artefacts (e.g. browsing history and chat logs) yet still support 

recovering common file format. Magnetic Forensics also offers data acquisition software, 

Magnet ACQUIRE. Similar to data acquisition technique chosen for this experiment, Magnet 

ACQUIRE also uses dd. 

PhotoRec (6.14) is an open source file recovery program written by Christophe Grenier. 

PhotoRec utilises data carving technique for searching for known file header without parsing 

the file system18. PhotoRec can recognizes and recovers common file formats. It is bundled 

 
18 PhotoRec can be configured to operate in a mode optimised for ext file system. 
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with another utility, TestDisk primarily used for repairing partition layout. Although PhotoRec 

supports more than 400 file formats, it configured to recover most common file formats 

relevant to Android in the experiment conducted. The formats chosen are shown in the results 

(Table 19-Table 21). 

Scalpel (2.0) is another open source file carving utility. It was originally developed by Golden 

G. Richard III as improvement to previous file carving utility, Foremost. It was presented at 

2005 Digital Forensic Research Workshop (Richard III & Roussev 2005) and has been 

incorporated into the Sleuthkit. Author finds Scalpel very easy to use and configure, but support 

less file formats out-of-the-box compared to PhotoRec. The file signature used to recover files 

is also very basic and prone to false positive. It is configured only recover JPEG thumbnails. 

Following rule is used: 

jpg y 5000:50000 \xff\xd8\xff\xe0 \xff\xd9 

jpg y 5000:50000 \xff\xd8\xff\xdb \xff\xd9 

 

Scalpel is extensively used and described in Chapter 4. 

 

3.3 Other mobile forensic tools considered 
Following forensic tools were considered but not used because they cannot recognise or analyse 

the physical images produced in the experiment. 

1. MSAB XRY 6.13 – Cannot recognise the dd physical images. 

2. Oxygen Forensics Suite 6.4.067 (Analyst edition) - Cannot recognise the dd physical 

images. 

3. Guidance Software EnCase Forensic 6 - Cannot recognise the dd physical images. 

4. Piriform Recuva 1.51 (Free edition) – Physical image must be mounted as a drive. 

Microsoft Windows does not support mounting F2FS file system. 

 

  Android version 

Code Partition Froyo GB 4.0.x (ICS) JB KK 

Android media format() ioctl(BLKDISCARD) 

External SD None 

Recovery data ioctl(MEMERASE) ioctl(BLKDISCARD) ioctl(BLKSEDISCARD) 
Table 12: Deletion method of factory reset in AOSP (adapted from Simon and Anderson (2015)) 

3.4 Discussion 

Recovered data is listed in Table 13-Table 24. Table 13-Table 15 lists data recovered by 

Cellebrite. Table 16-Table 18 list data recovered by IEF. Table 19-Table 21 list data recovered 

by PhotoRec. Table 22-Table 24 lists thumbnails recovered by Scalpel. Number shown in 
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parentheses indicates deleted file. The numbers outside of parentheses always include deleted 

file. Even when using the same forensic tool, not all types of data can be recovered, thus some 

data type may not appear in all tables. 

As mentioned in Chapter 2.2.8.1, in order to trigger factory reset, app must have “device 

administrator” permission granted, including the built-in ADM. Unlike traditional Android 

permissions, this permission is not automatically granted during installation, except for ADM 

which has been granted by default as a built-in app. User must first enable “remote wipe” 

through the remote wipe app’s user interface, and the app will prompt user to grant “device 

administrator” permission. 

However, not all apps display the prompts, specifically CM (all mobile devices) and Trustlook 

(Nexus S and Nexus 4). Enabling “remote wipe” in CM was a confusing process. It requires 

setting an optional in-app password (used when changing settings in CM) otherwise user could 

not initiate wipe command (the ‘Wipe’ option simply not showing). CM not only did not 

prompt for permission but did not prompt for setting the in-app password as well. Newer 

version of Trustlook installed in the Nexus S and Nexus 4 also had similar shortcoming. 

Trustlook did not prompt user to grant necessary permission. It could be due to feature 

restriction in trial version, despite the app indicated that the devices are qualified for free trial 

on the “remote wiping” feature. AVG also failed to prompt user but did have “Device 

Administrator” option on the remote wipe setting, the option is enabled. 

Without “device administrator” permission, app could not perform secure deletion. App could 

only rely on the traditional Android permissions that only it to unlink files. The experiment 

encountered this issue where app without “device administrator” permission (G & L) failed to 

remove many files. The issue of failing to inform user of the permission is also raised in 

concurrent work by Simon and Anderson (2015b). Simon and Anderson referred to this issue 

as invalid “in-app flow”. According to the work, Avast, AVG, and Avira were identified as 

having invalid in-app flow. In contrast to this work where Avast and Avira did prompt. This 

difference could be due to different app version installed or evaluation criteria. 

In retrospect, the results suggest that other remote wiping apps in Moto G and Nexus 4 were 

using secure deletion method provided by the OS (Table 12) (Chapter 2.3.3 has more details 

on secure deletion in Android). This is indicated by almost nil recovery rate. Even if there were 

some files recovered, those were system-generated files or false positives in this case. Although 

the deletion method of Lollipop used by Nexus 4 is not known based on discussion in previous 
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chapter, it should be at least similar or more secure than KitKat. On the other hand, since 

Jellybean version in Nexus S does not support secure deletion for media partition, some user 

data can be recovered. This is evident in IEF result (Table) where documents and pictures can 

be recovered.  

In addition, for all the results from Nexus S, picture is the most popular file recovered. 

Cellebrite and IEF supports picture “carving” for more comprehensive deleted data recovery. 

There are also large number of pictures recovered by PhotoRec. Picture recovery would be 

further discussed in the next chapter. 

3.5 Related work 
On previous academic research, Cardwell (2011) tested factory reset function on HTC Nexus 

One and Samsung Nexus S and found it is effective. However, author finds Cardwell’s test to 

be invalid because logical acquisition (“adb pull”) was used instead of physical acquisition. 

Schwamm and Rowe (2014) tested on 21 devices, made up of iPhone, Android and BlackBerry.  

Schwamm could recover user data from Android and iPhone devices after factory reset. In a 

concurrent work, Simon and Anderson (2015) tested on 21 Android devices and also found 

factory reset fails to remove user data from certain devices. In addition, focusing on 

implementation secure deletion in factory reset function. 
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Cellebrite Moto G 

A B C D E F G H I J K 

Call log 12 (2) 0 0 0 0 0 2 (2) 0 0 0 0 

Chats [category] 
           

  Google Talk 1 (1) 0 0 0 0 0 1 (1) 0 0 0 0 

  Hangouts 2 (1) 0 0 0 0 0 2 (1) 0 0 0 0 

  Kik 2 (2) 0 0 0 0 0 3 (3) 0 0 0 0 

Contacts 31 0 0 0 0 0 38 (37) 0 0 0 0 

Cookies 516 0 0 0 0 0 516 0 0 0 0 

Emails 45 (17) 0 0 0 0 0 46 (18) 0 0 0 0 

Installed applications 41 (4) 0 0 0 0 0 43 (5) 0 0 0 0 

Passwords 6 0 0 0 0 0 6 0 0 0 0 

Powering Events 1 0 0 0 0 0 2 0 0 0 0 

Searched items 1 0 0 0 0 0 2 0 0 0 0 

SMS 1 (1) 0 0 0 0 0 2 (2) 0 0 0 0 

Timeline 718 (1) 0 0 0 0 0 709 (4) 0 0 0 0 

User accounts 9 0 0 0 0 0 9 0 0 0 0 

Web bookmarks 50 0 0 0 0 0 50 0 0 0 0 

Web history 57 (2) 0 0 0 0 0 61 (11) 0 0 0 0 

Wireless networks 1 0 0 0 0 0 1 0 0 0 0 

Data Files [category] 
           

  Applications 434 3 3 0 3 3 447 3 3 3 3 

  Audio 31 0 0 0 0 0 0 0 0 0 0 

  Databases 226 1 1 0 1 1 252 1 1 1 1 

  Documents 180 0 0 0 0 0 30 0 0 0 0 

  Images 1910 0 0 0 0 0 886 0 0 0 0 

  Text 362 2 2 0 2 2 380 2 2 2 2 

  Videos 35 0 0 0 0 0 
 

0 0 0 0 

Carved Images 1375 2 2 0 2 2 200 2 2 2 2 

Activity analytics 58 0 0 0 0 0 66 0 0 0 0 

Analytics emails [category] 
           

  User email 3 0 0 0 0 0 3 0 0 0 0 



Effectiveness of remote wiping 

 54 

  Uncategorized 19 0 0 0 0 0 20 0 0 0 0 

Analytics phones 32 0 0 0 0 0 32 0 0 0 0 

Skype 1 0 0 0 0 0 1 0 0 0 0 
Table 13: Data recovered by Cellebrite in Moto G. 

 

Cellebrite Nexus S 

A B C D E F G H I J L 

SMS 0 2 (2) 2 (2) 1 (1) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 0 2 (2) 

Timeline 0 2 (2) 2 (2) 1 (1) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 0 2 (2) 

Data Files [category] 
  

  
       

  Audio 32 0 0 0 0 0 0 0 0 1 0 

  Databases 0 0 0 0 0 0 0 0 0 0 1 

  Documents 213 (2) 0 0 0 0 0 0 0 0 213 (3) 0 

  Images 756 (5) 0 0 0 0 0 0 0 0 616 (3) 0 

  Text 1 0 0 0 0 0 0 0 0 2 0 

  Videos 35 0 0 0 0 0 0 0 0 0 0 

Carved Images 6238 2759 2759 192 2759 2759 2759 2759 2759 0 2759 
Table 14: Data recovered by Cellebrite in Nexus S. 

 

Cellebrite Nexus 4 

A B C D E F G H I J L 

Call log 10 0 0 0 0 0 0 0 0 0 0 

Chats [category] 
           

  Hangouts 2 (1) 0 0 0 0 0 2 (1) 0 0 0 2 (1) 

  Kik 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 

Contacts 31 0 0 0 0 0 37 (36) 0 0 0 37 (36) 

Cookies 20 0 0 0 0 0 20 0 0 0 20 

Emails 2 (2) 0 0 0 0 0 3 (3) 0 0 0 2 (2) 

Installed applications 49 (23) 0 0 0 0 0 59 (22) 0 0 0 51 (24) 

Passwords 6 0 0 0 0 0 6 0 0 0 6 
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Powering Events 3 0 0 0 0 0 4 0 0 0 2 (1) 

Searched items 0 0 0 0 0 0 1 0 0 0 1 

SMS 3 (3) 0 0 0 0 0 4 (4) 0 0 0 2 (2) 

Timeline 172 (7) 0 0 0 0 0 176 (8) 0 0 0 162 (7) 

User accounts 9 0 0 0 0 0 9 0 0 0 9 

Web bookmarks 50 0 0 0 0 0 50 0 0 0 50 

Web history 40 0 0 0 0 0 50 0 0 0 40 

Wireless networks 1 0 0 0 0 0 1 0 0 0 1 

Data Files [category]           
 

  Applications 381 (65) 0 0 0 0 0 393 (67) 0 0 0 393 (70) 

  Audio 32 0 0 0 0 0 0 0 0 0 
 

  Databases 178 0 0 0 0 0 203 0 0 0 179 

  Documents 181 (1) 0 0 0 0 0 30 0 0 0 30 

  Images 1363 (21) 0 0 0 0 0 351 (16) 0 0 0 364 (16) 

  Text 289 (3) 0 0 0 0 0 309 (3) 0 0 0 297 (11) 

  Videos 35 0 0 0 0 0 0 0 0 0 0 

Carved Images 966 0 0 0 0 0 
 

0 0 0 (error) 

Activity analytics 36 0 0 0 0 0 43 0 0 0 42 

Analytics emails [category]           
 

  User email 4 0 0 0 0 0 4 0 0 0 4 

  Uncategorized 0 0 0 0 0 0 3 0 0 0 0 

Analytics phones 30 0 0 0 0 0 30 0 0 0 30 

Skype 1 0 0 0 0 0 1 0 0 0 1 
Table 15: Data recovered by Cellebrite in Nexus 4. 

 

IEF Moto G 

A B C D E F G H I S K 

IEF Refined results [category] 
           

  Google Analytics First Visit Cookies 23 0 0 0 0 0 23 0 0 0 0 

  Google Analytics Referral Cookies 23 0 0 0 0 0 23 0 0 0 0 

  Google Analytics Sessions Cookies 23 0 0 0 0 0 23 0 0 0 0 
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  Google Analytics URLs 33 0 0 0 0 0 33 0 0 0 0 

  Google Searches 1 0 0 0 0 0 2 0 0 0 0 

  Social Media URLs 107 0 0 0 0 0 97 0 0 0 0 

Chat [category] 

  Skype accounts 1 0 0 0 0 0 1 0 0 0 0 

  Skype Contacts 2 0 0 0 0 0 2 0 0 0 0 

Google Drive 2 0 0 0 0 0 2 0 0 0 0 

Documents [category]            

  Excel 36 0 0 0 0 0 13 0 0 0 0 

  PDF 38 0 0 0 0 0 10 0 0 0 0 

  PowerPoint 60 0 0 0 0 0 7 0 0 0 0 

  Text 77 0 0 0 0 0 84 0 0 0 0 

  Word 60 0 0 0 0 0 59 0 0 0 0 

Media [category]            

  Carved video 52 0 0 0 0 0 27 0 0 0 0 

  Pictures 17946 2 2 0 2 2 16875 2 2 2 2 

  Videos 35 0 0 0 0 0 0 0 0 0 0 

Web related [category]            

  Browser Activity 368 0 0 0 0 0 388 0 0 0 0 

  Chrome cookies 516 0 0 0 0 0 516 0 0 0 0 

  Chrome favicons 63 0 0 0 0 0 0 0 0 0 0 

  Chrome logins 2 0 0 0 0 0 2 0 0 0 0 

  Chrome top sites 1 0 0 0 0 0 0 0 0 0 0 

  Chrome web history 55 0 0 0 0 0 50 0 0 0 0 

  Chrome web visits 108 0 0 0 0 0 0 0 0 0 0 

  Chrome/360 Safe Browser/Opera Carved web history 171 0 0 0 0 0 174 0 0 0 0 

  Firefox web history 10 0 0 0 0 0 11 0 0 0 0 

  Google Analytics First Visit Cookies 37 0 0 0 0 0 38 0 0 0 0 

  Google Analytics Referral Cookies 25 0 0 0 0 0 25 0 0 0 0 

  Google Analytics Sessions Cookies 41 0 0 0 0 0 42 0 0 0 0 

  Google Analytics URLs 33 0 0 0 0 0 33 0 0 0 0 

  Google maps 18 0 0 0 0 0 19 0 0 0 0 
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  Google maps tiles 22 0 0 0 0 0 22 0 0 0 0 
Table 16: Data recovered by IEF in Moto G. 

IEF Nexus S 

A B C D E F G H I J L 

Documents [category] 
           

  Excel 36 7 7 0 7 7 7 7 7 36 7 

  PDF 30 30 30 2 30 30 30 30 30 28 30 

  PowerPoint 60 30 30 0 30 30 30 30 30 60 30 

  Word 30 30 30 
 

30 30 30 30 30 30 30 

Media [category] 
           

  Carved video 41 38 38 23 38 38 38 38 38 14 38 

  Pictures 8202 7682 7682 675 7682 7682 7682 7682 7682 8001 7682 

  Videos 35 0 0 0 0 0 0 0 0 0 0 

Web related [category] 
           

  Safari history 0 0 0 0 1 1 0 0 1 1 1 
Table 17: Data recovered by IEF in Nexus S. 

 

IEF Nexus 4 

A B C D E F G H I J L 

IEF Refined results [category]            

  Google Searches 0 0 0 0 0 0 1 0 0 0 1 

  Social Media URLs 2 0 0 0 0 0 1 0 0 0 2 

Chat [category]           
 

  Skype accounts 1 0 0 0 0 0 1 0 0 0 1 

  Skype Contacts 2 0 0 0 0 0 2 0 0 0 2 

  Skype IP Addresses 2 0 0 0 0 0 2 0 0 0 2 

Google Drive 4 0 0 0 0 0 4 0 0 0 4 

Documents [category]            

  Excel 36 0 0 0 0 0 25 0 0 0 25 

  PDF 36 0 0 0 0 0 31 0 0 0 30 
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  PowerPoint 60 0 0 0 0 0 29 0 0 0 29 

  Text 22 0 0 0 0 0 27 0 0 0 12 

  Word 60 0 0 0 0 0 59 0 0 0 59 

Media [category]            

  Carved video 43 0 0 0 0 0 44 0 0 0 42 

  Pictures 14321 0 0 0 0 0 14143 0 0 0 12149 

  Videos 35 0 0 0 0 0 
 

0 0 0 
 

Web related [category] 
 

          

  Browser Activity 20 0 0 0 0 0 43 0 0 0 41 

  Chrome bookmarks 50 0 0 0 0 0 50 0 0 0 50 

  Chrome cookies 20 0 0 0 0 0 20 0 0 0 20 

  Chrome favicons 39 0 0 0 0 0 0 0 0 0 39 

  Chrome logins 2 0 0 0 0 0 2 0 0 0 2 

  Chrome top sites 40 0 0 0 0 0 0 0 0 0 0 

  Chrome web history 40 0 0 0 0 0 50 0 0 0 40 

  Chrome web visits 1 0 0 0 0 0 0 0 0 0 1 

  Chrome/360 Safe Browser/Opera Carved web history 0 0 0 0 0 0 1 0 0 0 0 

  Firefox web history 13 0 0 0 0 0 14 0 0 0 12 

  Google maps 10 0 0 0 0 0 11 0 0 0 10 

  Safari history 9 0 0 0 0 0 9 0 0 0 11 
Table 18: Data recovered by IEF in Nexus 4. 

 

PhotoRec Moto G 

File type A B C D E F G H I J K 

docx 47 0 0 0 0 0 47 0 0 0 0 

http cache 5 0 0 0 0 0 5 0 0 0 0 

jar 13 0 0 0 0 0 13 0 0 0 0 

java 17 0 0 0 0 0 24 0 0 0 0 

jpg 538 0 0 0 0 0 335 0 0 0 0 

mp3 30 0 0 0 0 0 1 0 0 0 0 

ogg 3 0 0 0 0 0 1 0 0 0 0 
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pdf 15 0 0 0 0 0 5 0 0 0 0 

png 101 0 0 0 0 0 95 0 0 0 0 

pptx 20 0 0 0 0 0 9 0 0 0 0 

sqlite 9339 7 7 0 4 7 8647 3 3 7 7 

txt 500 0 0 1 0 0 402 0 0 0 0 

xlsx 7 0 0 0 0 0 11 0 0 0 0 

zip 15 0 0 0 0 0 12 0 0 0 0 
Table 19: Data recovered by PhotoRec in Moto G. 

 

PhotoRec Nexus S 

File type A B C D E F G H I J L 

docx 0 0 0 0 0 0 0 0 0 0 0 

http cache 0 0 0 0 0 0 0 0 0 1 0 

jar 0 0 0 0 0 0 0 0 0 0 0 

java 39 39 39 0 39 39 39 39 39 39 39 

jpg 460 460 460 204 460 460 460 460 460 297 460 

mp3 373 373 373 373 373 373 373 373 373 346 373 

ogg 2 2 2 2 2 2 2 2 2 0 2 

pdf 6 6 6 1 6 6 6 6 6 5 6 

png 49 49 49 12 49 49 49 49 50 49 49 

pptx 1 1 1 0 1 1 1 1 1 1 1 

sqlite 1 1 1 0 1 1 1 1 1 1 5 

txt 811 811 811 19 811 812 816 816 812 781 811 

xlsx 1 1 1 0 1 1 1 1 1 1 1 

zip 3 3 3 0 3 3 3 3 3 3 3 
Table 20: Data recovered by PhotoRec in Nexus S. 

 

PhotoRec Nexus 4 

File type A B C D E F G H I 

docx 53 0 0 0 53 0 0 0 53 
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http cache 31 0 0 0 29 0 0 0 17 

jar 9 0 0 0 11 0 0 0 12 

java 95 0 0 0 95 0 0 0 75 

jpg 459 0 0 0 459 0 0 0 459 

mp3 34 0 0 0 34 0 0 0 34 

ogg 4 0 0 0 4 0 0 0 4 

pdf 18 0 0 0 18 0 0 0 17 

png 372 0 0 0 392 0 0 0 316 

pptx 23 0 0 0 24 0 0 0 23 

sqlite 178 0 0 0 206 0 0 0 182 

txt 2577 2 2 2 2725 2 2 2 2619 

xlsx 4 0 0 0 4 0 0 0 4 

zip 4 0 0 0 5 0 0 0 5 
Table 21: Data recovered by PhotoRec in Nexus 4. 

 

Scalpel Moto G 

 A B C D E F G H I J K 

885 0 0 0 0 0 616 0 0 0 0 
Table 22: Thumbnail recovered by Scalpel in Moto G. 

 

Scalpel Nexus S 

 A B C D E F G H I J L 

564 564 564 365 564 564 564 564 564 457 457 
Table 23: Thumbnail recovered by Scalpel in Nexus S. 

 

Scalpel Nexus 4 

 A B C D E F G H I J L 

664 0 0 0 0 0 665 0 0 0 675 
Table 24: Thumbnail recovered by Scalpel in Nexus 4. 
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4 Thumbnail Recovery 
Material presented in this chapter is based on the publication: 

• Leom, MD, D’Orazio, CJ, Deegan, G & Choo, K-KR 2015, ‘Forensic collection and 

analysis of thumbnails in Android’, Trustcom/BigDataSE/ISPA, IEEE, pp. 1059-66, 

doi: 10.1109/Trustcom.2015.483. 

 

Thumbnail is smaller representation of a larger media file such as picture and video, and has 

been used as evidence in a number of court cases in jurisdictions such as Australia, United 

Kingdom and United States. Quick, Tassone and Choo (2014, pp. 1-2) also noted that ‘[i]n 

many cases, it is the thumbnail image alone that has been the evidence presented to court’. As 

the resolution of digital cameras increases, picture size and storage requirement also increases. 

To reduce the storage requirement and increase efficiency, operating system generally renders 

the thumbnail cache when a user is browsing the computer. Similarly, thumbnail cache can 

also facilitate forensic and digital investigations as the investigators can view thumbnail images 

significantly faster than the original images. 

Currently, “file carving” tool is often used to recover files including deleted files from the 

acquired forensic image, as well as files from a damaged device (e.g. recovering a corrupted 

Master File Table - MFT). File carving tool or file carver searches for files based on the header 

or footer value, file size, and file format; and typically works only for data stored contiguously. 

In other words, file carver generally is not able to recover and reassemble fragmented deleted 

files (Park, Chung & Lee 2012; Garfinkel 2007; Sajja 2010). However, due to the small size of 

thumbnail, deleted thumbnail is less likely to be fragmented and, therefore, file craving can 

potentially be used to recover deleted thumbnail. 

This chapter describes a thumbnail forensic recovery process for Android devices. The utility 

of the proposed process is then demonstrated that is applicable even in the event that the file 

system is no longer accessible and that the recovered thumbnail still could be linked to the 

associated fragmented deleted picture (in JPEG format). In other words, the investigator would 

have the picture (albeit in lower quality) and the associated metadata (e.g. identifying previous 

whereabouts or accomplice of a terrorist suspect and determine whether a child pornography 

suspect possess illegal content). 



Thumbnail Recovery 

 63 

4.1 Related work 
Due to the widespread adoption of the JPEG format, the latter is the subject of active forensic 

research. Existing efforts typically focus on improving file carving technique to recover deleted 

JPEG images (Cohen 2008; Mohamad, Patel & Deris 2011; Mohamad & Deris 2009a; 

Karresand & Shahmehri 2008; Mohamad, Herawan & Deris 2010) or reassembling JPEG 

fragments (Guo & Xu 2011; Mohamad & Deris 2009b; Mohamad 2011; Sencar & Memon 

2009; Pal, Sencar & Memon 2008; Karresand 2008; Xu & Dong 2009; Zhao et al. 2007).  

In a recent work, Quick et al. (2014) provided a detailed overview of thumbnail stores for 

Windows platform (from Windows 95 to Windows 8) as well as the tools that can be used to 

view the thumbnails. The researchers also proposed an operational methodology for thumbnail 

analysis and a reporting and visualisation methodology and software prototype to present the 

findings from the thumbnail analysis. Other related work included that of Matt (2012) who 

demonstrated how to recover thumbnail cache from Windows Vista machines and Hurlbut 

(2005) on machines running Windows Me to Windows XP using FTK (AccessData).  

Parsonage (2012) and Morris (2013) investigated thumbnail cache behaviour in Windows Vista 

and 7, and Windows 7 and Ubuntu Linux machines respectively. They demonstrated how the 

thumbnail is generated under user interaction with the OS. In one of few work for mobile 

devices, Hoog (2011d) presented their preliminary study of thumbnail cache folder in Android 

devices, which required the file system to be accessible. Hoog’s study did not include 

thumbnail cache behaviour, specifically how user action affects the creation of thumbnail 

cache. Existing thumbnail publications are summarised in Table 25. 

Morris (2013) highlighted the need to have a detailed understanding of thumbnail cache 

structure in order to facilitate automated extraction. Existing literature generally focus on 

desktop operating system (OS). Considering the increasing popularity of mobile devices and 

that they are becoming a popular alternative to desktop (e.g. the sales of mobile devices are 

reportedly three times more desktop and laptops in 2013 - see IDC 2014; Reuters 2014), this 

paper aims to contribute to a better forensic understanding of thumbnail cache on Android 

devices which is the most popular mobile OS (comScore 2014). 

Publications Platform 

Hurlbut (2005) Windows Me to Windows XP 

Hoog (2011d) Android 

Matt (2012) Windows Vista 
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Parsonage (2012) Windows Vista and 7 

Morris (2013) Windows 7, Ubuntu Linux, and Kubuntu Linux 

Quick et al. (2014) Windows 95 to Windows 8 

Table 25: Thumbnail publications by platform. 

4.2 Contribution and outline of chapter 
This chapter proposes a methodology for thumbnail collection and analysis from Android 

devices. The utility of the methodology is demonstrated using a case study. The case study first 

determine the characteristics of thumbnail in order to customise existing file carving tools to 

recover thumbnail from the forensic image in an efficient manner (e.g. by reduce the number 

of irrelevant files). Previous studies (Simon and Anderson 2015a; Schwamm 2014; Schwamm 

and Rowe 2014; McColgan 2014; The Guardian 2013; Siciliano 2012; Honan 2013) have 

shown that performing factory reset on Android devices does not remove the actual content of 

data. Therefore, the case study demonstrates that it is possible to recover thumbnails even after 

the photos have been deleted, a factory reset has been undertaken by a user, or a corrupted file 

system.  

Previous studies (Morris & Chivers 2011; Parsonage 2012; Quick et al. 2014) focusing on 

thumbnail cache behaviour in Microsoft Windows platform have shown thumbnail can be 

created in thumbcache without the original picture being viewed. This implies presence of 

thumbnail could not prove a user has knowledge of original picture in question. However, case 

study (described in Chapter 4.5.3) shows certain size of thumbnail is only created after the 

picture has been viewed. This could possibly indicate that the user knew the existence of the 

picture in question. 

The remainder of this chapter is organised as follows. Section 3 presents an overview of 

Android forensics. Section 4 outlines the proposed thumbnail forensic collection and analysis 

methodology for Android devices. The utility of the process is then demonstrated in Section 5. 

In Section 6, the potential limitations of using thumbnail in forensics and the proposed process 

are discussed. The last Section 7 concludes this paper and outlines future research 

opportunities. 

4.3 Background 
Android mobile devices typically consist of several partitions (see Table 26) as discussed in 

Chapter 2.1. Such information would be useful to a forensic investigator as it allows the 

forensic investigator to focus only on the relevant partition during the evidence identification 

process.  
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Name Mount point Description 

Recovery N/A Recovery mode 

Boot N/A Linux kernel 

System /system Operating system files, system apps 

Cache /cache Cache files 

User data /data User installed apps 

Internal SDcard (Media) /mnt/sdcard 

/storage/sdcardX 

/data/media/X 

User-accessible storage to store media files. 

Table 26: Partition layout of typical Android device. Adapted from (Vidas, Zhang & Christin 2011) 

Prior to Android 3.0 (Honeycomb), userdata (/data) and media are two separate partitions. 

However, in Android Honeycomb, media “partition” is no longer a partition but a subfolder in 

/data as /data/media. Moto G and Nexus 4 (used in Chapter 3) have this new layout, so userdata 

and media partition are actually one partition formatted with F2FS and EXT4 in respective 

phone (Chapter 3 Table 10). Although the Nexus S (used in Chapter 3 and this chapter as well) 

has been upgraded to Android 4.2 from the initial Android 2.3, the partition layout still remains. 

This is possibly to prevent user data loss that would occur when changing file system. Thus, 

the /data and media partitions are still separated. 

Data recovery can be undertaken using logical or physical acquisition techniques. The former 

allows the extraction of allocated data still accessible on the file system. The latter directly 

accesses the raw data in the storage medium without attempting to reconstruct the file system, 

as file system usually deletes the file location (unallocated) without deleting the actual content 

for efficiency (i.e. it is significantly faster to remove the link to the file location than the actual 

content).  

 

4.4 A methodology for thumbnail collection and analysis from Android devices 
This section now presents the proposed process of recovering thumbnail files from Android 

device (Figure 8) and map it to the digital forensic framework (McKemmish 1999).  
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Figure 8: Thumbnail forensic recovery process for Android devices 

 

Identify 

In this step, the potential evidence and the sources are identified. In the case of thumbnail 

recovery, an investigator will need to identify the locations of the thumbnails and, if possible, 

the thumbnail size as knowing the size allows one to customise the file carving tool with better 

accuracy. Thumbnails generated by an Android device with similar camera specification (i.e. 

megapixel count) should have similar resolution as well. From the thumbnail resolution, we 

can estimate the average size of the thumbnail. Finding the average size allows us to customise 

the file carving tool. It is also necessary to check whether the device has been rooted, which 

will inform actions to be undertaken in the next step. 

Preserve 

Wherever possible, a bit-for-bit copy of the flash memory should be undertaken. Otherwise, 

the forensic investigator could choose to acquire bit-for-bit copy of specific partition such as 
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internal SDcard that are more likely to store thumbnail. The forensic image is hashed to ensure 

integrity throughout analysis. Bit-for-bit copy requires the Android device to have root access. 

Process of rooting often involves unlocking the bootloader and doing so will wipe the /data 

partition. However, in that scenario, the partition is not securely wiped and its previous content 

is recoverable through physical extraction (Wartickler 2012). Whether rooting is considered 

tampering with the evidence and consequently affect its admissibility is not part of discussion 

in this paper. Nonetheless, rooting may not be possible in certain model. In that case, thumbnail 

cache (thumbcache) files such as imgcache.0 could be logically extracted and preserved just 

like a cloned image. 

Analyse 

File carving tool can be used to locate thumbnail within the forensic image. The software 

should be customised according to the file signature of thumbnail file. This is necessary to 

reduce the number of irrelevant files recovered for easier analysis. This technique could also 

be employed to extract thumbnail from the recovered thumbcache file found in Android device. 

The recovered thumbnail can then be used to match existing fragmented file. 

Presentation 

Information gathered during analysis stage are documented and presented. This could 

comprise; (1) thumbnail picture which matches an existing file, (2) thumbnail picture which 

matches fragmented file, or (3) standalone thumbnail picture, in a report. 

 

4.5 Case study  
This section outlines three case studies conducted based on methodology. First case study focus 

on logical extraction of thumbnail. Second case study focus on physical extraction of 

thumbnail. Third case study focus on the behaviour of the thumbnail cache. Prior conducting 

these case studies, the mobile is factory reset beforehand. USB debugging is enabled in the 

device system settings. The Android mobile device is also rooted to access the raw data. USB 

debugging is required for forensic acquisition conducted on first and second case studies 

(Chapter 4.5.1 & 4.5.2). Below table (Table 27) outlined the hardware and software 

specification. 
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Name/Model Description Version/Specification 

Samsung Nexus S 

I9020T (GSMArena 

n.d.) 

Mobile device Android 4.1.2 (rooted and USB debugging 

enabled)19 

BusyBox (installed in 

mobile device) 

Collection of Unix 

tools (e.g. nc, dd) 

1.23.0, installed using BusyBox installer 

for Android v25 (Stericson 2015) 

Gallery Default Android 

media gallery app 

1.1.40000 

Dell Optiplex 960 Workstation Intel Core 2 Quad Q9400 (2.66Ghz quad-

core), 4GB RAM, 150GB hard disk, 

Windows 7 64-bit 

Oxygen Forensic Suite 

2014 (Oxygen Forensics 

n.d.) 

Forensic tool 6.2.1.103 (Trial) 

Netcat/nc (Pond 2004) Forensic tool 1.11 

HxD (Hörz 2009) Hex editor 1.7.7.0 

Scalpel (machn1k n.d.) File carver 2.0 

ExifTool (Harvey 2014) JPEG EXIF 

metadata viewer 

9.69 

Table 27: Hardware and software specification 

Below (Table 28) shows the file system type of each partition in the test device: 

Name File system 

Recovery YAFFS2 

Boot 

Cache 

System EXT4 

User data 

Internal SDcard/Media FAT32 

Table 28: Partition's file system 

 

 

4.5.1 Logical extraction of thumbnail 

Logical extraction is when the file system is still accessible or during live forensic. In this case 

study, 10 pictures snapped using the mobile device are used as as baseline pictures (Table 29: 

File No. 21-30). Those pictures are viewed and deleted from Gallery app. After that, the 

 
19 More than 2 years of usage. Previously equipped with custom ROM Android 4.4 (XDA Developers n.d.a). 

Downgrade to stock Android 4.1.2 (Google n.d.e).  
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partition /storage/sdcard0 is duplicated where pictures are most likely to be stored. The 

partition is duplicated to the workstation using following command20: 

$ adb pull sdcard/ 

The location of the thumbnail cache (thumbcache) files is then identified. There are three 

locations where thumbnails are stored. First is the thumbnail embedded inside a JPEG file. 

Second is from thumbnail generated and used by Gallery app found at following location: 

/sdcard/Android/data/com.google.android.gallery3d.cache/imgcache.0 

No. Filename File size Resolution 

21 IMG_20150117_175812.jpg 1,860 1920 x 2560 

22 IMG_20150117_175852.jpg 1,593 1920 x 2560 

23 IMG_20150117_175911.jpg 1,937 1920 x 2560 

24 IMG_20150117_175930.jpg 1,281 2560 x 1920 

25 IMG_20150117_175950.jpg 2,518 1920 x 2560 

26 IMG_20150117_180001.jpg 2,524 1920 x 2560 

27 IMG_20150117_180024.jpg 1,083 1920 x 2560 

28 IMG_20150117_180050.jpg 1,393 1920 x 2560 

29 IMG_20150117_180218.jpg 2,014 1920 x 2560 

30 IMG_20150117_180249.jpg 1,379 1920 x 2560 

Table 29: Baseline pictures 

 

Thumbcache Viewer (Kutcher 2014a) and Thumbs Viewer (Kutcher 2014b) could not detect 

any thumbnail in File No. 31 since these software are designed to support thumbnail cache 

generated by Microsoft Windows OS, thus the tools are incompatible in this case. File No. 31 

is then inspected using HxD, a hex editor. Figure 9 shows file structure of sample thumbcache 

file (imgcache.0). The first 4 bytes (red-highlighted) contains header information as identifier 

for thumbcache file. The next 64 bytes (blue-highlighted) contains description of the following 

thumbnail. The description contains filename as identifier of the thumbnail inside the 

thumbcache. Note this is different from filename of the original picture. Next is the actual 

thumbnail data (green-highlighted). The size varies even with similar resolution. It includes 

header and footer. After that is description for the next thumbnail and its thumbnail data (as 

 
20 ADB tool and additional driver required. 
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portrayed in Table 30 below). Thumbcache file does not have a unique footer value, rather the 

value is footer value of the last thumbnail. 

 

Figure 9: Internal structure of thumbcache file (imgcache.0). 

 

Thumbcache 

header 

Thumbnail 1 

description 

Thumbnail 1 

data 

Thumbnail 2 

description 

Thumbnail 2 

data 
Table 30: Internal structure of thumbcache file (imgcache.0) with multiple thumbnails. 

 

A thumbnail (File No. 32) is extracted by manually searching the header (FF D8 FF E0) 

and the footer (FF D9). The rest of the thumbnails could be recovered manually using the hex 

editor, but file carving tool can helps to automate this process. So, the rest of the thumbnails 

are extracted using Scalpel, a file carving tool due to its ease of configuration and the 

customisation available fit purpose of case study. 

Scalpel can be used through this command: 

C:\>scalpel –v –c conf/scalpel.conf -o output_directory forensic_image 

Where: 

 -v = verbose 

 -c = configuration file 

 -o = directory to store recovered files 

The default configuration file is located at conf folder named scalpel.conf. The configuration 

file contains rules on file carving in each line. Default configuration had all the rules 

commented out so running Scalpel using that configuration will not recover anything. Each 
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rule describes the file extension, whether the header and footer are case sensitive, the minimum 

and maximum file size, and the header and footer value. 

In this case, following rule is used: 

jpg y 1000: 500000 \xff\xd8\xff\xe0 \xff\xd9 

• jpg File extension. 

• y Header and footer is case sensitive. Use ‘n’ for case insensitive. 

• 1000: 500000 Carve only file size between 1,000 bytes to 500,000 bytes. Ignore file 

outside of this range. 

• \xff\xd8\xff\xe0 Header value. \x is the representation for hexadecimal character. Use 

\? to match any byte value (wildcard). 

• \xff\xd9 Footer value. Optional. 

Judging by the thumbnail resolution (VGA), the thumbnail size is estimated to be at least 1KB 

and less than 500KB. By using the above rule, 20 thumbnails are extracted. The result (Table 

31) implies that the Gallery app generate VGA (640 x 480) sized and 200 x 200 thumbnails for 

every pictures. 

However, although File No. 21-30 are taken in portrait orientation (except File No. 24) (Table 

29), yet all thumbnails are in landscape (Table 31 & Table 32). 

VGA resolution thumbnail that matches with its 200 x 200 resolution counterpart (Table 32) 

would have similar file name (/local/image/item/00+1) except for the last number 

(/local/image/item/00+1). Value “1” denotes the thumbnail is VGA resolution, while “2” 

denotes 200 x 200 resolution (described in more details in Figure 9). 

No. Image resolution Filename File size 

31 N/A imgcache.0 972.0 

32 

640 x 480 

/local/image/item/24+1 83.9 

33 /local/image/item/25+1 71.3 

34 /local/image/item/26+1 83.5 

35 /local/image/item/27+1 62.8 

36 /local/image/item/28+1 129.2 

37 /local/image/item/29+1 157.5 

38 /local/image/item/30+1 39.8 

39 /local/image/item/31+1 46.4 

40 /local/image/item/32+1 114.8 

41 /local/image/item/33+1 55.9 

42 

200 x 200 

/local/image/item/33+2 7.7 

43 /local/image/item/31+2 6.7 

44 /local/image/item/32+2 16.8 
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45 /local/image/item/30+2 6.7 

46 /local/image/item/29+2 20.8 

47 /local/image/item/28+2 18.7 

48 /local/image/item/27+2 11.4 

49 /local/image/item/26+2 12.3 

50 /local/image/item/25+2 11.8 

51 /local/image/item/24+2 12.0 
Table 31: Thumbnails extracted from imgcache.0 file. 

 

Original (File No.) Thumbnail (File No.) Thumbnail (File No.) 

21 32 51 

22 33 50 

23 34 49 

24 35 48 

25 36 47 

26 37 46 

27 38 45 

28 39 43 

29 40 44 

30 41 42 
Table 32: Original file and its thumbnail. 
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In order to extract the embedded thumbnail from a JPEG file, ExifTool is utilised. Although 

such tool is available, the manual method employed in extracting thumbnails from File No. 31 

can work in this case as well. 

The command used to extract thumbnail is as follows: 

C:\> exiftool –b –ThumbnailImage input > output 

*When using under Microsoft Windows, rename “exiftool (-k).exe” to “exiftool.exe”. 

Where: 

-b = Output the requested data in binary format without tag names or descriptions. 

-ThumbnailImage = Read thumbnail image 

input = The location of original image. 

output = The location to save the extracted thumbnail in .jpg extension. 

Below (Table 33) shows the information on the extracted thumbnail stored in the 10 baseline 

pictures (File No. 21-30). 

No. File size (KB) Resolution 

52 13.1 

320 x 240 

53 13.4 

54 13.4 

55 13.0 

56 21.9 

57 27.6 

58 7.0 

59 6.5 

60 21.4 

61 7.8 
Table 33: Thumbnails extracted from original JPEG file. 
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4.5.2 Physical extraction of thumbnail cache 

This section demonstrates method to physically extract the thumbnail from the raw forensic 

image. The /media21 partition path is identified as such (highlighted): 

C:\> adb shell 

shell@android:/ $ su 

root@android:/ # ls -l /dev/block/platform/s3c-sdhci.0/by-name 

lrwxrwxrwx root     root 2015-01-17 10:15 media -> /dev/block/mmcblk0p3 

lrwxrwxrwx root     root 2015-01-17 10:15 system -> /dev/block/mmcblk0p1 

lrwxrwxrwx root     root 2015-01-17 10:15 userdata -> /dev/block/mmcblk0p2 

 

The forensic image of that partition is created using following commands: 

C:\> adb forward tcp:5555 tcp:5555 

C:\> adb shell 

shell@android:/ $ su 

root@android:/ # nc -l -p 5555 -e dd if=/dev/block/mmcblk0p3 

(Note22) 

On another command prompt: 

C:\> adb forward tcp:5555 tcp:5555 

C:\> nc 127.0.0.1 5555 > mmcblk0p3.raw 

Scalpel is utilised to recover thumbnails from the forensic image. The rule is customised to 

target thumbnails only based on the results gathered in Chapter 4.5.1 (Table 31). The header 

information is inspected to determine the maximum file size of the thumbnails. The purpose is 

to determine the parameters that will be used in file carving. The results show different type of 

thumbnail has different header value starting from 4th byte. Table 34 below illustrate the 

difference. Do note the header value for thumbnail cache shown in the table is not the header 

value of the thumbcache file, but rather the individual thumbnail stored inside the file. 

Type Header Footer Maximum file size 

Thumbnail stored in thumbcache file FF D8 FF E0 FF D9 157.5 KB 

Embedded thumbnail in JPEG file FF D8 FF DB 27.6 KB 
Table 34: Header value and file size of thumbnail. 

 

 
21 The partition is also mounted as /storage/sdcard0, same partition used in Section Logical extraction of 

thumbnail. 
22 nc and dd are installed through BusyBox. 
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Based on the Table 34, the rule is customised as follow: 

#1 rule 
jpg y   1000:500000   \xff\xd8\xff\xe0  \xff\xd9 

#2 rule 

jpg y   1000:50000   \xff\xd8\xff\xdb     \xff\xd9 
 

The first rule (#1) is to recover thumbnails from thumbnail cache file. 1KB is used as minimum 

size and 500KB is used as maximum size. The second rule (#2) is to recover embedded 

thumbnail. 1KB is used as minimum size and 50KB is used as maximum size.  

Below (Table 35) shows the result of the thumbnails recovered.  

Rule Thumbnail type Thumbnails recovered Percentage 

#1 200 x 200 resolution thumbnail in 

thumbcache  

10/10 100% 

VGA resolution thumbnail in 

thumbcache 

3/10 (9/10 if include fragmented 

thumbnail) 

30% 

#2 Embedded thumbnail in JPEG file 10/10 100% 
Table 35: Recovery result. 

 

The results show #2 rule is very effective at recovering thumbnails. The rule managed to 

recover thumbnail of all the test files (File No. 1 to 10). #1 rule also managed to recover all 

200 x 200 resolution thumbnails of all the test files, but it is less successful on VGA resolution 

thumbnail. However, the recovery percentage is up to 90% if fragmented thumbnail is included. 

This shows larger thumbnail is more likely to be fragmented. Nevertheless, the overall result 

shows that thumbnail is significantly less likely to be fragmented compared to original image. 

 

4.5.3 How user actions affect creation of thumbnail cache? 

Previous study (Hoog 2011d) did not investigate how user action would affect creation of 

thumbnail cache. This section identifies the behaviour of the thumbcache when user interacts 

with the OS. To establish the behaviour of the Android thumbnail cache it is necessary to 

perform a variety of experiments; the experiments establish the way the thumbnail is generated 

based upon user activity. Prior to experiments in this section, the Android device is factory 

reset to clear the thumbcache. After factory reset, the device is connected to Wi-Fi and signed 

in with Google account. No third-party app nor any update are installed throughout this section. 

After each experiment, thumbcache file (located at 
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/sdcard/Android/data/com.google.android.gallery3d.cache/imgcache.0) is copied 

to the workstation for analysis. 

Experiment Result 

1 Take 10 pictures using default Camera app. Found 8 VGA-sized thumbnails. 

2 Launch Gallery app. Previous thumbnails plus a 200x200 

thumbnail. 

3 Open the “Camera” (/sdcard/DCIM/Camera) 

folder. 

Previous thumbnails plus 9 200x200 

thumbnail. 

4 View first picture. Previous thumbnails plus 2 VGA-

sized thumbnails. 

5 View first to fifth picture. No difference. 

6 View first to tenth picture. No difference. 

7 Delete 5 pictures in odd number. No difference. 

8 Delete the remaining 5 pictures. No difference. 

9 Take 5 pictures. Previous thumbnails plus 4 VGA-

sized thumbnails. 

10 Copy 31 pictures into “Pictures” 

(/sdcard/Pictures) folder. 

No difference. 

Table 36: Thumbcache behaviour in Android. 

 

The experiments result (Table 36) shows VGA-sized thumbnail is generated when the picture 

is snapped but not for all pictures. When the gallery app is launched, a smaller size (200x200) 

thumbnail is generated. This thumbnail functions as the camera folder “cover”. When the folder 

is opened, all pictures are shown in “album view”, and at the same time the remaining 200x200 

thumbnails of the ten pictures are generated. The two remaining VGA-sized thumbnail is only 

generated after viewing the first picture. The thumbnail is not deleted even though the original 

image has been removed. No thumbnail is generated when there is new pictures is saved, that 

are not taken by the camera. 

The implication of the results above is the possibility of using thumbnail as indication to 

determine whether the picture has been viewed or not.  
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4.6 Discussion 
Recovered thumbnail can provide valuable visual clue to investigator. It can be matched with 

its original picture, especially the original picture’s metadata. The metadata is still intact even 

when the original picture is heavily fragmented, it still contains complete Exchangeable image 

file format (Exif) metadata (see Tachibanaya 1999 for Exif). This is demonstrated in the 

following experiment. 10 pictures (File No. 1-10) are snapped using the mobile device and then 

perform physical acquisition of the mobile device using Oxygen Forensic Suite, a forensic tool. 

The pictures are manually extracted from the forensic image through following process: 

1. Search for the first 8-byte value of the header in hexadecimal form of the intended 

picture. Mark the location the first byte of the found 8-byte header as START_OFFSET. 

2. Select data block with the same value as the size of original picture (LENGTH=size of 

original picture). 

3. Copy out the selected block of data.  

4. Save the copied block of data with file extension “.jpg”.  

5. Inspect the saved file using Windows Photo Viewer. 

6. Verify MD5 hash of original and recovered picture. 

File No. 1, 2, 7, 8, and 9 can be fully recovered. The rest (File No. 3, 4, 5, 6, and 10) are 

fragmented (Table 37). In other words, out of 10 pictures, only half is not fragmented. 

 

No. Recovered No. Original 

13 

 

3 
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14 

 

4 

 

15 

 

5 

 

16 

 

6 

 

20 

 

10 

 

Table 37: Recovered fragment and its original. 

ExifTool is utilised to determine existence of Exif metadata in File No 15. The results show 

that although heavily fragmented JPEG could only provide very limited visual clue but at least 

the EXIF metadata is not likely to be fragmented, thus recoverable. Below show excerpt of 

EXIF metadata in File No. 15 (the most fragmented among those shown in Table 37). 

C:\>exiftool 15.jpg 

ExifTool Version Number         : 9.69 

File Name                       : 15.jpg 

Directory                       : C:\Recovered fragment 

File Size                       : 921 kB 
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File Type                       : JPEG 

MIME Type                       : image/jpeg 

Exif Byte Order                 : Little-endian (Intel, II) 

Make                            : google 

Camera Model Name               : Nexus S 

Orientation                     : Rotate 90 CW 

Software                        : JZO54K 

Modify Date                     : 2014:06:19 18:06:06 

Y Cb Cr Positioning             : Centered 

Exposure Time                   : 1/33 

F Number                        : 2.6 

Exposure Program                : Aperture-priority AE 

ISO                             : 50 

Exif Version                    : 0220 

Date/Time Original              : 2014:06:19 18:06:06 

Create Date                     : 2014:06:19 18:06:06 

 

By combining the metadata with a fully recovered thumbnail, these information are as valuable 

as original picture, since it still shows similar visual information, only with lower resolution. 

Example shown here, although a bank logo can be found in Figure 10, but it can refers to any 

office tower of the bank. In contrast, Figure 11 although is smaller, the location could be 

identified by the unique appearance of the shop on the left part. This can be further confirmed 

with location data from the Exif metadata. 

 

 

Figure 10: (Simulated) Heavily fragmented picture. 
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Figure 11: Non-fragmented. (Resized to VGA resolution to simulate a thumbnail) 

 

Although it is best to have a non-fragmented thumbnail, but there is still likelihood of 

fragmented thumbnail (as shown in Section Physical extraction of thumbnail cache). However, 

since thumbnail is notably smaller than original picture (VGA vs 5 megapixel), thus less likely 

to be fragmented. If the thumbnail is not heavily fragmented, it could still contains some unique 

objects to identify the location of the photo taken. For instance, a simulated fragmented 

thumbnail depicted below (Figure 12) contains popular landmarks (Royal Malaysia Police 

Headquarter and Merdeka Square) on the left part. Using the size of the landmarks in image, 

the distance from the landmark could be estimated. Shops building on the right part has pretty 

unique roof which should be recognisable for locals. 

 

Figure 12: (Simulated) Fragmented thumbnail. 

 

Identifying location can be crucial in forensic investigation. For example, previous 

whereabouts of a terrorist suspect could be determined. This could either helps to determine 

whether the suspect is suspicious, or helps to locate popular rendezvous locations for 

extremists. In those cases, criminal’s accomplice might even be identified. In other case such 

as child pornography, since the thumbnail is retained even after the original picture has been 

deleted (as demonstrated by the case study described in Chapter 4.5.3), thumbnail can be 
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employed to determine the existence of illegal content in suspect’s mobile device. Thumbnail 

could also be used to determine the authenticity of the original photo, whether the photo has 

been modified (Kee & Farid 2010). This is because image manipulation program usually do 

not update the thumbnail after edit, leaving original thumbnail still intact (Murdoch & Dornseif 

2004). 

 

4.7 Summary 
In this chapter, the location of thumbnail cache file “imgcache.0” and technique to extract 

thumbnails from that file have been described. The file structure of the thumbcache file is then 

outlined. After understanding the file structure, the technique to recover embedded thumbnail 

and the property of the embedded thumbnail are then described. The experiment result suggests 

that the technique is effective in recovering thumbnail even when the file system is heavily 

fragmented. A case study conducted show the possibility of fragmented JPEG still holding 

important metadata and when link to thumbnail, is akin to recovering the full picture. 

Although the experiments in this chapter are conducted on Android mobile device, the 

proposed method could also apply to traditional desktop forensic. The proposed method is also 

demonstrated its effectiveness on bi-fragmented JPEG. Bi-fragmented is when a file is 

fragmented into two parts. Study (Garfinkel 2007) showed that it is the most common type of 

fragmentation in hard disk, thus showing the potential of the proposed method on desktop 

forensic. 
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5 Conclusion 
Chapter 3 compared the effectiveness of seven third-party remote wiping app against Android 

built-in’s, Android Device Manager (ADM). Most of the third-party apps performed similarly 

to ADM where secure deletion is utilised when supported. However, some apps have design 

flaw where user is not informed to grant necessary permission. This leaves user having an 

insecure remote wiping setup. The results also demonstrate the risk of running older version of 

Android where secure deletion is not available. Significant user data remnant could still be 

recovered after factory reset/remote wipe when the data is not securely deleted.  

Chapter 4 described the location of thumbnail cache file and technique to extract thumbnails 

from that file. The chapter also describe the file structure of the thumbcache file. The technique 

to recover embedded thumbnail and the property of the embedded thumbnail have been 

described. A case study conducted demonstrates that those techniques are effective in 

recovering thumbnail even when the file system is heavily fragmented. There is also possibility 

of fragmented JPEG still holding important metadata and when link to thumbnail, is akin to 

recovering the full picture. 

 

5.1 Future work 
Despite the risk of running insecure remote wipe setup as shown in Chapter 3, the results also 

suggest the effectiveness of secure deletion. When secure deletion is utilised, user data could 

not be recovered. While the feature is beneficial for consumer, it could be abused by adversary 

to remove discriminating evidence. This could hinder law enforcement as previously indicated 

in Chapter 2.5. Although law enforcement agency can always consider Internet as source of 

evidence (e.g. Google n.d.b) as crime increasing involves online activity, but the mobile device 

still holds majority of user data. There also could be some delay for tech company to provide 

the request data. 

In this thesis, software-based physical acquisition was employed. There might be some 

limitation in this approach. In future work, researchers could investigate the effect of secure 

deletion on hardware-based physical acquisition, if any, which can be compared to software-

based. 

The case studies conducted in Chapter 4 only focus thumbnail cache in Android generated by 

Gallery app. In future, author hopes to extend the research to other Android gallery apps such 
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as Photos app bundled with Google+ app (Google 2014b) and custom gallery apps shipped by 

vendors. The research can be extended to newer Android versions as well. The case studies are 

conducted on single Android device. In theory, Android device with similar camera 

specification should have similar thumbnail size as well, while Android device equipped with 

camera that has higher resolution could result in larger thumbnail size. Thus, the research can 

be extended to include more Android devices for more comprehensive studies. 

Instead of relying on manual matching, linking the thumbnail to original image can be 

automated through computer algorithm to match the thumbnail to the fragmented JPEG. This 

idea is similar to (Guo & Xu 2011) but that work focus on using thumbnail to rearrange JPEG 

fragments. There is also possibility of recovering fragmented thumbnail. Feasibility of such 

approach can be evaluated in future work. 
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7 Appendix 
 

Step Command 

1. Unlock bootloader. Restore 

the mobile devices to factory 

defaults by flashing factory 

image. 

 

2. Prepare baseline data 

according to protocol detailed 

in Table x 

 

3. Reboot into fastbooot mode 

and install custom recovery, 

Team Win Recovery Project 

(TWRP) for physical 

acquisition tools. 

[fastboot mode] 
fastboot flash recovery twrp.img 

4. Acquire physical forensic 

image 

Moto G 

[recovery mode] 
Unmount user data partitions 
C:\> adb shell 

~ # mount 

rootfs on / type rootfs (rw) 

tmpfs on /dev type tmpfs (rw,seclabel,nosuid,relatime,size=443852k,nr_inodes=110963,mode=755) 

devpts on /dev/pts type devpts (rw,seclabel,relatime,mode=600) 

proc on /proc type proc (rw,relatime) 

sysfs on /sys type sysfs (rw,seclabel,relatime) 

selinuxfs on /sys/fs/selinux type selinuxfs (rw,relatime) 

tmpfs on /tmp type tmpfs (rw,seclabel,relatime,size=443852k,nr_inodes=110963) 

/dev/block/mmcblk0p36 on /data type f2fs 

(rw,relatime,background_gc=on,user_xattr,inline_xattr,acl,errors=continue,active_logs=6) 

/dev/block/mmcblk0p36 on /sdcard type f2fs 

(rw,relatime,background_gc=on,user_xattr,inline_xattr,acl,errors=continue,active_logs=6) 

/dev/block/mmcblk0p33 on /cache type ext4 (rw,seclabel,relatime,data=ordered) 

 

~ # umount /dev/block/mmcblk0p36 

~ # umount /dev/block/mmcblk0p33 
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Identify partition path. 
C:\> adb shell 

~ # ls -l /dev/block/platform/msm_sdcc.1/by-name 

lrwxrwxrwx root     root cache -> /dev/block/mmcblk0p33 

lrwxrwxrwx root     root userdata -> /dev/block/mmcblk0p36 

 

Acquire forensic image. 
C:\> adb forward tcp:5555 tcp:5555 

C:\> adb shell 

~ # nc -l -p 5555 -e dd if=/dev/block/mmcblk0p33 

 
Launch a new command prompt to receive physical image. 
C:\> adb forward tcp:5555 tcp:5555 

C:\> nc 127.0.0.1 5555 > moto-baseline-cache.raw 

 

Repeat for userdata partition. 
 

Nexus S Unmount user data partitions. 
C:\> adb shell 

~ # mount 

rootfs on / type rootfs (rw,seclabel) 

tmpfs on /dev type tmpfs (rw,seclabel,nosuid,relatime,mode=755) 

devpts on /dev/pts type devpts (rw,seclabel,relatime,mode=600) 

proc on /proc type proc (rw,relatime) 

sysfs on /sys type sysfs (rw,seclabel,relatime) 

selinuxfs on /sys/fs/selinux type selinuxfs (rw,relatime) 

tmpfs on /tmp type tmpfs (rw,seclabel,relatime) 

/dev/block/mtdblock4 on /cache type yaffs2 (rw,seclabel,nodev,noatime,nodiratime) 

/dev/block/mmcblk0p3 on /sdcard type vfat 

(rw,relatime,fmask=0000,dmask=0000,allow_utime=0022,codepage=cp437,iocharset=iso8859-

1,shortname=mixed,errors=remount-ro) 

/dev/block/mmcblk0p3 on /and-sec type vfat 

(rw,relatime,fmask=0000,dmask=0000,allow_utime=0022,codepage=cp437,iocharset=iso8859-

1,shortname=mixed,errors=remount-ro) 

 
~ # umount /dev/block/mtdblock4 

~ # umount /dev/block/mmcblk0p3 

 

Identify partition path. 
C:\> adb shell 

~ # ls -l /dev/block/platform/s3c-sdhci.0/by-name 
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lrwxrwxrwx root     root media -> /dev/block/mmcblk0p3 

lrwxrwxrwx root     root userdata -> /dev/block/mmcblk0p2 

 

Acquire forensic image. 
C:\> adb forward tcp:5555 tcp:5555 

C:\> adb shell 

~ # nc -l -p 5555 -e dd if=/dev/block/mmcblk0p3 

 

Launch a new command prompt to receive physical image. 
C:\> adb forward tcp:5555 tcp:5555 

C:\> nc 127.0.0.1 5555 > nexus-baseline-media.raw 

 

Repeat for userdata partition. 
 

Nexus 4 Unmount user data partitions. 
C:\> adb shell 

~ # mount 

rootfs on / type rootfs (rw) 

tmpfs on /dev type tmpfs (rw,seclabel,nosuid,relatime,mode=755) 

devpts on /dev/pts type devpts (rw,seclabel,relatime,mode=600) 

proc on /proc type proc (rw,relatime) 

sysfs on /sys type sysfs (rw,seclabel,relatime) 

selinuxfs on /sys/fs/selinux type selinuxfs (rw,relatime) 

/dev/block/mmcblk0p23 on /data type ext4 (rw,seclabel,relatime,data=ordered) 

/dev/block/mmcblk0p23 on /sdcard type ext4 (rw,seclabel,relatime,data=ordered) 

/dev/block/mmcblk0p22 on /cache type ext4 (rw,seclabel,relatime,data=ordered) 

 
~ # umount /dev/block/mmcblk0p23 

~ # umount /dev/block/mmcblk0p22 

 

Identify partition path. 
C:\> adb shell 

~ # ls -l /dev/block/platform/msm_sdcc.1/by-name 

lrwxrwxrwx root     root cache -> /dev/block/mmcblk0p22 

lrwxrwxrwx root     root userdata -> /dev/block/mmcblk0p23 

 

Acquire forensic image. 
C:\> adb forward tcp:5555 tcp:5555 

C:\> adb shell 

~ # nc -l -p 5555 -e dd if=/dev/block/mmcblk0p22 

 

Launch a new command prompt to receive physical image. 
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C:\> adb forward tcp:5555 tcp:5555 

C:\> nc 127.0.0.1 5555 > mako-baseline-cache.raw 

 

Repeat for userdata partition. 

 

5. Reboot to fastboot mode 

and install stock recovery 

(extracted from factory 

image). 

 

6. Install targeted app.  

7. Initiate remote wipe 

command. 

 

8. Install custom recovery.  

9. Acquire physical image 

using similar command in step 

4. 

 

10. Wipe specific partition 

through fastboot mode. 

Moto G & Nexus 4: 

cache and userdata 

Nexus S: cache, 

userdata, and media 

[fastboot mode] 

fastboot erase [partition name] 

11. Restore to baseline state. 

Moto G 

[recovery mode] 

Restore forensic image to specific partition. 
C:\> adb forward tcp:5555 tcp:5555 

C:\> adb shell 

~ # nc -l -p 5555 | dd of=/dev/block/mmcblk0p33 

 

Launch a new command prompt to send physical image. 
C:\> adb forward tcp:5555 tcp:5555 

C:\> dd if=moto-baseline-cache.raw | pv -i 0.5 | nc 127.0.0.1 5555 

 

Repeat for userdata partition. 

 

Nexus S Restore forensic image to specific partition. 
C:\> adb forward tcp:5555 tcp:5555 
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C:\> adb shell 

~ # nc -l -p 5555 | dd of=/dev/block/mmcblk0p3 

 

Launch a new command prompt to send physical image. 
C:\> adb forward tcp:5555 tcp:5555 

C:\> dd if=nexus-baseline-media.raw | pv -i 0.5 | nc 127.0.0.1 5555 

 

Repeat for userdata partition. 

Nexus 4 Restore forensic image to specific partition. 
C:\> adb forward tcp:5555 tcp:5555 

C:\> adb shell 

~ # nc -l -p 5555 | dd of=/dev/block/mmcblk0p22 

 

Launch a new command prompt to send physical image. 
C:\> adb forward tcp:5555 tcp:5555 

C:\> dd if=mako-baseline-cache.raw | pv -i 0.5 | nc 127.0.0.1 5555 

 

Repeat for userdata partition. 

12. Repeat step 5-11 for each 

experiment. 

 

Table 38: Experiment steps. 
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Figure 13: Overview of experiments conducted. 
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