865 lines
26 KiB
Go
865 lines
26 KiB
Go
|
// Copyright 2012 Google, Inc. All rights reserved.
|
||
|
//
|
||
|
// Use of this source code is governed by a BSD-style license
|
||
|
// that can be found in the LICENSE file in the root of the source
|
||
|
// tree.
|
||
|
|
||
|
package gopacket
|
||
|
|
||
|
import (
|
||
|
"bytes"
|
||
|
"encoding/hex"
|
||
|
"errors"
|
||
|
"fmt"
|
||
|
"io"
|
||
|
"net"
|
||
|
"os"
|
||
|
"reflect"
|
||
|
"runtime/debug"
|
||
|
"strings"
|
||
|
"syscall"
|
||
|
"time"
|
||
|
)
|
||
|
|
||
|
// CaptureInfo provides standardized information about a packet captured off
|
||
|
// the wire or read from a file.
|
||
|
type CaptureInfo struct {
|
||
|
// Timestamp is the time the packet was captured, if that is known.
|
||
|
Timestamp time.Time
|
||
|
// CaptureLength is the total number of bytes read off of the wire.
|
||
|
CaptureLength int
|
||
|
// Length is the size of the original packet. Should always be >=
|
||
|
// CaptureLength.
|
||
|
Length int
|
||
|
// InterfaceIndex
|
||
|
InterfaceIndex int
|
||
|
// The packet source can place ancillary data of various types here.
|
||
|
// For example, the afpacket source can report the VLAN of captured
|
||
|
// packets this way.
|
||
|
AncillaryData []interface{}
|
||
|
}
|
||
|
|
||
|
// PacketMetadata contains metadata for a packet.
|
||
|
type PacketMetadata struct {
|
||
|
CaptureInfo
|
||
|
// Truncated is true if packet decoding logic detects that there are fewer
|
||
|
// bytes in the packet than are detailed in various headers (for example, if
|
||
|
// the number of bytes in the IPv4 contents/payload is less than IPv4.Length).
|
||
|
// This is also set automatically for packets captured off the wire if
|
||
|
// CaptureInfo.CaptureLength < CaptureInfo.Length.
|
||
|
Truncated bool
|
||
|
}
|
||
|
|
||
|
// Packet is the primary object used by gopacket. Packets are created by a
|
||
|
// Decoder's Decode call. A packet is made up of a set of Data, which
|
||
|
// is broken into a number of Layers as it is decoded.
|
||
|
type Packet interface {
|
||
|
//// Functions for outputting the packet as a human-readable string:
|
||
|
//// ------------------------------------------------------------------
|
||
|
// String returns a human-readable string representation of the packet.
|
||
|
// It uses LayerString on each layer to output the layer.
|
||
|
String() string
|
||
|
// Dump returns a verbose human-readable string representation of the packet,
|
||
|
// including a hex dump of all layers. It uses LayerDump on each layer to
|
||
|
// output the layer.
|
||
|
Dump() string
|
||
|
|
||
|
//// Functions for accessing arbitrary packet layers:
|
||
|
//// ------------------------------------------------------------------
|
||
|
// Layers returns all layers in this packet, computing them as necessary
|
||
|
Layers() []Layer
|
||
|
// Layer returns the first layer in this packet of the given type, or nil
|
||
|
Layer(LayerType) Layer
|
||
|
// LayerClass returns the first layer in this packet of the given class,
|
||
|
// or nil.
|
||
|
LayerClass(LayerClass) Layer
|
||
|
|
||
|
//// Functions for accessing specific types of packet layers. These functions
|
||
|
//// return the first layer of each type found within the packet.
|
||
|
//// ------------------------------------------------------------------
|
||
|
// LinkLayer returns the first link layer in the packet
|
||
|
LinkLayer() LinkLayer
|
||
|
// NetworkLayer returns the first network layer in the packet
|
||
|
NetworkLayer() NetworkLayer
|
||
|
// TransportLayer returns the first transport layer in the packet
|
||
|
TransportLayer() TransportLayer
|
||
|
// ApplicationLayer returns the first application layer in the packet
|
||
|
ApplicationLayer() ApplicationLayer
|
||
|
// ErrorLayer is particularly useful, since it returns nil if the packet
|
||
|
// was fully decoded successfully, and non-nil if an error was encountered
|
||
|
// in decoding and the packet was only partially decoded. Thus, its output
|
||
|
// can be used to determine if the entire packet was able to be decoded.
|
||
|
ErrorLayer() ErrorLayer
|
||
|
|
||
|
//// Functions for accessing data specific to the packet:
|
||
|
//// ------------------------------------------------------------------
|
||
|
// Data returns the set of bytes that make up this entire packet.
|
||
|
Data() []byte
|
||
|
// Metadata returns packet metadata associated with this packet.
|
||
|
Metadata() *PacketMetadata
|
||
|
}
|
||
|
|
||
|
// packet contains all the information we need to fulfill the Packet interface,
|
||
|
// and its two "subclasses" (yes, no such thing in Go, bear with me),
|
||
|
// eagerPacket and lazyPacket, provide eager and lazy decoding logic around the
|
||
|
// various functions needed to access this information.
|
||
|
type packet struct {
|
||
|
// data contains the entire packet data for a packet
|
||
|
data []byte
|
||
|
// initialLayers is space for an initial set of layers already created inside
|
||
|
// the packet.
|
||
|
initialLayers [6]Layer
|
||
|
// layers contains each layer we've already decoded
|
||
|
layers []Layer
|
||
|
// last is the last layer added to the packet
|
||
|
last Layer
|
||
|
// metadata is the PacketMetadata for this packet
|
||
|
metadata PacketMetadata
|
||
|
|
||
|
decodeOptions DecodeOptions
|
||
|
|
||
|
// Pointers to the various important layers
|
||
|
link LinkLayer
|
||
|
network NetworkLayer
|
||
|
transport TransportLayer
|
||
|
application ApplicationLayer
|
||
|
failure ErrorLayer
|
||
|
}
|
||
|
|
||
|
func (p *packet) SetTruncated() {
|
||
|
p.metadata.Truncated = true
|
||
|
}
|
||
|
|
||
|
func (p *packet) SetLinkLayer(l LinkLayer) {
|
||
|
if p.link == nil {
|
||
|
p.link = l
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (p *packet) SetNetworkLayer(l NetworkLayer) {
|
||
|
if p.network == nil {
|
||
|
p.network = l
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (p *packet) SetTransportLayer(l TransportLayer) {
|
||
|
if p.transport == nil {
|
||
|
p.transport = l
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (p *packet) SetApplicationLayer(l ApplicationLayer) {
|
||
|
if p.application == nil {
|
||
|
p.application = l
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (p *packet) SetErrorLayer(l ErrorLayer) {
|
||
|
if p.failure == nil {
|
||
|
p.failure = l
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (p *packet) AddLayer(l Layer) {
|
||
|
p.layers = append(p.layers, l)
|
||
|
p.last = l
|
||
|
}
|
||
|
|
||
|
func (p *packet) DumpPacketData() {
|
||
|
fmt.Fprint(os.Stderr, p.packetDump())
|
||
|
os.Stderr.Sync()
|
||
|
}
|
||
|
|
||
|
func (p *packet) Metadata() *PacketMetadata {
|
||
|
return &p.metadata
|
||
|
}
|
||
|
|
||
|
func (p *packet) Data() []byte {
|
||
|
return p.data
|
||
|
}
|
||
|
|
||
|
func (p *packet) DecodeOptions() *DecodeOptions {
|
||
|
return &p.decodeOptions
|
||
|
}
|
||
|
|
||
|
func (p *packet) addFinalDecodeError(err error, stack []byte) {
|
||
|
fail := &DecodeFailure{err: err, stack: stack}
|
||
|
if p.last == nil {
|
||
|
fail.data = p.data
|
||
|
} else {
|
||
|
fail.data = p.last.LayerPayload()
|
||
|
}
|
||
|
p.AddLayer(fail)
|
||
|
p.SetErrorLayer(fail)
|
||
|
}
|
||
|
|
||
|
func (p *packet) recoverDecodeError() {
|
||
|
if !p.decodeOptions.SkipDecodeRecovery {
|
||
|
if r := recover(); r != nil {
|
||
|
p.addFinalDecodeError(fmt.Errorf("%v", r), debug.Stack())
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// LayerString outputs an individual layer as a string. The layer is output
|
||
|
// in a single line, with no trailing newline. This function is specifically
|
||
|
// designed to do the right thing for most layers... it follows the following
|
||
|
// rules:
|
||
|
// * If the Layer has a String function, just output that.
|
||
|
// * Otherwise, output all exported fields in the layer, recursing into
|
||
|
// exported slices and structs.
|
||
|
// NOTE: This is NOT THE SAME AS fmt's "%#v". %#v will output both exported
|
||
|
// and unexported fields... many times packet layers contain unexported stuff
|
||
|
// that would just mess up the output of the layer, see for example the
|
||
|
// Payload layer and it's internal 'data' field, which contains a large byte
|
||
|
// array that would really mess up formatting.
|
||
|
func LayerString(l Layer) string {
|
||
|
return fmt.Sprintf("%v\t%s", l.LayerType(), layerString(reflect.ValueOf(l), false, false))
|
||
|
}
|
||
|
|
||
|
// Dumper dumps verbose information on a value. If a layer type implements
|
||
|
// Dumper, then its LayerDump() string will include the results in its output.
|
||
|
type Dumper interface {
|
||
|
Dump() string
|
||
|
}
|
||
|
|
||
|
// LayerDump outputs a very verbose string representation of a layer. Its
|
||
|
// output is a concatenation of LayerString(l) and hex.Dump(l.LayerContents()).
|
||
|
// It contains newlines and ends with a newline.
|
||
|
func LayerDump(l Layer) string {
|
||
|
var b bytes.Buffer
|
||
|
b.WriteString(LayerString(l))
|
||
|
b.WriteByte('\n')
|
||
|
if d, ok := l.(Dumper); ok {
|
||
|
dump := d.Dump()
|
||
|
if dump != "" {
|
||
|
b.WriteString(dump)
|
||
|
if dump[len(dump)-1] != '\n' {
|
||
|
b.WriteByte('\n')
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
b.WriteString(hex.Dump(l.LayerContents()))
|
||
|
return b.String()
|
||
|
}
|
||
|
|
||
|
// layerString outputs, recursively, a layer in a "smart" way. See docs for
|
||
|
// LayerString for more details.
|
||
|
//
|
||
|
// Params:
|
||
|
// i - value to write out
|
||
|
// anonymous: if we're currently recursing an anonymous member of a struct
|
||
|
// writeSpace: if we've already written a value in a struct, and need to
|
||
|
// write a space before writing more. This happens when we write various
|
||
|
// anonymous values, and need to keep writing more.
|
||
|
func layerString(v reflect.Value, anonymous bool, writeSpace bool) string {
|
||
|
// Let String() functions take precedence.
|
||
|
if v.CanInterface() {
|
||
|
if s, ok := v.Interface().(fmt.Stringer); ok {
|
||
|
return s.String()
|
||
|
}
|
||
|
}
|
||
|
// Reflect, and spit out all the exported fields as key=value.
|
||
|
switch v.Type().Kind() {
|
||
|
case reflect.Interface, reflect.Ptr:
|
||
|
if v.IsNil() {
|
||
|
return "nil"
|
||
|
}
|
||
|
r := v.Elem()
|
||
|
return layerString(r, anonymous, writeSpace)
|
||
|
case reflect.Struct:
|
||
|
var b bytes.Buffer
|
||
|
typ := v.Type()
|
||
|
if !anonymous {
|
||
|
b.WriteByte('{')
|
||
|
}
|
||
|
for i := 0; i < v.NumField(); i++ {
|
||
|
// Check if this is upper-case.
|
||
|
ftype := typ.Field(i)
|
||
|
f := v.Field(i)
|
||
|
if ftype.Anonymous {
|
||
|
anonStr := layerString(f, true, writeSpace)
|
||
|
writeSpace = writeSpace || anonStr != ""
|
||
|
b.WriteString(anonStr)
|
||
|
} else if ftype.PkgPath == "" { // exported
|
||
|
if writeSpace {
|
||
|
b.WriteByte(' ')
|
||
|
}
|
||
|
writeSpace = true
|
||
|
fmt.Fprintf(&b, "%s=%s", typ.Field(i).Name, layerString(f, false, writeSpace))
|
||
|
}
|
||
|
}
|
||
|
if !anonymous {
|
||
|
b.WriteByte('}')
|
||
|
}
|
||
|
return b.String()
|
||
|
case reflect.Slice:
|
||
|
var b bytes.Buffer
|
||
|
b.WriteByte('[')
|
||
|
if v.Len() > 4 {
|
||
|
fmt.Fprintf(&b, "..%d..", v.Len())
|
||
|
} else {
|
||
|
for j := 0; j < v.Len(); j++ {
|
||
|
if j != 0 {
|
||
|
b.WriteString(", ")
|
||
|
}
|
||
|
b.WriteString(layerString(v.Index(j), false, false))
|
||
|
}
|
||
|
}
|
||
|
b.WriteByte(']')
|
||
|
return b.String()
|
||
|
}
|
||
|
return fmt.Sprintf("%v", v.Interface())
|
||
|
}
|
||
|
|
||
|
const (
|
||
|
longBytesLength = 128
|
||
|
)
|
||
|
|
||
|
// LongBytesGoString returns a string representation of the byte slice shortened
|
||
|
// using the format '<type>{<truncated slice> ... (<n> bytes)}' if it
|
||
|
// exceeds a predetermined length. Can be used to avoid filling the display with
|
||
|
// very long byte strings.
|
||
|
func LongBytesGoString(buf []byte) string {
|
||
|
if len(buf) < longBytesLength {
|
||
|
return fmt.Sprintf("%#v", buf)
|
||
|
}
|
||
|
s := fmt.Sprintf("%#v", buf[:longBytesLength-1])
|
||
|
s = strings.TrimSuffix(s, "}")
|
||
|
return fmt.Sprintf("%s ... (%d bytes)}", s, len(buf))
|
||
|
}
|
||
|
|
||
|
func baseLayerString(value reflect.Value) string {
|
||
|
t := value.Type()
|
||
|
content := value.Field(0)
|
||
|
c := make([]byte, content.Len())
|
||
|
for i := range c {
|
||
|
c[i] = byte(content.Index(i).Uint())
|
||
|
}
|
||
|
payload := value.Field(1)
|
||
|
p := make([]byte, payload.Len())
|
||
|
for i := range p {
|
||
|
p[i] = byte(payload.Index(i).Uint())
|
||
|
}
|
||
|
return fmt.Sprintf("%s{Contents:%s, Payload:%s}", t.String(),
|
||
|
LongBytesGoString(c),
|
||
|
LongBytesGoString(p))
|
||
|
}
|
||
|
|
||
|
func layerGoString(i interface{}, b *bytes.Buffer) {
|
||
|
if s, ok := i.(fmt.GoStringer); ok {
|
||
|
b.WriteString(s.GoString())
|
||
|
return
|
||
|
}
|
||
|
|
||
|
var v reflect.Value
|
||
|
var ok bool
|
||
|
if v, ok = i.(reflect.Value); !ok {
|
||
|
v = reflect.ValueOf(i)
|
||
|
}
|
||
|
switch v.Kind() {
|
||
|
case reflect.Ptr, reflect.Interface:
|
||
|
if v.Kind() == reflect.Ptr {
|
||
|
b.WriteByte('&')
|
||
|
}
|
||
|
layerGoString(v.Elem().Interface(), b)
|
||
|
case reflect.Struct:
|
||
|
t := v.Type()
|
||
|
b.WriteString(t.String())
|
||
|
b.WriteByte('{')
|
||
|
for i := 0; i < v.NumField(); i++ {
|
||
|
if i > 0 {
|
||
|
b.WriteString(", ")
|
||
|
}
|
||
|
if t.Field(i).Name == "BaseLayer" {
|
||
|
fmt.Fprintf(b, "BaseLayer:%s", baseLayerString(v.Field(i)))
|
||
|
} else if v.Field(i).Kind() == reflect.Struct {
|
||
|
fmt.Fprintf(b, "%s:", t.Field(i).Name)
|
||
|
layerGoString(v.Field(i), b)
|
||
|
} else if v.Field(i).Kind() == reflect.Ptr {
|
||
|
b.WriteByte('&')
|
||
|
layerGoString(v.Field(i), b)
|
||
|
} else {
|
||
|
fmt.Fprintf(b, "%s:%#v", t.Field(i).Name, v.Field(i))
|
||
|
}
|
||
|
}
|
||
|
b.WriteByte('}')
|
||
|
default:
|
||
|
fmt.Fprintf(b, "%#v", i)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// LayerGoString returns a representation of the layer in Go syntax,
|
||
|
// taking care to shorten "very long" BaseLayer byte slices
|
||
|
func LayerGoString(l Layer) string {
|
||
|
b := new(bytes.Buffer)
|
||
|
layerGoString(l, b)
|
||
|
return b.String()
|
||
|
}
|
||
|
|
||
|
func (p *packet) packetString() string {
|
||
|
var b bytes.Buffer
|
||
|
fmt.Fprintf(&b, "PACKET: %d bytes", len(p.Data()))
|
||
|
if p.metadata.Truncated {
|
||
|
b.WriteString(", truncated")
|
||
|
}
|
||
|
if p.metadata.Length > 0 {
|
||
|
fmt.Fprintf(&b, ", wire length %d cap length %d", p.metadata.Length, p.metadata.CaptureLength)
|
||
|
}
|
||
|
if !p.metadata.Timestamp.IsZero() {
|
||
|
fmt.Fprintf(&b, " @ %v", p.metadata.Timestamp)
|
||
|
}
|
||
|
b.WriteByte('\n')
|
||
|
for i, l := range p.layers {
|
||
|
fmt.Fprintf(&b, "- Layer %d (%02d bytes) = %s\n", i+1, len(l.LayerContents()), LayerString(l))
|
||
|
}
|
||
|
return b.String()
|
||
|
}
|
||
|
|
||
|
func (p *packet) packetDump() string {
|
||
|
var b bytes.Buffer
|
||
|
fmt.Fprintf(&b, "-- FULL PACKET DATA (%d bytes) ------------------------------------\n%s", len(p.data), hex.Dump(p.data))
|
||
|
for i, l := range p.layers {
|
||
|
fmt.Fprintf(&b, "--- Layer %d ---\n%s", i+1, LayerDump(l))
|
||
|
}
|
||
|
return b.String()
|
||
|
}
|
||
|
|
||
|
// eagerPacket is a packet implementation that does eager decoding. Upon
|
||
|
// initial construction, it decodes all the layers it can from packet data.
|
||
|
// eagerPacket implements Packet and PacketBuilder.
|
||
|
type eagerPacket struct {
|
||
|
packet
|
||
|
}
|
||
|
|
||
|
var errNilDecoder = errors.New("NextDecoder passed nil decoder, probably an unsupported decode type")
|
||
|
|
||
|
func (p *eagerPacket) NextDecoder(next Decoder) error {
|
||
|
if next == nil {
|
||
|
return errNilDecoder
|
||
|
}
|
||
|
if p.last == nil {
|
||
|
return errors.New("NextDecoder called, but no layers added yet")
|
||
|
}
|
||
|
d := p.last.LayerPayload()
|
||
|
if len(d) == 0 {
|
||
|
return nil
|
||
|
}
|
||
|
// Since we're eager, immediately call the next decoder.
|
||
|
return next.Decode(d, p)
|
||
|
}
|
||
|
func (p *eagerPacket) initialDecode(dec Decoder) {
|
||
|
defer p.recoverDecodeError()
|
||
|
err := dec.Decode(p.data, p)
|
||
|
if err != nil {
|
||
|
p.addFinalDecodeError(err, nil)
|
||
|
}
|
||
|
}
|
||
|
func (p *eagerPacket) LinkLayer() LinkLayer {
|
||
|
return p.link
|
||
|
}
|
||
|
func (p *eagerPacket) NetworkLayer() NetworkLayer {
|
||
|
return p.network
|
||
|
}
|
||
|
func (p *eagerPacket) TransportLayer() TransportLayer {
|
||
|
return p.transport
|
||
|
}
|
||
|
func (p *eagerPacket) ApplicationLayer() ApplicationLayer {
|
||
|
return p.application
|
||
|
}
|
||
|
func (p *eagerPacket) ErrorLayer() ErrorLayer {
|
||
|
return p.failure
|
||
|
}
|
||
|
func (p *eagerPacket) Layers() []Layer {
|
||
|
return p.layers
|
||
|
}
|
||
|
func (p *eagerPacket) Layer(t LayerType) Layer {
|
||
|
for _, l := range p.layers {
|
||
|
if l.LayerType() == t {
|
||
|
return l
|
||
|
}
|
||
|
}
|
||
|
return nil
|
||
|
}
|
||
|
func (p *eagerPacket) LayerClass(lc LayerClass) Layer {
|
||
|
for _, l := range p.layers {
|
||
|
if lc.Contains(l.LayerType()) {
|
||
|
return l
|
||
|
}
|
||
|
}
|
||
|
return nil
|
||
|
}
|
||
|
func (p *eagerPacket) String() string { return p.packetString() }
|
||
|
func (p *eagerPacket) Dump() string { return p.packetDump() }
|
||
|
|
||
|
// lazyPacket does lazy decoding on its packet data. On construction it does
|
||
|
// no initial decoding. For each function call, it decodes only as many layers
|
||
|
// as are necessary to compute the return value for that function.
|
||
|
// lazyPacket implements Packet and PacketBuilder.
|
||
|
type lazyPacket struct {
|
||
|
packet
|
||
|
next Decoder
|
||
|
}
|
||
|
|
||
|
func (p *lazyPacket) NextDecoder(next Decoder) error {
|
||
|
if next == nil {
|
||
|
return errNilDecoder
|
||
|
}
|
||
|
p.next = next
|
||
|
return nil
|
||
|
}
|
||
|
func (p *lazyPacket) decodeNextLayer() {
|
||
|
if p.next == nil {
|
||
|
return
|
||
|
}
|
||
|
d := p.data
|
||
|
if p.last != nil {
|
||
|
d = p.last.LayerPayload()
|
||
|
}
|
||
|
next := p.next
|
||
|
p.next = nil
|
||
|
// We've just set p.next to nil, so if we see we have no data, this should be
|
||
|
// the final call we get to decodeNextLayer if we return here.
|
||
|
if len(d) == 0 {
|
||
|
return
|
||
|
}
|
||
|
defer p.recoverDecodeError()
|
||
|
err := next.Decode(d, p)
|
||
|
if err != nil {
|
||
|
p.addFinalDecodeError(err, nil)
|
||
|
}
|
||
|
}
|
||
|
func (p *lazyPacket) LinkLayer() LinkLayer {
|
||
|
for p.link == nil && p.next != nil {
|
||
|
p.decodeNextLayer()
|
||
|
}
|
||
|
return p.link
|
||
|
}
|
||
|
func (p *lazyPacket) NetworkLayer() NetworkLayer {
|
||
|
for p.network == nil && p.next != nil {
|
||
|
p.decodeNextLayer()
|
||
|
}
|
||
|
return p.network
|
||
|
}
|
||
|
func (p *lazyPacket) TransportLayer() TransportLayer {
|
||
|
for p.transport == nil && p.next != nil {
|
||
|
p.decodeNextLayer()
|
||
|
}
|
||
|
return p.transport
|
||
|
}
|
||
|
func (p *lazyPacket) ApplicationLayer() ApplicationLayer {
|
||
|
for p.application == nil && p.next != nil {
|
||
|
p.decodeNextLayer()
|
||
|
}
|
||
|
return p.application
|
||
|
}
|
||
|
func (p *lazyPacket) ErrorLayer() ErrorLayer {
|
||
|
for p.failure == nil && p.next != nil {
|
||
|
p.decodeNextLayer()
|
||
|
}
|
||
|
return p.failure
|
||
|
}
|
||
|
func (p *lazyPacket) Layers() []Layer {
|
||
|
for p.next != nil {
|
||
|
p.decodeNextLayer()
|
||
|
}
|
||
|
return p.layers
|
||
|
}
|
||
|
func (p *lazyPacket) Layer(t LayerType) Layer {
|
||
|
for _, l := range p.layers {
|
||
|
if l.LayerType() == t {
|
||
|
return l
|
||
|
}
|
||
|
}
|
||
|
numLayers := len(p.layers)
|
||
|
for p.next != nil {
|
||
|
p.decodeNextLayer()
|
||
|
for _, l := range p.layers[numLayers:] {
|
||
|
if l.LayerType() == t {
|
||
|
return l
|
||
|
}
|
||
|
}
|
||
|
numLayers = len(p.layers)
|
||
|
}
|
||
|
return nil
|
||
|
}
|
||
|
func (p *lazyPacket) LayerClass(lc LayerClass) Layer {
|
||
|
for _, l := range p.layers {
|
||
|
if lc.Contains(l.LayerType()) {
|
||
|
return l
|
||
|
}
|
||
|
}
|
||
|
numLayers := len(p.layers)
|
||
|
for p.next != nil {
|
||
|
p.decodeNextLayer()
|
||
|
for _, l := range p.layers[numLayers:] {
|
||
|
if lc.Contains(l.LayerType()) {
|
||
|
return l
|
||
|
}
|
||
|
}
|
||
|
numLayers = len(p.layers)
|
||
|
}
|
||
|
return nil
|
||
|
}
|
||
|
func (p *lazyPacket) String() string { p.Layers(); return p.packetString() }
|
||
|
func (p *lazyPacket) Dump() string { p.Layers(); return p.packetDump() }
|
||
|
|
||
|
// DecodeOptions tells gopacket how to decode a packet.
|
||
|
type DecodeOptions struct {
|
||
|
// Lazy decoding decodes the minimum number of layers needed to return data
|
||
|
// for a packet at each function call. Be careful using this with concurrent
|
||
|
// packet processors, as each call to packet.* could mutate the packet, and
|
||
|
// two concurrent function calls could interact poorly.
|
||
|
Lazy bool
|
||
|
// NoCopy decoding doesn't copy its input buffer into storage that's owned by
|
||
|
// the packet. If you can guarantee that the bytes underlying the slice
|
||
|
// passed into NewPacket aren't going to be modified, this can be faster. If
|
||
|
// there's any chance that those bytes WILL be changed, this will invalidate
|
||
|
// your packets.
|
||
|
NoCopy bool
|
||
|
// SkipDecodeRecovery skips over panic recovery during packet decoding.
|
||
|
// Normally, when packets decode, if a panic occurs, that panic is captured
|
||
|
// by a recover(), and a DecodeFailure layer is added to the packet detailing
|
||
|
// the issue. If this flag is set, panics are instead allowed to continue up
|
||
|
// the stack.
|
||
|
SkipDecodeRecovery bool
|
||
|
// DecodeStreamsAsDatagrams enables routing of application-level layers in the TCP
|
||
|
// decoder. If true, we should try to decode layers after TCP in single packets.
|
||
|
// This is disabled by default because the reassembly package drives the decoding
|
||
|
// of TCP payload data after reassembly.
|
||
|
DecodeStreamsAsDatagrams bool
|
||
|
}
|
||
|
|
||
|
// Default decoding provides the safest (but slowest) method for decoding
|
||
|
// packets. It eagerly processes all layers (so it's concurrency-safe) and it
|
||
|
// copies its input buffer upon creation of the packet (so the packet remains
|
||
|
// valid if the underlying slice is modified. Both of these take time,
|
||
|
// though, so beware. If you can guarantee that the packet will only be used
|
||
|
// by one goroutine at a time, set Lazy decoding. If you can guarantee that
|
||
|
// the underlying slice won't change, set NoCopy decoding.
|
||
|
var Default = DecodeOptions{}
|
||
|
|
||
|
// Lazy is a DecodeOptions with just Lazy set.
|
||
|
var Lazy = DecodeOptions{Lazy: true}
|
||
|
|
||
|
// NoCopy is a DecodeOptions with just NoCopy set.
|
||
|
var NoCopy = DecodeOptions{NoCopy: true}
|
||
|
|
||
|
// DecodeStreamsAsDatagrams is a DecodeOptions with just DecodeStreamsAsDatagrams set.
|
||
|
var DecodeStreamsAsDatagrams = DecodeOptions{DecodeStreamsAsDatagrams: true}
|
||
|
|
||
|
// NewPacket creates a new Packet object from a set of bytes. The
|
||
|
// firstLayerDecoder tells it how to interpret the first layer from the bytes,
|
||
|
// future layers will be generated from that first layer automatically.
|
||
|
func NewPacket(data []byte, firstLayerDecoder Decoder, options DecodeOptions) Packet {
|
||
|
if !options.NoCopy {
|
||
|
dataCopy := make([]byte, len(data))
|
||
|
copy(dataCopy, data)
|
||
|
data = dataCopy
|
||
|
}
|
||
|
if options.Lazy {
|
||
|
p := &lazyPacket{
|
||
|
packet: packet{data: data, decodeOptions: options},
|
||
|
next: firstLayerDecoder,
|
||
|
}
|
||
|
p.layers = p.initialLayers[:0]
|
||
|
// Crazy craziness:
|
||
|
// If the following return statemet is REMOVED, and Lazy is FALSE, then
|
||
|
// eager packet processing becomes 17% FASTER. No, there is no logical
|
||
|
// explanation for this. However, it's such a hacky micro-optimization that
|
||
|
// we really can't rely on it. It appears to have to do with the size the
|
||
|
// compiler guesses for this function's stack space, since one symptom is
|
||
|
// that with the return statement in place, we more than double calls to
|
||
|
// runtime.morestack/runtime.lessstack. We'll hope the compiler gets better
|
||
|
// over time and we get this optimization for free. Until then, we'll have
|
||
|
// to live with slower packet processing.
|
||
|
return p
|
||
|
}
|
||
|
p := &eagerPacket{
|
||
|
packet: packet{data: data, decodeOptions: options},
|
||
|
}
|
||
|
p.layers = p.initialLayers[:0]
|
||
|
p.initialDecode(firstLayerDecoder)
|
||
|
return p
|
||
|
}
|
||
|
|
||
|
// PacketDataSource is an interface for some source of packet data. Users may
|
||
|
// create their own implementations, or use the existing implementations in
|
||
|
// gopacket/pcap (libpcap, allows reading from live interfaces or from
|
||
|
// pcap files) or gopacket/pfring (PF_RING, allows reading from live
|
||
|
// interfaces).
|
||
|
type PacketDataSource interface {
|
||
|
// ReadPacketData returns the next packet available from this data source.
|
||
|
// It returns:
|
||
|
// data: The bytes of an individual packet.
|
||
|
// ci: Metadata about the capture
|
||
|
// err: An error encountered while reading packet data. If err != nil,
|
||
|
// then data/ci will be ignored.
|
||
|
ReadPacketData() (data []byte, ci CaptureInfo, err error)
|
||
|
}
|
||
|
|
||
|
// ConcatFinitePacketDataSources returns a PacketDataSource that wraps a set
|
||
|
// of internal PacketDataSources, each of which will stop with io.EOF after
|
||
|
// reading a finite number of packets. The returned PacketDataSource will
|
||
|
// return all packets from the first finite source, followed by all packets from
|
||
|
// the second, etc. Once all finite sources have returned io.EOF, the returned
|
||
|
// source will as well.
|
||
|
func ConcatFinitePacketDataSources(pds ...PacketDataSource) PacketDataSource {
|
||
|
c := concat(pds)
|
||
|
return &c
|
||
|
}
|
||
|
|
||
|
type concat []PacketDataSource
|
||
|
|
||
|
func (c *concat) ReadPacketData() (data []byte, ci CaptureInfo, err error) {
|
||
|
for len(*c) > 0 {
|
||
|
data, ci, err = (*c)[0].ReadPacketData()
|
||
|
if err == io.EOF {
|
||
|
*c = (*c)[1:]
|
||
|
continue
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
return nil, CaptureInfo{}, io.EOF
|
||
|
}
|
||
|
|
||
|
// ZeroCopyPacketDataSource is an interface to pull packet data from sources
|
||
|
// that allow data to be returned without copying to a user-controlled buffer.
|
||
|
// It's very similar to PacketDataSource, except that the caller must be more
|
||
|
// careful in how the returned buffer is handled.
|
||
|
type ZeroCopyPacketDataSource interface {
|
||
|
// ZeroCopyReadPacketData returns the next packet available from this data source.
|
||
|
// It returns:
|
||
|
// data: The bytes of an individual packet. Unlike with
|
||
|
// PacketDataSource's ReadPacketData, the slice returned here points
|
||
|
// to a buffer owned by the data source. In particular, the bytes in
|
||
|
// this buffer may be changed by future calls to
|
||
|
// ZeroCopyReadPacketData. Do not use the returned buffer after
|
||
|
// subsequent ZeroCopyReadPacketData calls.
|
||
|
// ci: Metadata about the capture
|
||
|
// err: An error encountered while reading packet data. If err != nil,
|
||
|
// then data/ci will be ignored.
|
||
|
ZeroCopyReadPacketData() (data []byte, ci CaptureInfo, err error)
|
||
|
}
|
||
|
|
||
|
// PacketSource reads in packets from a PacketDataSource, decodes them, and
|
||
|
// returns them.
|
||
|
//
|
||
|
// There are currently two different methods for reading packets in through
|
||
|
// a PacketSource:
|
||
|
//
|
||
|
// Reading With Packets Function
|
||
|
//
|
||
|
// This method is the most convenient and easiest to code, but lacks
|
||
|
// flexibility. Packets returns a 'chan Packet', then asynchronously writes
|
||
|
// packets into that channel. Packets uses a blocking channel, and closes
|
||
|
// it if an io.EOF is returned by the underlying PacketDataSource. All other
|
||
|
// PacketDataSource errors are ignored and discarded.
|
||
|
// for packet := range packetSource.Packets() {
|
||
|
// ...
|
||
|
// }
|
||
|
//
|
||
|
// Reading With NextPacket Function
|
||
|
//
|
||
|
// This method is the most flexible, and exposes errors that may be
|
||
|
// encountered by the underlying PacketDataSource. It's also the fastest
|
||
|
// in a tight loop, since it doesn't have the overhead of a channel
|
||
|
// read/write. However, it requires the user to handle errors, most
|
||
|
// importantly the io.EOF error in cases where packets are being read from
|
||
|
// a file.
|
||
|
// for {
|
||
|
// packet, err := packetSource.NextPacket()
|
||
|
// if err == io.EOF {
|
||
|
// break
|
||
|
// } else if err != nil {
|
||
|
// log.Println("Error:", err)
|
||
|
// continue
|
||
|
// }
|
||
|
// handlePacket(packet) // Do something with each packet.
|
||
|
// }
|
||
|
type PacketSource struct {
|
||
|
source PacketDataSource
|
||
|
decoder Decoder
|
||
|
// DecodeOptions is the set of options to use for decoding each piece
|
||
|
// of packet data. This can/should be changed by the user to reflect the
|
||
|
// way packets should be decoded.
|
||
|
DecodeOptions
|
||
|
c chan Packet
|
||
|
}
|
||
|
|
||
|
// NewPacketSource creates a packet data source.
|
||
|
func NewPacketSource(source PacketDataSource, decoder Decoder) *PacketSource {
|
||
|
return &PacketSource{
|
||
|
source: source,
|
||
|
decoder: decoder,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// NextPacket returns the next decoded packet from the PacketSource. On error,
|
||
|
// it returns a nil packet and a non-nil error.
|
||
|
func (p *PacketSource) NextPacket() (Packet, error) {
|
||
|
data, ci, err := p.source.ReadPacketData()
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
packet := NewPacket(data, p.decoder, p.DecodeOptions)
|
||
|
m := packet.Metadata()
|
||
|
m.CaptureInfo = ci
|
||
|
m.Truncated = m.Truncated || ci.CaptureLength < ci.Length
|
||
|
return packet, nil
|
||
|
}
|
||
|
|
||
|
// packetsToChannel reads in all packets from the packet source and sends them
|
||
|
// to the given channel. This routine terminates when a non-temporary error
|
||
|
// is returned by NextPacket().
|
||
|
func (p *PacketSource) packetsToChannel() {
|
||
|
defer close(p.c)
|
||
|
for {
|
||
|
packet, err := p.NextPacket()
|
||
|
if err == nil {
|
||
|
p.c <- packet
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
// Immediately retry for temporary network errors
|
||
|
if nerr, ok := err.(net.Error); ok && nerr.Temporary() {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
// Immediately retry for EAGAIN
|
||
|
if err == syscall.EAGAIN {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
// Immediately break for known unrecoverable errors
|
||
|
if err == io.EOF || err == io.ErrUnexpectedEOF ||
|
||
|
err == io.ErrNoProgress || err == io.ErrClosedPipe || err == io.ErrShortBuffer ||
|
||
|
err == syscall.EBADF ||
|
||
|
strings.Contains(err.Error(), "use of closed file") {
|
||
|
break
|
||
|
}
|
||
|
|
||
|
// Sleep briefly and try again
|
||
|
time.Sleep(time.Millisecond * time.Duration(5))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Packets returns a channel of packets, allowing easy iterating over
|
||
|
// packets. Packets will be asynchronously read in from the underlying
|
||
|
// PacketDataSource and written to the returned channel. If the underlying
|
||
|
// PacketDataSource returns an io.EOF error, the channel will be closed.
|
||
|
// If any other error is encountered, it is ignored.
|
||
|
//
|
||
|
// for packet := range packetSource.Packets() {
|
||
|
// handlePacket(packet) // Do something with each packet.
|
||
|
// }
|
||
|
//
|
||
|
// If called more than once, returns the same channel.
|
||
|
func (p *PacketSource) Packets() chan Packet {
|
||
|
if p.c == nil {
|
||
|
p.c = make(chan Packet, 1000)
|
||
|
go p.packetsToChannel()
|
||
|
}
|
||
|
return p.c
|
||
|
}
|