cloudflared-mirror/vendor/github.com/google/gopacket/layers/radiotap.go

1077 lines
30 KiB
Go
Raw Normal View History

// Copyright 2014 Google, Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the LICENSE file in the root of the source
// tree.
package layers
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"hash/crc32"
"strings"
"github.com/google/gopacket"
)
// align calculates the number of bytes needed to align with the width
// on the offset, returning the number of bytes we need to skip to
// align to the offset (width).
func align(offset uint16, width uint16) uint16 {
return ((((offset) + ((width) - 1)) & (^((width) - 1))) - offset)
}
type RadioTapPresent uint32
const (
RadioTapPresentTSFT RadioTapPresent = 1 << iota
RadioTapPresentFlags
RadioTapPresentRate
RadioTapPresentChannel
RadioTapPresentFHSS
RadioTapPresentDBMAntennaSignal
RadioTapPresentDBMAntennaNoise
RadioTapPresentLockQuality
RadioTapPresentTxAttenuation
RadioTapPresentDBTxAttenuation
RadioTapPresentDBMTxPower
RadioTapPresentAntenna
RadioTapPresentDBAntennaSignal
RadioTapPresentDBAntennaNoise
RadioTapPresentRxFlags
RadioTapPresentTxFlags
RadioTapPresentRtsRetries
RadioTapPresentDataRetries
_
RadioTapPresentMCS
RadioTapPresentAMPDUStatus
RadioTapPresentVHT
RadioTapPresentEXT RadioTapPresent = 1 << 31
)
func (r RadioTapPresent) TSFT() bool {
return r&RadioTapPresentTSFT != 0
}
func (r RadioTapPresent) Flags() bool {
return r&RadioTapPresentFlags != 0
}
func (r RadioTapPresent) Rate() bool {
return r&RadioTapPresentRate != 0
}
func (r RadioTapPresent) Channel() bool {
return r&RadioTapPresentChannel != 0
}
func (r RadioTapPresent) FHSS() bool {
return r&RadioTapPresentFHSS != 0
}
func (r RadioTapPresent) DBMAntennaSignal() bool {
return r&RadioTapPresentDBMAntennaSignal != 0
}
func (r RadioTapPresent) DBMAntennaNoise() bool {
return r&RadioTapPresentDBMAntennaNoise != 0
}
func (r RadioTapPresent) LockQuality() bool {
return r&RadioTapPresentLockQuality != 0
}
func (r RadioTapPresent) TxAttenuation() bool {
return r&RadioTapPresentTxAttenuation != 0
}
func (r RadioTapPresent) DBTxAttenuation() bool {
return r&RadioTapPresentDBTxAttenuation != 0
}
func (r RadioTapPresent) DBMTxPower() bool {
return r&RadioTapPresentDBMTxPower != 0
}
func (r RadioTapPresent) Antenna() bool {
return r&RadioTapPresentAntenna != 0
}
func (r RadioTapPresent) DBAntennaSignal() bool {
return r&RadioTapPresentDBAntennaSignal != 0
}
func (r RadioTapPresent) DBAntennaNoise() bool {
return r&RadioTapPresentDBAntennaNoise != 0
}
func (r RadioTapPresent) RxFlags() bool {
return r&RadioTapPresentRxFlags != 0
}
func (r RadioTapPresent) TxFlags() bool {
return r&RadioTapPresentTxFlags != 0
}
func (r RadioTapPresent) RtsRetries() bool {
return r&RadioTapPresentRtsRetries != 0
}
func (r RadioTapPresent) DataRetries() bool {
return r&RadioTapPresentDataRetries != 0
}
func (r RadioTapPresent) MCS() bool {
return r&RadioTapPresentMCS != 0
}
func (r RadioTapPresent) AMPDUStatus() bool {
return r&RadioTapPresentAMPDUStatus != 0
}
func (r RadioTapPresent) VHT() bool {
return r&RadioTapPresentVHT != 0
}
func (r RadioTapPresent) EXT() bool {
return r&RadioTapPresentEXT != 0
}
type RadioTapChannelFlags uint16
const (
RadioTapChannelFlagsTurbo RadioTapChannelFlags = 0x0010 // Turbo channel
RadioTapChannelFlagsCCK RadioTapChannelFlags = 0x0020 // CCK channel
RadioTapChannelFlagsOFDM RadioTapChannelFlags = 0x0040 // OFDM channel
RadioTapChannelFlagsGhz2 RadioTapChannelFlags = 0x0080 // 2 GHz spectrum channel.
RadioTapChannelFlagsGhz5 RadioTapChannelFlags = 0x0100 // 5 GHz spectrum channel
RadioTapChannelFlagsPassive RadioTapChannelFlags = 0x0200 // Only passive scan allowed
RadioTapChannelFlagsDynamic RadioTapChannelFlags = 0x0400 // Dynamic CCK-OFDM channel
RadioTapChannelFlagsGFSK RadioTapChannelFlags = 0x0800 // GFSK channel (FHSS PHY)
)
func (r RadioTapChannelFlags) Turbo() bool {
return r&RadioTapChannelFlagsTurbo != 0
}
func (r RadioTapChannelFlags) CCK() bool {
return r&RadioTapChannelFlagsCCK != 0
}
func (r RadioTapChannelFlags) OFDM() bool {
return r&RadioTapChannelFlagsOFDM != 0
}
func (r RadioTapChannelFlags) Ghz2() bool {
return r&RadioTapChannelFlagsGhz2 != 0
}
func (r RadioTapChannelFlags) Ghz5() bool {
return r&RadioTapChannelFlagsGhz5 != 0
}
func (r RadioTapChannelFlags) Passive() bool {
return r&RadioTapChannelFlagsPassive != 0
}
func (r RadioTapChannelFlags) Dynamic() bool {
return r&RadioTapChannelFlagsDynamic != 0
}
func (r RadioTapChannelFlags) GFSK() bool {
return r&RadioTapChannelFlagsGFSK != 0
}
// String provides a human readable string for RadioTapChannelFlags.
// This string is possibly subject to change over time; if you're storing this
// persistently, you should probably store the RadioTapChannelFlags value, not its string.
func (a RadioTapChannelFlags) String() string {
var out bytes.Buffer
if a.Turbo() {
out.WriteString("Turbo,")
}
if a.CCK() {
out.WriteString("CCK,")
}
if a.OFDM() {
out.WriteString("OFDM,")
}
if a.Ghz2() {
out.WriteString("Ghz2,")
}
if a.Ghz5() {
out.WriteString("Ghz5,")
}
if a.Passive() {
out.WriteString("Passive,")
}
if a.Dynamic() {
out.WriteString("Dynamic,")
}
if a.GFSK() {
out.WriteString("GFSK,")
}
if length := out.Len(); length > 0 {
return string(out.Bytes()[:length-1]) // strip final comma
}
return ""
}
type RadioTapFlags uint8
const (
RadioTapFlagsCFP RadioTapFlags = 1 << iota // sent/received during CFP
RadioTapFlagsShortPreamble // sent/received * with short * preamble
RadioTapFlagsWEP // sent/received * with WEP encryption
RadioTapFlagsFrag // sent/received * with fragmentation
RadioTapFlagsFCS // frame includes FCS
RadioTapFlagsDatapad // frame has padding between * 802.11 header and payload * (to 32-bit boundary)
RadioTapFlagsBadFCS // does not pass FCS check
RadioTapFlagsShortGI // HT short GI
)
func (r RadioTapFlags) CFP() bool {
return r&RadioTapFlagsCFP != 0
}
func (r RadioTapFlags) ShortPreamble() bool {
return r&RadioTapFlagsShortPreamble != 0
}
func (r RadioTapFlags) WEP() bool {
return r&RadioTapFlagsWEP != 0
}
func (r RadioTapFlags) Frag() bool {
return r&RadioTapFlagsFrag != 0
}
func (r RadioTapFlags) FCS() bool {
return r&RadioTapFlagsFCS != 0
}
func (r RadioTapFlags) Datapad() bool {
return r&RadioTapFlagsDatapad != 0
}
func (r RadioTapFlags) BadFCS() bool {
return r&RadioTapFlagsBadFCS != 0
}
func (r RadioTapFlags) ShortGI() bool {
return r&RadioTapFlagsShortGI != 0
}
// String provides a human readable string for RadioTapFlags.
// This string is possibly subject to change over time; if you're storing this
// persistently, you should probably store the RadioTapFlags value, not its string.
func (a RadioTapFlags) String() string {
var out bytes.Buffer
if a.CFP() {
out.WriteString("CFP,")
}
if a.ShortPreamble() {
out.WriteString("SHORT-PREAMBLE,")
}
if a.WEP() {
out.WriteString("WEP,")
}
if a.Frag() {
out.WriteString("FRAG,")
}
if a.FCS() {
out.WriteString("FCS,")
}
if a.Datapad() {
out.WriteString("DATAPAD,")
}
if a.ShortGI() {
out.WriteString("SHORT-GI,")
}
if length := out.Len(); length > 0 {
return string(out.Bytes()[:length-1]) // strip final comma
}
return ""
}
type RadioTapRate uint8
func (a RadioTapRate) String() string {
return fmt.Sprintf("%v Mb/s", 0.5*float32(a))
}
type RadioTapChannelFrequency uint16
func (a RadioTapChannelFrequency) String() string {
return fmt.Sprintf("%d MHz", a)
}
type RadioTapRxFlags uint16
const (
RadioTapRxFlagsBadPlcp RadioTapRxFlags = 0x0002
)
func (self RadioTapRxFlags) BadPlcp() bool {
return self&RadioTapRxFlagsBadPlcp != 0
}
func (self RadioTapRxFlags) String() string {
if self.BadPlcp() {
return "BADPLCP"
}
return ""
}
type RadioTapTxFlags uint16
const (
RadioTapTxFlagsFail RadioTapTxFlags = 1 << iota
RadioTapTxFlagsCTS
RadioTapTxFlagsRTS
RadioTapTxFlagsNoACK
)
func (self RadioTapTxFlags) Fail() bool { return self&RadioTapTxFlagsFail != 0 }
func (self RadioTapTxFlags) CTS() bool { return self&RadioTapTxFlagsCTS != 0 }
func (self RadioTapTxFlags) RTS() bool { return self&RadioTapTxFlagsRTS != 0 }
func (self RadioTapTxFlags) NoACK() bool { return self&RadioTapTxFlagsNoACK != 0 }
func (self RadioTapTxFlags) String() string {
var tokens []string
if self.Fail() {
tokens = append(tokens, "Fail")
}
if self.CTS() {
tokens = append(tokens, "CTS")
}
if self.RTS() {
tokens = append(tokens, "RTS")
}
if self.NoACK() {
tokens = append(tokens, "NoACK")
}
return strings.Join(tokens, ",")
}
type RadioTapMCS struct {
Known RadioTapMCSKnown
Flags RadioTapMCSFlags
MCS uint8
}
func (self RadioTapMCS) String() string {
var tokens []string
if self.Known.Bandwidth() {
token := "?"
switch self.Flags.Bandwidth() {
case 0:
token = "20"
case 1:
token = "40"
case 2:
token = "40(20L)"
case 3:
token = "40(20U)"
}
tokens = append(tokens, token)
}
if self.Known.MCSIndex() {
tokens = append(tokens, fmt.Sprintf("MCSIndex#%d", self.MCS))
}
if self.Known.GuardInterval() {
if self.Flags.ShortGI() {
tokens = append(tokens, fmt.Sprintf("shortGI"))
} else {
tokens = append(tokens, fmt.Sprintf("longGI"))
}
}
if self.Known.HTFormat() {
if self.Flags.Greenfield() {
tokens = append(tokens, fmt.Sprintf("HT-greenfield"))
} else {
tokens = append(tokens, fmt.Sprintf("HT-mixed"))
}
}
if self.Known.FECType() {
if self.Flags.FECLDPC() {
tokens = append(tokens, fmt.Sprintf("LDPC"))
} else {
tokens = append(tokens, fmt.Sprintf("BCC"))
}
}
if self.Known.STBC() {
tokens = append(tokens, fmt.Sprintf("STBC#%d", self.Flags.STBC()))
}
if self.Known.NESS() {
num := 0
if self.Known.NESS1() {
num |= 0x02
}
if self.Flags.NESS0() {
num |= 0x01
}
tokens = append(tokens, fmt.Sprintf("num-of-ESS#%d", num))
}
return strings.Join(tokens, ",")
}
type RadioTapMCSKnown uint8
const (
RadioTapMCSKnownBandwidth RadioTapMCSKnown = 1 << iota
RadioTapMCSKnownMCSIndex
RadioTapMCSKnownGuardInterval
RadioTapMCSKnownHTFormat
RadioTapMCSKnownFECType
RadioTapMCSKnownSTBC
RadioTapMCSKnownNESS
RadioTapMCSKnownNESS1
)
func (self RadioTapMCSKnown) Bandwidth() bool { return self&RadioTapMCSKnownBandwidth != 0 }
func (self RadioTapMCSKnown) MCSIndex() bool { return self&RadioTapMCSKnownMCSIndex != 0 }
func (self RadioTapMCSKnown) GuardInterval() bool { return self&RadioTapMCSKnownGuardInterval != 0 }
func (self RadioTapMCSKnown) HTFormat() bool { return self&RadioTapMCSKnownHTFormat != 0 }
func (self RadioTapMCSKnown) FECType() bool { return self&RadioTapMCSKnownFECType != 0 }
func (self RadioTapMCSKnown) STBC() bool { return self&RadioTapMCSKnownSTBC != 0 }
func (self RadioTapMCSKnown) NESS() bool { return self&RadioTapMCSKnownNESS != 0 }
func (self RadioTapMCSKnown) NESS1() bool { return self&RadioTapMCSKnownNESS1 != 0 }
type RadioTapMCSFlags uint8
const (
RadioTapMCSFlagsBandwidthMask RadioTapMCSFlags = 0x03
RadioTapMCSFlagsShortGI = 0x04
RadioTapMCSFlagsGreenfield = 0x08
RadioTapMCSFlagsFECLDPC = 0x10
RadioTapMCSFlagsSTBCMask = 0x60
RadioTapMCSFlagsNESS0 = 0x80
)
func (self RadioTapMCSFlags) Bandwidth() int {
return int(self & RadioTapMCSFlagsBandwidthMask)
}
func (self RadioTapMCSFlags) ShortGI() bool { return self&RadioTapMCSFlagsShortGI != 0 }
func (self RadioTapMCSFlags) Greenfield() bool { return self&RadioTapMCSFlagsGreenfield != 0 }
func (self RadioTapMCSFlags) FECLDPC() bool { return self&RadioTapMCSFlagsFECLDPC != 0 }
func (self RadioTapMCSFlags) STBC() int {
return int(self&RadioTapMCSFlagsSTBCMask) >> 5
}
func (self RadioTapMCSFlags) NESS0() bool { return self&RadioTapMCSFlagsNESS0 != 0 }
type RadioTapAMPDUStatus struct {
Reference uint32
Flags RadioTapAMPDUStatusFlags
CRC uint8
}
func (self RadioTapAMPDUStatus) String() string {
tokens := []string{
fmt.Sprintf("ref#%x", self.Reference),
}
if self.Flags.ReportZerolen() && self.Flags.IsZerolen() {
tokens = append(tokens, fmt.Sprintf("zero-length"))
}
if self.Flags.LastKnown() && self.Flags.IsLast() {
tokens = append(tokens, "last")
}
if self.Flags.DelimCRCErr() {
tokens = append(tokens, "delimiter CRC error")
}
if self.Flags.DelimCRCKnown() {
tokens = append(tokens, fmt.Sprintf("delimiter-CRC=%02x", self.CRC))
}
return strings.Join(tokens, ",")
}
type RadioTapAMPDUStatusFlags uint16
const (
RadioTapAMPDUStatusFlagsReportZerolen RadioTapAMPDUStatusFlags = 1 << iota
RadioTapAMPDUIsZerolen
RadioTapAMPDULastKnown
RadioTapAMPDUIsLast
RadioTapAMPDUDelimCRCErr
RadioTapAMPDUDelimCRCKnown
)
func (self RadioTapAMPDUStatusFlags) ReportZerolen() bool {
return self&RadioTapAMPDUStatusFlagsReportZerolen != 0
}
func (self RadioTapAMPDUStatusFlags) IsZerolen() bool { return self&RadioTapAMPDUIsZerolen != 0 }
func (self RadioTapAMPDUStatusFlags) LastKnown() bool { return self&RadioTapAMPDULastKnown != 0 }
func (self RadioTapAMPDUStatusFlags) IsLast() bool { return self&RadioTapAMPDUIsLast != 0 }
func (self RadioTapAMPDUStatusFlags) DelimCRCErr() bool { return self&RadioTapAMPDUDelimCRCErr != 0 }
func (self RadioTapAMPDUStatusFlags) DelimCRCKnown() bool {
return self&RadioTapAMPDUDelimCRCKnown != 0
}
type RadioTapVHT struct {
Known RadioTapVHTKnown
Flags RadioTapVHTFlags
Bandwidth uint8
MCSNSS [4]RadioTapVHTMCSNSS
Coding uint8
GroupId uint8
PartialAID uint16
}
func (self RadioTapVHT) String() string {
var tokens []string
if self.Known.STBC() {
if self.Flags.STBC() {
tokens = append(tokens, "STBC")
} else {
tokens = append(tokens, "no STBC")
}
}
if self.Known.TXOPPSNotAllowed() {
if self.Flags.TXOPPSNotAllowed() {
tokens = append(tokens, "TXOP doze not allowed")
} else {
tokens = append(tokens, "TXOP doze allowed")
}
}
if self.Known.GI() {
if self.Flags.SGI() {
tokens = append(tokens, "short GI")
} else {
tokens = append(tokens, "long GI")
}
}
if self.Known.SGINSYMDisambiguation() {
if self.Flags.SGINSYMMod() {
tokens = append(tokens, "NSYM mod 10=9")
} else {
tokens = append(tokens, "NSYM mod 10!=9 or no short GI")
}
}
if self.Known.LDPCExtraOFDMSymbol() {
if self.Flags.LDPCExtraOFDMSymbol() {
tokens = append(tokens, "LDPC extra OFDM symbols")
} else {
tokens = append(tokens, "no LDPC extra OFDM symbols")
}
}
if self.Known.Beamformed() {
if self.Flags.Beamformed() {
tokens = append(tokens, "beamformed")
} else {
tokens = append(tokens, "no beamformed")
}
}
if self.Known.Bandwidth() {
token := "?"
switch self.Bandwidth & 0x1f {
case 0:
token = "20"
case 1:
token = "40"
case 2:
token = "40(20L)"
case 3:
token = "40(20U)"
case 4:
token = "80"
case 5:
token = "80(40L)"
case 6:
token = "80(40U)"
case 7:
token = "80(20LL)"
case 8:
token = "80(20LU)"
case 9:
token = "80(20UL)"
case 10:
token = "80(20UU)"
case 11:
token = "160"
case 12:
token = "160(80L)"
case 13:
token = "160(80U)"
case 14:
token = "160(40LL)"
case 15:
token = "160(40LU)"
case 16:
token = "160(40UL)"
case 17:
token = "160(40UU)"
case 18:
token = "160(20LLL)"
case 19:
token = "160(20LLU)"
case 20:
token = "160(20LUL)"
case 21:
token = "160(20LUU)"
case 22:
token = "160(20ULL)"
case 23:
token = "160(20ULU)"
case 24:
token = "160(20UUL)"
case 25:
token = "160(20UUU)"
}
tokens = append(tokens, token)
}
for i, MCSNSS := range self.MCSNSS {
if MCSNSS.Present() {
fec := "?"
switch self.Coding & (1 << uint8(i)) {
case 0:
fec = "BCC"
case 1:
fec = "LDPC"
}
tokens = append(tokens, fmt.Sprintf("user%d(%s,%s)", i, MCSNSS.String(), fec))
}
}
if self.Known.GroupId() {
tokens = append(tokens,
fmt.Sprintf("group=%d", self.GroupId))
}
if self.Known.PartialAID() {
tokens = append(tokens,
fmt.Sprintf("partial-AID=%d", self.PartialAID))
}
return strings.Join(tokens, ",")
}
type RadioTapVHTKnown uint16
const (
RadioTapVHTKnownSTBC RadioTapVHTKnown = 1 << iota
RadioTapVHTKnownTXOPPSNotAllowed
RadioTapVHTKnownGI
RadioTapVHTKnownSGINSYMDisambiguation
RadioTapVHTKnownLDPCExtraOFDMSymbol
RadioTapVHTKnownBeamformed
RadioTapVHTKnownBandwidth
RadioTapVHTKnownGroupId
RadioTapVHTKnownPartialAID
)
func (self RadioTapVHTKnown) STBC() bool { return self&RadioTapVHTKnownSTBC != 0 }
func (self RadioTapVHTKnown) TXOPPSNotAllowed() bool {
return self&RadioTapVHTKnownTXOPPSNotAllowed != 0
}
func (self RadioTapVHTKnown) GI() bool { return self&RadioTapVHTKnownGI != 0 }
func (self RadioTapVHTKnown) SGINSYMDisambiguation() bool {
return self&RadioTapVHTKnownSGINSYMDisambiguation != 0
}
func (self RadioTapVHTKnown) LDPCExtraOFDMSymbol() bool {
return self&RadioTapVHTKnownLDPCExtraOFDMSymbol != 0
}
func (self RadioTapVHTKnown) Beamformed() bool { return self&RadioTapVHTKnownBeamformed != 0 }
func (self RadioTapVHTKnown) Bandwidth() bool { return self&RadioTapVHTKnownBandwidth != 0 }
func (self RadioTapVHTKnown) GroupId() bool { return self&RadioTapVHTKnownGroupId != 0 }
func (self RadioTapVHTKnown) PartialAID() bool { return self&RadioTapVHTKnownPartialAID != 0 }
type RadioTapVHTFlags uint8
const (
RadioTapVHTFlagsSTBC RadioTapVHTFlags = 1 << iota
RadioTapVHTFlagsTXOPPSNotAllowed
RadioTapVHTFlagsSGI
RadioTapVHTFlagsSGINSYMMod
RadioTapVHTFlagsLDPCExtraOFDMSymbol
RadioTapVHTFlagsBeamformed
)
func (self RadioTapVHTFlags) STBC() bool { return self&RadioTapVHTFlagsSTBC != 0 }
func (self RadioTapVHTFlags) TXOPPSNotAllowed() bool {
return self&RadioTapVHTFlagsTXOPPSNotAllowed != 0
}
func (self RadioTapVHTFlags) SGI() bool { return self&RadioTapVHTFlagsSGI != 0 }
func (self RadioTapVHTFlags) SGINSYMMod() bool { return self&RadioTapVHTFlagsSGINSYMMod != 0 }
func (self RadioTapVHTFlags) LDPCExtraOFDMSymbol() bool {
return self&RadioTapVHTFlagsLDPCExtraOFDMSymbol != 0
}
func (self RadioTapVHTFlags) Beamformed() bool { return self&RadioTapVHTFlagsBeamformed != 0 }
type RadioTapVHTMCSNSS uint8
func (self RadioTapVHTMCSNSS) Present() bool {
return self&0x0F != 0
}
func (self RadioTapVHTMCSNSS) String() string {
return fmt.Sprintf("NSS#%dMCS#%d", uint32(self&0xf), uint32(self>>4))
}
func decodeRadioTap(data []byte, p gopacket.PacketBuilder) error {
d := &RadioTap{}
// TODO: Should we set LinkLayer here? And implement LinkFlow
return decodingLayerDecoder(d, data, p)
}
type RadioTap struct {
BaseLayer
// Version 0. Only increases for drastic changes, introduction of compatible new fields does not count.
Version uint8
// Length of the whole header in bytes, including it_version, it_pad, it_len, and data fields.
Length uint16
// Present is a bitmap telling which fields are present. Set bit 31 (0x80000000) to extend the bitmap by another 32 bits. Additional extensions are made by setting bit 31.
Present RadioTapPresent
// TSFT: value in microseconds of the MAC's 64-bit 802.11 Time Synchronization Function timer when the first bit of the MPDU arrived at the MAC. For received frames, only.
TSFT uint64
Flags RadioTapFlags
// Rate Tx/Rx data rate
Rate RadioTapRate
// ChannelFrequency Tx/Rx frequency in MHz, followed by flags
ChannelFrequency RadioTapChannelFrequency
ChannelFlags RadioTapChannelFlags
// FHSS For frequency-hopping radios, the hop set (first byte) and pattern (second byte).
FHSS uint16
// DBMAntennaSignal RF signal power at the antenna, decibel difference from one milliwatt.
DBMAntennaSignal int8
// DBMAntennaNoise RF noise power at the antenna, decibel difference from one milliwatt.
DBMAntennaNoise int8
// LockQuality Quality of Barker code lock. Unitless. Monotonically nondecreasing with "better" lock strength. Called "Signal Quality" in datasheets.
LockQuality uint16
// TxAttenuation Transmit power expressed as unitless distance from max power set at factory calibration. 0 is max power. Monotonically nondecreasing with lower power levels.
TxAttenuation uint16
// DBTxAttenuation Transmit power expressed as decibel distance from max power set at factory calibration. 0 is max power. Monotonically nondecreasing with lower power levels.
DBTxAttenuation uint16
// DBMTxPower Transmit power expressed as dBm (decibels from a 1 milliwatt reference). This is the absolute power level measured at the antenna port.
DBMTxPower int8
// Antenna Unitless indication of the Rx/Tx antenna for this packet. The first antenna is antenna 0.
Antenna uint8
// DBAntennaSignal RF signal power at the antenna, decibel difference from an arbitrary, fixed reference.
DBAntennaSignal uint8
// DBAntennaNoise RF noise power at the antenna, decibel difference from an arbitrary, fixed reference point.
DBAntennaNoise uint8
//
RxFlags RadioTapRxFlags
TxFlags RadioTapTxFlags
RtsRetries uint8
DataRetries uint8
MCS RadioTapMCS
AMPDUStatus RadioTapAMPDUStatus
VHT RadioTapVHT
}
func (m *RadioTap) LayerType() gopacket.LayerType { return LayerTypeRadioTap }
func (m *RadioTap) DecodeFromBytes(data []byte, df gopacket.DecodeFeedback) error {
if len(data) < 8 {
df.SetTruncated()
return errors.New("RadioTap too small")
}
m.Version = uint8(data[0])
m.Length = binary.LittleEndian.Uint16(data[2:4])
m.Present = RadioTapPresent(binary.LittleEndian.Uint32(data[4:8]))
offset := uint16(4)
for (binary.LittleEndian.Uint32(data[offset:offset+4]) & 0x80000000) != 0 {
// This parser only handles standard radiotap namespace,
// and expects all fields are packed in the first it_present.
// Extended bitmap will be just ignored.
offset += 4
}
offset += 4 // skip the bitmap
if m.Present.TSFT() {
offset += align(offset, 8)
m.TSFT = binary.LittleEndian.Uint64(data[offset : offset+8])
offset += 8
}
if m.Present.Flags() {
m.Flags = RadioTapFlags(data[offset])
offset++
}
if m.Present.Rate() {
m.Rate = RadioTapRate(data[offset])
offset++
}
if m.Present.Channel() {
offset += align(offset, 2)
m.ChannelFrequency = RadioTapChannelFrequency(binary.LittleEndian.Uint16(data[offset : offset+2]))
offset += 2
m.ChannelFlags = RadioTapChannelFlags(binary.LittleEndian.Uint16(data[offset : offset+2]))
offset += 2
}
if m.Present.FHSS() {
m.FHSS = binary.LittleEndian.Uint16(data[offset : offset+2])
offset += 2
}
if m.Present.DBMAntennaSignal() {
m.DBMAntennaSignal = int8(data[offset])
offset++
}
if m.Present.DBMAntennaNoise() {
m.DBMAntennaNoise = int8(data[offset])
offset++
}
if m.Present.LockQuality() {
offset += align(offset, 2)
m.LockQuality = binary.LittleEndian.Uint16(data[offset : offset+2])
offset += 2
}
if m.Present.TxAttenuation() {
offset += align(offset, 2)
m.TxAttenuation = binary.LittleEndian.Uint16(data[offset : offset+2])
offset += 2
}
if m.Present.DBTxAttenuation() {
offset += align(offset, 2)
m.DBTxAttenuation = binary.LittleEndian.Uint16(data[offset : offset+2])
offset += 2
}
if m.Present.DBMTxPower() {
m.DBMTxPower = int8(data[offset])
offset++
}
if m.Present.Antenna() {
m.Antenna = uint8(data[offset])
offset++
}
if m.Present.DBAntennaSignal() {
m.DBAntennaSignal = uint8(data[offset])
offset++
}
if m.Present.DBAntennaNoise() {
m.DBAntennaNoise = uint8(data[offset])
offset++
}
if m.Present.RxFlags() {
offset += align(offset, 2)
m.RxFlags = RadioTapRxFlags(binary.LittleEndian.Uint16(data[offset:]))
offset += 2
}
if m.Present.TxFlags() {
offset += align(offset, 2)
m.TxFlags = RadioTapTxFlags(binary.LittleEndian.Uint16(data[offset:]))
offset += 2
}
if m.Present.RtsRetries() {
m.RtsRetries = uint8(data[offset])
offset++
}
if m.Present.DataRetries() {
m.DataRetries = uint8(data[offset])
offset++
}
if m.Present.MCS() {
m.MCS = RadioTapMCS{
RadioTapMCSKnown(data[offset]),
RadioTapMCSFlags(data[offset+1]),
uint8(data[offset+2]),
}
offset += 3
}
if m.Present.AMPDUStatus() {
offset += align(offset, 4)
m.AMPDUStatus = RadioTapAMPDUStatus{
Reference: binary.LittleEndian.Uint32(data[offset:]),
Flags: RadioTapAMPDUStatusFlags(binary.LittleEndian.Uint16(data[offset+4:])),
CRC: uint8(data[offset+6]),
}
offset += 8
}
if m.Present.VHT() {
offset += align(offset, 2)
m.VHT = RadioTapVHT{
Known: RadioTapVHTKnown(binary.LittleEndian.Uint16(data[offset:])),
Flags: RadioTapVHTFlags(data[offset+2]),
Bandwidth: uint8(data[offset+3]),
MCSNSS: [4]RadioTapVHTMCSNSS{
RadioTapVHTMCSNSS(data[offset+4]),
RadioTapVHTMCSNSS(data[offset+5]),
RadioTapVHTMCSNSS(data[offset+6]),
RadioTapVHTMCSNSS(data[offset+7]),
},
Coding: uint8(data[offset+8]),
GroupId: uint8(data[offset+9]),
PartialAID: binary.LittleEndian.Uint16(data[offset+10:]),
}
offset += 12
}
payload := data[m.Length:]
// Remove non standard padding used by some Wi-Fi drivers
if m.Flags.Datapad() &&
payload[0]&0xC == 0x8 { //&& // Data frame
headlen := 24
if payload[0]&0x8C == 0x88 { // QoS
headlen += 2
}
if payload[1]&0x3 == 0x3 { // 4 addresses
headlen += 2
}
if headlen%4 == 2 {
payload = append(payload[:headlen], payload[headlen+2:len(payload)]...)
}
}
if !m.Flags.FCS() {
// Dot11.DecodeFromBytes() expects FCS present and performs a hard chop on the checksum
// If a user is handing in subslices or packets from a buffered stream, the capacity of the slice
// may extend beyond the len, rather than expecting callers to enforce cap==len on every packet
// we take the hit in this one case and do a reallocation. If the user DOES enforce cap==len
// then the reallocation will happen anyway on the append. This is requried because the append
// write to the memory directly after the payload if there is sufficient capacity, which callers
// may not expect.
reallocPayload := make([]byte, len(payload)+4)
copy(reallocPayload[0:len(payload)], payload)
h := crc32.NewIEEE()
h.Write(payload)
binary.LittleEndian.PutUint32(reallocPayload[len(payload):], h.Sum32())
payload = reallocPayload
}
m.BaseLayer = BaseLayer{Contents: data[:m.Length], Payload: payload}
return nil
}
func (m RadioTap) SerializeTo(b gopacket.SerializeBuffer, opts gopacket.SerializeOptions) error {
buf := make([]byte, 1024)
buf[0] = m.Version
buf[1] = 0
binary.LittleEndian.PutUint32(buf[4:8], uint32(m.Present))
offset := uint16(4)
for (binary.LittleEndian.Uint32(buf[offset:offset+4]) & 0x80000000) != 0 {
offset += 4
}
offset += 4
if m.Present.TSFT() {
offset += align(offset, 8)
binary.LittleEndian.PutUint64(buf[offset:offset+8], m.TSFT)
offset += 8
}
if m.Present.Flags() {
buf[offset] = uint8(m.Flags)
offset++
}
if m.Present.Rate() {
buf[offset] = uint8(m.Rate)
offset++
}
if m.Present.Channel() {
offset += align(offset, 2)
binary.LittleEndian.PutUint16(buf[offset:offset+2], uint16(m.ChannelFrequency))
offset += 2
binary.LittleEndian.PutUint16(buf[offset:offset+2], uint16(m.ChannelFlags))
offset += 2
}
if m.Present.FHSS() {
binary.LittleEndian.PutUint16(buf[offset:offset+2], m.FHSS)
offset += 2
}
if m.Present.DBMAntennaSignal() {
buf[offset] = byte(m.DBMAntennaSignal)
offset++
}
if m.Present.DBMAntennaNoise() {
buf[offset] = byte(m.DBMAntennaNoise)
offset++
}
if m.Present.LockQuality() {
offset += align(offset, 2)
binary.LittleEndian.PutUint16(buf[offset:offset+2], m.LockQuality)
offset += 2
}
if m.Present.TxAttenuation() {
offset += align(offset, 2)
binary.LittleEndian.PutUint16(buf[offset:offset+2], m.TxAttenuation)
offset += 2
}
if m.Present.DBTxAttenuation() {
offset += align(offset, 2)
binary.LittleEndian.PutUint16(buf[offset:offset+2], m.DBTxAttenuation)
offset += 2
}
if m.Present.DBMTxPower() {
buf[offset] = byte(m.DBMTxPower)
offset++
}
if m.Present.Antenna() {
buf[offset] = uint8(m.Antenna)
offset++
}
if m.Present.DBAntennaSignal() {
buf[offset] = uint8(m.DBAntennaSignal)
offset++
}
if m.Present.DBAntennaNoise() {
buf[offset] = uint8(m.DBAntennaNoise)
offset++
}
if m.Present.RxFlags() {
offset += align(offset, 2)
binary.LittleEndian.PutUint16(buf[offset:offset+2], uint16(m.RxFlags))
offset += 2
}
if m.Present.TxFlags() {
offset += align(offset, 2)
binary.LittleEndian.PutUint16(buf[offset:offset+2], uint16(m.TxFlags))
offset += 2
}
if m.Present.RtsRetries() {
buf[offset] = m.RtsRetries
offset++
}
if m.Present.DataRetries() {
buf[offset] = m.DataRetries
offset++
}
if m.Present.MCS() {
buf[offset] = uint8(m.MCS.Known)
buf[offset+1] = uint8(m.MCS.Flags)
buf[offset+2] = uint8(m.MCS.MCS)
offset += 3
}
if m.Present.AMPDUStatus() {
offset += align(offset, 4)
binary.LittleEndian.PutUint32(buf[offset:offset+4], m.AMPDUStatus.Reference)
binary.LittleEndian.PutUint16(buf[offset+4:offset+6], uint16(m.AMPDUStatus.Flags))
buf[offset+6] = m.AMPDUStatus.CRC
offset += 8
}
if m.Present.VHT() {
offset += align(offset, 2)
binary.LittleEndian.PutUint16(buf[offset:], uint16(m.VHT.Known))
buf[offset+2] = uint8(m.VHT.Flags)
buf[offset+3] = uint8(m.VHT.Bandwidth)
buf[offset+4] = uint8(m.VHT.MCSNSS[0])
buf[offset+5] = uint8(m.VHT.MCSNSS[1])
buf[offset+6] = uint8(m.VHT.MCSNSS[2])
buf[offset+7] = uint8(m.VHT.MCSNSS[3])
buf[offset+8] = uint8(m.VHT.Coding)
buf[offset+9] = uint8(m.VHT.GroupId)
binary.LittleEndian.PutUint16(buf[offset+10:offset+12], m.VHT.PartialAID)
offset += 12
}
packetBuf, err := b.PrependBytes(int(offset))
if err != nil {
return err
}
if opts.FixLengths {
m.Length = offset
}
binary.LittleEndian.PutUint16(buf[2:4], m.Length)
copy(packetBuf, buf)
return nil
}
func (m *RadioTap) CanDecode() gopacket.LayerClass { return LayerTypeRadioTap }
func (m *RadioTap) NextLayerType() gopacket.LayerType { return LayerTypeDot11 }