TUN-3090: Upgrade crypto dep
This commit is contained in:
parent
ae8d784e36
commit
6e761cb7ae
2
go.mod
2
go.mod
|
@ -58,7 +58,7 @@ require (
|
|||
github.com/stretchr/testify v1.3.0
|
||||
github.com/tinylib/msgp v1.1.0 // indirect
|
||||
github.com/xo/dburl v0.0.0-20191005012637-293c3298d6c0
|
||||
golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550
|
||||
golang.org/x/crypto v0.0.0-20200604202706-70a84ac30bf9
|
||||
golang.org/x/net v0.0.0-20191014212845-da9a3fd4c582
|
||||
golang.org/x/oauth2 v0.0.0-20190604053449-0f29369cfe45 // indirect
|
||||
golang.org/x/sync v0.0.0-20190423024810-112230192c58
|
||||
|
|
2
go.sum
2
go.sum
|
@ -204,6 +204,8 @@ golang.org/x/crypto v0.0.0-20190325154230-a5d413f7728c/go.mod h1:djNgcEr1/C05ACk
|
|||
golang.org/x/crypto v0.0.0-20190701094942-4def268fd1a4/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
|
||||
golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550 h1:ObdrDkeb4kJdCP557AjRjq69pTHfNouLtWZG7j9rPN8=
|
||||
golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
|
||||
golang.org/x/crypto v0.0.0-20200604202706-70a84ac30bf9 h1:vEg9joUBmeBcK9iSJftGNf3coIG4HqZElCPehJsfAYM=
|
||||
golang.org/x/crypto v0.0.0-20200604202706-70a84ac30bf9/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
|
||||
golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
||||
golang.org/x/lint v0.0.0-20181026193005-c67002cb31c3/go.mod h1:UVdnD1Gm6xHRNCYTkRU2/jEulfH38KcIWyp/GAMgvoE=
|
||||
golang.org/x/lint v0.0.0-20190227174305-5b3e6a55c961/go.mod h1:wehouNa3lNwaWXcvxsM5YxQ5yQlVC4a0KAMCusXpPoU=
|
||||
|
|
|
@ -0,0 +1,291 @@
|
|||
// Copyright 2016 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package blake2b implements the BLAKE2b hash algorithm defined by RFC 7693
|
||||
// and the extendable output function (XOF) BLAKE2Xb.
|
||||
//
|
||||
// BLAKE2b is optimized for 64-bit platforms—including NEON-enabled ARMs—and
|
||||
// produces digests of any size between 1 and 64 bytes.
|
||||
// For a detailed specification of BLAKE2b see https://blake2.net/blake2.pdf
|
||||
// and for BLAKE2Xb see https://blake2.net/blake2x.pdf
|
||||
//
|
||||
// If you aren't sure which function you need, use BLAKE2b (Sum512 or New512).
|
||||
// If you need a secret-key MAC (message authentication code), use the New512
|
||||
// function with a non-nil key.
|
||||
//
|
||||
// BLAKE2X is a construction to compute hash values larger than 64 bytes. It
|
||||
// can produce hash values between 0 and 4 GiB.
|
||||
package blake2b
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"hash"
|
||||
)
|
||||
|
||||
const (
|
||||
// The blocksize of BLAKE2b in bytes.
|
||||
BlockSize = 128
|
||||
// The hash size of BLAKE2b-512 in bytes.
|
||||
Size = 64
|
||||
// The hash size of BLAKE2b-384 in bytes.
|
||||
Size384 = 48
|
||||
// The hash size of BLAKE2b-256 in bytes.
|
||||
Size256 = 32
|
||||
)
|
||||
|
||||
var (
|
||||
useAVX2 bool
|
||||
useAVX bool
|
||||
useSSE4 bool
|
||||
)
|
||||
|
||||
var (
|
||||
errKeySize = errors.New("blake2b: invalid key size")
|
||||
errHashSize = errors.New("blake2b: invalid hash size")
|
||||
)
|
||||
|
||||
var iv = [8]uint64{
|
||||
0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1,
|
||||
0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179,
|
||||
}
|
||||
|
||||
// Sum512 returns the BLAKE2b-512 checksum of the data.
|
||||
func Sum512(data []byte) [Size]byte {
|
||||
var sum [Size]byte
|
||||
checkSum(&sum, Size, data)
|
||||
return sum
|
||||
}
|
||||
|
||||
// Sum384 returns the BLAKE2b-384 checksum of the data.
|
||||
func Sum384(data []byte) [Size384]byte {
|
||||
var sum [Size]byte
|
||||
var sum384 [Size384]byte
|
||||
checkSum(&sum, Size384, data)
|
||||
copy(sum384[:], sum[:Size384])
|
||||
return sum384
|
||||
}
|
||||
|
||||
// Sum256 returns the BLAKE2b-256 checksum of the data.
|
||||
func Sum256(data []byte) [Size256]byte {
|
||||
var sum [Size]byte
|
||||
var sum256 [Size256]byte
|
||||
checkSum(&sum, Size256, data)
|
||||
copy(sum256[:], sum[:Size256])
|
||||
return sum256
|
||||
}
|
||||
|
||||
// New512 returns a new hash.Hash computing the BLAKE2b-512 checksum. A non-nil
|
||||
// key turns the hash into a MAC. The key must be between zero and 64 bytes long.
|
||||
func New512(key []byte) (hash.Hash, error) { return newDigest(Size, key) }
|
||||
|
||||
// New384 returns a new hash.Hash computing the BLAKE2b-384 checksum. A non-nil
|
||||
// key turns the hash into a MAC. The key must be between zero and 64 bytes long.
|
||||
func New384(key []byte) (hash.Hash, error) { return newDigest(Size384, key) }
|
||||
|
||||
// New256 returns a new hash.Hash computing the BLAKE2b-256 checksum. A non-nil
|
||||
// key turns the hash into a MAC. The key must be between zero and 64 bytes long.
|
||||
func New256(key []byte) (hash.Hash, error) { return newDigest(Size256, key) }
|
||||
|
||||
// New returns a new hash.Hash computing the BLAKE2b checksum with a custom length.
|
||||
// A non-nil key turns the hash into a MAC. The key must be between zero and 64 bytes long.
|
||||
// The hash size can be a value between 1 and 64 but it is highly recommended to use
|
||||
// values equal or greater than:
|
||||
// - 32 if BLAKE2b is used as a hash function (The key is zero bytes long).
|
||||
// - 16 if BLAKE2b is used as a MAC function (The key is at least 16 bytes long).
|
||||
// When the key is nil, the returned hash.Hash implements BinaryMarshaler
|
||||
// and BinaryUnmarshaler for state (de)serialization as documented by hash.Hash.
|
||||
func New(size int, key []byte) (hash.Hash, error) { return newDigest(size, key) }
|
||||
|
||||
func newDigest(hashSize int, key []byte) (*digest, error) {
|
||||
if hashSize < 1 || hashSize > Size {
|
||||
return nil, errHashSize
|
||||
}
|
||||
if len(key) > Size {
|
||||
return nil, errKeySize
|
||||
}
|
||||
d := &digest{
|
||||
size: hashSize,
|
||||
keyLen: len(key),
|
||||
}
|
||||
copy(d.key[:], key)
|
||||
d.Reset()
|
||||
return d, nil
|
||||
}
|
||||
|
||||
func checkSum(sum *[Size]byte, hashSize int, data []byte) {
|
||||
h := iv
|
||||
h[0] ^= uint64(hashSize) | (1 << 16) | (1 << 24)
|
||||
var c [2]uint64
|
||||
|
||||
if length := len(data); length > BlockSize {
|
||||
n := length &^ (BlockSize - 1)
|
||||
if length == n {
|
||||
n -= BlockSize
|
||||
}
|
||||
hashBlocks(&h, &c, 0, data[:n])
|
||||
data = data[n:]
|
||||
}
|
||||
|
||||
var block [BlockSize]byte
|
||||
offset := copy(block[:], data)
|
||||
remaining := uint64(BlockSize - offset)
|
||||
if c[0] < remaining {
|
||||
c[1]--
|
||||
}
|
||||
c[0] -= remaining
|
||||
|
||||
hashBlocks(&h, &c, 0xFFFFFFFFFFFFFFFF, block[:])
|
||||
|
||||
for i, v := range h[:(hashSize+7)/8] {
|
||||
binary.LittleEndian.PutUint64(sum[8*i:], v)
|
||||
}
|
||||
}
|
||||
|
||||
type digest struct {
|
||||
h [8]uint64
|
||||
c [2]uint64
|
||||
size int
|
||||
block [BlockSize]byte
|
||||
offset int
|
||||
|
||||
key [BlockSize]byte
|
||||
keyLen int
|
||||
}
|
||||
|
||||
const (
|
||||
magic = "b2b"
|
||||
marshaledSize = len(magic) + 8*8 + 2*8 + 1 + BlockSize + 1
|
||||
)
|
||||
|
||||
func (d *digest) MarshalBinary() ([]byte, error) {
|
||||
if d.keyLen != 0 {
|
||||
return nil, errors.New("crypto/blake2b: cannot marshal MACs")
|
||||
}
|
||||
b := make([]byte, 0, marshaledSize)
|
||||
b = append(b, magic...)
|
||||
for i := 0; i < 8; i++ {
|
||||
b = appendUint64(b, d.h[i])
|
||||
}
|
||||
b = appendUint64(b, d.c[0])
|
||||
b = appendUint64(b, d.c[1])
|
||||
// Maximum value for size is 64
|
||||
b = append(b, byte(d.size))
|
||||
b = append(b, d.block[:]...)
|
||||
b = append(b, byte(d.offset))
|
||||
return b, nil
|
||||
}
|
||||
|
||||
func (d *digest) UnmarshalBinary(b []byte) error {
|
||||
if len(b) < len(magic) || string(b[:len(magic)]) != magic {
|
||||
return errors.New("crypto/blake2b: invalid hash state identifier")
|
||||
}
|
||||
if len(b) != marshaledSize {
|
||||
return errors.New("crypto/blake2b: invalid hash state size")
|
||||
}
|
||||
b = b[len(magic):]
|
||||
for i := 0; i < 8; i++ {
|
||||
b, d.h[i] = consumeUint64(b)
|
||||
}
|
||||
b, d.c[0] = consumeUint64(b)
|
||||
b, d.c[1] = consumeUint64(b)
|
||||
d.size = int(b[0])
|
||||
b = b[1:]
|
||||
copy(d.block[:], b[:BlockSize])
|
||||
b = b[BlockSize:]
|
||||
d.offset = int(b[0])
|
||||
return nil
|
||||
}
|
||||
|
||||
func (d *digest) BlockSize() int { return BlockSize }
|
||||
|
||||
func (d *digest) Size() int { return d.size }
|
||||
|
||||
func (d *digest) Reset() {
|
||||
d.h = iv
|
||||
d.h[0] ^= uint64(d.size) | (uint64(d.keyLen) << 8) | (1 << 16) | (1 << 24)
|
||||
d.offset, d.c[0], d.c[1] = 0, 0, 0
|
||||
if d.keyLen > 0 {
|
||||
d.block = d.key
|
||||
d.offset = BlockSize
|
||||
}
|
||||
}
|
||||
|
||||
func (d *digest) Write(p []byte) (n int, err error) {
|
||||
n = len(p)
|
||||
|
||||
if d.offset > 0 {
|
||||
remaining := BlockSize - d.offset
|
||||
if n <= remaining {
|
||||
d.offset += copy(d.block[d.offset:], p)
|
||||
return
|
||||
}
|
||||
copy(d.block[d.offset:], p[:remaining])
|
||||
hashBlocks(&d.h, &d.c, 0, d.block[:])
|
||||
d.offset = 0
|
||||
p = p[remaining:]
|
||||
}
|
||||
|
||||
if length := len(p); length > BlockSize {
|
||||
nn := length &^ (BlockSize - 1)
|
||||
if length == nn {
|
||||
nn -= BlockSize
|
||||
}
|
||||
hashBlocks(&d.h, &d.c, 0, p[:nn])
|
||||
p = p[nn:]
|
||||
}
|
||||
|
||||
if len(p) > 0 {
|
||||
d.offset += copy(d.block[:], p)
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func (d *digest) Sum(sum []byte) []byte {
|
||||
var hash [Size]byte
|
||||
d.finalize(&hash)
|
||||
return append(sum, hash[:d.size]...)
|
||||
}
|
||||
|
||||
func (d *digest) finalize(hash *[Size]byte) {
|
||||
var block [BlockSize]byte
|
||||
copy(block[:], d.block[:d.offset])
|
||||
remaining := uint64(BlockSize - d.offset)
|
||||
|
||||
c := d.c
|
||||
if c[0] < remaining {
|
||||
c[1]--
|
||||
}
|
||||
c[0] -= remaining
|
||||
|
||||
h := d.h
|
||||
hashBlocks(&h, &c, 0xFFFFFFFFFFFFFFFF, block[:])
|
||||
|
||||
for i, v := range h {
|
||||
binary.LittleEndian.PutUint64(hash[8*i:], v)
|
||||
}
|
||||
}
|
||||
|
||||
func appendUint64(b []byte, x uint64) []byte {
|
||||
var a [8]byte
|
||||
binary.BigEndian.PutUint64(a[:], x)
|
||||
return append(b, a[:]...)
|
||||
}
|
||||
|
||||
func appendUint32(b []byte, x uint32) []byte {
|
||||
var a [4]byte
|
||||
binary.BigEndian.PutUint32(a[:], x)
|
||||
return append(b, a[:]...)
|
||||
}
|
||||
|
||||
func consumeUint64(b []byte) ([]byte, uint64) {
|
||||
x := binary.BigEndian.Uint64(b)
|
||||
return b[8:], x
|
||||
}
|
||||
|
||||
func consumeUint32(b []byte) ([]byte, uint32) {
|
||||
x := binary.BigEndian.Uint32(b)
|
||||
return b[4:], x
|
||||
}
|
|
@ -0,0 +1,37 @@
|
|||
// Copyright 2016 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build go1.7,amd64,!gccgo,!appengine
|
||||
|
||||
package blake2b
|
||||
|
||||
import "golang.org/x/sys/cpu"
|
||||
|
||||
func init() {
|
||||
useAVX2 = cpu.X86.HasAVX2
|
||||
useAVX = cpu.X86.HasAVX
|
||||
useSSE4 = cpu.X86.HasSSE41
|
||||
}
|
||||
|
||||
//go:noescape
|
||||
func hashBlocksAVX2(h *[8]uint64, c *[2]uint64, flag uint64, blocks []byte)
|
||||
|
||||
//go:noescape
|
||||
func hashBlocksAVX(h *[8]uint64, c *[2]uint64, flag uint64, blocks []byte)
|
||||
|
||||
//go:noescape
|
||||
func hashBlocksSSE4(h *[8]uint64, c *[2]uint64, flag uint64, blocks []byte)
|
||||
|
||||
func hashBlocks(h *[8]uint64, c *[2]uint64, flag uint64, blocks []byte) {
|
||||
switch {
|
||||
case useAVX2:
|
||||
hashBlocksAVX2(h, c, flag, blocks)
|
||||
case useAVX:
|
||||
hashBlocksAVX(h, c, flag, blocks)
|
||||
case useSSE4:
|
||||
hashBlocksSSE4(h, c, flag, blocks)
|
||||
default:
|
||||
hashBlocksGeneric(h, c, flag, blocks)
|
||||
}
|
||||
}
|
|
@ -0,0 +1,750 @@
|
|||
// Copyright 2016 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build go1.7,amd64,!gccgo,!appengine
|
||||
|
||||
#include "textflag.h"
|
||||
|
||||
DATA ·AVX2_iv0<>+0x00(SB)/8, $0x6a09e667f3bcc908
|
||||
DATA ·AVX2_iv0<>+0x08(SB)/8, $0xbb67ae8584caa73b
|
||||
DATA ·AVX2_iv0<>+0x10(SB)/8, $0x3c6ef372fe94f82b
|
||||
DATA ·AVX2_iv0<>+0x18(SB)/8, $0xa54ff53a5f1d36f1
|
||||
GLOBL ·AVX2_iv0<>(SB), (NOPTR+RODATA), $32
|
||||
|
||||
DATA ·AVX2_iv1<>+0x00(SB)/8, $0x510e527fade682d1
|
||||
DATA ·AVX2_iv1<>+0x08(SB)/8, $0x9b05688c2b3e6c1f
|
||||
DATA ·AVX2_iv1<>+0x10(SB)/8, $0x1f83d9abfb41bd6b
|
||||
DATA ·AVX2_iv1<>+0x18(SB)/8, $0x5be0cd19137e2179
|
||||
GLOBL ·AVX2_iv1<>(SB), (NOPTR+RODATA), $32
|
||||
|
||||
DATA ·AVX2_c40<>+0x00(SB)/8, $0x0201000706050403
|
||||
DATA ·AVX2_c40<>+0x08(SB)/8, $0x0a09080f0e0d0c0b
|
||||
DATA ·AVX2_c40<>+0x10(SB)/8, $0x0201000706050403
|
||||
DATA ·AVX2_c40<>+0x18(SB)/8, $0x0a09080f0e0d0c0b
|
||||
GLOBL ·AVX2_c40<>(SB), (NOPTR+RODATA), $32
|
||||
|
||||
DATA ·AVX2_c48<>+0x00(SB)/8, $0x0100070605040302
|
||||
DATA ·AVX2_c48<>+0x08(SB)/8, $0x09080f0e0d0c0b0a
|
||||
DATA ·AVX2_c48<>+0x10(SB)/8, $0x0100070605040302
|
||||
DATA ·AVX2_c48<>+0x18(SB)/8, $0x09080f0e0d0c0b0a
|
||||
GLOBL ·AVX2_c48<>(SB), (NOPTR+RODATA), $32
|
||||
|
||||
DATA ·AVX_iv0<>+0x00(SB)/8, $0x6a09e667f3bcc908
|
||||
DATA ·AVX_iv0<>+0x08(SB)/8, $0xbb67ae8584caa73b
|
||||
GLOBL ·AVX_iv0<>(SB), (NOPTR+RODATA), $16
|
||||
|
||||
DATA ·AVX_iv1<>+0x00(SB)/8, $0x3c6ef372fe94f82b
|
||||
DATA ·AVX_iv1<>+0x08(SB)/8, $0xa54ff53a5f1d36f1
|
||||
GLOBL ·AVX_iv1<>(SB), (NOPTR+RODATA), $16
|
||||
|
||||
DATA ·AVX_iv2<>+0x00(SB)/8, $0x510e527fade682d1
|
||||
DATA ·AVX_iv2<>+0x08(SB)/8, $0x9b05688c2b3e6c1f
|
||||
GLOBL ·AVX_iv2<>(SB), (NOPTR+RODATA), $16
|
||||
|
||||
DATA ·AVX_iv3<>+0x00(SB)/8, $0x1f83d9abfb41bd6b
|
||||
DATA ·AVX_iv3<>+0x08(SB)/8, $0x5be0cd19137e2179
|
||||
GLOBL ·AVX_iv3<>(SB), (NOPTR+RODATA), $16
|
||||
|
||||
DATA ·AVX_c40<>+0x00(SB)/8, $0x0201000706050403
|
||||
DATA ·AVX_c40<>+0x08(SB)/8, $0x0a09080f0e0d0c0b
|
||||
GLOBL ·AVX_c40<>(SB), (NOPTR+RODATA), $16
|
||||
|
||||
DATA ·AVX_c48<>+0x00(SB)/8, $0x0100070605040302
|
||||
DATA ·AVX_c48<>+0x08(SB)/8, $0x09080f0e0d0c0b0a
|
||||
GLOBL ·AVX_c48<>(SB), (NOPTR+RODATA), $16
|
||||
|
||||
#define VPERMQ_0x39_Y1_Y1 BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xc9; BYTE $0x39
|
||||
#define VPERMQ_0x93_Y1_Y1 BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xc9; BYTE $0x93
|
||||
#define VPERMQ_0x4E_Y2_Y2 BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xd2; BYTE $0x4e
|
||||
#define VPERMQ_0x93_Y3_Y3 BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xdb; BYTE $0x93
|
||||
#define VPERMQ_0x39_Y3_Y3 BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xdb; BYTE $0x39
|
||||
|
||||
#define ROUND_AVX2(m0, m1, m2, m3, t, c40, c48) \
|
||||
VPADDQ m0, Y0, Y0; \
|
||||
VPADDQ Y1, Y0, Y0; \
|
||||
VPXOR Y0, Y3, Y3; \
|
||||
VPSHUFD $-79, Y3, Y3; \
|
||||
VPADDQ Y3, Y2, Y2; \
|
||||
VPXOR Y2, Y1, Y1; \
|
||||
VPSHUFB c40, Y1, Y1; \
|
||||
VPADDQ m1, Y0, Y0; \
|
||||
VPADDQ Y1, Y0, Y0; \
|
||||
VPXOR Y0, Y3, Y3; \
|
||||
VPSHUFB c48, Y3, Y3; \
|
||||
VPADDQ Y3, Y2, Y2; \
|
||||
VPXOR Y2, Y1, Y1; \
|
||||
VPADDQ Y1, Y1, t; \
|
||||
VPSRLQ $63, Y1, Y1; \
|
||||
VPXOR t, Y1, Y1; \
|
||||
VPERMQ_0x39_Y1_Y1; \
|
||||
VPERMQ_0x4E_Y2_Y2; \
|
||||
VPERMQ_0x93_Y3_Y3; \
|
||||
VPADDQ m2, Y0, Y0; \
|
||||
VPADDQ Y1, Y0, Y0; \
|
||||
VPXOR Y0, Y3, Y3; \
|
||||
VPSHUFD $-79, Y3, Y3; \
|
||||
VPADDQ Y3, Y2, Y2; \
|
||||
VPXOR Y2, Y1, Y1; \
|
||||
VPSHUFB c40, Y1, Y1; \
|
||||
VPADDQ m3, Y0, Y0; \
|
||||
VPADDQ Y1, Y0, Y0; \
|
||||
VPXOR Y0, Y3, Y3; \
|
||||
VPSHUFB c48, Y3, Y3; \
|
||||
VPADDQ Y3, Y2, Y2; \
|
||||
VPXOR Y2, Y1, Y1; \
|
||||
VPADDQ Y1, Y1, t; \
|
||||
VPSRLQ $63, Y1, Y1; \
|
||||
VPXOR t, Y1, Y1; \
|
||||
VPERMQ_0x39_Y3_Y3; \
|
||||
VPERMQ_0x4E_Y2_Y2; \
|
||||
VPERMQ_0x93_Y1_Y1
|
||||
|
||||
#define VMOVQ_SI_X11_0 BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x1E
|
||||
#define VMOVQ_SI_X12_0 BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x26
|
||||
#define VMOVQ_SI_X13_0 BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x2E
|
||||
#define VMOVQ_SI_X14_0 BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x36
|
||||
#define VMOVQ_SI_X15_0 BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x3E
|
||||
|
||||
#define VMOVQ_SI_X11(n) BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x5E; BYTE $n
|
||||
#define VMOVQ_SI_X12(n) BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x66; BYTE $n
|
||||
#define VMOVQ_SI_X13(n) BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x6E; BYTE $n
|
||||
#define VMOVQ_SI_X14(n) BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x76; BYTE $n
|
||||
#define VMOVQ_SI_X15(n) BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x7E; BYTE $n
|
||||
|
||||
#define VPINSRQ_1_SI_X11_0 BYTE $0xC4; BYTE $0x63; BYTE $0xA1; BYTE $0x22; BYTE $0x1E; BYTE $0x01
|
||||
#define VPINSRQ_1_SI_X12_0 BYTE $0xC4; BYTE $0x63; BYTE $0x99; BYTE $0x22; BYTE $0x26; BYTE $0x01
|
||||
#define VPINSRQ_1_SI_X13_0 BYTE $0xC4; BYTE $0x63; BYTE $0x91; BYTE $0x22; BYTE $0x2E; BYTE $0x01
|
||||
#define VPINSRQ_1_SI_X14_0 BYTE $0xC4; BYTE $0x63; BYTE $0x89; BYTE $0x22; BYTE $0x36; BYTE $0x01
|
||||
#define VPINSRQ_1_SI_X15_0 BYTE $0xC4; BYTE $0x63; BYTE $0x81; BYTE $0x22; BYTE $0x3E; BYTE $0x01
|
||||
|
||||
#define VPINSRQ_1_SI_X11(n) BYTE $0xC4; BYTE $0x63; BYTE $0xA1; BYTE $0x22; BYTE $0x5E; BYTE $n; BYTE $0x01
|
||||
#define VPINSRQ_1_SI_X12(n) BYTE $0xC4; BYTE $0x63; BYTE $0x99; BYTE $0x22; BYTE $0x66; BYTE $n; BYTE $0x01
|
||||
#define VPINSRQ_1_SI_X13(n) BYTE $0xC4; BYTE $0x63; BYTE $0x91; BYTE $0x22; BYTE $0x6E; BYTE $n; BYTE $0x01
|
||||
#define VPINSRQ_1_SI_X14(n) BYTE $0xC4; BYTE $0x63; BYTE $0x89; BYTE $0x22; BYTE $0x76; BYTE $n; BYTE $0x01
|
||||
#define VPINSRQ_1_SI_X15(n) BYTE $0xC4; BYTE $0x63; BYTE $0x81; BYTE $0x22; BYTE $0x7E; BYTE $n; BYTE $0x01
|
||||
|
||||
#define VMOVQ_R8_X15 BYTE $0xC4; BYTE $0x41; BYTE $0xF9; BYTE $0x6E; BYTE $0xF8
|
||||
#define VPINSRQ_1_R9_X15 BYTE $0xC4; BYTE $0x43; BYTE $0x81; BYTE $0x22; BYTE $0xF9; BYTE $0x01
|
||||
|
||||
// load msg: Y12 = (i0, i1, i2, i3)
|
||||
// i0, i1, i2, i3 must not be 0
|
||||
#define LOAD_MSG_AVX2_Y12(i0, i1, i2, i3) \
|
||||
VMOVQ_SI_X12(i0*8); \
|
||||
VMOVQ_SI_X11(i2*8); \
|
||||
VPINSRQ_1_SI_X12(i1*8); \
|
||||
VPINSRQ_1_SI_X11(i3*8); \
|
||||
VINSERTI128 $1, X11, Y12, Y12
|
||||
|
||||
// load msg: Y13 = (i0, i1, i2, i3)
|
||||
// i0, i1, i2, i3 must not be 0
|
||||
#define LOAD_MSG_AVX2_Y13(i0, i1, i2, i3) \
|
||||
VMOVQ_SI_X13(i0*8); \
|
||||
VMOVQ_SI_X11(i2*8); \
|
||||
VPINSRQ_1_SI_X13(i1*8); \
|
||||
VPINSRQ_1_SI_X11(i3*8); \
|
||||
VINSERTI128 $1, X11, Y13, Y13
|
||||
|
||||
// load msg: Y14 = (i0, i1, i2, i3)
|
||||
// i0, i1, i2, i3 must not be 0
|
||||
#define LOAD_MSG_AVX2_Y14(i0, i1, i2, i3) \
|
||||
VMOVQ_SI_X14(i0*8); \
|
||||
VMOVQ_SI_X11(i2*8); \
|
||||
VPINSRQ_1_SI_X14(i1*8); \
|
||||
VPINSRQ_1_SI_X11(i3*8); \
|
||||
VINSERTI128 $1, X11, Y14, Y14
|
||||
|
||||
// load msg: Y15 = (i0, i1, i2, i3)
|
||||
// i0, i1, i2, i3 must not be 0
|
||||
#define LOAD_MSG_AVX2_Y15(i0, i1, i2, i3) \
|
||||
VMOVQ_SI_X15(i0*8); \
|
||||
VMOVQ_SI_X11(i2*8); \
|
||||
VPINSRQ_1_SI_X15(i1*8); \
|
||||
VPINSRQ_1_SI_X11(i3*8); \
|
||||
VINSERTI128 $1, X11, Y15, Y15
|
||||
|
||||
#define LOAD_MSG_AVX2_0_2_4_6_1_3_5_7_8_10_12_14_9_11_13_15() \
|
||||
VMOVQ_SI_X12_0; \
|
||||
VMOVQ_SI_X11(4*8); \
|
||||
VPINSRQ_1_SI_X12(2*8); \
|
||||
VPINSRQ_1_SI_X11(6*8); \
|
||||
VINSERTI128 $1, X11, Y12, Y12; \
|
||||
LOAD_MSG_AVX2_Y13(1, 3, 5, 7); \
|
||||
LOAD_MSG_AVX2_Y14(8, 10, 12, 14); \
|
||||
LOAD_MSG_AVX2_Y15(9, 11, 13, 15)
|
||||
|
||||
#define LOAD_MSG_AVX2_14_4_9_13_10_8_15_6_1_0_11_5_12_2_7_3() \
|
||||
LOAD_MSG_AVX2_Y12(14, 4, 9, 13); \
|
||||
LOAD_MSG_AVX2_Y13(10, 8, 15, 6); \
|
||||
VMOVQ_SI_X11(11*8); \
|
||||
VPSHUFD $0x4E, 0*8(SI), X14; \
|
||||
VPINSRQ_1_SI_X11(5*8); \
|
||||
VINSERTI128 $1, X11, Y14, Y14; \
|
||||
LOAD_MSG_AVX2_Y15(12, 2, 7, 3)
|
||||
|
||||
#define LOAD_MSG_AVX2_11_12_5_15_8_0_2_13_10_3_7_9_14_6_1_4() \
|
||||
VMOVQ_SI_X11(5*8); \
|
||||
VMOVDQU 11*8(SI), X12; \
|
||||
VPINSRQ_1_SI_X11(15*8); \
|
||||
VINSERTI128 $1, X11, Y12, Y12; \
|
||||
VMOVQ_SI_X13(8*8); \
|
||||
VMOVQ_SI_X11(2*8); \
|
||||
VPINSRQ_1_SI_X13_0; \
|
||||
VPINSRQ_1_SI_X11(13*8); \
|
||||
VINSERTI128 $1, X11, Y13, Y13; \
|
||||
LOAD_MSG_AVX2_Y14(10, 3, 7, 9); \
|
||||
LOAD_MSG_AVX2_Y15(14, 6, 1, 4)
|
||||
|
||||
#define LOAD_MSG_AVX2_7_3_13_11_9_1_12_14_2_5_4_15_6_10_0_8() \
|
||||
LOAD_MSG_AVX2_Y12(7, 3, 13, 11); \
|
||||
LOAD_MSG_AVX2_Y13(9, 1, 12, 14); \
|
||||
LOAD_MSG_AVX2_Y14(2, 5, 4, 15); \
|
||||
VMOVQ_SI_X15(6*8); \
|
||||
VMOVQ_SI_X11_0; \
|
||||
VPINSRQ_1_SI_X15(10*8); \
|
||||
VPINSRQ_1_SI_X11(8*8); \
|
||||
VINSERTI128 $1, X11, Y15, Y15
|
||||
|
||||
#define LOAD_MSG_AVX2_9_5_2_10_0_7_4_15_14_11_6_3_1_12_8_13() \
|
||||
LOAD_MSG_AVX2_Y12(9, 5, 2, 10); \
|
||||
VMOVQ_SI_X13_0; \
|
||||
VMOVQ_SI_X11(4*8); \
|
||||
VPINSRQ_1_SI_X13(7*8); \
|
||||
VPINSRQ_1_SI_X11(15*8); \
|
||||
VINSERTI128 $1, X11, Y13, Y13; \
|
||||
LOAD_MSG_AVX2_Y14(14, 11, 6, 3); \
|
||||
LOAD_MSG_AVX2_Y15(1, 12, 8, 13)
|
||||
|
||||
#define LOAD_MSG_AVX2_2_6_0_8_12_10_11_3_4_7_15_1_13_5_14_9() \
|
||||
VMOVQ_SI_X12(2*8); \
|
||||
VMOVQ_SI_X11_0; \
|
||||
VPINSRQ_1_SI_X12(6*8); \
|
||||
VPINSRQ_1_SI_X11(8*8); \
|
||||
VINSERTI128 $1, X11, Y12, Y12; \
|
||||
LOAD_MSG_AVX2_Y13(12, 10, 11, 3); \
|
||||
LOAD_MSG_AVX2_Y14(4, 7, 15, 1); \
|
||||
LOAD_MSG_AVX2_Y15(13, 5, 14, 9)
|
||||
|
||||
#define LOAD_MSG_AVX2_12_1_14_4_5_15_13_10_0_6_9_8_7_3_2_11() \
|
||||
LOAD_MSG_AVX2_Y12(12, 1, 14, 4); \
|
||||
LOAD_MSG_AVX2_Y13(5, 15, 13, 10); \
|
||||
VMOVQ_SI_X14_0; \
|
||||
VPSHUFD $0x4E, 8*8(SI), X11; \
|
||||
VPINSRQ_1_SI_X14(6*8); \
|
||||
VINSERTI128 $1, X11, Y14, Y14; \
|
||||
LOAD_MSG_AVX2_Y15(7, 3, 2, 11)
|
||||
|
||||
#define LOAD_MSG_AVX2_13_7_12_3_11_14_1_9_5_15_8_2_0_4_6_10() \
|
||||
LOAD_MSG_AVX2_Y12(13, 7, 12, 3); \
|
||||
LOAD_MSG_AVX2_Y13(11, 14, 1, 9); \
|
||||
LOAD_MSG_AVX2_Y14(5, 15, 8, 2); \
|
||||
VMOVQ_SI_X15_0; \
|
||||
VMOVQ_SI_X11(6*8); \
|
||||
VPINSRQ_1_SI_X15(4*8); \
|
||||
VPINSRQ_1_SI_X11(10*8); \
|
||||
VINSERTI128 $1, X11, Y15, Y15
|
||||
|
||||
#define LOAD_MSG_AVX2_6_14_11_0_15_9_3_8_12_13_1_10_2_7_4_5() \
|
||||
VMOVQ_SI_X12(6*8); \
|
||||
VMOVQ_SI_X11(11*8); \
|
||||
VPINSRQ_1_SI_X12(14*8); \
|
||||
VPINSRQ_1_SI_X11_0; \
|
||||
VINSERTI128 $1, X11, Y12, Y12; \
|
||||
LOAD_MSG_AVX2_Y13(15, 9, 3, 8); \
|
||||
VMOVQ_SI_X11(1*8); \
|
||||
VMOVDQU 12*8(SI), X14; \
|
||||
VPINSRQ_1_SI_X11(10*8); \
|
||||
VINSERTI128 $1, X11, Y14, Y14; \
|
||||
VMOVQ_SI_X15(2*8); \
|
||||
VMOVDQU 4*8(SI), X11; \
|
||||
VPINSRQ_1_SI_X15(7*8); \
|
||||
VINSERTI128 $1, X11, Y15, Y15
|
||||
|
||||
#define LOAD_MSG_AVX2_10_8_7_1_2_4_6_5_15_9_3_13_11_14_12_0() \
|
||||
LOAD_MSG_AVX2_Y12(10, 8, 7, 1); \
|
||||
VMOVQ_SI_X13(2*8); \
|
||||
VPSHUFD $0x4E, 5*8(SI), X11; \
|
||||
VPINSRQ_1_SI_X13(4*8); \
|
||||
VINSERTI128 $1, X11, Y13, Y13; \
|
||||
LOAD_MSG_AVX2_Y14(15, 9, 3, 13); \
|
||||
VMOVQ_SI_X15(11*8); \
|
||||
VMOVQ_SI_X11(12*8); \
|
||||
VPINSRQ_1_SI_X15(14*8); \
|
||||
VPINSRQ_1_SI_X11_0; \
|
||||
VINSERTI128 $1, X11, Y15, Y15
|
||||
|
||||
// func hashBlocksAVX2(h *[8]uint64, c *[2]uint64, flag uint64, blocks []byte)
|
||||
TEXT ·hashBlocksAVX2(SB), 4, $320-48 // frame size = 288 + 32 byte alignment
|
||||
MOVQ h+0(FP), AX
|
||||
MOVQ c+8(FP), BX
|
||||
MOVQ flag+16(FP), CX
|
||||
MOVQ blocks_base+24(FP), SI
|
||||
MOVQ blocks_len+32(FP), DI
|
||||
|
||||
MOVQ SP, DX
|
||||
MOVQ SP, R9
|
||||
ADDQ $31, R9
|
||||
ANDQ $~31, R9
|
||||
MOVQ R9, SP
|
||||
|
||||
MOVQ CX, 16(SP)
|
||||
XORQ CX, CX
|
||||
MOVQ CX, 24(SP)
|
||||
|
||||
VMOVDQU ·AVX2_c40<>(SB), Y4
|
||||
VMOVDQU ·AVX2_c48<>(SB), Y5
|
||||
|
||||
VMOVDQU 0(AX), Y8
|
||||
VMOVDQU 32(AX), Y9
|
||||
VMOVDQU ·AVX2_iv0<>(SB), Y6
|
||||
VMOVDQU ·AVX2_iv1<>(SB), Y7
|
||||
|
||||
MOVQ 0(BX), R8
|
||||
MOVQ 8(BX), R9
|
||||
MOVQ R9, 8(SP)
|
||||
|
||||
loop:
|
||||
ADDQ $128, R8
|
||||
MOVQ R8, 0(SP)
|
||||
CMPQ R8, $128
|
||||
JGE noinc
|
||||
INCQ R9
|
||||
MOVQ R9, 8(SP)
|
||||
|
||||
noinc:
|
||||
VMOVDQA Y8, Y0
|
||||
VMOVDQA Y9, Y1
|
||||
VMOVDQA Y6, Y2
|
||||
VPXOR 0(SP), Y7, Y3
|
||||
|
||||
LOAD_MSG_AVX2_0_2_4_6_1_3_5_7_8_10_12_14_9_11_13_15()
|
||||
VMOVDQA Y12, 32(SP)
|
||||
VMOVDQA Y13, 64(SP)
|
||||
VMOVDQA Y14, 96(SP)
|
||||
VMOVDQA Y15, 128(SP)
|
||||
ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5)
|
||||
LOAD_MSG_AVX2_14_4_9_13_10_8_15_6_1_0_11_5_12_2_7_3()
|
||||
VMOVDQA Y12, 160(SP)
|
||||
VMOVDQA Y13, 192(SP)
|
||||
VMOVDQA Y14, 224(SP)
|
||||
VMOVDQA Y15, 256(SP)
|
||||
|
||||
ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5)
|
||||
LOAD_MSG_AVX2_11_12_5_15_8_0_2_13_10_3_7_9_14_6_1_4()
|
||||
ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5)
|
||||
LOAD_MSG_AVX2_7_3_13_11_9_1_12_14_2_5_4_15_6_10_0_8()
|
||||
ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5)
|
||||
LOAD_MSG_AVX2_9_5_2_10_0_7_4_15_14_11_6_3_1_12_8_13()
|
||||
ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5)
|
||||
LOAD_MSG_AVX2_2_6_0_8_12_10_11_3_4_7_15_1_13_5_14_9()
|
||||
ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5)
|
||||
LOAD_MSG_AVX2_12_1_14_4_5_15_13_10_0_6_9_8_7_3_2_11()
|
||||
ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5)
|
||||
LOAD_MSG_AVX2_13_7_12_3_11_14_1_9_5_15_8_2_0_4_6_10()
|
||||
ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5)
|
||||
LOAD_MSG_AVX2_6_14_11_0_15_9_3_8_12_13_1_10_2_7_4_5()
|
||||
ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5)
|
||||
LOAD_MSG_AVX2_10_8_7_1_2_4_6_5_15_9_3_13_11_14_12_0()
|
||||
ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5)
|
||||
|
||||
ROUND_AVX2(32(SP), 64(SP), 96(SP), 128(SP), Y10, Y4, Y5)
|
||||
ROUND_AVX2(160(SP), 192(SP), 224(SP), 256(SP), Y10, Y4, Y5)
|
||||
|
||||
VPXOR Y0, Y8, Y8
|
||||
VPXOR Y1, Y9, Y9
|
||||
VPXOR Y2, Y8, Y8
|
||||
VPXOR Y3, Y9, Y9
|
||||
|
||||
LEAQ 128(SI), SI
|
||||
SUBQ $128, DI
|
||||
JNE loop
|
||||
|
||||
MOVQ R8, 0(BX)
|
||||
MOVQ R9, 8(BX)
|
||||
|
||||
VMOVDQU Y8, 0(AX)
|
||||
VMOVDQU Y9, 32(AX)
|
||||
VZEROUPPER
|
||||
|
||||
MOVQ DX, SP
|
||||
RET
|
||||
|
||||
#define VPUNPCKLQDQ_X2_X2_X15 BYTE $0xC5; BYTE $0x69; BYTE $0x6C; BYTE $0xFA
|
||||
#define VPUNPCKLQDQ_X3_X3_X15 BYTE $0xC5; BYTE $0x61; BYTE $0x6C; BYTE $0xFB
|
||||
#define VPUNPCKLQDQ_X7_X7_X15 BYTE $0xC5; BYTE $0x41; BYTE $0x6C; BYTE $0xFF
|
||||
#define VPUNPCKLQDQ_X13_X13_X15 BYTE $0xC4; BYTE $0x41; BYTE $0x11; BYTE $0x6C; BYTE $0xFD
|
||||
#define VPUNPCKLQDQ_X14_X14_X15 BYTE $0xC4; BYTE $0x41; BYTE $0x09; BYTE $0x6C; BYTE $0xFE
|
||||
|
||||
#define VPUNPCKHQDQ_X15_X2_X2 BYTE $0xC4; BYTE $0xC1; BYTE $0x69; BYTE $0x6D; BYTE $0xD7
|
||||
#define VPUNPCKHQDQ_X15_X3_X3 BYTE $0xC4; BYTE $0xC1; BYTE $0x61; BYTE $0x6D; BYTE $0xDF
|
||||
#define VPUNPCKHQDQ_X15_X6_X6 BYTE $0xC4; BYTE $0xC1; BYTE $0x49; BYTE $0x6D; BYTE $0xF7
|
||||
#define VPUNPCKHQDQ_X15_X7_X7 BYTE $0xC4; BYTE $0xC1; BYTE $0x41; BYTE $0x6D; BYTE $0xFF
|
||||
#define VPUNPCKHQDQ_X15_X3_X2 BYTE $0xC4; BYTE $0xC1; BYTE $0x61; BYTE $0x6D; BYTE $0xD7
|
||||
#define VPUNPCKHQDQ_X15_X7_X6 BYTE $0xC4; BYTE $0xC1; BYTE $0x41; BYTE $0x6D; BYTE $0xF7
|
||||
#define VPUNPCKHQDQ_X15_X13_X3 BYTE $0xC4; BYTE $0xC1; BYTE $0x11; BYTE $0x6D; BYTE $0xDF
|
||||
#define VPUNPCKHQDQ_X15_X13_X7 BYTE $0xC4; BYTE $0xC1; BYTE $0x11; BYTE $0x6D; BYTE $0xFF
|
||||
|
||||
#define SHUFFLE_AVX() \
|
||||
VMOVDQA X6, X13; \
|
||||
VMOVDQA X2, X14; \
|
||||
VMOVDQA X4, X6; \
|
||||
VPUNPCKLQDQ_X13_X13_X15; \
|
||||
VMOVDQA X5, X4; \
|
||||
VMOVDQA X6, X5; \
|
||||
VPUNPCKHQDQ_X15_X7_X6; \
|
||||
VPUNPCKLQDQ_X7_X7_X15; \
|
||||
VPUNPCKHQDQ_X15_X13_X7; \
|
||||
VPUNPCKLQDQ_X3_X3_X15; \
|
||||
VPUNPCKHQDQ_X15_X2_X2; \
|
||||
VPUNPCKLQDQ_X14_X14_X15; \
|
||||
VPUNPCKHQDQ_X15_X3_X3; \
|
||||
|
||||
#define SHUFFLE_AVX_INV() \
|
||||
VMOVDQA X2, X13; \
|
||||
VMOVDQA X4, X14; \
|
||||
VPUNPCKLQDQ_X2_X2_X15; \
|
||||
VMOVDQA X5, X4; \
|
||||
VPUNPCKHQDQ_X15_X3_X2; \
|
||||
VMOVDQA X14, X5; \
|
||||
VPUNPCKLQDQ_X3_X3_X15; \
|
||||
VMOVDQA X6, X14; \
|
||||
VPUNPCKHQDQ_X15_X13_X3; \
|
||||
VPUNPCKLQDQ_X7_X7_X15; \
|
||||
VPUNPCKHQDQ_X15_X6_X6; \
|
||||
VPUNPCKLQDQ_X14_X14_X15; \
|
||||
VPUNPCKHQDQ_X15_X7_X7; \
|
||||
|
||||
#define HALF_ROUND_AVX(v0, v1, v2, v3, v4, v5, v6, v7, m0, m1, m2, m3, t0, c40, c48) \
|
||||
VPADDQ m0, v0, v0; \
|
||||
VPADDQ v2, v0, v0; \
|
||||
VPADDQ m1, v1, v1; \
|
||||
VPADDQ v3, v1, v1; \
|
||||
VPXOR v0, v6, v6; \
|
||||
VPXOR v1, v7, v7; \
|
||||
VPSHUFD $-79, v6, v6; \
|
||||
VPSHUFD $-79, v7, v7; \
|
||||
VPADDQ v6, v4, v4; \
|
||||
VPADDQ v7, v5, v5; \
|
||||
VPXOR v4, v2, v2; \
|
||||
VPXOR v5, v3, v3; \
|
||||
VPSHUFB c40, v2, v2; \
|
||||
VPSHUFB c40, v3, v3; \
|
||||
VPADDQ m2, v0, v0; \
|
||||
VPADDQ v2, v0, v0; \
|
||||
VPADDQ m3, v1, v1; \
|
||||
VPADDQ v3, v1, v1; \
|
||||
VPXOR v0, v6, v6; \
|
||||
VPXOR v1, v7, v7; \
|
||||
VPSHUFB c48, v6, v6; \
|
||||
VPSHUFB c48, v7, v7; \
|
||||
VPADDQ v6, v4, v4; \
|
||||
VPADDQ v7, v5, v5; \
|
||||
VPXOR v4, v2, v2; \
|
||||
VPXOR v5, v3, v3; \
|
||||
VPADDQ v2, v2, t0; \
|
||||
VPSRLQ $63, v2, v2; \
|
||||
VPXOR t0, v2, v2; \
|
||||
VPADDQ v3, v3, t0; \
|
||||
VPSRLQ $63, v3, v3; \
|
||||
VPXOR t0, v3, v3
|
||||
|
||||
// load msg: X12 = (i0, i1), X13 = (i2, i3), X14 = (i4, i5), X15 = (i6, i7)
|
||||
// i0, i1, i2, i3, i4, i5, i6, i7 must not be 0
|
||||
#define LOAD_MSG_AVX(i0, i1, i2, i3, i4, i5, i6, i7) \
|
||||
VMOVQ_SI_X12(i0*8); \
|
||||
VMOVQ_SI_X13(i2*8); \
|
||||
VMOVQ_SI_X14(i4*8); \
|
||||
VMOVQ_SI_X15(i6*8); \
|
||||
VPINSRQ_1_SI_X12(i1*8); \
|
||||
VPINSRQ_1_SI_X13(i3*8); \
|
||||
VPINSRQ_1_SI_X14(i5*8); \
|
||||
VPINSRQ_1_SI_X15(i7*8)
|
||||
|
||||
// load msg: X12 = (0, 2), X13 = (4, 6), X14 = (1, 3), X15 = (5, 7)
|
||||
#define LOAD_MSG_AVX_0_2_4_6_1_3_5_7() \
|
||||
VMOVQ_SI_X12_0; \
|
||||
VMOVQ_SI_X13(4*8); \
|
||||
VMOVQ_SI_X14(1*8); \
|
||||
VMOVQ_SI_X15(5*8); \
|
||||
VPINSRQ_1_SI_X12(2*8); \
|
||||
VPINSRQ_1_SI_X13(6*8); \
|
||||
VPINSRQ_1_SI_X14(3*8); \
|
||||
VPINSRQ_1_SI_X15(7*8)
|
||||
|
||||
// load msg: X12 = (1, 0), X13 = (11, 5), X14 = (12, 2), X15 = (7, 3)
|
||||
#define LOAD_MSG_AVX_1_0_11_5_12_2_7_3() \
|
||||
VPSHUFD $0x4E, 0*8(SI), X12; \
|
||||
VMOVQ_SI_X13(11*8); \
|
||||
VMOVQ_SI_X14(12*8); \
|
||||
VMOVQ_SI_X15(7*8); \
|
||||
VPINSRQ_1_SI_X13(5*8); \
|
||||
VPINSRQ_1_SI_X14(2*8); \
|
||||
VPINSRQ_1_SI_X15(3*8)
|
||||
|
||||
// load msg: X12 = (11, 12), X13 = (5, 15), X14 = (8, 0), X15 = (2, 13)
|
||||
#define LOAD_MSG_AVX_11_12_5_15_8_0_2_13() \
|
||||
VMOVDQU 11*8(SI), X12; \
|
||||
VMOVQ_SI_X13(5*8); \
|
||||
VMOVQ_SI_X14(8*8); \
|
||||
VMOVQ_SI_X15(2*8); \
|
||||
VPINSRQ_1_SI_X13(15*8); \
|
||||
VPINSRQ_1_SI_X14_0; \
|
||||
VPINSRQ_1_SI_X15(13*8)
|
||||
|
||||
// load msg: X12 = (2, 5), X13 = (4, 15), X14 = (6, 10), X15 = (0, 8)
|
||||
#define LOAD_MSG_AVX_2_5_4_15_6_10_0_8() \
|
||||
VMOVQ_SI_X12(2*8); \
|
||||
VMOVQ_SI_X13(4*8); \
|
||||
VMOVQ_SI_X14(6*8); \
|
||||
VMOVQ_SI_X15_0; \
|
||||
VPINSRQ_1_SI_X12(5*8); \
|
||||
VPINSRQ_1_SI_X13(15*8); \
|
||||
VPINSRQ_1_SI_X14(10*8); \
|
||||
VPINSRQ_1_SI_X15(8*8)
|
||||
|
||||
// load msg: X12 = (9, 5), X13 = (2, 10), X14 = (0, 7), X15 = (4, 15)
|
||||
#define LOAD_MSG_AVX_9_5_2_10_0_7_4_15() \
|
||||
VMOVQ_SI_X12(9*8); \
|
||||
VMOVQ_SI_X13(2*8); \
|
||||
VMOVQ_SI_X14_0; \
|
||||
VMOVQ_SI_X15(4*8); \
|
||||
VPINSRQ_1_SI_X12(5*8); \
|
||||
VPINSRQ_1_SI_X13(10*8); \
|
||||
VPINSRQ_1_SI_X14(7*8); \
|
||||
VPINSRQ_1_SI_X15(15*8)
|
||||
|
||||
// load msg: X12 = (2, 6), X13 = (0, 8), X14 = (12, 10), X15 = (11, 3)
|
||||
#define LOAD_MSG_AVX_2_6_0_8_12_10_11_3() \
|
||||
VMOVQ_SI_X12(2*8); \
|
||||
VMOVQ_SI_X13_0; \
|
||||
VMOVQ_SI_X14(12*8); \
|
||||
VMOVQ_SI_X15(11*8); \
|
||||
VPINSRQ_1_SI_X12(6*8); \
|
||||
VPINSRQ_1_SI_X13(8*8); \
|
||||
VPINSRQ_1_SI_X14(10*8); \
|
||||
VPINSRQ_1_SI_X15(3*8)
|
||||
|
||||
// load msg: X12 = (0, 6), X13 = (9, 8), X14 = (7, 3), X15 = (2, 11)
|
||||
#define LOAD_MSG_AVX_0_6_9_8_7_3_2_11() \
|
||||
MOVQ 0*8(SI), X12; \
|
||||
VPSHUFD $0x4E, 8*8(SI), X13; \
|
||||
MOVQ 7*8(SI), X14; \
|
||||
MOVQ 2*8(SI), X15; \
|
||||
VPINSRQ_1_SI_X12(6*8); \
|
||||
VPINSRQ_1_SI_X14(3*8); \
|
||||
VPINSRQ_1_SI_X15(11*8)
|
||||
|
||||
// load msg: X12 = (6, 14), X13 = (11, 0), X14 = (15, 9), X15 = (3, 8)
|
||||
#define LOAD_MSG_AVX_6_14_11_0_15_9_3_8() \
|
||||
MOVQ 6*8(SI), X12; \
|
||||
MOVQ 11*8(SI), X13; \
|
||||
MOVQ 15*8(SI), X14; \
|
||||
MOVQ 3*8(SI), X15; \
|
||||
VPINSRQ_1_SI_X12(14*8); \
|
||||
VPINSRQ_1_SI_X13_0; \
|
||||
VPINSRQ_1_SI_X14(9*8); \
|
||||
VPINSRQ_1_SI_X15(8*8)
|
||||
|
||||
// load msg: X12 = (5, 15), X13 = (8, 2), X14 = (0, 4), X15 = (6, 10)
|
||||
#define LOAD_MSG_AVX_5_15_8_2_0_4_6_10() \
|
||||
MOVQ 5*8(SI), X12; \
|
||||
MOVQ 8*8(SI), X13; \
|
||||
MOVQ 0*8(SI), X14; \
|
||||
MOVQ 6*8(SI), X15; \
|
||||
VPINSRQ_1_SI_X12(15*8); \
|
||||
VPINSRQ_1_SI_X13(2*8); \
|
||||
VPINSRQ_1_SI_X14(4*8); \
|
||||
VPINSRQ_1_SI_X15(10*8)
|
||||
|
||||
// load msg: X12 = (12, 13), X13 = (1, 10), X14 = (2, 7), X15 = (4, 5)
|
||||
#define LOAD_MSG_AVX_12_13_1_10_2_7_4_5() \
|
||||
VMOVDQU 12*8(SI), X12; \
|
||||
MOVQ 1*8(SI), X13; \
|
||||
MOVQ 2*8(SI), X14; \
|
||||
VPINSRQ_1_SI_X13(10*8); \
|
||||
VPINSRQ_1_SI_X14(7*8); \
|
||||
VMOVDQU 4*8(SI), X15
|
||||
|
||||
// load msg: X12 = (15, 9), X13 = (3, 13), X14 = (11, 14), X15 = (12, 0)
|
||||
#define LOAD_MSG_AVX_15_9_3_13_11_14_12_0() \
|
||||
MOVQ 15*8(SI), X12; \
|
||||
MOVQ 3*8(SI), X13; \
|
||||
MOVQ 11*8(SI), X14; \
|
||||
MOVQ 12*8(SI), X15; \
|
||||
VPINSRQ_1_SI_X12(9*8); \
|
||||
VPINSRQ_1_SI_X13(13*8); \
|
||||
VPINSRQ_1_SI_X14(14*8); \
|
||||
VPINSRQ_1_SI_X15_0
|
||||
|
||||
// func hashBlocksAVX(h *[8]uint64, c *[2]uint64, flag uint64, blocks []byte)
|
||||
TEXT ·hashBlocksAVX(SB), 4, $288-48 // frame size = 272 + 16 byte alignment
|
||||
MOVQ h+0(FP), AX
|
||||
MOVQ c+8(FP), BX
|
||||
MOVQ flag+16(FP), CX
|
||||
MOVQ blocks_base+24(FP), SI
|
||||
MOVQ blocks_len+32(FP), DI
|
||||
|
||||
MOVQ SP, BP
|
||||
MOVQ SP, R9
|
||||
ADDQ $15, R9
|
||||
ANDQ $~15, R9
|
||||
MOVQ R9, SP
|
||||
|
||||
VMOVDQU ·AVX_c40<>(SB), X0
|
||||
VMOVDQU ·AVX_c48<>(SB), X1
|
||||
VMOVDQA X0, X8
|
||||
VMOVDQA X1, X9
|
||||
|
||||
VMOVDQU ·AVX_iv3<>(SB), X0
|
||||
VMOVDQA X0, 0(SP)
|
||||
XORQ CX, 0(SP) // 0(SP) = ·AVX_iv3 ^ (CX || 0)
|
||||
|
||||
VMOVDQU 0(AX), X10
|
||||
VMOVDQU 16(AX), X11
|
||||
VMOVDQU 32(AX), X2
|
||||
VMOVDQU 48(AX), X3
|
||||
|
||||
MOVQ 0(BX), R8
|
||||
MOVQ 8(BX), R9
|
||||
|
||||
loop:
|
||||
ADDQ $128, R8
|
||||
CMPQ R8, $128
|
||||
JGE noinc
|
||||
INCQ R9
|
||||
|
||||
noinc:
|
||||
VMOVQ_R8_X15
|
||||
VPINSRQ_1_R9_X15
|
||||
|
||||
VMOVDQA X10, X0
|
||||
VMOVDQA X11, X1
|
||||
VMOVDQU ·AVX_iv0<>(SB), X4
|
||||
VMOVDQU ·AVX_iv1<>(SB), X5
|
||||
VMOVDQU ·AVX_iv2<>(SB), X6
|
||||
|
||||
VPXOR X15, X6, X6
|
||||
VMOVDQA 0(SP), X7
|
||||
|
||||
LOAD_MSG_AVX_0_2_4_6_1_3_5_7()
|
||||
VMOVDQA X12, 16(SP)
|
||||
VMOVDQA X13, 32(SP)
|
||||
VMOVDQA X14, 48(SP)
|
||||
VMOVDQA X15, 64(SP)
|
||||
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
|
||||
SHUFFLE_AVX()
|
||||
LOAD_MSG_AVX(8, 10, 12, 14, 9, 11, 13, 15)
|
||||
VMOVDQA X12, 80(SP)
|
||||
VMOVDQA X13, 96(SP)
|
||||
VMOVDQA X14, 112(SP)
|
||||
VMOVDQA X15, 128(SP)
|
||||
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
|
||||
SHUFFLE_AVX_INV()
|
||||
|
||||
LOAD_MSG_AVX(14, 4, 9, 13, 10, 8, 15, 6)
|
||||
VMOVDQA X12, 144(SP)
|
||||
VMOVDQA X13, 160(SP)
|
||||
VMOVDQA X14, 176(SP)
|
||||
VMOVDQA X15, 192(SP)
|
||||
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
|
||||
SHUFFLE_AVX()
|
||||
LOAD_MSG_AVX_1_0_11_5_12_2_7_3()
|
||||
VMOVDQA X12, 208(SP)
|
||||
VMOVDQA X13, 224(SP)
|
||||
VMOVDQA X14, 240(SP)
|
||||
VMOVDQA X15, 256(SP)
|
||||
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
|
||||
SHUFFLE_AVX_INV()
|
||||
|
||||
LOAD_MSG_AVX_11_12_5_15_8_0_2_13()
|
||||
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
|
||||
SHUFFLE_AVX()
|
||||
LOAD_MSG_AVX(10, 3, 7, 9, 14, 6, 1, 4)
|
||||
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
|
||||
SHUFFLE_AVX_INV()
|
||||
|
||||
LOAD_MSG_AVX(7, 3, 13, 11, 9, 1, 12, 14)
|
||||
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
|
||||
SHUFFLE_AVX()
|
||||
LOAD_MSG_AVX_2_5_4_15_6_10_0_8()
|
||||
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
|
||||
SHUFFLE_AVX_INV()
|
||||
|
||||
LOAD_MSG_AVX_9_5_2_10_0_7_4_15()
|
||||
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
|
||||
SHUFFLE_AVX()
|
||||
LOAD_MSG_AVX(14, 11, 6, 3, 1, 12, 8, 13)
|
||||
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
|
||||
SHUFFLE_AVX_INV()
|
||||
|
||||
LOAD_MSG_AVX_2_6_0_8_12_10_11_3()
|
||||
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
|
||||
SHUFFLE_AVX()
|
||||
LOAD_MSG_AVX(4, 7, 15, 1, 13, 5, 14, 9)
|
||||
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
|
||||
SHUFFLE_AVX_INV()
|
||||
|
||||
LOAD_MSG_AVX(12, 1, 14, 4, 5, 15, 13, 10)
|
||||
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
|
||||
SHUFFLE_AVX()
|
||||
LOAD_MSG_AVX_0_6_9_8_7_3_2_11()
|
||||
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
|
||||
SHUFFLE_AVX_INV()
|
||||
|
||||
LOAD_MSG_AVX(13, 7, 12, 3, 11, 14, 1, 9)
|
||||
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
|
||||
SHUFFLE_AVX()
|
||||
LOAD_MSG_AVX_5_15_8_2_0_4_6_10()
|
||||
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
|
||||
SHUFFLE_AVX_INV()
|
||||
|
||||
LOAD_MSG_AVX_6_14_11_0_15_9_3_8()
|
||||
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
|
||||
SHUFFLE_AVX()
|
||||
LOAD_MSG_AVX_12_13_1_10_2_7_4_5()
|
||||
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
|
||||
SHUFFLE_AVX_INV()
|
||||
|
||||
LOAD_MSG_AVX(10, 8, 7, 1, 2, 4, 6, 5)
|
||||
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
|
||||
SHUFFLE_AVX()
|
||||
LOAD_MSG_AVX_15_9_3_13_11_14_12_0()
|
||||
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
|
||||
SHUFFLE_AVX_INV()
|
||||
|
||||
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, 16(SP), 32(SP), 48(SP), 64(SP), X15, X8, X9)
|
||||
SHUFFLE_AVX()
|
||||
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, 80(SP), 96(SP), 112(SP), 128(SP), X15, X8, X9)
|
||||
SHUFFLE_AVX_INV()
|
||||
|
||||
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, 144(SP), 160(SP), 176(SP), 192(SP), X15, X8, X9)
|
||||
SHUFFLE_AVX()
|
||||
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, 208(SP), 224(SP), 240(SP), 256(SP), X15, X8, X9)
|
||||
SHUFFLE_AVX_INV()
|
||||
|
||||
VMOVDQU 32(AX), X14
|
||||
VMOVDQU 48(AX), X15
|
||||
VPXOR X0, X10, X10
|
||||
VPXOR X1, X11, X11
|
||||
VPXOR X2, X14, X14
|
||||
VPXOR X3, X15, X15
|
||||
VPXOR X4, X10, X10
|
||||
VPXOR X5, X11, X11
|
||||
VPXOR X6, X14, X2
|
||||
VPXOR X7, X15, X3
|
||||
VMOVDQU X2, 32(AX)
|
||||
VMOVDQU X3, 48(AX)
|
||||
|
||||
LEAQ 128(SI), SI
|
||||
SUBQ $128, DI
|
||||
JNE loop
|
||||
|
||||
VMOVDQU X10, 0(AX)
|
||||
VMOVDQU X11, 16(AX)
|
||||
|
||||
MOVQ R8, 0(BX)
|
||||
MOVQ R9, 8(BX)
|
||||
VZEROUPPER
|
||||
|
||||
MOVQ BP, SP
|
||||
RET
|
|
@ -0,0 +1,24 @@
|
|||
// Copyright 2016 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build !go1.7,amd64,!gccgo,!appengine
|
||||
|
||||
package blake2b
|
||||
|
||||
import "golang.org/x/sys/cpu"
|
||||
|
||||
func init() {
|
||||
useSSE4 = cpu.X86.HasSSE41
|
||||
}
|
||||
|
||||
//go:noescape
|
||||
func hashBlocksSSE4(h *[8]uint64, c *[2]uint64, flag uint64, blocks []byte)
|
||||
|
||||
func hashBlocks(h *[8]uint64, c *[2]uint64, flag uint64, blocks []byte) {
|
||||
if useSSE4 {
|
||||
hashBlocksSSE4(h, c, flag, blocks)
|
||||
} else {
|
||||
hashBlocksGeneric(h, c, flag, blocks)
|
||||
}
|
||||
}
|
|
@ -0,0 +1,281 @@
|
|||
// Copyright 2016 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build amd64,!gccgo,!appengine
|
||||
|
||||
#include "textflag.h"
|
||||
|
||||
DATA ·iv0<>+0x00(SB)/8, $0x6a09e667f3bcc908
|
||||
DATA ·iv0<>+0x08(SB)/8, $0xbb67ae8584caa73b
|
||||
GLOBL ·iv0<>(SB), (NOPTR+RODATA), $16
|
||||
|
||||
DATA ·iv1<>+0x00(SB)/8, $0x3c6ef372fe94f82b
|
||||
DATA ·iv1<>+0x08(SB)/8, $0xa54ff53a5f1d36f1
|
||||
GLOBL ·iv1<>(SB), (NOPTR+RODATA), $16
|
||||
|
||||
DATA ·iv2<>+0x00(SB)/8, $0x510e527fade682d1
|
||||
DATA ·iv2<>+0x08(SB)/8, $0x9b05688c2b3e6c1f
|
||||
GLOBL ·iv2<>(SB), (NOPTR+RODATA), $16
|
||||
|
||||
DATA ·iv3<>+0x00(SB)/8, $0x1f83d9abfb41bd6b
|
||||
DATA ·iv3<>+0x08(SB)/8, $0x5be0cd19137e2179
|
||||
GLOBL ·iv3<>(SB), (NOPTR+RODATA), $16
|
||||
|
||||
DATA ·c40<>+0x00(SB)/8, $0x0201000706050403
|
||||
DATA ·c40<>+0x08(SB)/8, $0x0a09080f0e0d0c0b
|
||||
GLOBL ·c40<>(SB), (NOPTR+RODATA), $16
|
||||
|
||||
DATA ·c48<>+0x00(SB)/8, $0x0100070605040302
|
||||
DATA ·c48<>+0x08(SB)/8, $0x09080f0e0d0c0b0a
|
||||
GLOBL ·c48<>(SB), (NOPTR+RODATA), $16
|
||||
|
||||
#define SHUFFLE(v2, v3, v4, v5, v6, v7, t1, t2) \
|
||||
MOVO v4, t1; \
|
||||
MOVO v5, v4; \
|
||||
MOVO t1, v5; \
|
||||
MOVO v6, t1; \
|
||||
PUNPCKLQDQ v6, t2; \
|
||||
PUNPCKHQDQ v7, v6; \
|
||||
PUNPCKHQDQ t2, v6; \
|
||||
PUNPCKLQDQ v7, t2; \
|
||||
MOVO t1, v7; \
|
||||
MOVO v2, t1; \
|
||||
PUNPCKHQDQ t2, v7; \
|
||||
PUNPCKLQDQ v3, t2; \
|
||||
PUNPCKHQDQ t2, v2; \
|
||||
PUNPCKLQDQ t1, t2; \
|
||||
PUNPCKHQDQ t2, v3
|
||||
|
||||
#define SHUFFLE_INV(v2, v3, v4, v5, v6, v7, t1, t2) \
|
||||
MOVO v4, t1; \
|
||||
MOVO v5, v4; \
|
||||
MOVO t1, v5; \
|
||||
MOVO v2, t1; \
|
||||
PUNPCKLQDQ v2, t2; \
|
||||
PUNPCKHQDQ v3, v2; \
|
||||
PUNPCKHQDQ t2, v2; \
|
||||
PUNPCKLQDQ v3, t2; \
|
||||
MOVO t1, v3; \
|
||||
MOVO v6, t1; \
|
||||
PUNPCKHQDQ t2, v3; \
|
||||
PUNPCKLQDQ v7, t2; \
|
||||
PUNPCKHQDQ t2, v6; \
|
||||
PUNPCKLQDQ t1, t2; \
|
||||
PUNPCKHQDQ t2, v7
|
||||
|
||||
#define HALF_ROUND(v0, v1, v2, v3, v4, v5, v6, v7, m0, m1, m2, m3, t0, c40, c48) \
|
||||
PADDQ m0, v0; \
|
||||
PADDQ m1, v1; \
|
||||
PADDQ v2, v0; \
|
||||
PADDQ v3, v1; \
|
||||
PXOR v0, v6; \
|
||||
PXOR v1, v7; \
|
||||
PSHUFD $0xB1, v6, v6; \
|
||||
PSHUFD $0xB1, v7, v7; \
|
||||
PADDQ v6, v4; \
|
||||
PADDQ v7, v5; \
|
||||
PXOR v4, v2; \
|
||||
PXOR v5, v3; \
|
||||
PSHUFB c40, v2; \
|
||||
PSHUFB c40, v3; \
|
||||
PADDQ m2, v0; \
|
||||
PADDQ m3, v1; \
|
||||
PADDQ v2, v0; \
|
||||
PADDQ v3, v1; \
|
||||
PXOR v0, v6; \
|
||||
PXOR v1, v7; \
|
||||
PSHUFB c48, v6; \
|
||||
PSHUFB c48, v7; \
|
||||
PADDQ v6, v4; \
|
||||
PADDQ v7, v5; \
|
||||
PXOR v4, v2; \
|
||||
PXOR v5, v3; \
|
||||
MOVOU v2, t0; \
|
||||
PADDQ v2, t0; \
|
||||
PSRLQ $63, v2; \
|
||||
PXOR t0, v2; \
|
||||
MOVOU v3, t0; \
|
||||
PADDQ v3, t0; \
|
||||
PSRLQ $63, v3; \
|
||||
PXOR t0, v3
|
||||
|
||||
#define LOAD_MSG(m0, m1, m2, m3, src, i0, i1, i2, i3, i4, i5, i6, i7) \
|
||||
MOVQ i0*8(src), m0; \
|
||||
PINSRQ $1, i1*8(src), m0; \
|
||||
MOVQ i2*8(src), m1; \
|
||||
PINSRQ $1, i3*8(src), m1; \
|
||||
MOVQ i4*8(src), m2; \
|
||||
PINSRQ $1, i5*8(src), m2; \
|
||||
MOVQ i6*8(src), m3; \
|
||||
PINSRQ $1, i7*8(src), m3
|
||||
|
||||
// func hashBlocksSSE4(h *[8]uint64, c *[2]uint64, flag uint64, blocks []byte)
|
||||
TEXT ·hashBlocksSSE4(SB), 4, $288-48 // frame size = 272 + 16 byte alignment
|
||||
MOVQ h+0(FP), AX
|
||||
MOVQ c+8(FP), BX
|
||||
MOVQ flag+16(FP), CX
|
||||
MOVQ blocks_base+24(FP), SI
|
||||
MOVQ blocks_len+32(FP), DI
|
||||
|
||||
MOVQ SP, BP
|
||||
MOVQ SP, R9
|
||||
ADDQ $15, R9
|
||||
ANDQ $~15, R9
|
||||
MOVQ R9, SP
|
||||
|
||||
MOVOU ·iv3<>(SB), X0
|
||||
MOVO X0, 0(SP)
|
||||
XORQ CX, 0(SP) // 0(SP) = ·iv3 ^ (CX || 0)
|
||||
|
||||
MOVOU ·c40<>(SB), X13
|
||||
MOVOU ·c48<>(SB), X14
|
||||
|
||||
MOVOU 0(AX), X12
|
||||
MOVOU 16(AX), X15
|
||||
|
||||
MOVQ 0(BX), R8
|
||||
MOVQ 8(BX), R9
|
||||
|
||||
loop:
|
||||
ADDQ $128, R8
|
||||
CMPQ R8, $128
|
||||
JGE noinc
|
||||
INCQ R9
|
||||
|
||||
noinc:
|
||||
MOVQ R8, X8
|
||||
PINSRQ $1, R9, X8
|
||||
|
||||
MOVO X12, X0
|
||||
MOVO X15, X1
|
||||
MOVOU 32(AX), X2
|
||||
MOVOU 48(AX), X3
|
||||
MOVOU ·iv0<>(SB), X4
|
||||
MOVOU ·iv1<>(SB), X5
|
||||
MOVOU ·iv2<>(SB), X6
|
||||
|
||||
PXOR X8, X6
|
||||
MOVO 0(SP), X7
|
||||
|
||||
LOAD_MSG(X8, X9, X10, X11, SI, 0, 2, 4, 6, 1, 3, 5, 7)
|
||||
MOVO X8, 16(SP)
|
||||
MOVO X9, 32(SP)
|
||||
MOVO X10, 48(SP)
|
||||
MOVO X11, 64(SP)
|
||||
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
|
||||
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
|
||||
LOAD_MSG(X8, X9, X10, X11, SI, 8, 10, 12, 14, 9, 11, 13, 15)
|
||||
MOVO X8, 80(SP)
|
||||
MOVO X9, 96(SP)
|
||||
MOVO X10, 112(SP)
|
||||
MOVO X11, 128(SP)
|
||||
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
|
||||
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
|
||||
|
||||
LOAD_MSG(X8, X9, X10, X11, SI, 14, 4, 9, 13, 10, 8, 15, 6)
|
||||
MOVO X8, 144(SP)
|
||||
MOVO X9, 160(SP)
|
||||
MOVO X10, 176(SP)
|
||||
MOVO X11, 192(SP)
|
||||
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
|
||||
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
|
||||
LOAD_MSG(X8, X9, X10, X11, SI, 1, 0, 11, 5, 12, 2, 7, 3)
|
||||
MOVO X8, 208(SP)
|
||||
MOVO X9, 224(SP)
|
||||
MOVO X10, 240(SP)
|
||||
MOVO X11, 256(SP)
|
||||
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
|
||||
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
|
||||
|
||||
LOAD_MSG(X8, X9, X10, X11, SI, 11, 12, 5, 15, 8, 0, 2, 13)
|
||||
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
|
||||
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
|
||||
LOAD_MSG(X8, X9, X10, X11, SI, 10, 3, 7, 9, 14, 6, 1, 4)
|
||||
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
|
||||
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
|
||||
|
||||
LOAD_MSG(X8, X9, X10, X11, SI, 7, 3, 13, 11, 9, 1, 12, 14)
|
||||
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
|
||||
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
|
||||
LOAD_MSG(X8, X9, X10, X11, SI, 2, 5, 4, 15, 6, 10, 0, 8)
|
||||
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
|
||||
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
|
||||
|
||||
LOAD_MSG(X8, X9, X10, X11, SI, 9, 5, 2, 10, 0, 7, 4, 15)
|
||||
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
|
||||
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
|
||||
LOAD_MSG(X8, X9, X10, X11, SI, 14, 11, 6, 3, 1, 12, 8, 13)
|
||||
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
|
||||
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
|
||||
|
||||
LOAD_MSG(X8, X9, X10, X11, SI, 2, 6, 0, 8, 12, 10, 11, 3)
|
||||
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
|
||||
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
|
||||
LOAD_MSG(X8, X9, X10, X11, SI, 4, 7, 15, 1, 13, 5, 14, 9)
|
||||
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
|
||||
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
|
||||
|
||||
LOAD_MSG(X8, X9, X10, X11, SI, 12, 1, 14, 4, 5, 15, 13, 10)
|
||||
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
|
||||
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
|
||||
LOAD_MSG(X8, X9, X10, X11, SI, 0, 6, 9, 8, 7, 3, 2, 11)
|
||||
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
|
||||
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
|
||||
|
||||
LOAD_MSG(X8, X9, X10, X11, SI, 13, 7, 12, 3, 11, 14, 1, 9)
|
||||
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
|
||||
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
|
||||
LOAD_MSG(X8, X9, X10, X11, SI, 5, 15, 8, 2, 0, 4, 6, 10)
|
||||
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
|
||||
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
|
||||
|
||||
LOAD_MSG(X8, X9, X10, X11, SI, 6, 14, 11, 0, 15, 9, 3, 8)
|
||||
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
|
||||
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
|
||||
LOAD_MSG(X8, X9, X10, X11, SI, 12, 13, 1, 10, 2, 7, 4, 5)
|
||||
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
|
||||
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
|
||||
|
||||
LOAD_MSG(X8, X9, X10, X11, SI, 10, 8, 7, 1, 2, 4, 6, 5)
|
||||
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
|
||||
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
|
||||
LOAD_MSG(X8, X9, X10, X11, SI, 15, 9, 3, 13, 11, 14, 12, 0)
|
||||
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
|
||||
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
|
||||
|
||||
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, 16(SP), 32(SP), 48(SP), 64(SP), X11, X13, X14)
|
||||
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
|
||||
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, 80(SP), 96(SP), 112(SP), 128(SP), X11, X13, X14)
|
||||
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
|
||||
|
||||
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, 144(SP), 160(SP), 176(SP), 192(SP), X11, X13, X14)
|
||||
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
|
||||
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, 208(SP), 224(SP), 240(SP), 256(SP), X11, X13, X14)
|
||||
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
|
||||
|
||||
MOVOU 32(AX), X10
|
||||
MOVOU 48(AX), X11
|
||||
PXOR X0, X12
|
||||
PXOR X1, X15
|
||||
PXOR X2, X10
|
||||
PXOR X3, X11
|
||||
PXOR X4, X12
|
||||
PXOR X5, X15
|
||||
PXOR X6, X10
|
||||
PXOR X7, X11
|
||||
MOVOU X10, 32(AX)
|
||||
MOVOU X11, 48(AX)
|
||||
|
||||
LEAQ 128(SI), SI
|
||||
SUBQ $128, DI
|
||||
JNE loop
|
||||
|
||||
MOVOU X12, 0(AX)
|
||||
MOVOU X15, 16(AX)
|
||||
|
||||
MOVQ R8, 0(BX)
|
||||
MOVQ R9, 8(BX)
|
||||
|
||||
MOVQ BP, SP
|
||||
RET
|
|
@ -0,0 +1,182 @@
|
|||
// Copyright 2016 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package blake2b
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"math/bits"
|
||||
)
|
||||
|
||||
// the precomputed values for BLAKE2b
|
||||
// there are 12 16-byte arrays - one for each round
|
||||
// the entries are calculated from the sigma constants.
|
||||
var precomputed = [12][16]byte{
|
||||
{0, 2, 4, 6, 1, 3, 5, 7, 8, 10, 12, 14, 9, 11, 13, 15},
|
||||
{14, 4, 9, 13, 10, 8, 15, 6, 1, 0, 11, 5, 12, 2, 7, 3},
|
||||
{11, 12, 5, 15, 8, 0, 2, 13, 10, 3, 7, 9, 14, 6, 1, 4},
|
||||
{7, 3, 13, 11, 9, 1, 12, 14, 2, 5, 4, 15, 6, 10, 0, 8},
|
||||
{9, 5, 2, 10, 0, 7, 4, 15, 14, 11, 6, 3, 1, 12, 8, 13},
|
||||
{2, 6, 0, 8, 12, 10, 11, 3, 4, 7, 15, 1, 13, 5, 14, 9},
|
||||
{12, 1, 14, 4, 5, 15, 13, 10, 0, 6, 9, 8, 7, 3, 2, 11},
|
||||
{13, 7, 12, 3, 11, 14, 1, 9, 5, 15, 8, 2, 0, 4, 6, 10},
|
||||
{6, 14, 11, 0, 15, 9, 3, 8, 12, 13, 1, 10, 2, 7, 4, 5},
|
||||
{10, 8, 7, 1, 2, 4, 6, 5, 15, 9, 3, 13, 11, 14, 12, 0},
|
||||
{0, 2, 4, 6, 1, 3, 5, 7, 8, 10, 12, 14, 9, 11, 13, 15}, // equal to the first
|
||||
{14, 4, 9, 13, 10, 8, 15, 6, 1, 0, 11, 5, 12, 2, 7, 3}, // equal to the second
|
||||
}
|
||||
|
||||
func hashBlocksGeneric(h *[8]uint64, c *[2]uint64, flag uint64, blocks []byte) {
|
||||
var m [16]uint64
|
||||
c0, c1 := c[0], c[1]
|
||||
|
||||
for i := 0; i < len(blocks); {
|
||||
c0 += BlockSize
|
||||
if c0 < BlockSize {
|
||||
c1++
|
||||
}
|
||||
|
||||
v0, v1, v2, v3, v4, v5, v6, v7 := h[0], h[1], h[2], h[3], h[4], h[5], h[6], h[7]
|
||||
v8, v9, v10, v11, v12, v13, v14, v15 := iv[0], iv[1], iv[2], iv[3], iv[4], iv[5], iv[6], iv[7]
|
||||
v12 ^= c0
|
||||
v13 ^= c1
|
||||
v14 ^= flag
|
||||
|
||||
for j := range m {
|
||||
m[j] = binary.LittleEndian.Uint64(blocks[i:])
|
||||
i += 8
|
||||
}
|
||||
|
||||
for j := range precomputed {
|
||||
s := &(precomputed[j])
|
||||
|
||||
v0 += m[s[0]]
|
||||
v0 += v4
|
||||
v12 ^= v0
|
||||
v12 = bits.RotateLeft64(v12, -32)
|
||||
v8 += v12
|
||||
v4 ^= v8
|
||||
v4 = bits.RotateLeft64(v4, -24)
|
||||
v1 += m[s[1]]
|
||||
v1 += v5
|
||||
v13 ^= v1
|
||||
v13 = bits.RotateLeft64(v13, -32)
|
||||
v9 += v13
|
||||
v5 ^= v9
|
||||
v5 = bits.RotateLeft64(v5, -24)
|
||||
v2 += m[s[2]]
|
||||
v2 += v6
|
||||
v14 ^= v2
|
||||
v14 = bits.RotateLeft64(v14, -32)
|
||||
v10 += v14
|
||||
v6 ^= v10
|
||||
v6 = bits.RotateLeft64(v6, -24)
|
||||
v3 += m[s[3]]
|
||||
v3 += v7
|
||||
v15 ^= v3
|
||||
v15 = bits.RotateLeft64(v15, -32)
|
||||
v11 += v15
|
||||
v7 ^= v11
|
||||
v7 = bits.RotateLeft64(v7, -24)
|
||||
|
||||
v0 += m[s[4]]
|
||||
v0 += v4
|
||||
v12 ^= v0
|
||||
v12 = bits.RotateLeft64(v12, -16)
|
||||
v8 += v12
|
||||
v4 ^= v8
|
||||
v4 = bits.RotateLeft64(v4, -63)
|
||||
v1 += m[s[5]]
|
||||
v1 += v5
|
||||
v13 ^= v1
|
||||
v13 = bits.RotateLeft64(v13, -16)
|
||||
v9 += v13
|
||||
v5 ^= v9
|
||||
v5 = bits.RotateLeft64(v5, -63)
|
||||
v2 += m[s[6]]
|
||||
v2 += v6
|
||||
v14 ^= v2
|
||||
v14 = bits.RotateLeft64(v14, -16)
|
||||
v10 += v14
|
||||
v6 ^= v10
|
||||
v6 = bits.RotateLeft64(v6, -63)
|
||||
v3 += m[s[7]]
|
||||
v3 += v7
|
||||
v15 ^= v3
|
||||
v15 = bits.RotateLeft64(v15, -16)
|
||||
v11 += v15
|
||||
v7 ^= v11
|
||||
v7 = bits.RotateLeft64(v7, -63)
|
||||
|
||||
v0 += m[s[8]]
|
||||
v0 += v5
|
||||
v15 ^= v0
|
||||
v15 = bits.RotateLeft64(v15, -32)
|
||||
v10 += v15
|
||||
v5 ^= v10
|
||||
v5 = bits.RotateLeft64(v5, -24)
|
||||
v1 += m[s[9]]
|
||||
v1 += v6
|
||||
v12 ^= v1
|
||||
v12 = bits.RotateLeft64(v12, -32)
|
||||
v11 += v12
|
||||
v6 ^= v11
|
||||
v6 = bits.RotateLeft64(v6, -24)
|
||||
v2 += m[s[10]]
|
||||
v2 += v7
|
||||
v13 ^= v2
|
||||
v13 = bits.RotateLeft64(v13, -32)
|
||||
v8 += v13
|
||||
v7 ^= v8
|
||||
v7 = bits.RotateLeft64(v7, -24)
|
||||
v3 += m[s[11]]
|
||||
v3 += v4
|
||||
v14 ^= v3
|
||||
v14 = bits.RotateLeft64(v14, -32)
|
||||
v9 += v14
|
||||
v4 ^= v9
|
||||
v4 = bits.RotateLeft64(v4, -24)
|
||||
|
||||
v0 += m[s[12]]
|
||||
v0 += v5
|
||||
v15 ^= v0
|
||||
v15 = bits.RotateLeft64(v15, -16)
|
||||
v10 += v15
|
||||
v5 ^= v10
|
||||
v5 = bits.RotateLeft64(v5, -63)
|
||||
v1 += m[s[13]]
|
||||
v1 += v6
|
||||
v12 ^= v1
|
||||
v12 = bits.RotateLeft64(v12, -16)
|
||||
v11 += v12
|
||||
v6 ^= v11
|
||||
v6 = bits.RotateLeft64(v6, -63)
|
||||
v2 += m[s[14]]
|
||||
v2 += v7
|
||||
v13 ^= v2
|
||||
v13 = bits.RotateLeft64(v13, -16)
|
||||
v8 += v13
|
||||
v7 ^= v8
|
||||
v7 = bits.RotateLeft64(v7, -63)
|
||||
v3 += m[s[15]]
|
||||
v3 += v4
|
||||
v14 ^= v3
|
||||
v14 = bits.RotateLeft64(v14, -16)
|
||||
v9 += v14
|
||||
v4 ^= v9
|
||||
v4 = bits.RotateLeft64(v4, -63)
|
||||
|
||||
}
|
||||
|
||||
h[0] ^= v0 ^ v8
|
||||
h[1] ^= v1 ^ v9
|
||||
h[2] ^= v2 ^ v10
|
||||
h[3] ^= v3 ^ v11
|
||||
h[4] ^= v4 ^ v12
|
||||
h[5] ^= v5 ^ v13
|
||||
h[6] ^= v6 ^ v14
|
||||
h[7] ^= v7 ^ v15
|
||||
}
|
||||
c[0], c[1] = c0, c1
|
||||
}
|
|
@ -0,0 +1,11 @@
|
|||
// Copyright 2016 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build !amd64 appengine gccgo
|
||||
|
||||
package blake2b
|
||||
|
||||
func hashBlocks(h *[8]uint64, c *[2]uint64, flag uint64, blocks []byte) {
|
||||
hashBlocksGeneric(h, c, flag, blocks)
|
||||
}
|
|
@ -0,0 +1,177 @@
|
|||
// Copyright 2017 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package blake2b
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"io"
|
||||
)
|
||||
|
||||
// XOF defines the interface to hash functions that
|
||||
// support arbitrary-length output.
|
||||
type XOF interface {
|
||||
// Write absorbs more data into the hash's state. It panics if called
|
||||
// after Read.
|
||||
io.Writer
|
||||
|
||||
// Read reads more output from the hash. It returns io.EOF if the limit
|
||||
// has been reached.
|
||||
io.Reader
|
||||
|
||||
// Clone returns a copy of the XOF in its current state.
|
||||
Clone() XOF
|
||||
|
||||
// Reset resets the XOF to its initial state.
|
||||
Reset()
|
||||
}
|
||||
|
||||
// OutputLengthUnknown can be used as the size argument to NewXOF to indicate
|
||||
// the length of the output is not known in advance.
|
||||
const OutputLengthUnknown = 0
|
||||
|
||||
// magicUnknownOutputLength is a magic value for the output size that indicates
|
||||
// an unknown number of output bytes.
|
||||
const magicUnknownOutputLength = (1 << 32) - 1
|
||||
|
||||
// maxOutputLength is the absolute maximum number of bytes to produce when the
|
||||
// number of output bytes is unknown.
|
||||
const maxOutputLength = (1 << 32) * 64
|
||||
|
||||
// NewXOF creates a new variable-output-length hash. The hash either produce a
|
||||
// known number of bytes (1 <= size < 2**32-1), or an unknown number of bytes
|
||||
// (size == OutputLengthUnknown). In the latter case, an absolute limit of
|
||||
// 256GiB applies.
|
||||
//
|
||||
// A non-nil key turns the hash into a MAC. The key must between
|
||||
// zero and 32 bytes long.
|
||||
func NewXOF(size uint32, key []byte) (XOF, error) {
|
||||
if len(key) > Size {
|
||||
return nil, errKeySize
|
||||
}
|
||||
if size == magicUnknownOutputLength {
|
||||
// 2^32-1 indicates an unknown number of bytes and thus isn't a
|
||||
// valid length.
|
||||
return nil, errors.New("blake2b: XOF length too large")
|
||||
}
|
||||
if size == OutputLengthUnknown {
|
||||
size = magicUnknownOutputLength
|
||||
}
|
||||
x := &xof{
|
||||
d: digest{
|
||||
size: Size,
|
||||
keyLen: len(key),
|
||||
},
|
||||
length: size,
|
||||
}
|
||||
copy(x.d.key[:], key)
|
||||
x.Reset()
|
||||
return x, nil
|
||||
}
|
||||
|
||||
type xof struct {
|
||||
d digest
|
||||
length uint32
|
||||
remaining uint64
|
||||
cfg, root, block [Size]byte
|
||||
offset int
|
||||
nodeOffset uint32
|
||||
readMode bool
|
||||
}
|
||||
|
||||
func (x *xof) Write(p []byte) (n int, err error) {
|
||||
if x.readMode {
|
||||
panic("blake2b: write to XOF after read")
|
||||
}
|
||||
return x.d.Write(p)
|
||||
}
|
||||
|
||||
func (x *xof) Clone() XOF {
|
||||
clone := *x
|
||||
return &clone
|
||||
}
|
||||
|
||||
func (x *xof) Reset() {
|
||||
x.cfg[0] = byte(Size)
|
||||
binary.LittleEndian.PutUint32(x.cfg[4:], uint32(Size)) // leaf length
|
||||
binary.LittleEndian.PutUint32(x.cfg[12:], x.length) // XOF length
|
||||
x.cfg[17] = byte(Size) // inner hash size
|
||||
|
||||
x.d.Reset()
|
||||
x.d.h[1] ^= uint64(x.length) << 32
|
||||
|
||||
x.remaining = uint64(x.length)
|
||||
if x.remaining == magicUnknownOutputLength {
|
||||
x.remaining = maxOutputLength
|
||||
}
|
||||
x.offset, x.nodeOffset = 0, 0
|
||||
x.readMode = false
|
||||
}
|
||||
|
||||
func (x *xof) Read(p []byte) (n int, err error) {
|
||||
if !x.readMode {
|
||||
x.d.finalize(&x.root)
|
||||
x.readMode = true
|
||||
}
|
||||
|
||||
if x.remaining == 0 {
|
||||
return 0, io.EOF
|
||||
}
|
||||
|
||||
n = len(p)
|
||||
if uint64(n) > x.remaining {
|
||||
n = int(x.remaining)
|
||||
p = p[:n]
|
||||
}
|
||||
|
||||
if x.offset > 0 {
|
||||
blockRemaining := Size - x.offset
|
||||
if n < blockRemaining {
|
||||
x.offset += copy(p, x.block[x.offset:])
|
||||
x.remaining -= uint64(n)
|
||||
return
|
||||
}
|
||||
copy(p, x.block[x.offset:])
|
||||
p = p[blockRemaining:]
|
||||
x.offset = 0
|
||||
x.remaining -= uint64(blockRemaining)
|
||||
}
|
||||
|
||||
for len(p) >= Size {
|
||||
binary.LittleEndian.PutUint32(x.cfg[8:], x.nodeOffset)
|
||||
x.nodeOffset++
|
||||
|
||||
x.d.initConfig(&x.cfg)
|
||||
x.d.Write(x.root[:])
|
||||
x.d.finalize(&x.block)
|
||||
|
||||
copy(p, x.block[:])
|
||||
p = p[Size:]
|
||||
x.remaining -= uint64(Size)
|
||||
}
|
||||
|
||||
if todo := len(p); todo > 0 {
|
||||
if x.remaining < uint64(Size) {
|
||||
x.cfg[0] = byte(x.remaining)
|
||||
}
|
||||
binary.LittleEndian.PutUint32(x.cfg[8:], x.nodeOffset)
|
||||
x.nodeOffset++
|
||||
|
||||
x.d.initConfig(&x.cfg)
|
||||
x.d.Write(x.root[:])
|
||||
x.d.finalize(&x.block)
|
||||
|
||||
x.offset = copy(p, x.block[:todo])
|
||||
x.remaining -= uint64(todo)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
func (d *digest) initConfig(cfg *[Size]byte) {
|
||||
d.offset, d.c[0], d.c[1] = 0, 0, 0
|
||||
for i := range d.h {
|
||||
d.h[i] = iv[i] ^ binary.LittleEndian.Uint64(cfg[i*8:])
|
||||
}
|
||||
}
|
|
@ -0,0 +1,32 @@
|
|||
// Copyright 2017 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build go1.9
|
||||
|
||||
package blake2b
|
||||
|
||||
import (
|
||||
"crypto"
|
||||
"hash"
|
||||
)
|
||||
|
||||
func init() {
|
||||
newHash256 := func() hash.Hash {
|
||||
h, _ := New256(nil)
|
||||
return h
|
||||
}
|
||||
newHash384 := func() hash.Hash {
|
||||
h, _ := New384(nil)
|
||||
return h
|
||||
}
|
||||
|
||||
newHash512 := func() hash.Hash {
|
||||
h, _ := New512(nil)
|
||||
return h
|
||||
}
|
||||
|
||||
crypto.RegisterHash(crypto.BLAKE2b_256, newHash256)
|
||||
crypto.RegisterHash(crypto.BLAKE2b_384, newHash384)
|
||||
crypto.RegisterHash(crypto.BLAKE2b_512, newHash512)
|
||||
}
|
|
@ -0,0 +1,159 @@
|
|||
// Copyright 2010 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package blowfish
|
||||
|
||||
// getNextWord returns the next big-endian uint32 value from the byte slice
|
||||
// at the given position in a circular manner, updating the position.
|
||||
func getNextWord(b []byte, pos *int) uint32 {
|
||||
var w uint32
|
||||
j := *pos
|
||||
for i := 0; i < 4; i++ {
|
||||
w = w<<8 | uint32(b[j])
|
||||
j++
|
||||
if j >= len(b) {
|
||||
j = 0
|
||||
}
|
||||
}
|
||||
*pos = j
|
||||
return w
|
||||
}
|
||||
|
||||
// ExpandKey performs a key expansion on the given *Cipher. Specifically, it
|
||||
// performs the Blowfish algorithm's key schedule which sets up the *Cipher's
|
||||
// pi and substitution tables for calls to Encrypt. This is used, primarily,
|
||||
// by the bcrypt package to reuse the Blowfish key schedule during its
|
||||
// set up. It's unlikely that you need to use this directly.
|
||||
func ExpandKey(key []byte, c *Cipher) {
|
||||
j := 0
|
||||
for i := 0; i < 18; i++ {
|
||||
// Using inlined getNextWord for performance.
|
||||
var d uint32
|
||||
for k := 0; k < 4; k++ {
|
||||
d = d<<8 | uint32(key[j])
|
||||
j++
|
||||
if j >= len(key) {
|
||||
j = 0
|
||||
}
|
||||
}
|
||||
c.p[i] ^= d
|
||||
}
|
||||
|
||||
var l, r uint32
|
||||
for i := 0; i < 18; i += 2 {
|
||||
l, r = encryptBlock(l, r, c)
|
||||
c.p[i], c.p[i+1] = l, r
|
||||
}
|
||||
|
||||
for i := 0; i < 256; i += 2 {
|
||||
l, r = encryptBlock(l, r, c)
|
||||
c.s0[i], c.s0[i+1] = l, r
|
||||
}
|
||||
for i := 0; i < 256; i += 2 {
|
||||
l, r = encryptBlock(l, r, c)
|
||||
c.s1[i], c.s1[i+1] = l, r
|
||||
}
|
||||
for i := 0; i < 256; i += 2 {
|
||||
l, r = encryptBlock(l, r, c)
|
||||
c.s2[i], c.s2[i+1] = l, r
|
||||
}
|
||||
for i := 0; i < 256; i += 2 {
|
||||
l, r = encryptBlock(l, r, c)
|
||||
c.s3[i], c.s3[i+1] = l, r
|
||||
}
|
||||
}
|
||||
|
||||
// This is similar to ExpandKey, but folds the salt during the key
|
||||
// schedule. While ExpandKey is essentially expandKeyWithSalt with an all-zero
|
||||
// salt passed in, reusing ExpandKey turns out to be a place of inefficiency
|
||||
// and specializing it here is useful.
|
||||
func expandKeyWithSalt(key []byte, salt []byte, c *Cipher) {
|
||||
j := 0
|
||||
for i := 0; i < 18; i++ {
|
||||
c.p[i] ^= getNextWord(key, &j)
|
||||
}
|
||||
|
||||
j = 0
|
||||
var l, r uint32
|
||||
for i := 0; i < 18; i += 2 {
|
||||
l ^= getNextWord(salt, &j)
|
||||
r ^= getNextWord(salt, &j)
|
||||
l, r = encryptBlock(l, r, c)
|
||||
c.p[i], c.p[i+1] = l, r
|
||||
}
|
||||
|
||||
for i := 0; i < 256; i += 2 {
|
||||
l ^= getNextWord(salt, &j)
|
||||
r ^= getNextWord(salt, &j)
|
||||
l, r = encryptBlock(l, r, c)
|
||||
c.s0[i], c.s0[i+1] = l, r
|
||||
}
|
||||
|
||||
for i := 0; i < 256; i += 2 {
|
||||
l ^= getNextWord(salt, &j)
|
||||
r ^= getNextWord(salt, &j)
|
||||
l, r = encryptBlock(l, r, c)
|
||||
c.s1[i], c.s1[i+1] = l, r
|
||||
}
|
||||
|
||||
for i := 0; i < 256; i += 2 {
|
||||
l ^= getNextWord(salt, &j)
|
||||
r ^= getNextWord(salt, &j)
|
||||
l, r = encryptBlock(l, r, c)
|
||||
c.s2[i], c.s2[i+1] = l, r
|
||||
}
|
||||
|
||||
for i := 0; i < 256; i += 2 {
|
||||
l ^= getNextWord(salt, &j)
|
||||
r ^= getNextWord(salt, &j)
|
||||
l, r = encryptBlock(l, r, c)
|
||||
c.s3[i], c.s3[i+1] = l, r
|
||||
}
|
||||
}
|
||||
|
||||
func encryptBlock(l, r uint32, c *Cipher) (uint32, uint32) {
|
||||
xl, xr := l, r
|
||||
xl ^= c.p[0]
|
||||
xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[1]
|
||||
xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[2]
|
||||
xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[3]
|
||||
xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[4]
|
||||
xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[5]
|
||||
xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[6]
|
||||
xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[7]
|
||||
xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[8]
|
||||
xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[9]
|
||||
xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[10]
|
||||
xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[11]
|
||||
xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[12]
|
||||
xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[13]
|
||||
xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[14]
|
||||
xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[15]
|
||||
xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[16]
|
||||
xr ^= c.p[17]
|
||||
return xr, xl
|
||||
}
|
||||
|
||||
func decryptBlock(l, r uint32, c *Cipher) (uint32, uint32) {
|
||||
xl, xr := l, r
|
||||
xl ^= c.p[17]
|
||||
xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[16]
|
||||
xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[15]
|
||||
xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[14]
|
||||
xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[13]
|
||||
xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[12]
|
||||
xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[11]
|
||||
xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[10]
|
||||
xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[9]
|
||||
xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[8]
|
||||
xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[7]
|
||||
xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[6]
|
||||
xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[5]
|
||||
xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[4]
|
||||
xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[3]
|
||||
xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[2]
|
||||
xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[1]
|
||||
xr ^= c.p[0]
|
||||
return xr, xl
|
||||
}
|
|
@ -0,0 +1,99 @@
|
|||
// Copyright 2010 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package blowfish implements Bruce Schneier's Blowfish encryption algorithm.
|
||||
//
|
||||
// Blowfish is a legacy cipher and its short block size makes it vulnerable to
|
||||
// birthday bound attacks (see https://sweet32.info). It should only be used
|
||||
// where compatibility with legacy systems, not security, is the goal.
|
||||
//
|
||||
// Deprecated: any new system should use AES (from crypto/aes, if necessary in
|
||||
// an AEAD mode like crypto/cipher.NewGCM) or XChaCha20-Poly1305 (from
|
||||
// golang.org/x/crypto/chacha20poly1305).
|
||||
package blowfish // import "golang.org/x/crypto/blowfish"
|
||||
|
||||
// The code is a port of Bruce Schneier's C implementation.
|
||||
// See https://www.schneier.com/blowfish.html.
|
||||
|
||||
import "strconv"
|
||||
|
||||
// The Blowfish block size in bytes.
|
||||
const BlockSize = 8
|
||||
|
||||
// A Cipher is an instance of Blowfish encryption using a particular key.
|
||||
type Cipher struct {
|
||||
p [18]uint32
|
||||
s0, s1, s2, s3 [256]uint32
|
||||
}
|
||||
|
||||
type KeySizeError int
|
||||
|
||||
func (k KeySizeError) Error() string {
|
||||
return "crypto/blowfish: invalid key size " + strconv.Itoa(int(k))
|
||||
}
|
||||
|
||||
// NewCipher creates and returns a Cipher.
|
||||
// The key argument should be the Blowfish key, from 1 to 56 bytes.
|
||||
func NewCipher(key []byte) (*Cipher, error) {
|
||||
var result Cipher
|
||||
if k := len(key); k < 1 || k > 56 {
|
||||
return nil, KeySizeError(k)
|
||||
}
|
||||
initCipher(&result)
|
||||
ExpandKey(key, &result)
|
||||
return &result, nil
|
||||
}
|
||||
|
||||
// NewSaltedCipher creates a returns a Cipher that folds a salt into its key
|
||||
// schedule. For most purposes, NewCipher, instead of NewSaltedCipher, is
|
||||
// sufficient and desirable. For bcrypt compatibility, the key can be over 56
|
||||
// bytes.
|
||||
func NewSaltedCipher(key, salt []byte) (*Cipher, error) {
|
||||
if len(salt) == 0 {
|
||||
return NewCipher(key)
|
||||
}
|
||||
var result Cipher
|
||||
if k := len(key); k < 1 {
|
||||
return nil, KeySizeError(k)
|
||||
}
|
||||
initCipher(&result)
|
||||
expandKeyWithSalt(key, salt, &result)
|
||||
return &result, nil
|
||||
}
|
||||
|
||||
// BlockSize returns the Blowfish block size, 8 bytes.
|
||||
// It is necessary to satisfy the Block interface in the
|
||||
// package "crypto/cipher".
|
||||
func (c *Cipher) BlockSize() int { return BlockSize }
|
||||
|
||||
// Encrypt encrypts the 8-byte buffer src using the key k
|
||||
// and stores the result in dst.
|
||||
// Note that for amounts of data larger than a block,
|
||||
// it is not safe to just call Encrypt on successive blocks;
|
||||
// instead, use an encryption mode like CBC (see crypto/cipher/cbc.go).
|
||||
func (c *Cipher) Encrypt(dst, src []byte) {
|
||||
l := uint32(src[0])<<24 | uint32(src[1])<<16 | uint32(src[2])<<8 | uint32(src[3])
|
||||
r := uint32(src[4])<<24 | uint32(src[5])<<16 | uint32(src[6])<<8 | uint32(src[7])
|
||||
l, r = encryptBlock(l, r, c)
|
||||
dst[0], dst[1], dst[2], dst[3] = byte(l>>24), byte(l>>16), byte(l>>8), byte(l)
|
||||
dst[4], dst[5], dst[6], dst[7] = byte(r>>24), byte(r>>16), byte(r>>8), byte(r)
|
||||
}
|
||||
|
||||
// Decrypt decrypts the 8-byte buffer src using the key k
|
||||
// and stores the result in dst.
|
||||
func (c *Cipher) Decrypt(dst, src []byte) {
|
||||
l := uint32(src[0])<<24 | uint32(src[1])<<16 | uint32(src[2])<<8 | uint32(src[3])
|
||||
r := uint32(src[4])<<24 | uint32(src[5])<<16 | uint32(src[6])<<8 | uint32(src[7])
|
||||
l, r = decryptBlock(l, r, c)
|
||||
dst[0], dst[1], dst[2], dst[3] = byte(l>>24), byte(l>>16), byte(l>>8), byte(l)
|
||||
dst[4], dst[5], dst[6], dst[7] = byte(r>>24), byte(r>>16), byte(r>>8), byte(r)
|
||||
}
|
||||
|
||||
func initCipher(c *Cipher) {
|
||||
copy(c.p[0:], p[0:])
|
||||
copy(c.s0[0:], s0[0:])
|
||||
copy(c.s1[0:], s1[0:])
|
||||
copy(c.s2[0:], s2[0:])
|
||||
copy(c.s3[0:], s3[0:])
|
||||
}
|
|
@ -0,0 +1,199 @@
|
|||
// Copyright 2010 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// The startup permutation array and substitution boxes.
|
||||
// They are the hexadecimal digits of PI; see:
|
||||
// https://www.schneier.com/code/constants.txt.
|
||||
|
||||
package blowfish
|
||||
|
||||
var s0 = [256]uint32{
|
||||
0xd1310ba6, 0x98dfb5ac, 0x2ffd72db, 0xd01adfb7, 0xb8e1afed, 0x6a267e96,
|
||||
0xba7c9045, 0xf12c7f99, 0x24a19947, 0xb3916cf7, 0x0801f2e2, 0x858efc16,
|
||||
0x636920d8, 0x71574e69, 0xa458fea3, 0xf4933d7e, 0x0d95748f, 0x728eb658,
|
||||
0x718bcd58, 0x82154aee, 0x7b54a41d, 0xc25a59b5, 0x9c30d539, 0x2af26013,
|
||||
0xc5d1b023, 0x286085f0, 0xca417918, 0xb8db38ef, 0x8e79dcb0, 0x603a180e,
|
||||
0x6c9e0e8b, 0xb01e8a3e, 0xd71577c1, 0xbd314b27, 0x78af2fda, 0x55605c60,
|
||||
0xe65525f3, 0xaa55ab94, 0x57489862, 0x63e81440, 0x55ca396a, 0x2aab10b6,
|
||||
0xb4cc5c34, 0x1141e8ce, 0xa15486af, 0x7c72e993, 0xb3ee1411, 0x636fbc2a,
|
||||
0x2ba9c55d, 0x741831f6, 0xce5c3e16, 0x9b87931e, 0xafd6ba33, 0x6c24cf5c,
|
||||
0x7a325381, 0x28958677, 0x3b8f4898, 0x6b4bb9af, 0xc4bfe81b, 0x66282193,
|
||||
0x61d809cc, 0xfb21a991, 0x487cac60, 0x5dec8032, 0xef845d5d, 0xe98575b1,
|
||||
0xdc262302, 0xeb651b88, 0x23893e81, 0xd396acc5, 0x0f6d6ff3, 0x83f44239,
|
||||
0x2e0b4482, 0xa4842004, 0x69c8f04a, 0x9e1f9b5e, 0x21c66842, 0xf6e96c9a,
|
||||
0x670c9c61, 0xabd388f0, 0x6a51a0d2, 0xd8542f68, 0x960fa728, 0xab5133a3,
|
||||
0x6eef0b6c, 0x137a3be4, 0xba3bf050, 0x7efb2a98, 0xa1f1651d, 0x39af0176,
|
||||
0x66ca593e, 0x82430e88, 0x8cee8619, 0x456f9fb4, 0x7d84a5c3, 0x3b8b5ebe,
|
||||
0xe06f75d8, 0x85c12073, 0x401a449f, 0x56c16aa6, 0x4ed3aa62, 0x363f7706,
|
||||
0x1bfedf72, 0x429b023d, 0x37d0d724, 0xd00a1248, 0xdb0fead3, 0x49f1c09b,
|
||||
0x075372c9, 0x80991b7b, 0x25d479d8, 0xf6e8def7, 0xe3fe501a, 0xb6794c3b,
|
||||
0x976ce0bd, 0x04c006ba, 0xc1a94fb6, 0x409f60c4, 0x5e5c9ec2, 0x196a2463,
|
||||
0x68fb6faf, 0x3e6c53b5, 0x1339b2eb, 0x3b52ec6f, 0x6dfc511f, 0x9b30952c,
|
||||
0xcc814544, 0xaf5ebd09, 0xbee3d004, 0xde334afd, 0x660f2807, 0x192e4bb3,
|
||||
0xc0cba857, 0x45c8740f, 0xd20b5f39, 0xb9d3fbdb, 0x5579c0bd, 0x1a60320a,
|
||||
0xd6a100c6, 0x402c7279, 0x679f25fe, 0xfb1fa3cc, 0x8ea5e9f8, 0xdb3222f8,
|
||||
0x3c7516df, 0xfd616b15, 0x2f501ec8, 0xad0552ab, 0x323db5fa, 0xfd238760,
|
||||
0x53317b48, 0x3e00df82, 0x9e5c57bb, 0xca6f8ca0, 0x1a87562e, 0xdf1769db,
|
||||
0xd542a8f6, 0x287effc3, 0xac6732c6, 0x8c4f5573, 0x695b27b0, 0xbbca58c8,
|
||||
0xe1ffa35d, 0xb8f011a0, 0x10fa3d98, 0xfd2183b8, 0x4afcb56c, 0x2dd1d35b,
|
||||
0x9a53e479, 0xb6f84565, 0xd28e49bc, 0x4bfb9790, 0xe1ddf2da, 0xa4cb7e33,
|
||||
0x62fb1341, 0xcee4c6e8, 0xef20cada, 0x36774c01, 0xd07e9efe, 0x2bf11fb4,
|
||||
0x95dbda4d, 0xae909198, 0xeaad8e71, 0x6b93d5a0, 0xd08ed1d0, 0xafc725e0,
|
||||
0x8e3c5b2f, 0x8e7594b7, 0x8ff6e2fb, 0xf2122b64, 0x8888b812, 0x900df01c,
|
||||
0x4fad5ea0, 0x688fc31c, 0xd1cff191, 0xb3a8c1ad, 0x2f2f2218, 0xbe0e1777,
|
||||
0xea752dfe, 0x8b021fa1, 0xe5a0cc0f, 0xb56f74e8, 0x18acf3d6, 0xce89e299,
|
||||
0xb4a84fe0, 0xfd13e0b7, 0x7cc43b81, 0xd2ada8d9, 0x165fa266, 0x80957705,
|
||||
0x93cc7314, 0x211a1477, 0xe6ad2065, 0x77b5fa86, 0xc75442f5, 0xfb9d35cf,
|
||||
0xebcdaf0c, 0x7b3e89a0, 0xd6411bd3, 0xae1e7e49, 0x00250e2d, 0x2071b35e,
|
||||
0x226800bb, 0x57b8e0af, 0x2464369b, 0xf009b91e, 0x5563911d, 0x59dfa6aa,
|
||||
0x78c14389, 0xd95a537f, 0x207d5ba2, 0x02e5b9c5, 0x83260376, 0x6295cfa9,
|
||||
0x11c81968, 0x4e734a41, 0xb3472dca, 0x7b14a94a, 0x1b510052, 0x9a532915,
|
||||
0xd60f573f, 0xbc9bc6e4, 0x2b60a476, 0x81e67400, 0x08ba6fb5, 0x571be91f,
|
||||
0xf296ec6b, 0x2a0dd915, 0xb6636521, 0xe7b9f9b6, 0xff34052e, 0xc5855664,
|
||||
0x53b02d5d, 0xa99f8fa1, 0x08ba4799, 0x6e85076a,
|
||||
}
|
||||
|
||||
var s1 = [256]uint32{
|
||||
0x4b7a70e9, 0xb5b32944, 0xdb75092e, 0xc4192623, 0xad6ea6b0, 0x49a7df7d,
|
||||
0x9cee60b8, 0x8fedb266, 0xecaa8c71, 0x699a17ff, 0x5664526c, 0xc2b19ee1,
|
||||
0x193602a5, 0x75094c29, 0xa0591340, 0xe4183a3e, 0x3f54989a, 0x5b429d65,
|
||||
0x6b8fe4d6, 0x99f73fd6, 0xa1d29c07, 0xefe830f5, 0x4d2d38e6, 0xf0255dc1,
|
||||
0x4cdd2086, 0x8470eb26, 0x6382e9c6, 0x021ecc5e, 0x09686b3f, 0x3ebaefc9,
|
||||
0x3c971814, 0x6b6a70a1, 0x687f3584, 0x52a0e286, 0xb79c5305, 0xaa500737,
|
||||
0x3e07841c, 0x7fdeae5c, 0x8e7d44ec, 0x5716f2b8, 0xb03ada37, 0xf0500c0d,
|
||||
0xf01c1f04, 0x0200b3ff, 0xae0cf51a, 0x3cb574b2, 0x25837a58, 0xdc0921bd,
|
||||
0xd19113f9, 0x7ca92ff6, 0x94324773, 0x22f54701, 0x3ae5e581, 0x37c2dadc,
|
||||
0xc8b57634, 0x9af3dda7, 0xa9446146, 0x0fd0030e, 0xecc8c73e, 0xa4751e41,
|
||||
0xe238cd99, 0x3bea0e2f, 0x3280bba1, 0x183eb331, 0x4e548b38, 0x4f6db908,
|
||||
0x6f420d03, 0xf60a04bf, 0x2cb81290, 0x24977c79, 0x5679b072, 0xbcaf89af,
|
||||
0xde9a771f, 0xd9930810, 0xb38bae12, 0xdccf3f2e, 0x5512721f, 0x2e6b7124,
|
||||
0x501adde6, 0x9f84cd87, 0x7a584718, 0x7408da17, 0xbc9f9abc, 0xe94b7d8c,
|
||||
0xec7aec3a, 0xdb851dfa, 0x63094366, 0xc464c3d2, 0xef1c1847, 0x3215d908,
|
||||
0xdd433b37, 0x24c2ba16, 0x12a14d43, 0x2a65c451, 0x50940002, 0x133ae4dd,
|
||||
0x71dff89e, 0x10314e55, 0x81ac77d6, 0x5f11199b, 0x043556f1, 0xd7a3c76b,
|
||||
0x3c11183b, 0x5924a509, 0xf28fe6ed, 0x97f1fbfa, 0x9ebabf2c, 0x1e153c6e,
|
||||
0x86e34570, 0xeae96fb1, 0x860e5e0a, 0x5a3e2ab3, 0x771fe71c, 0x4e3d06fa,
|
||||
0x2965dcb9, 0x99e71d0f, 0x803e89d6, 0x5266c825, 0x2e4cc978, 0x9c10b36a,
|
||||
0xc6150eba, 0x94e2ea78, 0xa5fc3c53, 0x1e0a2df4, 0xf2f74ea7, 0x361d2b3d,
|
||||
0x1939260f, 0x19c27960, 0x5223a708, 0xf71312b6, 0xebadfe6e, 0xeac31f66,
|
||||
0xe3bc4595, 0xa67bc883, 0xb17f37d1, 0x018cff28, 0xc332ddef, 0xbe6c5aa5,
|
||||
0x65582185, 0x68ab9802, 0xeecea50f, 0xdb2f953b, 0x2aef7dad, 0x5b6e2f84,
|
||||
0x1521b628, 0x29076170, 0xecdd4775, 0x619f1510, 0x13cca830, 0xeb61bd96,
|
||||
0x0334fe1e, 0xaa0363cf, 0xb5735c90, 0x4c70a239, 0xd59e9e0b, 0xcbaade14,
|
||||
0xeecc86bc, 0x60622ca7, 0x9cab5cab, 0xb2f3846e, 0x648b1eaf, 0x19bdf0ca,
|
||||
0xa02369b9, 0x655abb50, 0x40685a32, 0x3c2ab4b3, 0x319ee9d5, 0xc021b8f7,
|
||||
0x9b540b19, 0x875fa099, 0x95f7997e, 0x623d7da8, 0xf837889a, 0x97e32d77,
|
||||
0x11ed935f, 0x16681281, 0x0e358829, 0xc7e61fd6, 0x96dedfa1, 0x7858ba99,
|
||||
0x57f584a5, 0x1b227263, 0x9b83c3ff, 0x1ac24696, 0xcdb30aeb, 0x532e3054,
|
||||
0x8fd948e4, 0x6dbc3128, 0x58ebf2ef, 0x34c6ffea, 0xfe28ed61, 0xee7c3c73,
|
||||
0x5d4a14d9, 0xe864b7e3, 0x42105d14, 0x203e13e0, 0x45eee2b6, 0xa3aaabea,
|
||||
0xdb6c4f15, 0xfacb4fd0, 0xc742f442, 0xef6abbb5, 0x654f3b1d, 0x41cd2105,
|
||||
0xd81e799e, 0x86854dc7, 0xe44b476a, 0x3d816250, 0xcf62a1f2, 0x5b8d2646,
|
||||
0xfc8883a0, 0xc1c7b6a3, 0x7f1524c3, 0x69cb7492, 0x47848a0b, 0x5692b285,
|
||||
0x095bbf00, 0xad19489d, 0x1462b174, 0x23820e00, 0x58428d2a, 0x0c55f5ea,
|
||||
0x1dadf43e, 0x233f7061, 0x3372f092, 0x8d937e41, 0xd65fecf1, 0x6c223bdb,
|
||||
0x7cde3759, 0xcbee7460, 0x4085f2a7, 0xce77326e, 0xa6078084, 0x19f8509e,
|
||||
0xe8efd855, 0x61d99735, 0xa969a7aa, 0xc50c06c2, 0x5a04abfc, 0x800bcadc,
|
||||
0x9e447a2e, 0xc3453484, 0xfdd56705, 0x0e1e9ec9, 0xdb73dbd3, 0x105588cd,
|
||||
0x675fda79, 0xe3674340, 0xc5c43465, 0x713e38d8, 0x3d28f89e, 0xf16dff20,
|
||||
0x153e21e7, 0x8fb03d4a, 0xe6e39f2b, 0xdb83adf7,
|
||||
}
|
||||
|
||||
var s2 = [256]uint32{
|
||||
0xe93d5a68, 0x948140f7, 0xf64c261c, 0x94692934, 0x411520f7, 0x7602d4f7,
|
||||
0xbcf46b2e, 0xd4a20068, 0xd4082471, 0x3320f46a, 0x43b7d4b7, 0x500061af,
|
||||
0x1e39f62e, 0x97244546, 0x14214f74, 0xbf8b8840, 0x4d95fc1d, 0x96b591af,
|
||||
0x70f4ddd3, 0x66a02f45, 0xbfbc09ec, 0x03bd9785, 0x7fac6dd0, 0x31cb8504,
|
||||
0x96eb27b3, 0x55fd3941, 0xda2547e6, 0xabca0a9a, 0x28507825, 0x530429f4,
|
||||
0x0a2c86da, 0xe9b66dfb, 0x68dc1462, 0xd7486900, 0x680ec0a4, 0x27a18dee,
|
||||
0x4f3ffea2, 0xe887ad8c, 0xb58ce006, 0x7af4d6b6, 0xaace1e7c, 0xd3375fec,
|
||||
0xce78a399, 0x406b2a42, 0x20fe9e35, 0xd9f385b9, 0xee39d7ab, 0x3b124e8b,
|
||||
0x1dc9faf7, 0x4b6d1856, 0x26a36631, 0xeae397b2, 0x3a6efa74, 0xdd5b4332,
|
||||
0x6841e7f7, 0xca7820fb, 0xfb0af54e, 0xd8feb397, 0x454056ac, 0xba489527,
|
||||
0x55533a3a, 0x20838d87, 0xfe6ba9b7, 0xd096954b, 0x55a867bc, 0xa1159a58,
|
||||
0xcca92963, 0x99e1db33, 0xa62a4a56, 0x3f3125f9, 0x5ef47e1c, 0x9029317c,
|
||||
0xfdf8e802, 0x04272f70, 0x80bb155c, 0x05282ce3, 0x95c11548, 0xe4c66d22,
|
||||
0x48c1133f, 0xc70f86dc, 0x07f9c9ee, 0x41041f0f, 0x404779a4, 0x5d886e17,
|
||||
0x325f51eb, 0xd59bc0d1, 0xf2bcc18f, 0x41113564, 0x257b7834, 0x602a9c60,
|
||||
0xdff8e8a3, 0x1f636c1b, 0x0e12b4c2, 0x02e1329e, 0xaf664fd1, 0xcad18115,
|
||||
0x6b2395e0, 0x333e92e1, 0x3b240b62, 0xeebeb922, 0x85b2a20e, 0xe6ba0d99,
|
||||
0xde720c8c, 0x2da2f728, 0xd0127845, 0x95b794fd, 0x647d0862, 0xe7ccf5f0,
|
||||
0x5449a36f, 0x877d48fa, 0xc39dfd27, 0xf33e8d1e, 0x0a476341, 0x992eff74,
|
||||
0x3a6f6eab, 0xf4f8fd37, 0xa812dc60, 0xa1ebddf8, 0x991be14c, 0xdb6e6b0d,
|
||||
0xc67b5510, 0x6d672c37, 0x2765d43b, 0xdcd0e804, 0xf1290dc7, 0xcc00ffa3,
|
||||
0xb5390f92, 0x690fed0b, 0x667b9ffb, 0xcedb7d9c, 0xa091cf0b, 0xd9155ea3,
|
||||
0xbb132f88, 0x515bad24, 0x7b9479bf, 0x763bd6eb, 0x37392eb3, 0xcc115979,
|
||||
0x8026e297, 0xf42e312d, 0x6842ada7, 0xc66a2b3b, 0x12754ccc, 0x782ef11c,
|
||||
0x6a124237, 0xb79251e7, 0x06a1bbe6, 0x4bfb6350, 0x1a6b1018, 0x11caedfa,
|
||||
0x3d25bdd8, 0xe2e1c3c9, 0x44421659, 0x0a121386, 0xd90cec6e, 0xd5abea2a,
|
||||
0x64af674e, 0xda86a85f, 0xbebfe988, 0x64e4c3fe, 0x9dbc8057, 0xf0f7c086,
|
||||
0x60787bf8, 0x6003604d, 0xd1fd8346, 0xf6381fb0, 0x7745ae04, 0xd736fccc,
|
||||
0x83426b33, 0xf01eab71, 0xb0804187, 0x3c005e5f, 0x77a057be, 0xbde8ae24,
|
||||
0x55464299, 0xbf582e61, 0x4e58f48f, 0xf2ddfda2, 0xf474ef38, 0x8789bdc2,
|
||||
0x5366f9c3, 0xc8b38e74, 0xb475f255, 0x46fcd9b9, 0x7aeb2661, 0x8b1ddf84,
|
||||
0x846a0e79, 0x915f95e2, 0x466e598e, 0x20b45770, 0x8cd55591, 0xc902de4c,
|
||||
0xb90bace1, 0xbb8205d0, 0x11a86248, 0x7574a99e, 0xb77f19b6, 0xe0a9dc09,
|
||||
0x662d09a1, 0xc4324633, 0xe85a1f02, 0x09f0be8c, 0x4a99a025, 0x1d6efe10,
|
||||
0x1ab93d1d, 0x0ba5a4df, 0xa186f20f, 0x2868f169, 0xdcb7da83, 0x573906fe,
|
||||
0xa1e2ce9b, 0x4fcd7f52, 0x50115e01, 0xa70683fa, 0xa002b5c4, 0x0de6d027,
|
||||
0x9af88c27, 0x773f8641, 0xc3604c06, 0x61a806b5, 0xf0177a28, 0xc0f586e0,
|
||||
0x006058aa, 0x30dc7d62, 0x11e69ed7, 0x2338ea63, 0x53c2dd94, 0xc2c21634,
|
||||
0xbbcbee56, 0x90bcb6de, 0xebfc7da1, 0xce591d76, 0x6f05e409, 0x4b7c0188,
|
||||
0x39720a3d, 0x7c927c24, 0x86e3725f, 0x724d9db9, 0x1ac15bb4, 0xd39eb8fc,
|
||||
0xed545578, 0x08fca5b5, 0xd83d7cd3, 0x4dad0fc4, 0x1e50ef5e, 0xb161e6f8,
|
||||
0xa28514d9, 0x6c51133c, 0x6fd5c7e7, 0x56e14ec4, 0x362abfce, 0xddc6c837,
|
||||
0xd79a3234, 0x92638212, 0x670efa8e, 0x406000e0,
|
||||
}
|
||||
|
||||
var s3 = [256]uint32{
|
||||
0x3a39ce37, 0xd3faf5cf, 0xabc27737, 0x5ac52d1b, 0x5cb0679e, 0x4fa33742,
|
||||
0xd3822740, 0x99bc9bbe, 0xd5118e9d, 0xbf0f7315, 0xd62d1c7e, 0xc700c47b,
|
||||
0xb78c1b6b, 0x21a19045, 0xb26eb1be, 0x6a366eb4, 0x5748ab2f, 0xbc946e79,
|
||||
0xc6a376d2, 0x6549c2c8, 0x530ff8ee, 0x468dde7d, 0xd5730a1d, 0x4cd04dc6,
|
||||
0x2939bbdb, 0xa9ba4650, 0xac9526e8, 0xbe5ee304, 0xa1fad5f0, 0x6a2d519a,
|
||||
0x63ef8ce2, 0x9a86ee22, 0xc089c2b8, 0x43242ef6, 0xa51e03aa, 0x9cf2d0a4,
|
||||
0x83c061ba, 0x9be96a4d, 0x8fe51550, 0xba645bd6, 0x2826a2f9, 0xa73a3ae1,
|
||||
0x4ba99586, 0xef5562e9, 0xc72fefd3, 0xf752f7da, 0x3f046f69, 0x77fa0a59,
|
||||
0x80e4a915, 0x87b08601, 0x9b09e6ad, 0x3b3ee593, 0xe990fd5a, 0x9e34d797,
|
||||
0x2cf0b7d9, 0x022b8b51, 0x96d5ac3a, 0x017da67d, 0xd1cf3ed6, 0x7c7d2d28,
|
||||
0x1f9f25cf, 0xadf2b89b, 0x5ad6b472, 0x5a88f54c, 0xe029ac71, 0xe019a5e6,
|
||||
0x47b0acfd, 0xed93fa9b, 0xe8d3c48d, 0x283b57cc, 0xf8d56629, 0x79132e28,
|
||||
0x785f0191, 0xed756055, 0xf7960e44, 0xe3d35e8c, 0x15056dd4, 0x88f46dba,
|
||||
0x03a16125, 0x0564f0bd, 0xc3eb9e15, 0x3c9057a2, 0x97271aec, 0xa93a072a,
|
||||
0x1b3f6d9b, 0x1e6321f5, 0xf59c66fb, 0x26dcf319, 0x7533d928, 0xb155fdf5,
|
||||
0x03563482, 0x8aba3cbb, 0x28517711, 0xc20ad9f8, 0xabcc5167, 0xccad925f,
|
||||
0x4de81751, 0x3830dc8e, 0x379d5862, 0x9320f991, 0xea7a90c2, 0xfb3e7bce,
|
||||
0x5121ce64, 0x774fbe32, 0xa8b6e37e, 0xc3293d46, 0x48de5369, 0x6413e680,
|
||||
0xa2ae0810, 0xdd6db224, 0x69852dfd, 0x09072166, 0xb39a460a, 0x6445c0dd,
|
||||
0x586cdecf, 0x1c20c8ae, 0x5bbef7dd, 0x1b588d40, 0xccd2017f, 0x6bb4e3bb,
|
||||
0xdda26a7e, 0x3a59ff45, 0x3e350a44, 0xbcb4cdd5, 0x72eacea8, 0xfa6484bb,
|
||||
0x8d6612ae, 0xbf3c6f47, 0xd29be463, 0x542f5d9e, 0xaec2771b, 0xf64e6370,
|
||||
0x740e0d8d, 0xe75b1357, 0xf8721671, 0xaf537d5d, 0x4040cb08, 0x4eb4e2cc,
|
||||
0x34d2466a, 0x0115af84, 0xe1b00428, 0x95983a1d, 0x06b89fb4, 0xce6ea048,
|
||||
0x6f3f3b82, 0x3520ab82, 0x011a1d4b, 0x277227f8, 0x611560b1, 0xe7933fdc,
|
||||
0xbb3a792b, 0x344525bd, 0xa08839e1, 0x51ce794b, 0x2f32c9b7, 0xa01fbac9,
|
||||
0xe01cc87e, 0xbcc7d1f6, 0xcf0111c3, 0xa1e8aac7, 0x1a908749, 0xd44fbd9a,
|
||||
0xd0dadecb, 0xd50ada38, 0x0339c32a, 0xc6913667, 0x8df9317c, 0xe0b12b4f,
|
||||
0xf79e59b7, 0x43f5bb3a, 0xf2d519ff, 0x27d9459c, 0xbf97222c, 0x15e6fc2a,
|
||||
0x0f91fc71, 0x9b941525, 0xfae59361, 0xceb69ceb, 0xc2a86459, 0x12baa8d1,
|
||||
0xb6c1075e, 0xe3056a0c, 0x10d25065, 0xcb03a442, 0xe0ec6e0e, 0x1698db3b,
|
||||
0x4c98a0be, 0x3278e964, 0x9f1f9532, 0xe0d392df, 0xd3a0342b, 0x8971f21e,
|
||||
0x1b0a7441, 0x4ba3348c, 0xc5be7120, 0xc37632d8, 0xdf359f8d, 0x9b992f2e,
|
||||
0xe60b6f47, 0x0fe3f11d, 0xe54cda54, 0x1edad891, 0xce6279cf, 0xcd3e7e6f,
|
||||
0x1618b166, 0xfd2c1d05, 0x848fd2c5, 0xf6fb2299, 0xf523f357, 0xa6327623,
|
||||
0x93a83531, 0x56cccd02, 0xacf08162, 0x5a75ebb5, 0x6e163697, 0x88d273cc,
|
||||
0xde966292, 0x81b949d0, 0x4c50901b, 0x71c65614, 0xe6c6c7bd, 0x327a140a,
|
||||
0x45e1d006, 0xc3f27b9a, 0xc9aa53fd, 0x62a80f00, 0xbb25bfe2, 0x35bdd2f6,
|
||||
0x71126905, 0xb2040222, 0xb6cbcf7c, 0xcd769c2b, 0x53113ec0, 0x1640e3d3,
|
||||
0x38abbd60, 0x2547adf0, 0xba38209c, 0xf746ce76, 0x77afa1c5, 0x20756060,
|
||||
0x85cbfe4e, 0x8ae88dd8, 0x7aaaf9b0, 0x4cf9aa7e, 0x1948c25c, 0x02fb8a8c,
|
||||
0x01c36ae4, 0xd6ebe1f9, 0x90d4f869, 0xa65cdea0, 0x3f09252d, 0xc208e69f,
|
||||
0xb74e6132, 0xce77e25b, 0x578fdfe3, 0x3ac372e6,
|
||||
}
|
||||
|
||||
var p = [18]uint32{
|
||||
0x243f6a88, 0x85a308d3, 0x13198a2e, 0x03707344, 0xa4093822, 0x299f31d0,
|
||||
0x082efa98, 0xec4e6c89, 0x452821e6, 0x38d01377, 0xbe5466cf, 0x34e90c6c,
|
||||
0xc0ac29b7, 0xc97c50dd, 0x3f84d5b5, 0xb5470917, 0x9216d5d9, 0x8979fb1b,
|
||||
}
|
|
@ -0,0 +1,16 @@
|
|||
// Copyright 2018 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build go1.11,!gccgo,!purego
|
||||
|
||||
package chacha20
|
||||
|
||||
const bufSize = 256
|
||||
|
||||
//go:noescape
|
||||
func xorKeyStreamVX(dst, src []byte, key *[8]uint32, nonce *[3]uint32, counter *uint32)
|
||||
|
||||
func (c *Cipher) xorKeyStreamBlocks(dst, src []byte) {
|
||||
xorKeyStreamVX(dst, src, &c.key, &c.nonce, &c.counter)
|
||||
}
|
|
@ -2,8 +2,7 @@
|
|||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build go1.11
|
||||
// +build !gccgo,!appengine
|
||||
// +build go1.11,!gccgo,!purego
|
||||
|
||||
#include "textflag.h"
|
||||
|
|
@ -0,0 +1,398 @@
|
|||
// Copyright 2016 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package chacha20 implements the ChaCha20 and XChaCha20 encryption algorithms
|
||||
// as specified in RFC 8439 and draft-irtf-cfrg-xchacha-01.
|
||||
package chacha20
|
||||
|
||||
import (
|
||||
"crypto/cipher"
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"math/bits"
|
||||
|
||||
"golang.org/x/crypto/internal/subtle"
|
||||
)
|
||||
|
||||
const (
|
||||
// KeySize is the size of the key used by this cipher, in bytes.
|
||||
KeySize = 32
|
||||
|
||||
// NonceSize is the size of the nonce used with the standard variant of this
|
||||
// cipher, in bytes.
|
||||
//
|
||||
// Note that this is too short to be safely generated at random if the same
|
||||
// key is reused more than 2³² times.
|
||||
NonceSize = 12
|
||||
|
||||
// NonceSizeX is the size of the nonce used with the XChaCha20 variant of
|
||||
// this cipher, in bytes.
|
||||
NonceSizeX = 24
|
||||
)
|
||||
|
||||
// Cipher is a stateful instance of ChaCha20 or XChaCha20 using a particular key
|
||||
// and nonce. A *Cipher implements the cipher.Stream interface.
|
||||
type Cipher struct {
|
||||
// The ChaCha20 state is 16 words: 4 constant, 8 of key, 1 of counter
|
||||
// (incremented after each block), and 3 of nonce.
|
||||
key [8]uint32
|
||||
counter uint32
|
||||
nonce [3]uint32
|
||||
|
||||
// The last len bytes of buf are leftover key stream bytes from the previous
|
||||
// XORKeyStream invocation. The size of buf depends on how many blocks are
|
||||
// computed at a time by xorKeyStreamBlocks.
|
||||
buf [bufSize]byte
|
||||
len int
|
||||
|
||||
// overflow is set when the counter overflowed, no more blocks can be
|
||||
// generated, and the next XORKeyStream call should panic.
|
||||
overflow bool
|
||||
|
||||
// The counter-independent results of the first round are cached after they
|
||||
// are computed the first time.
|
||||
precompDone bool
|
||||
p1, p5, p9, p13 uint32
|
||||
p2, p6, p10, p14 uint32
|
||||
p3, p7, p11, p15 uint32
|
||||
}
|
||||
|
||||
var _ cipher.Stream = (*Cipher)(nil)
|
||||
|
||||
// NewUnauthenticatedCipher creates a new ChaCha20 stream cipher with the given
|
||||
// 32 bytes key and a 12 or 24 bytes nonce. If a nonce of 24 bytes is provided,
|
||||
// the XChaCha20 construction will be used. It returns an error if key or nonce
|
||||
// have any other length.
|
||||
//
|
||||
// Note that ChaCha20, like all stream ciphers, is not authenticated and allows
|
||||
// attackers to silently tamper with the plaintext. For this reason, it is more
|
||||
// appropriate as a building block than as a standalone encryption mechanism.
|
||||
// Instead, consider using package golang.org/x/crypto/chacha20poly1305.
|
||||
func NewUnauthenticatedCipher(key, nonce []byte) (*Cipher, error) {
|
||||
// This function is split into a wrapper so that the Cipher allocation will
|
||||
// be inlined, and depending on how the caller uses the return value, won't
|
||||
// escape to the heap.
|
||||
c := &Cipher{}
|
||||
return newUnauthenticatedCipher(c, key, nonce)
|
||||
}
|
||||
|
||||
func newUnauthenticatedCipher(c *Cipher, key, nonce []byte) (*Cipher, error) {
|
||||
if len(key) != KeySize {
|
||||
return nil, errors.New("chacha20: wrong key size")
|
||||
}
|
||||
if len(nonce) == NonceSizeX {
|
||||
// XChaCha20 uses the ChaCha20 core to mix 16 bytes of the nonce into a
|
||||
// derived key, allowing it to operate on a nonce of 24 bytes. See
|
||||
// draft-irtf-cfrg-xchacha-01, Section 2.3.
|
||||
key, _ = HChaCha20(key, nonce[0:16])
|
||||
cNonce := make([]byte, NonceSize)
|
||||
copy(cNonce[4:12], nonce[16:24])
|
||||
nonce = cNonce
|
||||
} else if len(nonce) != NonceSize {
|
||||
return nil, errors.New("chacha20: wrong nonce size")
|
||||
}
|
||||
|
||||
key, nonce = key[:KeySize], nonce[:NonceSize] // bounds check elimination hint
|
||||
c.key = [8]uint32{
|
||||
binary.LittleEndian.Uint32(key[0:4]),
|
||||
binary.LittleEndian.Uint32(key[4:8]),
|
||||
binary.LittleEndian.Uint32(key[8:12]),
|
||||
binary.LittleEndian.Uint32(key[12:16]),
|
||||
binary.LittleEndian.Uint32(key[16:20]),
|
||||
binary.LittleEndian.Uint32(key[20:24]),
|
||||
binary.LittleEndian.Uint32(key[24:28]),
|
||||
binary.LittleEndian.Uint32(key[28:32]),
|
||||
}
|
||||
c.nonce = [3]uint32{
|
||||
binary.LittleEndian.Uint32(nonce[0:4]),
|
||||
binary.LittleEndian.Uint32(nonce[4:8]),
|
||||
binary.LittleEndian.Uint32(nonce[8:12]),
|
||||
}
|
||||
return c, nil
|
||||
}
|
||||
|
||||
// The constant first 4 words of the ChaCha20 state.
|
||||
const (
|
||||
j0 uint32 = 0x61707865 // expa
|
||||
j1 uint32 = 0x3320646e // nd 3
|
||||
j2 uint32 = 0x79622d32 // 2-by
|
||||
j3 uint32 = 0x6b206574 // te k
|
||||
)
|
||||
|
||||
const blockSize = 64
|
||||
|
||||
// quarterRound is the core of ChaCha20. It shuffles the bits of 4 state words.
|
||||
// It's executed 4 times for each of the 20 ChaCha20 rounds, operating on all 16
|
||||
// words each round, in columnar or diagonal groups of 4 at a time.
|
||||
func quarterRound(a, b, c, d uint32) (uint32, uint32, uint32, uint32) {
|
||||
a += b
|
||||
d ^= a
|
||||
d = bits.RotateLeft32(d, 16)
|
||||
c += d
|
||||
b ^= c
|
||||
b = bits.RotateLeft32(b, 12)
|
||||
a += b
|
||||
d ^= a
|
||||
d = bits.RotateLeft32(d, 8)
|
||||
c += d
|
||||
b ^= c
|
||||
b = bits.RotateLeft32(b, 7)
|
||||
return a, b, c, d
|
||||
}
|
||||
|
||||
// SetCounter sets the Cipher counter. The next invocation of XORKeyStream will
|
||||
// behave as if (64 * counter) bytes had been encrypted so far.
|
||||
//
|
||||
// To prevent accidental counter reuse, SetCounter panics if counter is less
|
||||
// than the current value.
|
||||
//
|
||||
// Note that the execution time of XORKeyStream is not independent of the
|
||||
// counter value.
|
||||
func (s *Cipher) SetCounter(counter uint32) {
|
||||
// Internally, s may buffer multiple blocks, which complicates this
|
||||
// implementation slightly. When checking whether the counter has rolled
|
||||
// back, we must use both s.counter and s.len to determine how many blocks
|
||||
// we have already output.
|
||||
outputCounter := s.counter - uint32(s.len)/blockSize
|
||||
if s.overflow || counter < outputCounter {
|
||||
panic("chacha20: SetCounter attempted to rollback counter")
|
||||
}
|
||||
|
||||
// In the general case, we set the new counter value and reset s.len to 0,
|
||||
// causing the next call to XORKeyStream to refill the buffer. However, if
|
||||
// we're advancing within the existing buffer, we can save work by simply
|
||||
// setting s.len.
|
||||
if counter < s.counter {
|
||||
s.len = int(s.counter-counter) * blockSize
|
||||
} else {
|
||||
s.counter = counter
|
||||
s.len = 0
|
||||
}
|
||||
}
|
||||
|
||||
// XORKeyStream XORs each byte in the given slice with a byte from the
|
||||
// cipher's key stream. Dst and src must overlap entirely or not at all.
|
||||
//
|
||||
// If len(dst) < len(src), XORKeyStream will panic. It is acceptable
|
||||
// to pass a dst bigger than src, and in that case, XORKeyStream will
|
||||
// only update dst[:len(src)] and will not touch the rest of dst.
|
||||
//
|
||||
// Multiple calls to XORKeyStream behave as if the concatenation of
|
||||
// the src buffers was passed in a single run. That is, Cipher
|
||||
// maintains state and does not reset at each XORKeyStream call.
|
||||
func (s *Cipher) XORKeyStream(dst, src []byte) {
|
||||
if len(src) == 0 {
|
||||
return
|
||||
}
|
||||
if len(dst) < len(src) {
|
||||
panic("chacha20: output smaller than input")
|
||||
}
|
||||
dst = dst[:len(src)]
|
||||
if subtle.InexactOverlap(dst, src) {
|
||||
panic("chacha20: invalid buffer overlap")
|
||||
}
|
||||
|
||||
// First, drain any remaining key stream from a previous XORKeyStream.
|
||||
if s.len != 0 {
|
||||
keyStream := s.buf[bufSize-s.len:]
|
||||
if len(src) < len(keyStream) {
|
||||
keyStream = keyStream[:len(src)]
|
||||
}
|
||||
_ = src[len(keyStream)-1] // bounds check elimination hint
|
||||
for i, b := range keyStream {
|
||||
dst[i] = src[i] ^ b
|
||||
}
|
||||
s.len -= len(keyStream)
|
||||
dst, src = dst[len(keyStream):], src[len(keyStream):]
|
||||
}
|
||||
if len(src) == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
// If we'd need to let the counter overflow and keep generating output,
|
||||
// panic immediately. If instead we'd only reach the last block, remember
|
||||
// not to generate any more output after the buffer is drained.
|
||||
numBlocks := (uint64(len(src)) + blockSize - 1) / blockSize
|
||||
if s.overflow || uint64(s.counter)+numBlocks > 1<<32 {
|
||||
panic("chacha20: counter overflow")
|
||||
} else if uint64(s.counter)+numBlocks == 1<<32 {
|
||||
s.overflow = true
|
||||
}
|
||||
|
||||
// xorKeyStreamBlocks implementations expect input lengths that are a
|
||||
// multiple of bufSize. Platform-specific ones process multiple blocks at a
|
||||
// time, so have bufSizes that are a multiple of blockSize.
|
||||
|
||||
full := len(src) - len(src)%bufSize
|
||||
if full > 0 {
|
||||
s.xorKeyStreamBlocks(dst[:full], src[:full])
|
||||
}
|
||||
dst, src = dst[full:], src[full:]
|
||||
|
||||
// If using a multi-block xorKeyStreamBlocks would overflow, use the generic
|
||||
// one that does one block at a time.
|
||||
const blocksPerBuf = bufSize / blockSize
|
||||
if uint64(s.counter)+blocksPerBuf > 1<<32 {
|
||||
s.buf = [bufSize]byte{}
|
||||
numBlocks := (len(src) + blockSize - 1) / blockSize
|
||||
buf := s.buf[bufSize-numBlocks*blockSize:]
|
||||
copy(buf, src)
|
||||
s.xorKeyStreamBlocksGeneric(buf, buf)
|
||||
s.len = len(buf) - copy(dst, buf)
|
||||
return
|
||||
}
|
||||
|
||||
// If we have a partial (multi-)block, pad it for xorKeyStreamBlocks, and
|
||||
// keep the leftover keystream for the next XORKeyStream invocation.
|
||||
if len(src) > 0 {
|
||||
s.buf = [bufSize]byte{}
|
||||
copy(s.buf[:], src)
|
||||
s.xorKeyStreamBlocks(s.buf[:], s.buf[:])
|
||||
s.len = bufSize - copy(dst, s.buf[:])
|
||||
}
|
||||
}
|
||||
|
||||
func (s *Cipher) xorKeyStreamBlocksGeneric(dst, src []byte) {
|
||||
if len(dst) != len(src) || len(dst)%blockSize != 0 {
|
||||
panic("chacha20: internal error: wrong dst and/or src length")
|
||||
}
|
||||
|
||||
// To generate each block of key stream, the initial cipher state
|
||||
// (represented below) is passed through 20 rounds of shuffling,
|
||||
// alternatively applying quarterRounds by columns (like 1, 5, 9, 13)
|
||||
// or by diagonals (like 1, 6, 11, 12).
|
||||
//
|
||||
// 0:cccccccc 1:cccccccc 2:cccccccc 3:cccccccc
|
||||
// 4:kkkkkkkk 5:kkkkkkkk 6:kkkkkkkk 7:kkkkkkkk
|
||||
// 8:kkkkkkkk 9:kkkkkkkk 10:kkkkkkkk 11:kkkkkkkk
|
||||
// 12:bbbbbbbb 13:nnnnnnnn 14:nnnnnnnn 15:nnnnnnnn
|
||||
//
|
||||
// c=constant k=key b=blockcount n=nonce
|
||||
var (
|
||||
c0, c1, c2, c3 = j0, j1, j2, j3
|
||||
c4, c5, c6, c7 = s.key[0], s.key[1], s.key[2], s.key[3]
|
||||
c8, c9, c10, c11 = s.key[4], s.key[5], s.key[6], s.key[7]
|
||||
_, c13, c14, c15 = s.counter, s.nonce[0], s.nonce[1], s.nonce[2]
|
||||
)
|
||||
|
||||
// Three quarters of the first round don't depend on the counter, so we can
|
||||
// calculate them here, and reuse them for multiple blocks in the loop, and
|
||||
// for future XORKeyStream invocations.
|
||||
if !s.precompDone {
|
||||
s.p1, s.p5, s.p9, s.p13 = quarterRound(c1, c5, c9, c13)
|
||||
s.p2, s.p6, s.p10, s.p14 = quarterRound(c2, c6, c10, c14)
|
||||
s.p3, s.p7, s.p11, s.p15 = quarterRound(c3, c7, c11, c15)
|
||||
s.precompDone = true
|
||||
}
|
||||
|
||||
// A condition of len(src) > 0 would be sufficient, but this also
|
||||
// acts as a bounds check elimination hint.
|
||||
for len(src) >= 64 && len(dst) >= 64 {
|
||||
// The remainder of the first column round.
|
||||
fcr0, fcr4, fcr8, fcr12 := quarterRound(c0, c4, c8, s.counter)
|
||||
|
||||
// The second diagonal round.
|
||||
x0, x5, x10, x15 := quarterRound(fcr0, s.p5, s.p10, s.p15)
|
||||
x1, x6, x11, x12 := quarterRound(s.p1, s.p6, s.p11, fcr12)
|
||||
x2, x7, x8, x13 := quarterRound(s.p2, s.p7, fcr8, s.p13)
|
||||
x3, x4, x9, x14 := quarterRound(s.p3, fcr4, s.p9, s.p14)
|
||||
|
||||
// The remaining 18 rounds.
|
||||
for i := 0; i < 9; i++ {
|
||||
// Column round.
|
||||
x0, x4, x8, x12 = quarterRound(x0, x4, x8, x12)
|
||||
x1, x5, x9, x13 = quarterRound(x1, x5, x9, x13)
|
||||
x2, x6, x10, x14 = quarterRound(x2, x6, x10, x14)
|
||||
x3, x7, x11, x15 = quarterRound(x3, x7, x11, x15)
|
||||
|
||||
// Diagonal round.
|
||||
x0, x5, x10, x15 = quarterRound(x0, x5, x10, x15)
|
||||
x1, x6, x11, x12 = quarterRound(x1, x6, x11, x12)
|
||||
x2, x7, x8, x13 = quarterRound(x2, x7, x8, x13)
|
||||
x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14)
|
||||
}
|
||||
|
||||
// Add back the initial state to generate the key stream, then
|
||||
// XOR the key stream with the source and write out the result.
|
||||
addXor(dst[0:4], src[0:4], x0, c0)
|
||||
addXor(dst[4:8], src[4:8], x1, c1)
|
||||
addXor(dst[8:12], src[8:12], x2, c2)
|
||||
addXor(dst[12:16], src[12:16], x3, c3)
|
||||
addXor(dst[16:20], src[16:20], x4, c4)
|
||||
addXor(dst[20:24], src[20:24], x5, c5)
|
||||
addXor(dst[24:28], src[24:28], x6, c6)
|
||||
addXor(dst[28:32], src[28:32], x7, c7)
|
||||
addXor(dst[32:36], src[32:36], x8, c8)
|
||||
addXor(dst[36:40], src[36:40], x9, c9)
|
||||
addXor(dst[40:44], src[40:44], x10, c10)
|
||||
addXor(dst[44:48], src[44:48], x11, c11)
|
||||
addXor(dst[48:52], src[48:52], x12, s.counter)
|
||||
addXor(dst[52:56], src[52:56], x13, c13)
|
||||
addXor(dst[56:60], src[56:60], x14, c14)
|
||||
addXor(dst[60:64], src[60:64], x15, c15)
|
||||
|
||||
s.counter += 1
|
||||
|
||||
src, dst = src[blockSize:], dst[blockSize:]
|
||||
}
|
||||
}
|
||||
|
||||
// HChaCha20 uses the ChaCha20 core to generate a derived key from a 32 bytes
|
||||
// key and a 16 bytes nonce. It returns an error if key or nonce have any other
|
||||
// length. It is used as part of the XChaCha20 construction.
|
||||
func HChaCha20(key, nonce []byte) ([]byte, error) {
|
||||
// This function is split into a wrapper so that the slice allocation will
|
||||
// be inlined, and depending on how the caller uses the return value, won't
|
||||
// escape to the heap.
|
||||
out := make([]byte, 32)
|
||||
return hChaCha20(out, key, nonce)
|
||||
}
|
||||
|
||||
func hChaCha20(out, key, nonce []byte) ([]byte, error) {
|
||||
if len(key) != KeySize {
|
||||
return nil, errors.New("chacha20: wrong HChaCha20 key size")
|
||||
}
|
||||
if len(nonce) != 16 {
|
||||
return nil, errors.New("chacha20: wrong HChaCha20 nonce size")
|
||||
}
|
||||
|
||||
x0, x1, x2, x3 := j0, j1, j2, j3
|
||||
x4 := binary.LittleEndian.Uint32(key[0:4])
|
||||
x5 := binary.LittleEndian.Uint32(key[4:8])
|
||||
x6 := binary.LittleEndian.Uint32(key[8:12])
|
||||
x7 := binary.LittleEndian.Uint32(key[12:16])
|
||||
x8 := binary.LittleEndian.Uint32(key[16:20])
|
||||
x9 := binary.LittleEndian.Uint32(key[20:24])
|
||||
x10 := binary.LittleEndian.Uint32(key[24:28])
|
||||
x11 := binary.LittleEndian.Uint32(key[28:32])
|
||||
x12 := binary.LittleEndian.Uint32(nonce[0:4])
|
||||
x13 := binary.LittleEndian.Uint32(nonce[4:8])
|
||||
x14 := binary.LittleEndian.Uint32(nonce[8:12])
|
||||
x15 := binary.LittleEndian.Uint32(nonce[12:16])
|
||||
|
||||
for i := 0; i < 10; i++ {
|
||||
// Diagonal round.
|
||||
x0, x4, x8, x12 = quarterRound(x0, x4, x8, x12)
|
||||
x1, x5, x9, x13 = quarterRound(x1, x5, x9, x13)
|
||||
x2, x6, x10, x14 = quarterRound(x2, x6, x10, x14)
|
||||
x3, x7, x11, x15 = quarterRound(x3, x7, x11, x15)
|
||||
|
||||
// Column round.
|
||||
x0, x5, x10, x15 = quarterRound(x0, x5, x10, x15)
|
||||
x1, x6, x11, x12 = quarterRound(x1, x6, x11, x12)
|
||||
x2, x7, x8, x13 = quarterRound(x2, x7, x8, x13)
|
||||
x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14)
|
||||
}
|
||||
|
||||
_ = out[31] // bounds check elimination hint
|
||||
binary.LittleEndian.PutUint32(out[0:4], x0)
|
||||
binary.LittleEndian.PutUint32(out[4:8], x1)
|
||||
binary.LittleEndian.PutUint32(out[8:12], x2)
|
||||
binary.LittleEndian.PutUint32(out[12:16], x3)
|
||||
binary.LittleEndian.PutUint32(out[16:20], x12)
|
||||
binary.LittleEndian.PutUint32(out[20:24], x13)
|
||||
binary.LittleEndian.PutUint32(out[24:28], x14)
|
||||
binary.LittleEndian.PutUint32(out[28:32], x15)
|
||||
return out, nil
|
||||
}
|
|
@ -2,15 +2,12 @@
|
|||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build !arm64,!s390x,!ppc64le arm64,!go1.11 gccgo appengine
|
||||
// +build !arm64,!s390x,!ppc64le arm64,!go1.11 gccgo purego
|
||||
|
||||
package chacha20
|
||||
|
||||
const (
|
||||
bufSize = 64
|
||||
haveAsm = false
|
||||
)
|
||||
const bufSize = blockSize
|
||||
|
||||
func (*Cipher) xorKeyStreamAsm(dst, src []byte) {
|
||||
panic("not implemented")
|
||||
func (s *Cipher) xorKeyStreamBlocks(dst, src []byte) {
|
||||
s.xorKeyStreamBlocksGeneric(dst, src)
|
||||
}
|
|
@ -0,0 +1,16 @@
|
|||
// Copyright 2019 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build !gccgo,!purego
|
||||
|
||||
package chacha20
|
||||
|
||||
const bufSize = 256
|
||||
|
||||
//go:noescape
|
||||
func chaCha20_ctr32_vsx(out, inp *byte, len int, key *[8]uint32, counter *uint32)
|
||||
|
||||
func (c *Cipher) xorKeyStreamBlocks(dst, src []byte) {
|
||||
chaCha20_ctr32_vsx(&dst[0], &src[0], len(src), &c.key, &c.counter)
|
||||
}
|
|
@ -19,7 +19,7 @@
|
|||
// The differences in this and the original implementation are
|
||||
// due to the calling conventions and initialization of constants.
|
||||
|
||||
// +build ppc64le,!gccgo,!appengine
|
||||
// +build !gccgo,!purego
|
||||
|
||||
#include "textflag.h"
|
||||
|
||||
|
@ -31,24 +31,7 @@
|
|||
#define TMP R15
|
||||
|
||||
#define CONSTBASE R16
|
||||
|
||||
#define X0 R11
|
||||
#define X1 R12
|
||||
#define X2 R14
|
||||
#define X3 R15
|
||||
#define X4 R16
|
||||
#define X5 R17
|
||||
#define X6 R18
|
||||
#define X7 R19
|
||||
#define X8 R20
|
||||
#define X9 R21
|
||||
#define X10 R22
|
||||
#define X11 R23
|
||||
#define X12 R24
|
||||
#define X13 R25
|
||||
#define X14 R26
|
||||
#define X15 R27
|
||||
|
||||
#define BLOCKS R17
|
||||
|
||||
DATA consts<>+0x00(SB)/8, $0x3320646e61707865
|
||||
DATA consts<>+0x08(SB)/8, $0x6b20657479622d32
|
||||
|
@ -72,13 +55,13 @@ DATA consts<>+0x90(SB)/8, $0x0000000100000000
|
|||
DATA consts<>+0x98(SB)/8, $0x0000000300000002
|
||||
GLOBL consts<>(SB), RODATA, $0xa0
|
||||
|
||||
//func chaCha20_ctr32_vsx(out, inp []byte, len int, key *[32]byte, counter *[16]byte)
|
||||
//func chaCha20_ctr32_vsx(out, inp *byte, len int, key *[8]uint32, counter *uint32)
|
||||
TEXT ·chaCha20_ctr32_vsx(SB),NOSPLIT,$64-40
|
||||
MOVD out+0(FP), OUT
|
||||
MOVD inp+8(FP), INP
|
||||
MOVD len+16(FP), LEN
|
||||
MOVD key+24(FP), KEY
|
||||
MOVD cnt+32(FP), CNT
|
||||
MOVD counter+32(FP), CNT
|
||||
|
||||
// Addressing for constants
|
||||
MOVD $consts<>+0x00(SB), CONSTBASE
|
||||
|
@ -86,6 +69,7 @@ TEXT ·chaCha20_ctr32_vsx(SB),NOSPLIT,$64-40
|
|||
MOVD $32, R9
|
||||
MOVD $48, R10
|
||||
MOVD $64, R11
|
||||
SRD $6, LEN, BLOCKS
|
||||
// V16
|
||||
LXVW4X (CONSTBASE)(R0), VS48
|
||||
ADD $80,CONSTBASE
|
||||
|
@ -429,9 +413,9 @@ loop_vsx:
|
|||
BNE loop_outer_vsx
|
||||
|
||||
done_vsx:
|
||||
// Increment counter by 4
|
||||
// Increment counter by number of 64 byte blocks
|
||||
MOVD (CNT), R14
|
||||
ADD $4, R14
|
||||
ADD BLOCKS, R14
|
||||
MOVD R14, (CNT)
|
||||
RET
|
||||
|
|
@ -0,0 +1,26 @@
|
|||
// Copyright 2018 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build !gccgo,!purego
|
||||
|
||||
package chacha20
|
||||
|
||||
import "golang.org/x/sys/cpu"
|
||||
|
||||
var haveAsm = cpu.S390X.HasVX
|
||||
|
||||
const bufSize = 256
|
||||
|
||||
// xorKeyStreamVX is an assembly implementation of XORKeyStream. It must only
|
||||
// be called when the vector facility is available. Implementation in asm_s390x.s.
|
||||
//go:noescape
|
||||
func xorKeyStreamVX(dst, src []byte, key *[8]uint32, nonce *[3]uint32, counter *uint32)
|
||||
|
||||
func (c *Cipher) xorKeyStreamBlocks(dst, src []byte) {
|
||||
if cpu.S390X.HasVX {
|
||||
xorKeyStreamVX(dst, src, &c.key, &c.nonce, &c.counter)
|
||||
} else {
|
||||
c.xorKeyStreamBlocksGeneric(dst, src)
|
||||
}
|
||||
}
|
|
@ -2,7 +2,7 @@
|
|||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build s390x,!gccgo,!appengine
|
||||
// +build !gccgo,!purego
|
||||
|
||||
#include "go_asm.h"
|
||||
#include "textflag.h"
|
||||
|
@ -24,15 +24,6 @@ DATA ·constants<>+0x14(SB)/4, $0x3320646e
|
|||
DATA ·constants<>+0x18(SB)/4, $0x79622d32
|
||||
DATA ·constants<>+0x1c(SB)/4, $0x6b206574
|
||||
|
||||
// EXRL targets:
|
||||
TEXT ·mvcSrcToBuf(SB), NOFRAME|NOSPLIT, $0
|
||||
MVC $1, (R1), (R8)
|
||||
RET
|
||||
|
||||
TEXT ·mvcBufToDst(SB), NOFRAME|NOSPLIT, $0
|
||||
MVC $1, (R8), (R9)
|
||||
RET
|
||||
|
||||
#define BSWAP V5
|
||||
#define J0 V6
|
||||
#define KEY0 V7
|
||||
|
@ -144,7 +135,7 @@ TEXT ·mvcBufToDst(SB), NOFRAME|NOSPLIT, $0
|
|||
VMRHF v, w, c \ // c = {a[2], b[2], c[2], d[2]}
|
||||
VMRLF v, w, d // d = {a[3], b[3], c[3], d[3]}
|
||||
|
||||
// func xorKeyStreamVX(dst, src []byte, key *[8]uint32, nonce *[3]uint32, counter *uint32, buf *[256]byte, len *int)
|
||||
// func xorKeyStreamVX(dst, src []byte, key *[8]uint32, nonce *[3]uint32, counter *uint32)
|
||||
TEXT ·xorKeyStreamVX(SB), NOSPLIT, $0
|
||||
MOVD $·constants<>(SB), R1
|
||||
MOVD dst+0(FP), R2 // R2=&dst[0]
|
||||
|
@ -152,25 +143,10 @@ TEXT ·xorKeyStreamVX(SB), NOSPLIT, $0
|
|||
MOVD key+48(FP), R5 // R5=key
|
||||
MOVD nonce+56(FP), R6 // R6=nonce
|
||||
MOVD counter+64(FP), R7 // R7=counter
|
||||
MOVD buf+72(FP), R8 // R8=buf
|
||||
MOVD len+80(FP), R9 // R9=len
|
||||
|
||||
// load BSWAP and J0
|
||||
VLM (R1), BSWAP, J0
|
||||
|
||||
// set up tail buffer
|
||||
ADD $-1, R4, R12
|
||||
MOVBZ R12, R12
|
||||
CMPUBEQ R12, $255, aligned
|
||||
MOVD R4, R1
|
||||
AND $~255, R1
|
||||
MOVD $(R3)(R1*1), R1
|
||||
EXRL $·mvcSrcToBuf(SB), R12
|
||||
MOVD $255, R0
|
||||
SUB R12, R0
|
||||
MOVD R0, (R9) // update len
|
||||
|
||||
aligned:
|
||||
// setup
|
||||
MOVD $95, R0
|
||||
VLM (R5), KEY0, KEY1
|
||||
|
@ -217,9 +193,7 @@ loop:
|
|||
|
||||
// decrement length
|
||||
ADD $-256, R4
|
||||
BLT tail
|
||||
|
||||
continue:
|
||||
// rearrange vectors
|
||||
SHUFFLE(X0, X1, X2, X3, M0, M1, M2, M3)
|
||||
ADDV(J0, X0, X1, X2, X3)
|
||||
|
@ -245,16 +219,6 @@ continue:
|
|||
MOVD $256(R3), R3
|
||||
|
||||
CMPBNE R4, $0, chacha
|
||||
CMPUBEQ R12, $255, return
|
||||
EXRL $·mvcBufToDst(SB), R12 // len was updated during setup
|
||||
|
||||
return:
|
||||
VSTEF $0, CTR, (R7)
|
||||
RET
|
||||
|
||||
tail:
|
||||
MOVD R2, R9
|
||||
MOVD R8, R2
|
||||
MOVD R8, R3
|
||||
MOVD $0, R4
|
||||
JMP continue
|
|
@ -4,9 +4,7 @@
|
|||
|
||||
package chacha20
|
||||
|
||||
import (
|
||||
"runtime"
|
||||
)
|
||||
import "runtime"
|
||||
|
||||
// Platforms that have fast unaligned 32-bit little endian accesses.
|
||||
const unaligned = runtime.GOARCH == "386" ||
|
||||
|
@ -15,10 +13,10 @@ const unaligned = runtime.GOARCH == "386" ||
|
|||
runtime.GOARCH == "ppc64le" ||
|
||||
runtime.GOARCH == "s390x"
|
||||
|
||||
// xor reads a little endian uint32 from src, XORs it with u and
|
||||
// addXor reads a little endian uint32 from src, XORs it with (a + b) and
|
||||
// places the result in little endian byte order in dst.
|
||||
func xor(dst, src []byte, u uint32) {
|
||||
_, _ = src[3], dst[3] // eliminate bounds checks
|
||||
func addXor(dst, src []byte, a, b uint32) {
|
||||
_, _ = src[3], dst[3] // bounds check elimination hint
|
||||
if unaligned {
|
||||
// The compiler should optimize this code into
|
||||
// 32-bit unaligned little endian loads and stores.
|
||||
|
@ -29,15 +27,16 @@ func xor(dst, src []byte, u uint32) {
|
|||
v |= uint32(src[1]) << 8
|
||||
v |= uint32(src[2]) << 16
|
||||
v |= uint32(src[3]) << 24
|
||||
v ^= u
|
||||
v ^= a + b
|
||||
dst[0] = byte(v)
|
||||
dst[1] = byte(v >> 8)
|
||||
dst[2] = byte(v >> 16)
|
||||
dst[3] = byte(v >> 24)
|
||||
} else {
|
||||
dst[0] = src[0] ^ byte(u)
|
||||
dst[1] = src[1] ^ byte(u>>8)
|
||||
dst[2] = src[2] ^ byte(u>>16)
|
||||
dst[3] = src[3] ^ byte(u>>24)
|
||||
a += b
|
||||
dst[0] = src[0] ^ byte(a)
|
||||
dst[1] = src[1] ^ byte(a>>8)
|
||||
dst[2] = src[2] ^ byte(a>>16)
|
||||
dst[3] = src[3] ^ byte(a>>24)
|
||||
}
|
||||
}
|
|
@ -1,8 +0,0 @@
|
|||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// This code was translated into a form compatible with 6a from the public
|
||||
// domain sources in SUPERCOP: https://bench.cr.yp.to/supercop.html
|
||||
|
||||
#define REDMASK51 0x0007FFFFFFFFFFFF
|
|
@ -1,20 +0,0 @@
|
|||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// This code was translated into a form compatible with 6a from the public
|
||||
// domain sources in SUPERCOP: https://bench.cr.yp.to/supercop.html
|
||||
|
||||
// +build amd64,!gccgo,!appengine
|
||||
|
||||
// These constants cannot be encoded in non-MOVQ immediates.
|
||||
// We access them directly from memory instead.
|
||||
|
||||
DATA ·_121666_213(SB)/8, $996687872
|
||||
GLOBL ·_121666_213(SB), 8, $8
|
||||
|
||||
DATA ·_2P0(SB)/8, $0xFFFFFFFFFFFDA
|
||||
GLOBL ·_2P0(SB), 8, $8
|
||||
|
||||
DATA ·_2P1234(SB)/8, $0xFFFFFFFFFFFFE
|
||||
GLOBL ·_2P1234(SB), 8, $8
|
|
@ -1,65 +0,0 @@
|
|||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build amd64,!gccgo,!appengine
|
||||
|
||||
// func cswap(inout *[4][5]uint64, v uint64)
|
||||
TEXT ·cswap(SB),7,$0
|
||||
MOVQ inout+0(FP),DI
|
||||
MOVQ v+8(FP),SI
|
||||
|
||||
SUBQ $1, SI
|
||||
NOTQ SI
|
||||
MOVQ SI, X15
|
||||
PSHUFD $0x44, X15, X15
|
||||
|
||||
MOVOU 0(DI), X0
|
||||
MOVOU 16(DI), X2
|
||||
MOVOU 32(DI), X4
|
||||
MOVOU 48(DI), X6
|
||||
MOVOU 64(DI), X8
|
||||
MOVOU 80(DI), X1
|
||||
MOVOU 96(DI), X3
|
||||
MOVOU 112(DI), X5
|
||||
MOVOU 128(DI), X7
|
||||
MOVOU 144(DI), X9
|
||||
|
||||
MOVO X1, X10
|
||||
MOVO X3, X11
|
||||
MOVO X5, X12
|
||||
MOVO X7, X13
|
||||
MOVO X9, X14
|
||||
|
||||
PXOR X0, X10
|
||||
PXOR X2, X11
|
||||
PXOR X4, X12
|
||||
PXOR X6, X13
|
||||
PXOR X8, X14
|
||||
PAND X15, X10
|
||||
PAND X15, X11
|
||||
PAND X15, X12
|
||||
PAND X15, X13
|
||||
PAND X15, X14
|
||||
PXOR X10, X0
|
||||
PXOR X10, X1
|
||||
PXOR X11, X2
|
||||
PXOR X11, X3
|
||||
PXOR X12, X4
|
||||
PXOR X12, X5
|
||||
PXOR X13, X6
|
||||
PXOR X13, X7
|
||||
PXOR X14, X8
|
||||
PXOR X14, X9
|
||||
|
||||
MOVOU X0, 0(DI)
|
||||
MOVOU X2, 16(DI)
|
||||
MOVOU X4, 32(DI)
|
||||
MOVOU X6, 48(DI)
|
||||
MOVOU X8, 64(DI)
|
||||
MOVOU X1, 80(DI)
|
||||
MOVOU X3, 96(DI)
|
||||
MOVOU X5, 112(DI)
|
||||
MOVOU X7, 128(DI)
|
||||
MOVOU X9, 144(DI)
|
||||
RET
|
|
@ -1,834 +1,95 @@
|
|||
// Copyright 2013 The Go Authors. All rights reserved.
|
||||
// Copyright 2019 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// We have an implementation in amd64 assembly so this code is only run on
|
||||
// non-amd64 platforms. The amd64 assembly does not support gccgo.
|
||||
// +build !amd64 gccgo appengine
|
||||
|
||||
package curve25519
|
||||
// Package curve25519 provides an implementation of the X25519 function, which
|
||||
// performs scalar multiplication on the elliptic curve known as Curve25519.
|
||||
// See RFC 7748.
|
||||
package curve25519 // import "golang.org/x/crypto/curve25519"
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"crypto/subtle"
|
||||
"fmt"
|
||||
)
|
||||
|
||||
// This code is a port of the public domain, "ref10" implementation of
|
||||
// curve25519 from SUPERCOP 20130419 by D. J. Bernstein.
|
||||
// ScalarMult sets dst to the product scalar * point.
|
||||
//
|
||||
// Deprecated: when provided a low-order point, ScalarMult will set dst to all
|
||||
// zeroes, irrespective of the scalar. Instead, use the X25519 function, which
|
||||
// will return an error.
|
||||
func ScalarMult(dst, scalar, point *[32]byte) {
|
||||
scalarMult(dst, scalar, point)
|
||||
}
|
||||
|
||||
// fieldElement represents an element of the field GF(2^255 - 19). An element
|
||||
// t, entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77
|
||||
// t[3]+2^102 t[4]+...+2^230 t[9]. Bounds on each t[i] vary depending on
|
||||
// context.
|
||||
type fieldElement [10]int32
|
||||
// ScalarBaseMult sets dst to the product scalar * base where base is the
|
||||
// standard generator.
|
||||
//
|
||||
// It is recommended to use the X25519 function with Basepoint instead, as
|
||||
// copying into fixed size arrays can lead to unexpected bugs.
|
||||
func ScalarBaseMult(dst, scalar *[32]byte) {
|
||||
ScalarMult(dst, scalar, &basePoint)
|
||||
}
|
||||
|
||||
func feZero(fe *fieldElement) {
|
||||
for i := range fe {
|
||||
fe[i] = 0
|
||||
const (
|
||||
// ScalarSize is the size of the scalar input to X25519.
|
||||
ScalarSize = 32
|
||||
// PointSize is the size of the point input to X25519.
|
||||
PointSize = 32
|
||||
)
|
||||
|
||||
// Basepoint is the canonical Curve25519 generator.
|
||||
var Basepoint []byte
|
||||
|
||||
var basePoint = [32]byte{9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
|
||||
|
||||
func init() { Basepoint = basePoint[:] }
|
||||
|
||||
func checkBasepoint() {
|
||||
if subtle.ConstantTimeCompare(Basepoint, []byte{
|
||||
0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
}) != 1 {
|
||||
panic("curve25519: global Basepoint value was modified")
|
||||
}
|
||||
}
|
||||
|
||||
func feOne(fe *fieldElement) {
|
||||
feZero(fe)
|
||||
fe[0] = 1
|
||||
// X25519 returns the result of the scalar multiplication (scalar * point),
|
||||
// according to RFC 7748, Section 5. scalar, point and the return value are
|
||||
// slices of 32 bytes.
|
||||
//
|
||||
// scalar can be generated at random, for example with crypto/rand. point should
|
||||
// be either Basepoint or the output of another X25519 call.
|
||||
//
|
||||
// If point is Basepoint (but not if it's a different slice with the same
|
||||
// contents) a precomputed implementation might be used for performance.
|
||||
func X25519(scalar, point []byte) ([]byte, error) {
|
||||
// Outline the body of function, to let the allocation be inlined in the
|
||||
// caller, and possibly avoid escaping to the heap.
|
||||
var dst [32]byte
|
||||
return x25519(&dst, scalar, point)
|
||||
}
|
||||
|
||||
func feAdd(dst, a, b *fieldElement) {
|
||||
for i := range dst {
|
||||
dst[i] = a[i] + b[i]
|
||||
func x25519(dst *[32]byte, scalar, point []byte) ([]byte, error) {
|
||||
var in [32]byte
|
||||
if l := len(scalar); l != 32 {
|
||||
return nil, fmt.Errorf("bad scalar length: %d, expected %d", l, 32)
|
||||
}
|
||||
}
|
||||
|
||||
func feSub(dst, a, b *fieldElement) {
|
||||
for i := range dst {
|
||||
dst[i] = a[i] - b[i]
|
||||
}
|
||||
}
|
||||
|
||||
func feCopy(dst, src *fieldElement) {
|
||||
for i := range dst {
|
||||
dst[i] = src[i]
|
||||
}
|
||||
}
|
||||
|
||||
// feCSwap replaces (f,g) with (g,f) if b == 1; replaces (f,g) with (f,g) if b == 0.
|
||||
//
|
||||
// Preconditions: b in {0,1}.
|
||||
func feCSwap(f, g *fieldElement, b int32) {
|
||||
b = -b
|
||||
for i := range f {
|
||||
t := b & (f[i] ^ g[i])
|
||||
f[i] ^= t
|
||||
g[i] ^= t
|
||||
}
|
||||
}
|
||||
|
||||
// load3 reads a 24-bit, little-endian value from in.
|
||||
func load3(in []byte) int64 {
|
||||
var r int64
|
||||
r = int64(in[0])
|
||||
r |= int64(in[1]) << 8
|
||||
r |= int64(in[2]) << 16
|
||||
return r
|
||||
}
|
||||
|
||||
// load4 reads a 32-bit, little-endian value from in.
|
||||
func load4(in []byte) int64 {
|
||||
return int64(binary.LittleEndian.Uint32(in))
|
||||
}
|
||||
|
||||
func feFromBytes(dst *fieldElement, src *[32]byte) {
|
||||
h0 := load4(src[:])
|
||||
h1 := load3(src[4:]) << 6
|
||||
h2 := load3(src[7:]) << 5
|
||||
h3 := load3(src[10:]) << 3
|
||||
h4 := load3(src[13:]) << 2
|
||||
h5 := load4(src[16:])
|
||||
h6 := load3(src[20:]) << 7
|
||||
h7 := load3(src[23:]) << 5
|
||||
h8 := load3(src[26:]) << 4
|
||||
h9 := (load3(src[29:]) & 0x7fffff) << 2
|
||||
|
||||
var carry [10]int64
|
||||
carry[9] = (h9 + 1<<24) >> 25
|
||||
h0 += carry[9] * 19
|
||||
h9 -= carry[9] << 25
|
||||
carry[1] = (h1 + 1<<24) >> 25
|
||||
h2 += carry[1]
|
||||
h1 -= carry[1] << 25
|
||||
carry[3] = (h3 + 1<<24) >> 25
|
||||
h4 += carry[3]
|
||||
h3 -= carry[3] << 25
|
||||
carry[5] = (h5 + 1<<24) >> 25
|
||||
h6 += carry[5]
|
||||
h5 -= carry[5] << 25
|
||||
carry[7] = (h7 + 1<<24) >> 25
|
||||
h8 += carry[7]
|
||||
h7 -= carry[7] << 25
|
||||
|
||||
carry[0] = (h0 + 1<<25) >> 26
|
||||
h1 += carry[0]
|
||||
h0 -= carry[0] << 26
|
||||
carry[2] = (h2 + 1<<25) >> 26
|
||||
h3 += carry[2]
|
||||
h2 -= carry[2] << 26
|
||||
carry[4] = (h4 + 1<<25) >> 26
|
||||
h5 += carry[4]
|
||||
h4 -= carry[4] << 26
|
||||
carry[6] = (h6 + 1<<25) >> 26
|
||||
h7 += carry[6]
|
||||
h6 -= carry[6] << 26
|
||||
carry[8] = (h8 + 1<<25) >> 26
|
||||
h9 += carry[8]
|
||||
h8 -= carry[8] << 26
|
||||
|
||||
dst[0] = int32(h0)
|
||||
dst[1] = int32(h1)
|
||||
dst[2] = int32(h2)
|
||||
dst[3] = int32(h3)
|
||||
dst[4] = int32(h4)
|
||||
dst[5] = int32(h5)
|
||||
dst[6] = int32(h6)
|
||||
dst[7] = int32(h7)
|
||||
dst[8] = int32(h8)
|
||||
dst[9] = int32(h9)
|
||||
}
|
||||
|
||||
// feToBytes marshals h to s.
|
||||
// Preconditions:
|
||||
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
|
||||
//
|
||||
// Write p=2^255-19; q=floor(h/p).
|
||||
// Basic claim: q = floor(2^(-255)(h + 19 2^(-25)h9 + 2^(-1))).
|
||||
//
|
||||
// Proof:
|
||||
// Have |h|<=p so |q|<=1 so |19^2 2^(-255) q|<1/4.
|
||||
// Also have |h-2^230 h9|<2^230 so |19 2^(-255)(h-2^230 h9)|<1/4.
|
||||
//
|
||||
// Write y=2^(-1)-19^2 2^(-255)q-19 2^(-255)(h-2^230 h9).
|
||||
// Then 0<y<1.
|
||||
//
|
||||
// Write r=h-pq.
|
||||
// Have 0<=r<=p-1=2^255-20.
|
||||
// Thus 0<=r+19(2^-255)r<r+19(2^-255)2^255<=2^255-1.
|
||||
//
|
||||
// Write x=r+19(2^-255)r+y.
|
||||
// Then 0<x<2^255 so floor(2^(-255)x) = 0 so floor(q+2^(-255)x) = q.
|
||||
//
|
||||
// Have q+2^(-255)x = 2^(-255)(h + 19 2^(-25) h9 + 2^(-1))
|
||||
// so floor(2^(-255)(h + 19 2^(-25) h9 + 2^(-1))) = q.
|
||||
func feToBytes(s *[32]byte, h *fieldElement) {
|
||||
var carry [10]int32
|
||||
|
||||
q := (19*h[9] + (1 << 24)) >> 25
|
||||
q = (h[0] + q) >> 26
|
||||
q = (h[1] + q) >> 25
|
||||
q = (h[2] + q) >> 26
|
||||
q = (h[3] + q) >> 25
|
||||
q = (h[4] + q) >> 26
|
||||
q = (h[5] + q) >> 25
|
||||
q = (h[6] + q) >> 26
|
||||
q = (h[7] + q) >> 25
|
||||
q = (h[8] + q) >> 26
|
||||
q = (h[9] + q) >> 25
|
||||
|
||||
// Goal: Output h-(2^255-19)q, which is between 0 and 2^255-20.
|
||||
h[0] += 19 * q
|
||||
// Goal: Output h-2^255 q, which is between 0 and 2^255-20.
|
||||
|
||||
carry[0] = h[0] >> 26
|
||||
h[1] += carry[0]
|
||||
h[0] -= carry[0] << 26
|
||||
carry[1] = h[1] >> 25
|
||||
h[2] += carry[1]
|
||||
h[1] -= carry[1] << 25
|
||||
carry[2] = h[2] >> 26
|
||||
h[3] += carry[2]
|
||||
h[2] -= carry[2] << 26
|
||||
carry[3] = h[3] >> 25
|
||||
h[4] += carry[3]
|
||||
h[3] -= carry[3] << 25
|
||||
carry[4] = h[4] >> 26
|
||||
h[5] += carry[4]
|
||||
h[4] -= carry[4] << 26
|
||||
carry[5] = h[5] >> 25
|
||||
h[6] += carry[5]
|
||||
h[5] -= carry[5] << 25
|
||||
carry[6] = h[6] >> 26
|
||||
h[7] += carry[6]
|
||||
h[6] -= carry[6] << 26
|
||||
carry[7] = h[7] >> 25
|
||||
h[8] += carry[7]
|
||||
h[7] -= carry[7] << 25
|
||||
carry[8] = h[8] >> 26
|
||||
h[9] += carry[8]
|
||||
h[8] -= carry[8] << 26
|
||||
carry[9] = h[9] >> 25
|
||||
h[9] -= carry[9] << 25
|
||||
// h10 = carry9
|
||||
|
||||
// Goal: Output h[0]+...+2^255 h10-2^255 q, which is between 0 and 2^255-20.
|
||||
// Have h[0]+...+2^230 h[9] between 0 and 2^255-1;
|
||||
// evidently 2^255 h10-2^255 q = 0.
|
||||
// Goal: Output h[0]+...+2^230 h[9].
|
||||
|
||||
s[0] = byte(h[0] >> 0)
|
||||
s[1] = byte(h[0] >> 8)
|
||||
s[2] = byte(h[0] >> 16)
|
||||
s[3] = byte((h[0] >> 24) | (h[1] << 2))
|
||||
s[4] = byte(h[1] >> 6)
|
||||
s[5] = byte(h[1] >> 14)
|
||||
s[6] = byte((h[1] >> 22) | (h[2] << 3))
|
||||
s[7] = byte(h[2] >> 5)
|
||||
s[8] = byte(h[2] >> 13)
|
||||
s[9] = byte((h[2] >> 21) | (h[3] << 5))
|
||||
s[10] = byte(h[3] >> 3)
|
||||
s[11] = byte(h[3] >> 11)
|
||||
s[12] = byte((h[3] >> 19) | (h[4] << 6))
|
||||
s[13] = byte(h[4] >> 2)
|
||||
s[14] = byte(h[4] >> 10)
|
||||
s[15] = byte(h[4] >> 18)
|
||||
s[16] = byte(h[5] >> 0)
|
||||
s[17] = byte(h[5] >> 8)
|
||||
s[18] = byte(h[5] >> 16)
|
||||
s[19] = byte((h[5] >> 24) | (h[6] << 1))
|
||||
s[20] = byte(h[6] >> 7)
|
||||
s[21] = byte(h[6] >> 15)
|
||||
s[22] = byte((h[6] >> 23) | (h[7] << 3))
|
||||
s[23] = byte(h[7] >> 5)
|
||||
s[24] = byte(h[7] >> 13)
|
||||
s[25] = byte((h[7] >> 21) | (h[8] << 4))
|
||||
s[26] = byte(h[8] >> 4)
|
||||
s[27] = byte(h[8] >> 12)
|
||||
s[28] = byte((h[8] >> 20) | (h[9] << 6))
|
||||
s[29] = byte(h[9] >> 2)
|
||||
s[30] = byte(h[9] >> 10)
|
||||
s[31] = byte(h[9] >> 18)
|
||||
}
|
||||
|
||||
// feMul calculates h = f * g
|
||||
// Can overlap h with f or g.
|
||||
//
|
||||
// Preconditions:
|
||||
// |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
|
||||
// |g| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
|
||||
//
|
||||
// Postconditions:
|
||||
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
|
||||
//
|
||||
// Notes on implementation strategy:
|
||||
//
|
||||
// Using schoolbook multiplication.
|
||||
// Karatsuba would save a little in some cost models.
|
||||
//
|
||||
// Most multiplications by 2 and 19 are 32-bit precomputations;
|
||||
// cheaper than 64-bit postcomputations.
|
||||
//
|
||||
// There is one remaining multiplication by 19 in the carry chain;
|
||||
// one *19 precomputation can be merged into this,
|
||||
// but the resulting data flow is considerably less clean.
|
||||
//
|
||||
// There are 12 carries below.
|
||||
// 10 of them are 2-way parallelizable and vectorizable.
|
||||
// Can get away with 11 carries, but then data flow is much deeper.
|
||||
//
|
||||
// With tighter constraints on inputs can squeeze carries into int32.
|
||||
func feMul(h, f, g *fieldElement) {
|
||||
f0 := f[0]
|
||||
f1 := f[1]
|
||||
f2 := f[2]
|
||||
f3 := f[3]
|
||||
f4 := f[4]
|
||||
f5 := f[5]
|
||||
f6 := f[6]
|
||||
f7 := f[7]
|
||||
f8 := f[8]
|
||||
f9 := f[9]
|
||||
g0 := g[0]
|
||||
g1 := g[1]
|
||||
g2 := g[2]
|
||||
g3 := g[3]
|
||||
g4 := g[4]
|
||||
g5 := g[5]
|
||||
g6 := g[6]
|
||||
g7 := g[7]
|
||||
g8 := g[8]
|
||||
g9 := g[9]
|
||||
g1_19 := 19 * g1 // 1.4*2^29
|
||||
g2_19 := 19 * g2 // 1.4*2^30; still ok
|
||||
g3_19 := 19 * g3
|
||||
g4_19 := 19 * g4
|
||||
g5_19 := 19 * g5
|
||||
g6_19 := 19 * g6
|
||||
g7_19 := 19 * g7
|
||||
g8_19 := 19 * g8
|
||||
g9_19 := 19 * g9
|
||||
f1_2 := 2 * f1
|
||||
f3_2 := 2 * f3
|
||||
f5_2 := 2 * f5
|
||||
f7_2 := 2 * f7
|
||||
f9_2 := 2 * f9
|
||||
f0g0 := int64(f0) * int64(g0)
|
||||
f0g1 := int64(f0) * int64(g1)
|
||||
f0g2 := int64(f0) * int64(g2)
|
||||
f0g3 := int64(f0) * int64(g3)
|
||||
f0g4 := int64(f0) * int64(g4)
|
||||
f0g5 := int64(f0) * int64(g5)
|
||||
f0g6 := int64(f0) * int64(g6)
|
||||
f0g7 := int64(f0) * int64(g7)
|
||||
f0g8 := int64(f0) * int64(g8)
|
||||
f0g9 := int64(f0) * int64(g9)
|
||||
f1g0 := int64(f1) * int64(g0)
|
||||
f1g1_2 := int64(f1_2) * int64(g1)
|
||||
f1g2 := int64(f1) * int64(g2)
|
||||
f1g3_2 := int64(f1_2) * int64(g3)
|
||||
f1g4 := int64(f1) * int64(g4)
|
||||
f1g5_2 := int64(f1_2) * int64(g5)
|
||||
f1g6 := int64(f1) * int64(g6)
|
||||
f1g7_2 := int64(f1_2) * int64(g7)
|
||||
f1g8 := int64(f1) * int64(g8)
|
||||
f1g9_38 := int64(f1_2) * int64(g9_19)
|
||||
f2g0 := int64(f2) * int64(g0)
|
||||
f2g1 := int64(f2) * int64(g1)
|
||||
f2g2 := int64(f2) * int64(g2)
|
||||
f2g3 := int64(f2) * int64(g3)
|
||||
f2g4 := int64(f2) * int64(g4)
|
||||
f2g5 := int64(f2) * int64(g5)
|
||||
f2g6 := int64(f2) * int64(g6)
|
||||
f2g7 := int64(f2) * int64(g7)
|
||||
f2g8_19 := int64(f2) * int64(g8_19)
|
||||
f2g9_19 := int64(f2) * int64(g9_19)
|
||||
f3g0 := int64(f3) * int64(g0)
|
||||
f3g1_2 := int64(f3_2) * int64(g1)
|
||||
f3g2 := int64(f3) * int64(g2)
|
||||
f3g3_2 := int64(f3_2) * int64(g3)
|
||||
f3g4 := int64(f3) * int64(g4)
|
||||
f3g5_2 := int64(f3_2) * int64(g5)
|
||||
f3g6 := int64(f3) * int64(g6)
|
||||
f3g7_38 := int64(f3_2) * int64(g7_19)
|
||||
f3g8_19 := int64(f3) * int64(g8_19)
|
||||
f3g9_38 := int64(f3_2) * int64(g9_19)
|
||||
f4g0 := int64(f4) * int64(g0)
|
||||
f4g1 := int64(f4) * int64(g1)
|
||||
f4g2 := int64(f4) * int64(g2)
|
||||
f4g3 := int64(f4) * int64(g3)
|
||||
f4g4 := int64(f4) * int64(g4)
|
||||
f4g5 := int64(f4) * int64(g5)
|
||||
f4g6_19 := int64(f4) * int64(g6_19)
|
||||
f4g7_19 := int64(f4) * int64(g7_19)
|
||||
f4g8_19 := int64(f4) * int64(g8_19)
|
||||
f4g9_19 := int64(f4) * int64(g9_19)
|
||||
f5g0 := int64(f5) * int64(g0)
|
||||
f5g1_2 := int64(f5_2) * int64(g1)
|
||||
f5g2 := int64(f5) * int64(g2)
|
||||
f5g3_2 := int64(f5_2) * int64(g3)
|
||||
f5g4 := int64(f5) * int64(g4)
|
||||
f5g5_38 := int64(f5_2) * int64(g5_19)
|
||||
f5g6_19 := int64(f5) * int64(g6_19)
|
||||
f5g7_38 := int64(f5_2) * int64(g7_19)
|
||||
f5g8_19 := int64(f5) * int64(g8_19)
|
||||
f5g9_38 := int64(f5_2) * int64(g9_19)
|
||||
f6g0 := int64(f6) * int64(g0)
|
||||
f6g1 := int64(f6) * int64(g1)
|
||||
f6g2 := int64(f6) * int64(g2)
|
||||
f6g3 := int64(f6) * int64(g3)
|
||||
f6g4_19 := int64(f6) * int64(g4_19)
|
||||
f6g5_19 := int64(f6) * int64(g5_19)
|
||||
f6g6_19 := int64(f6) * int64(g6_19)
|
||||
f6g7_19 := int64(f6) * int64(g7_19)
|
||||
f6g8_19 := int64(f6) * int64(g8_19)
|
||||
f6g9_19 := int64(f6) * int64(g9_19)
|
||||
f7g0 := int64(f7) * int64(g0)
|
||||
f7g1_2 := int64(f7_2) * int64(g1)
|
||||
f7g2 := int64(f7) * int64(g2)
|
||||
f7g3_38 := int64(f7_2) * int64(g3_19)
|
||||
f7g4_19 := int64(f7) * int64(g4_19)
|
||||
f7g5_38 := int64(f7_2) * int64(g5_19)
|
||||
f7g6_19 := int64(f7) * int64(g6_19)
|
||||
f7g7_38 := int64(f7_2) * int64(g7_19)
|
||||
f7g8_19 := int64(f7) * int64(g8_19)
|
||||
f7g9_38 := int64(f7_2) * int64(g9_19)
|
||||
f8g0 := int64(f8) * int64(g0)
|
||||
f8g1 := int64(f8) * int64(g1)
|
||||
f8g2_19 := int64(f8) * int64(g2_19)
|
||||
f8g3_19 := int64(f8) * int64(g3_19)
|
||||
f8g4_19 := int64(f8) * int64(g4_19)
|
||||
f8g5_19 := int64(f8) * int64(g5_19)
|
||||
f8g6_19 := int64(f8) * int64(g6_19)
|
||||
f8g7_19 := int64(f8) * int64(g7_19)
|
||||
f8g8_19 := int64(f8) * int64(g8_19)
|
||||
f8g9_19 := int64(f8) * int64(g9_19)
|
||||
f9g0 := int64(f9) * int64(g0)
|
||||
f9g1_38 := int64(f9_2) * int64(g1_19)
|
||||
f9g2_19 := int64(f9) * int64(g2_19)
|
||||
f9g3_38 := int64(f9_2) * int64(g3_19)
|
||||
f9g4_19 := int64(f9) * int64(g4_19)
|
||||
f9g5_38 := int64(f9_2) * int64(g5_19)
|
||||
f9g6_19 := int64(f9) * int64(g6_19)
|
||||
f9g7_38 := int64(f9_2) * int64(g7_19)
|
||||
f9g8_19 := int64(f9) * int64(g8_19)
|
||||
f9g9_38 := int64(f9_2) * int64(g9_19)
|
||||
h0 := f0g0 + f1g9_38 + f2g8_19 + f3g7_38 + f4g6_19 + f5g5_38 + f6g4_19 + f7g3_38 + f8g2_19 + f9g1_38
|
||||
h1 := f0g1 + f1g0 + f2g9_19 + f3g8_19 + f4g7_19 + f5g6_19 + f6g5_19 + f7g4_19 + f8g3_19 + f9g2_19
|
||||
h2 := f0g2 + f1g1_2 + f2g0 + f3g9_38 + f4g8_19 + f5g7_38 + f6g6_19 + f7g5_38 + f8g4_19 + f9g3_38
|
||||
h3 := f0g3 + f1g2 + f2g1 + f3g0 + f4g9_19 + f5g8_19 + f6g7_19 + f7g6_19 + f8g5_19 + f9g4_19
|
||||
h4 := f0g4 + f1g3_2 + f2g2 + f3g1_2 + f4g0 + f5g9_38 + f6g8_19 + f7g7_38 + f8g6_19 + f9g5_38
|
||||
h5 := f0g5 + f1g4 + f2g3 + f3g2 + f4g1 + f5g0 + f6g9_19 + f7g8_19 + f8g7_19 + f9g6_19
|
||||
h6 := f0g6 + f1g5_2 + f2g4 + f3g3_2 + f4g2 + f5g1_2 + f6g0 + f7g9_38 + f8g8_19 + f9g7_38
|
||||
h7 := f0g7 + f1g6 + f2g5 + f3g4 + f4g3 + f5g2 + f6g1 + f7g0 + f8g9_19 + f9g8_19
|
||||
h8 := f0g8 + f1g7_2 + f2g6 + f3g5_2 + f4g4 + f5g3_2 + f6g2 + f7g1_2 + f8g0 + f9g9_38
|
||||
h9 := f0g9 + f1g8 + f2g7 + f3g6 + f4g5 + f5g4 + f6g3 + f7g2 + f8g1 + f9g0
|
||||
var carry [10]int64
|
||||
|
||||
// |h0| <= (1.1*1.1*2^52*(1+19+19+19+19)+1.1*1.1*2^50*(38+38+38+38+38))
|
||||
// i.e. |h0| <= 1.2*2^59; narrower ranges for h2, h4, h6, h8
|
||||
// |h1| <= (1.1*1.1*2^51*(1+1+19+19+19+19+19+19+19+19))
|
||||
// i.e. |h1| <= 1.5*2^58; narrower ranges for h3, h5, h7, h9
|
||||
|
||||
carry[0] = (h0 + (1 << 25)) >> 26
|
||||
h1 += carry[0]
|
||||
h0 -= carry[0] << 26
|
||||
carry[4] = (h4 + (1 << 25)) >> 26
|
||||
h5 += carry[4]
|
||||
h4 -= carry[4] << 26
|
||||
// |h0| <= 2^25
|
||||
// |h4| <= 2^25
|
||||
// |h1| <= 1.51*2^58
|
||||
// |h5| <= 1.51*2^58
|
||||
|
||||
carry[1] = (h1 + (1 << 24)) >> 25
|
||||
h2 += carry[1]
|
||||
h1 -= carry[1] << 25
|
||||
carry[5] = (h5 + (1 << 24)) >> 25
|
||||
h6 += carry[5]
|
||||
h5 -= carry[5] << 25
|
||||
// |h1| <= 2^24; from now on fits into int32
|
||||
// |h5| <= 2^24; from now on fits into int32
|
||||
// |h2| <= 1.21*2^59
|
||||
// |h6| <= 1.21*2^59
|
||||
|
||||
carry[2] = (h2 + (1 << 25)) >> 26
|
||||
h3 += carry[2]
|
||||
h2 -= carry[2] << 26
|
||||
carry[6] = (h6 + (1 << 25)) >> 26
|
||||
h7 += carry[6]
|
||||
h6 -= carry[6] << 26
|
||||
// |h2| <= 2^25; from now on fits into int32 unchanged
|
||||
// |h6| <= 2^25; from now on fits into int32 unchanged
|
||||
// |h3| <= 1.51*2^58
|
||||
// |h7| <= 1.51*2^58
|
||||
|
||||
carry[3] = (h3 + (1 << 24)) >> 25
|
||||
h4 += carry[3]
|
||||
h3 -= carry[3] << 25
|
||||
carry[7] = (h7 + (1 << 24)) >> 25
|
||||
h8 += carry[7]
|
||||
h7 -= carry[7] << 25
|
||||
// |h3| <= 2^24; from now on fits into int32 unchanged
|
||||
// |h7| <= 2^24; from now on fits into int32 unchanged
|
||||
// |h4| <= 1.52*2^33
|
||||
// |h8| <= 1.52*2^33
|
||||
|
||||
carry[4] = (h4 + (1 << 25)) >> 26
|
||||
h5 += carry[4]
|
||||
h4 -= carry[4] << 26
|
||||
carry[8] = (h8 + (1 << 25)) >> 26
|
||||
h9 += carry[8]
|
||||
h8 -= carry[8] << 26
|
||||
// |h4| <= 2^25; from now on fits into int32 unchanged
|
||||
// |h8| <= 2^25; from now on fits into int32 unchanged
|
||||
// |h5| <= 1.01*2^24
|
||||
// |h9| <= 1.51*2^58
|
||||
|
||||
carry[9] = (h9 + (1 << 24)) >> 25
|
||||
h0 += carry[9] * 19
|
||||
h9 -= carry[9] << 25
|
||||
// |h9| <= 2^24; from now on fits into int32 unchanged
|
||||
// |h0| <= 1.8*2^37
|
||||
|
||||
carry[0] = (h0 + (1 << 25)) >> 26
|
||||
h1 += carry[0]
|
||||
h0 -= carry[0] << 26
|
||||
// |h0| <= 2^25; from now on fits into int32 unchanged
|
||||
// |h1| <= 1.01*2^24
|
||||
|
||||
h[0] = int32(h0)
|
||||
h[1] = int32(h1)
|
||||
h[2] = int32(h2)
|
||||
h[3] = int32(h3)
|
||||
h[4] = int32(h4)
|
||||
h[5] = int32(h5)
|
||||
h[6] = int32(h6)
|
||||
h[7] = int32(h7)
|
||||
h[8] = int32(h8)
|
||||
h[9] = int32(h9)
|
||||
}
|
||||
|
||||
// feSquare calculates h = f*f. Can overlap h with f.
|
||||
//
|
||||
// Preconditions:
|
||||
// |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
|
||||
//
|
||||
// Postconditions:
|
||||
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
|
||||
func feSquare(h, f *fieldElement) {
|
||||
f0 := f[0]
|
||||
f1 := f[1]
|
||||
f2 := f[2]
|
||||
f3 := f[3]
|
||||
f4 := f[4]
|
||||
f5 := f[5]
|
||||
f6 := f[6]
|
||||
f7 := f[7]
|
||||
f8 := f[8]
|
||||
f9 := f[9]
|
||||
f0_2 := 2 * f0
|
||||
f1_2 := 2 * f1
|
||||
f2_2 := 2 * f2
|
||||
f3_2 := 2 * f3
|
||||
f4_2 := 2 * f4
|
||||
f5_2 := 2 * f5
|
||||
f6_2 := 2 * f6
|
||||
f7_2 := 2 * f7
|
||||
f5_38 := 38 * f5 // 1.31*2^30
|
||||
f6_19 := 19 * f6 // 1.31*2^30
|
||||
f7_38 := 38 * f7 // 1.31*2^30
|
||||
f8_19 := 19 * f8 // 1.31*2^30
|
||||
f9_38 := 38 * f9 // 1.31*2^30
|
||||
f0f0 := int64(f0) * int64(f0)
|
||||
f0f1_2 := int64(f0_2) * int64(f1)
|
||||
f0f2_2 := int64(f0_2) * int64(f2)
|
||||
f0f3_2 := int64(f0_2) * int64(f3)
|
||||
f0f4_2 := int64(f0_2) * int64(f4)
|
||||
f0f5_2 := int64(f0_2) * int64(f5)
|
||||
f0f6_2 := int64(f0_2) * int64(f6)
|
||||
f0f7_2 := int64(f0_2) * int64(f7)
|
||||
f0f8_2 := int64(f0_2) * int64(f8)
|
||||
f0f9_2 := int64(f0_2) * int64(f9)
|
||||
f1f1_2 := int64(f1_2) * int64(f1)
|
||||
f1f2_2 := int64(f1_2) * int64(f2)
|
||||
f1f3_4 := int64(f1_2) * int64(f3_2)
|
||||
f1f4_2 := int64(f1_2) * int64(f4)
|
||||
f1f5_4 := int64(f1_2) * int64(f5_2)
|
||||
f1f6_2 := int64(f1_2) * int64(f6)
|
||||
f1f7_4 := int64(f1_2) * int64(f7_2)
|
||||
f1f8_2 := int64(f1_2) * int64(f8)
|
||||
f1f9_76 := int64(f1_2) * int64(f9_38)
|
||||
f2f2 := int64(f2) * int64(f2)
|
||||
f2f3_2 := int64(f2_2) * int64(f3)
|
||||
f2f4_2 := int64(f2_2) * int64(f4)
|
||||
f2f5_2 := int64(f2_2) * int64(f5)
|
||||
f2f6_2 := int64(f2_2) * int64(f6)
|
||||
f2f7_2 := int64(f2_2) * int64(f7)
|
||||
f2f8_38 := int64(f2_2) * int64(f8_19)
|
||||
f2f9_38 := int64(f2) * int64(f9_38)
|
||||
f3f3_2 := int64(f3_2) * int64(f3)
|
||||
f3f4_2 := int64(f3_2) * int64(f4)
|
||||
f3f5_4 := int64(f3_2) * int64(f5_2)
|
||||
f3f6_2 := int64(f3_2) * int64(f6)
|
||||
f3f7_76 := int64(f3_2) * int64(f7_38)
|
||||
f3f8_38 := int64(f3_2) * int64(f8_19)
|
||||
f3f9_76 := int64(f3_2) * int64(f9_38)
|
||||
f4f4 := int64(f4) * int64(f4)
|
||||
f4f5_2 := int64(f4_2) * int64(f5)
|
||||
f4f6_38 := int64(f4_2) * int64(f6_19)
|
||||
f4f7_38 := int64(f4) * int64(f7_38)
|
||||
f4f8_38 := int64(f4_2) * int64(f8_19)
|
||||
f4f9_38 := int64(f4) * int64(f9_38)
|
||||
f5f5_38 := int64(f5) * int64(f5_38)
|
||||
f5f6_38 := int64(f5_2) * int64(f6_19)
|
||||
f5f7_76 := int64(f5_2) * int64(f7_38)
|
||||
f5f8_38 := int64(f5_2) * int64(f8_19)
|
||||
f5f9_76 := int64(f5_2) * int64(f9_38)
|
||||
f6f6_19 := int64(f6) * int64(f6_19)
|
||||
f6f7_38 := int64(f6) * int64(f7_38)
|
||||
f6f8_38 := int64(f6_2) * int64(f8_19)
|
||||
f6f9_38 := int64(f6) * int64(f9_38)
|
||||
f7f7_38 := int64(f7) * int64(f7_38)
|
||||
f7f8_38 := int64(f7_2) * int64(f8_19)
|
||||
f7f9_76 := int64(f7_2) * int64(f9_38)
|
||||
f8f8_19 := int64(f8) * int64(f8_19)
|
||||
f8f9_38 := int64(f8) * int64(f9_38)
|
||||
f9f9_38 := int64(f9) * int64(f9_38)
|
||||
h0 := f0f0 + f1f9_76 + f2f8_38 + f3f7_76 + f4f6_38 + f5f5_38
|
||||
h1 := f0f1_2 + f2f9_38 + f3f8_38 + f4f7_38 + f5f6_38
|
||||
h2 := f0f2_2 + f1f1_2 + f3f9_76 + f4f8_38 + f5f7_76 + f6f6_19
|
||||
h3 := f0f3_2 + f1f2_2 + f4f9_38 + f5f8_38 + f6f7_38
|
||||
h4 := f0f4_2 + f1f3_4 + f2f2 + f5f9_76 + f6f8_38 + f7f7_38
|
||||
h5 := f0f5_2 + f1f4_2 + f2f3_2 + f6f9_38 + f7f8_38
|
||||
h6 := f0f6_2 + f1f5_4 + f2f4_2 + f3f3_2 + f7f9_76 + f8f8_19
|
||||
h7 := f0f7_2 + f1f6_2 + f2f5_2 + f3f4_2 + f8f9_38
|
||||
h8 := f0f8_2 + f1f7_4 + f2f6_2 + f3f5_4 + f4f4 + f9f9_38
|
||||
h9 := f0f9_2 + f1f8_2 + f2f7_2 + f3f6_2 + f4f5_2
|
||||
var carry [10]int64
|
||||
|
||||
carry[0] = (h0 + (1 << 25)) >> 26
|
||||
h1 += carry[0]
|
||||
h0 -= carry[0] << 26
|
||||
carry[4] = (h4 + (1 << 25)) >> 26
|
||||
h5 += carry[4]
|
||||
h4 -= carry[4] << 26
|
||||
|
||||
carry[1] = (h1 + (1 << 24)) >> 25
|
||||
h2 += carry[1]
|
||||
h1 -= carry[1] << 25
|
||||
carry[5] = (h5 + (1 << 24)) >> 25
|
||||
h6 += carry[5]
|
||||
h5 -= carry[5] << 25
|
||||
|
||||
carry[2] = (h2 + (1 << 25)) >> 26
|
||||
h3 += carry[2]
|
||||
h2 -= carry[2] << 26
|
||||
carry[6] = (h6 + (1 << 25)) >> 26
|
||||
h7 += carry[6]
|
||||
h6 -= carry[6] << 26
|
||||
|
||||
carry[3] = (h3 + (1 << 24)) >> 25
|
||||
h4 += carry[3]
|
||||
h3 -= carry[3] << 25
|
||||
carry[7] = (h7 + (1 << 24)) >> 25
|
||||
h8 += carry[7]
|
||||
h7 -= carry[7] << 25
|
||||
|
||||
carry[4] = (h4 + (1 << 25)) >> 26
|
||||
h5 += carry[4]
|
||||
h4 -= carry[4] << 26
|
||||
carry[8] = (h8 + (1 << 25)) >> 26
|
||||
h9 += carry[8]
|
||||
h8 -= carry[8] << 26
|
||||
|
||||
carry[9] = (h9 + (1 << 24)) >> 25
|
||||
h0 += carry[9] * 19
|
||||
h9 -= carry[9] << 25
|
||||
|
||||
carry[0] = (h0 + (1 << 25)) >> 26
|
||||
h1 += carry[0]
|
||||
h0 -= carry[0] << 26
|
||||
|
||||
h[0] = int32(h0)
|
||||
h[1] = int32(h1)
|
||||
h[2] = int32(h2)
|
||||
h[3] = int32(h3)
|
||||
h[4] = int32(h4)
|
||||
h[5] = int32(h5)
|
||||
h[6] = int32(h6)
|
||||
h[7] = int32(h7)
|
||||
h[8] = int32(h8)
|
||||
h[9] = int32(h9)
|
||||
}
|
||||
|
||||
// feMul121666 calculates h = f * 121666. Can overlap h with f.
|
||||
//
|
||||
// Preconditions:
|
||||
// |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
|
||||
//
|
||||
// Postconditions:
|
||||
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
|
||||
func feMul121666(h, f *fieldElement) {
|
||||
h0 := int64(f[0]) * 121666
|
||||
h1 := int64(f[1]) * 121666
|
||||
h2 := int64(f[2]) * 121666
|
||||
h3 := int64(f[3]) * 121666
|
||||
h4 := int64(f[4]) * 121666
|
||||
h5 := int64(f[5]) * 121666
|
||||
h6 := int64(f[6]) * 121666
|
||||
h7 := int64(f[7]) * 121666
|
||||
h8 := int64(f[8]) * 121666
|
||||
h9 := int64(f[9]) * 121666
|
||||
var carry [10]int64
|
||||
|
||||
carry[9] = (h9 + (1 << 24)) >> 25
|
||||
h0 += carry[9] * 19
|
||||
h9 -= carry[9] << 25
|
||||
carry[1] = (h1 + (1 << 24)) >> 25
|
||||
h2 += carry[1]
|
||||
h1 -= carry[1] << 25
|
||||
carry[3] = (h3 + (1 << 24)) >> 25
|
||||
h4 += carry[3]
|
||||
h3 -= carry[3] << 25
|
||||
carry[5] = (h5 + (1 << 24)) >> 25
|
||||
h6 += carry[5]
|
||||
h5 -= carry[5] << 25
|
||||
carry[7] = (h7 + (1 << 24)) >> 25
|
||||
h8 += carry[7]
|
||||
h7 -= carry[7] << 25
|
||||
|
||||
carry[0] = (h0 + (1 << 25)) >> 26
|
||||
h1 += carry[0]
|
||||
h0 -= carry[0] << 26
|
||||
carry[2] = (h2 + (1 << 25)) >> 26
|
||||
h3 += carry[2]
|
||||
h2 -= carry[2] << 26
|
||||
carry[4] = (h4 + (1 << 25)) >> 26
|
||||
h5 += carry[4]
|
||||
h4 -= carry[4] << 26
|
||||
carry[6] = (h6 + (1 << 25)) >> 26
|
||||
h7 += carry[6]
|
||||
h6 -= carry[6] << 26
|
||||
carry[8] = (h8 + (1 << 25)) >> 26
|
||||
h9 += carry[8]
|
||||
h8 -= carry[8] << 26
|
||||
|
||||
h[0] = int32(h0)
|
||||
h[1] = int32(h1)
|
||||
h[2] = int32(h2)
|
||||
h[3] = int32(h3)
|
||||
h[4] = int32(h4)
|
||||
h[5] = int32(h5)
|
||||
h[6] = int32(h6)
|
||||
h[7] = int32(h7)
|
||||
h[8] = int32(h8)
|
||||
h[9] = int32(h9)
|
||||
}
|
||||
|
||||
// feInvert sets out = z^-1.
|
||||
func feInvert(out, z *fieldElement) {
|
||||
var t0, t1, t2, t3 fieldElement
|
||||
var i int
|
||||
|
||||
feSquare(&t0, z)
|
||||
for i = 1; i < 1; i++ {
|
||||
feSquare(&t0, &t0)
|
||||
}
|
||||
feSquare(&t1, &t0)
|
||||
for i = 1; i < 2; i++ {
|
||||
feSquare(&t1, &t1)
|
||||
}
|
||||
feMul(&t1, z, &t1)
|
||||
feMul(&t0, &t0, &t1)
|
||||
feSquare(&t2, &t0)
|
||||
for i = 1; i < 1; i++ {
|
||||
feSquare(&t2, &t2)
|
||||
}
|
||||
feMul(&t1, &t1, &t2)
|
||||
feSquare(&t2, &t1)
|
||||
for i = 1; i < 5; i++ {
|
||||
feSquare(&t2, &t2)
|
||||
}
|
||||
feMul(&t1, &t2, &t1)
|
||||
feSquare(&t2, &t1)
|
||||
for i = 1; i < 10; i++ {
|
||||
feSquare(&t2, &t2)
|
||||
}
|
||||
feMul(&t2, &t2, &t1)
|
||||
feSquare(&t3, &t2)
|
||||
for i = 1; i < 20; i++ {
|
||||
feSquare(&t3, &t3)
|
||||
}
|
||||
feMul(&t2, &t3, &t2)
|
||||
feSquare(&t2, &t2)
|
||||
for i = 1; i < 10; i++ {
|
||||
feSquare(&t2, &t2)
|
||||
}
|
||||
feMul(&t1, &t2, &t1)
|
||||
feSquare(&t2, &t1)
|
||||
for i = 1; i < 50; i++ {
|
||||
feSquare(&t2, &t2)
|
||||
}
|
||||
feMul(&t2, &t2, &t1)
|
||||
feSquare(&t3, &t2)
|
||||
for i = 1; i < 100; i++ {
|
||||
feSquare(&t3, &t3)
|
||||
}
|
||||
feMul(&t2, &t3, &t2)
|
||||
feSquare(&t2, &t2)
|
||||
for i = 1; i < 50; i++ {
|
||||
feSquare(&t2, &t2)
|
||||
}
|
||||
feMul(&t1, &t2, &t1)
|
||||
feSquare(&t1, &t1)
|
||||
for i = 1; i < 5; i++ {
|
||||
feSquare(&t1, &t1)
|
||||
}
|
||||
feMul(out, &t1, &t0)
|
||||
}
|
||||
|
||||
func scalarMult(out, in, base *[32]byte) {
|
||||
var e [32]byte
|
||||
|
||||
copy(e[:], in[:])
|
||||
e[0] &= 248
|
||||
e[31] &= 127
|
||||
e[31] |= 64
|
||||
|
||||
var x1, x2, z2, x3, z3, tmp0, tmp1 fieldElement
|
||||
feFromBytes(&x1, base)
|
||||
feOne(&x2)
|
||||
feCopy(&x3, &x1)
|
||||
feOne(&z3)
|
||||
|
||||
swap := int32(0)
|
||||
for pos := 254; pos >= 0; pos-- {
|
||||
b := e[pos/8] >> uint(pos&7)
|
||||
b &= 1
|
||||
swap ^= int32(b)
|
||||
feCSwap(&x2, &x3, swap)
|
||||
feCSwap(&z2, &z3, swap)
|
||||
swap = int32(b)
|
||||
|
||||
feSub(&tmp0, &x3, &z3)
|
||||
feSub(&tmp1, &x2, &z2)
|
||||
feAdd(&x2, &x2, &z2)
|
||||
feAdd(&z2, &x3, &z3)
|
||||
feMul(&z3, &tmp0, &x2)
|
||||
feMul(&z2, &z2, &tmp1)
|
||||
feSquare(&tmp0, &tmp1)
|
||||
feSquare(&tmp1, &x2)
|
||||
feAdd(&x3, &z3, &z2)
|
||||
feSub(&z2, &z3, &z2)
|
||||
feMul(&x2, &tmp1, &tmp0)
|
||||
feSub(&tmp1, &tmp1, &tmp0)
|
||||
feSquare(&z2, &z2)
|
||||
feMul121666(&z3, &tmp1)
|
||||
feSquare(&x3, &x3)
|
||||
feAdd(&tmp0, &tmp0, &z3)
|
||||
feMul(&z3, &x1, &z2)
|
||||
feMul(&z2, &tmp1, &tmp0)
|
||||
}
|
||||
|
||||
feCSwap(&x2, &x3, swap)
|
||||
feCSwap(&z2, &z3, swap)
|
||||
|
||||
feInvert(&z2, &z2)
|
||||
feMul(&x2, &x2, &z2)
|
||||
feToBytes(out, &x2)
|
||||
if l := len(point); l != 32 {
|
||||
return nil, fmt.Errorf("bad point length: %d, expected %d", l, 32)
|
||||
}
|
||||
copy(in[:], scalar)
|
||||
if &point[0] == &Basepoint[0] {
|
||||
checkBasepoint()
|
||||
ScalarBaseMult(dst, &in)
|
||||
} else {
|
||||
var base, zero [32]byte
|
||||
copy(base[:], point)
|
||||
ScalarMult(dst, &in, &base)
|
||||
if subtle.ConstantTimeCompare(dst[:], zero[:]) == 1 {
|
||||
return nil, fmt.Errorf("bad input point: low order point")
|
||||
}
|
||||
}
|
||||
return dst[:], nil
|
||||
}
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build amd64,!gccgo,!appengine
|
||||
// +build amd64,!gccgo,!appengine,!purego
|
||||
|
||||
package curve25519
|
||||
|
|
@ -5,9 +5,84 @@
|
|||
// This code was translated into a form compatible with 6a from the public
|
||||
// domain sources in SUPERCOP: https://bench.cr.yp.to/supercop.html
|
||||
|
||||
// +build amd64,!gccgo,!appengine
|
||||
// +build amd64,!gccgo,!appengine,!purego
|
||||
|
||||
#include "const_amd64.h"
|
||||
#define REDMASK51 0x0007FFFFFFFFFFFF
|
||||
|
||||
// These constants cannot be encoded in non-MOVQ immediates.
|
||||
// We access them directly from memory instead.
|
||||
|
||||
DATA ·_121666_213(SB)/8, $996687872
|
||||
GLOBL ·_121666_213(SB), 8, $8
|
||||
|
||||
DATA ·_2P0(SB)/8, $0xFFFFFFFFFFFDA
|
||||
GLOBL ·_2P0(SB), 8, $8
|
||||
|
||||
DATA ·_2P1234(SB)/8, $0xFFFFFFFFFFFFE
|
||||
GLOBL ·_2P1234(SB), 8, $8
|
||||
|
||||
// func freeze(inout *[5]uint64)
|
||||
TEXT ·freeze(SB),7,$0-8
|
||||
MOVQ inout+0(FP), DI
|
||||
|
||||
MOVQ 0(DI),SI
|
||||
MOVQ 8(DI),DX
|
||||
MOVQ 16(DI),CX
|
||||
MOVQ 24(DI),R8
|
||||
MOVQ 32(DI),R9
|
||||
MOVQ $REDMASK51,AX
|
||||
MOVQ AX,R10
|
||||
SUBQ $18,R10
|
||||
MOVQ $3,R11
|
||||
REDUCELOOP:
|
||||
MOVQ SI,R12
|
||||
SHRQ $51,R12
|
||||
ANDQ AX,SI
|
||||
ADDQ R12,DX
|
||||
MOVQ DX,R12
|
||||
SHRQ $51,R12
|
||||
ANDQ AX,DX
|
||||
ADDQ R12,CX
|
||||
MOVQ CX,R12
|
||||
SHRQ $51,R12
|
||||
ANDQ AX,CX
|
||||
ADDQ R12,R8
|
||||
MOVQ R8,R12
|
||||
SHRQ $51,R12
|
||||
ANDQ AX,R8
|
||||
ADDQ R12,R9
|
||||
MOVQ R9,R12
|
||||
SHRQ $51,R12
|
||||
ANDQ AX,R9
|
||||
IMUL3Q $19,R12,R12
|
||||
ADDQ R12,SI
|
||||
SUBQ $1,R11
|
||||
JA REDUCELOOP
|
||||
MOVQ $1,R12
|
||||
CMPQ R10,SI
|
||||
CMOVQLT R11,R12
|
||||
CMPQ AX,DX
|
||||
CMOVQNE R11,R12
|
||||
CMPQ AX,CX
|
||||
CMOVQNE R11,R12
|
||||
CMPQ AX,R8
|
||||
CMOVQNE R11,R12
|
||||
CMPQ AX,R9
|
||||
CMOVQNE R11,R12
|
||||
NEGQ R12
|
||||
ANDQ R12,AX
|
||||
ANDQ R12,R10
|
||||
SUBQ R10,SI
|
||||
SUBQ AX,DX
|
||||
SUBQ AX,CX
|
||||
SUBQ AX,R8
|
||||
SUBQ AX,R9
|
||||
MOVQ SI,0(DI)
|
||||
MOVQ DX,8(DI)
|
||||
MOVQ CX,16(DI)
|
||||
MOVQ R8,24(DI)
|
||||
MOVQ R9,32(DI)
|
||||
RET
|
||||
|
||||
// func ladderstep(inout *[5][5]uint64)
|
||||
TEXT ·ladderstep(SB),0,$296-8
|
||||
|
@ -1375,3 +1450,344 @@ TEXT ·ladderstep(SB),0,$296-8
|
|||
MOVQ AX,104(DI)
|
||||
MOVQ R10,112(DI)
|
||||
RET
|
||||
|
||||
// func cswap(inout *[4][5]uint64, v uint64)
|
||||
TEXT ·cswap(SB),7,$0
|
||||
MOVQ inout+0(FP),DI
|
||||
MOVQ v+8(FP),SI
|
||||
|
||||
SUBQ $1, SI
|
||||
NOTQ SI
|
||||
MOVQ SI, X15
|
||||
PSHUFD $0x44, X15, X15
|
||||
|
||||
MOVOU 0(DI), X0
|
||||
MOVOU 16(DI), X2
|
||||
MOVOU 32(DI), X4
|
||||
MOVOU 48(DI), X6
|
||||
MOVOU 64(DI), X8
|
||||
MOVOU 80(DI), X1
|
||||
MOVOU 96(DI), X3
|
||||
MOVOU 112(DI), X5
|
||||
MOVOU 128(DI), X7
|
||||
MOVOU 144(DI), X9
|
||||
|
||||
MOVO X1, X10
|
||||
MOVO X3, X11
|
||||
MOVO X5, X12
|
||||
MOVO X7, X13
|
||||
MOVO X9, X14
|
||||
|
||||
PXOR X0, X10
|
||||
PXOR X2, X11
|
||||
PXOR X4, X12
|
||||
PXOR X6, X13
|
||||
PXOR X8, X14
|
||||
PAND X15, X10
|
||||
PAND X15, X11
|
||||
PAND X15, X12
|
||||
PAND X15, X13
|
||||
PAND X15, X14
|
||||
PXOR X10, X0
|
||||
PXOR X10, X1
|
||||
PXOR X11, X2
|
||||
PXOR X11, X3
|
||||
PXOR X12, X4
|
||||
PXOR X12, X5
|
||||
PXOR X13, X6
|
||||
PXOR X13, X7
|
||||
PXOR X14, X8
|
||||
PXOR X14, X9
|
||||
|
||||
MOVOU X0, 0(DI)
|
||||
MOVOU X2, 16(DI)
|
||||
MOVOU X4, 32(DI)
|
||||
MOVOU X6, 48(DI)
|
||||
MOVOU X8, 64(DI)
|
||||
MOVOU X1, 80(DI)
|
||||
MOVOU X3, 96(DI)
|
||||
MOVOU X5, 112(DI)
|
||||
MOVOU X7, 128(DI)
|
||||
MOVOU X9, 144(DI)
|
||||
RET
|
||||
|
||||
// func mul(dest, a, b *[5]uint64)
|
||||
TEXT ·mul(SB),0,$16-24
|
||||
MOVQ dest+0(FP), DI
|
||||
MOVQ a+8(FP), SI
|
||||
MOVQ b+16(FP), DX
|
||||
|
||||
MOVQ DX,CX
|
||||
MOVQ 24(SI),DX
|
||||
IMUL3Q $19,DX,AX
|
||||
MOVQ AX,0(SP)
|
||||
MULQ 16(CX)
|
||||
MOVQ AX,R8
|
||||
MOVQ DX,R9
|
||||
MOVQ 32(SI),DX
|
||||
IMUL3Q $19,DX,AX
|
||||
MOVQ AX,8(SP)
|
||||
MULQ 8(CX)
|
||||
ADDQ AX,R8
|
||||
ADCQ DX,R9
|
||||
MOVQ 0(SI),AX
|
||||
MULQ 0(CX)
|
||||
ADDQ AX,R8
|
||||
ADCQ DX,R9
|
||||
MOVQ 0(SI),AX
|
||||
MULQ 8(CX)
|
||||
MOVQ AX,R10
|
||||
MOVQ DX,R11
|
||||
MOVQ 0(SI),AX
|
||||
MULQ 16(CX)
|
||||
MOVQ AX,R12
|
||||
MOVQ DX,R13
|
||||
MOVQ 0(SI),AX
|
||||
MULQ 24(CX)
|
||||
MOVQ AX,R14
|
||||
MOVQ DX,R15
|
||||
MOVQ 0(SI),AX
|
||||
MULQ 32(CX)
|
||||
MOVQ AX,BX
|
||||
MOVQ DX,BP
|
||||
MOVQ 8(SI),AX
|
||||
MULQ 0(CX)
|
||||
ADDQ AX,R10
|
||||
ADCQ DX,R11
|
||||
MOVQ 8(SI),AX
|
||||
MULQ 8(CX)
|
||||
ADDQ AX,R12
|
||||
ADCQ DX,R13
|
||||
MOVQ 8(SI),AX
|
||||
MULQ 16(CX)
|
||||
ADDQ AX,R14
|
||||
ADCQ DX,R15
|
||||
MOVQ 8(SI),AX
|
||||
MULQ 24(CX)
|
||||
ADDQ AX,BX
|
||||
ADCQ DX,BP
|
||||
MOVQ 8(SI),DX
|
||||
IMUL3Q $19,DX,AX
|
||||
MULQ 32(CX)
|
||||
ADDQ AX,R8
|
||||
ADCQ DX,R9
|
||||
MOVQ 16(SI),AX
|
||||
MULQ 0(CX)
|
||||
ADDQ AX,R12
|
||||
ADCQ DX,R13
|
||||
MOVQ 16(SI),AX
|
||||
MULQ 8(CX)
|
||||
ADDQ AX,R14
|
||||
ADCQ DX,R15
|
||||
MOVQ 16(SI),AX
|
||||
MULQ 16(CX)
|
||||
ADDQ AX,BX
|
||||
ADCQ DX,BP
|
||||
MOVQ 16(SI),DX
|
||||
IMUL3Q $19,DX,AX
|
||||
MULQ 24(CX)
|
||||
ADDQ AX,R8
|
||||
ADCQ DX,R9
|
||||
MOVQ 16(SI),DX
|
||||
IMUL3Q $19,DX,AX
|
||||
MULQ 32(CX)
|
||||
ADDQ AX,R10
|
||||
ADCQ DX,R11
|
||||
MOVQ 24(SI),AX
|
||||
MULQ 0(CX)
|
||||
ADDQ AX,R14
|
||||
ADCQ DX,R15
|
||||
MOVQ 24(SI),AX
|
||||
MULQ 8(CX)
|
||||
ADDQ AX,BX
|
||||
ADCQ DX,BP
|
||||
MOVQ 0(SP),AX
|
||||
MULQ 24(CX)
|
||||
ADDQ AX,R10
|
||||
ADCQ DX,R11
|
||||
MOVQ 0(SP),AX
|
||||
MULQ 32(CX)
|
||||
ADDQ AX,R12
|
||||
ADCQ DX,R13
|
||||
MOVQ 32(SI),AX
|
||||
MULQ 0(CX)
|
||||
ADDQ AX,BX
|
||||
ADCQ DX,BP
|
||||
MOVQ 8(SP),AX
|
||||
MULQ 16(CX)
|
||||
ADDQ AX,R10
|
||||
ADCQ DX,R11
|
||||
MOVQ 8(SP),AX
|
||||
MULQ 24(CX)
|
||||
ADDQ AX,R12
|
||||
ADCQ DX,R13
|
||||
MOVQ 8(SP),AX
|
||||
MULQ 32(CX)
|
||||
ADDQ AX,R14
|
||||
ADCQ DX,R15
|
||||
MOVQ $REDMASK51,SI
|
||||
SHLQ $13,R8,R9
|
||||
ANDQ SI,R8
|
||||
SHLQ $13,R10,R11
|
||||
ANDQ SI,R10
|
||||
ADDQ R9,R10
|
||||
SHLQ $13,R12,R13
|
||||
ANDQ SI,R12
|
||||
ADDQ R11,R12
|
||||
SHLQ $13,R14,R15
|
||||
ANDQ SI,R14
|
||||
ADDQ R13,R14
|
||||
SHLQ $13,BX,BP
|
||||
ANDQ SI,BX
|
||||
ADDQ R15,BX
|
||||
IMUL3Q $19,BP,DX
|
||||
ADDQ DX,R8
|
||||
MOVQ R8,DX
|
||||
SHRQ $51,DX
|
||||
ADDQ R10,DX
|
||||
MOVQ DX,CX
|
||||
SHRQ $51,DX
|
||||
ANDQ SI,R8
|
||||
ADDQ R12,DX
|
||||
MOVQ DX,R9
|
||||
SHRQ $51,DX
|
||||
ANDQ SI,CX
|
||||
ADDQ R14,DX
|
||||
MOVQ DX,AX
|
||||
SHRQ $51,DX
|
||||
ANDQ SI,R9
|
||||
ADDQ BX,DX
|
||||
MOVQ DX,R10
|
||||
SHRQ $51,DX
|
||||
ANDQ SI,AX
|
||||
IMUL3Q $19,DX,DX
|
||||
ADDQ DX,R8
|
||||
ANDQ SI,R10
|
||||
MOVQ R8,0(DI)
|
||||
MOVQ CX,8(DI)
|
||||
MOVQ R9,16(DI)
|
||||
MOVQ AX,24(DI)
|
||||
MOVQ R10,32(DI)
|
||||
RET
|
||||
|
||||
// func square(out, in *[5]uint64)
|
||||
TEXT ·square(SB),7,$0-16
|
||||
MOVQ out+0(FP), DI
|
||||
MOVQ in+8(FP), SI
|
||||
|
||||
MOVQ 0(SI),AX
|
||||
MULQ 0(SI)
|
||||
MOVQ AX,CX
|
||||
MOVQ DX,R8
|
||||
MOVQ 0(SI),AX
|
||||
SHLQ $1,AX
|
||||
MULQ 8(SI)
|
||||
MOVQ AX,R9
|
||||
MOVQ DX,R10
|
||||
MOVQ 0(SI),AX
|
||||
SHLQ $1,AX
|
||||
MULQ 16(SI)
|
||||
MOVQ AX,R11
|
||||
MOVQ DX,R12
|
||||
MOVQ 0(SI),AX
|
||||
SHLQ $1,AX
|
||||
MULQ 24(SI)
|
||||
MOVQ AX,R13
|
||||
MOVQ DX,R14
|
||||
MOVQ 0(SI),AX
|
||||
SHLQ $1,AX
|
||||
MULQ 32(SI)
|
||||
MOVQ AX,R15
|
||||
MOVQ DX,BX
|
||||
MOVQ 8(SI),AX
|
||||
MULQ 8(SI)
|
||||
ADDQ AX,R11
|
||||
ADCQ DX,R12
|
||||
MOVQ 8(SI),AX
|
||||
SHLQ $1,AX
|
||||
MULQ 16(SI)
|
||||
ADDQ AX,R13
|
||||
ADCQ DX,R14
|
||||
MOVQ 8(SI),AX
|
||||
SHLQ $1,AX
|
||||
MULQ 24(SI)
|
||||
ADDQ AX,R15
|
||||
ADCQ DX,BX
|
||||
MOVQ 8(SI),DX
|
||||
IMUL3Q $38,DX,AX
|
||||
MULQ 32(SI)
|
||||
ADDQ AX,CX
|
||||
ADCQ DX,R8
|
||||
MOVQ 16(SI),AX
|
||||
MULQ 16(SI)
|
||||
ADDQ AX,R15
|
||||
ADCQ DX,BX
|
||||
MOVQ 16(SI),DX
|
||||
IMUL3Q $38,DX,AX
|
||||
MULQ 24(SI)
|
||||
ADDQ AX,CX
|
||||
ADCQ DX,R8
|
||||
MOVQ 16(SI),DX
|
||||
IMUL3Q $38,DX,AX
|
||||
MULQ 32(SI)
|
||||
ADDQ AX,R9
|
||||
ADCQ DX,R10
|
||||
MOVQ 24(SI),DX
|
||||
IMUL3Q $19,DX,AX
|
||||
MULQ 24(SI)
|
||||
ADDQ AX,R9
|
||||
ADCQ DX,R10
|
||||
MOVQ 24(SI),DX
|
||||
IMUL3Q $38,DX,AX
|
||||
MULQ 32(SI)
|
||||
ADDQ AX,R11
|
||||
ADCQ DX,R12
|
||||
MOVQ 32(SI),DX
|
||||
IMUL3Q $19,DX,AX
|
||||
MULQ 32(SI)
|
||||
ADDQ AX,R13
|
||||
ADCQ DX,R14
|
||||
MOVQ $REDMASK51,SI
|
||||
SHLQ $13,CX,R8
|
||||
ANDQ SI,CX
|
||||
SHLQ $13,R9,R10
|
||||
ANDQ SI,R9
|
||||
ADDQ R8,R9
|
||||
SHLQ $13,R11,R12
|
||||
ANDQ SI,R11
|
||||
ADDQ R10,R11
|
||||
SHLQ $13,R13,R14
|
||||
ANDQ SI,R13
|
||||
ADDQ R12,R13
|
||||
SHLQ $13,R15,BX
|
||||
ANDQ SI,R15
|
||||
ADDQ R14,R15
|
||||
IMUL3Q $19,BX,DX
|
||||
ADDQ DX,CX
|
||||
MOVQ CX,DX
|
||||
SHRQ $51,DX
|
||||
ADDQ R9,DX
|
||||
ANDQ SI,CX
|
||||
MOVQ DX,R8
|
||||
SHRQ $51,DX
|
||||
ADDQ R11,DX
|
||||
ANDQ SI,R8
|
||||
MOVQ DX,R9
|
||||
SHRQ $51,DX
|
||||
ADDQ R13,DX
|
||||
ANDQ SI,R9
|
||||
MOVQ DX,AX
|
||||
SHRQ $51,DX
|
||||
ADDQ R15,DX
|
||||
ANDQ SI,AX
|
||||
MOVQ DX,R10
|
||||
SHRQ $51,DX
|
||||
IMUL3Q $19,DX,DX
|
||||
ADDQ DX,CX
|
||||
ANDQ SI,R10
|
||||
MOVQ CX,0(DI)
|
||||
MOVQ R8,8(DI)
|
||||
MOVQ R9,16(DI)
|
||||
MOVQ AX,24(DI)
|
||||
MOVQ R10,32(DI)
|
||||
RET
|
|
@ -0,0 +1,828 @@
|
|||
// Copyright 2013 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package curve25519
|
||||
|
||||
import "encoding/binary"
|
||||
|
||||
// This code is a port of the public domain, "ref10" implementation of
|
||||
// curve25519 from SUPERCOP 20130419 by D. J. Bernstein.
|
||||
|
||||
// fieldElement represents an element of the field GF(2^255 - 19). An element
|
||||
// t, entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77
|
||||
// t[3]+2^102 t[4]+...+2^230 t[9]. Bounds on each t[i] vary depending on
|
||||
// context.
|
||||
type fieldElement [10]int32
|
||||
|
||||
func feZero(fe *fieldElement) {
|
||||
for i := range fe {
|
||||
fe[i] = 0
|
||||
}
|
||||
}
|
||||
|
||||
func feOne(fe *fieldElement) {
|
||||
feZero(fe)
|
||||
fe[0] = 1
|
||||
}
|
||||
|
||||
func feAdd(dst, a, b *fieldElement) {
|
||||
for i := range dst {
|
||||
dst[i] = a[i] + b[i]
|
||||
}
|
||||
}
|
||||
|
||||
func feSub(dst, a, b *fieldElement) {
|
||||
for i := range dst {
|
||||
dst[i] = a[i] - b[i]
|
||||
}
|
||||
}
|
||||
|
||||
func feCopy(dst, src *fieldElement) {
|
||||
for i := range dst {
|
||||
dst[i] = src[i]
|
||||
}
|
||||
}
|
||||
|
||||
// feCSwap replaces (f,g) with (g,f) if b == 1; replaces (f,g) with (f,g) if b == 0.
|
||||
//
|
||||
// Preconditions: b in {0,1}.
|
||||
func feCSwap(f, g *fieldElement, b int32) {
|
||||
b = -b
|
||||
for i := range f {
|
||||
t := b & (f[i] ^ g[i])
|
||||
f[i] ^= t
|
||||
g[i] ^= t
|
||||
}
|
||||
}
|
||||
|
||||
// load3 reads a 24-bit, little-endian value from in.
|
||||
func load3(in []byte) int64 {
|
||||
var r int64
|
||||
r = int64(in[0])
|
||||
r |= int64(in[1]) << 8
|
||||
r |= int64(in[2]) << 16
|
||||
return r
|
||||
}
|
||||
|
||||
// load4 reads a 32-bit, little-endian value from in.
|
||||
func load4(in []byte) int64 {
|
||||
return int64(binary.LittleEndian.Uint32(in))
|
||||
}
|
||||
|
||||
func feFromBytes(dst *fieldElement, src *[32]byte) {
|
||||
h0 := load4(src[:])
|
||||
h1 := load3(src[4:]) << 6
|
||||
h2 := load3(src[7:]) << 5
|
||||
h3 := load3(src[10:]) << 3
|
||||
h4 := load3(src[13:]) << 2
|
||||
h5 := load4(src[16:])
|
||||
h6 := load3(src[20:]) << 7
|
||||
h7 := load3(src[23:]) << 5
|
||||
h8 := load3(src[26:]) << 4
|
||||
h9 := (load3(src[29:]) & 0x7fffff) << 2
|
||||
|
||||
var carry [10]int64
|
||||
carry[9] = (h9 + 1<<24) >> 25
|
||||
h0 += carry[9] * 19
|
||||
h9 -= carry[9] << 25
|
||||
carry[1] = (h1 + 1<<24) >> 25
|
||||
h2 += carry[1]
|
||||
h1 -= carry[1] << 25
|
||||
carry[3] = (h3 + 1<<24) >> 25
|
||||
h4 += carry[3]
|
||||
h3 -= carry[3] << 25
|
||||
carry[5] = (h5 + 1<<24) >> 25
|
||||
h6 += carry[5]
|
||||
h5 -= carry[5] << 25
|
||||
carry[7] = (h7 + 1<<24) >> 25
|
||||
h8 += carry[7]
|
||||
h7 -= carry[7] << 25
|
||||
|
||||
carry[0] = (h0 + 1<<25) >> 26
|
||||
h1 += carry[0]
|
||||
h0 -= carry[0] << 26
|
||||
carry[2] = (h2 + 1<<25) >> 26
|
||||
h3 += carry[2]
|
||||
h2 -= carry[2] << 26
|
||||
carry[4] = (h4 + 1<<25) >> 26
|
||||
h5 += carry[4]
|
||||
h4 -= carry[4] << 26
|
||||
carry[6] = (h6 + 1<<25) >> 26
|
||||
h7 += carry[6]
|
||||
h6 -= carry[6] << 26
|
||||
carry[8] = (h8 + 1<<25) >> 26
|
||||
h9 += carry[8]
|
||||
h8 -= carry[8] << 26
|
||||
|
||||
dst[0] = int32(h0)
|
||||
dst[1] = int32(h1)
|
||||
dst[2] = int32(h2)
|
||||
dst[3] = int32(h3)
|
||||
dst[4] = int32(h4)
|
||||
dst[5] = int32(h5)
|
||||
dst[6] = int32(h6)
|
||||
dst[7] = int32(h7)
|
||||
dst[8] = int32(h8)
|
||||
dst[9] = int32(h9)
|
||||
}
|
||||
|
||||
// feToBytes marshals h to s.
|
||||
// Preconditions:
|
||||
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
|
||||
//
|
||||
// Write p=2^255-19; q=floor(h/p).
|
||||
// Basic claim: q = floor(2^(-255)(h + 19 2^(-25)h9 + 2^(-1))).
|
||||
//
|
||||
// Proof:
|
||||
// Have |h|<=p so |q|<=1 so |19^2 2^(-255) q|<1/4.
|
||||
// Also have |h-2^230 h9|<2^230 so |19 2^(-255)(h-2^230 h9)|<1/4.
|
||||
//
|
||||
// Write y=2^(-1)-19^2 2^(-255)q-19 2^(-255)(h-2^230 h9).
|
||||
// Then 0<y<1.
|
||||
//
|
||||
// Write r=h-pq.
|
||||
// Have 0<=r<=p-1=2^255-20.
|
||||
// Thus 0<=r+19(2^-255)r<r+19(2^-255)2^255<=2^255-1.
|
||||
//
|
||||
// Write x=r+19(2^-255)r+y.
|
||||
// Then 0<x<2^255 so floor(2^(-255)x) = 0 so floor(q+2^(-255)x) = q.
|
||||
//
|
||||
// Have q+2^(-255)x = 2^(-255)(h + 19 2^(-25) h9 + 2^(-1))
|
||||
// so floor(2^(-255)(h + 19 2^(-25) h9 + 2^(-1))) = q.
|
||||
func feToBytes(s *[32]byte, h *fieldElement) {
|
||||
var carry [10]int32
|
||||
|
||||
q := (19*h[9] + (1 << 24)) >> 25
|
||||
q = (h[0] + q) >> 26
|
||||
q = (h[1] + q) >> 25
|
||||
q = (h[2] + q) >> 26
|
||||
q = (h[3] + q) >> 25
|
||||
q = (h[4] + q) >> 26
|
||||
q = (h[5] + q) >> 25
|
||||
q = (h[6] + q) >> 26
|
||||
q = (h[7] + q) >> 25
|
||||
q = (h[8] + q) >> 26
|
||||
q = (h[9] + q) >> 25
|
||||
|
||||
// Goal: Output h-(2^255-19)q, which is between 0 and 2^255-20.
|
||||
h[0] += 19 * q
|
||||
// Goal: Output h-2^255 q, which is between 0 and 2^255-20.
|
||||
|
||||
carry[0] = h[0] >> 26
|
||||
h[1] += carry[0]
|
||||
h[0] -= carry[0] << 26
|
||||
carry[1] = h[1] >> 25
|
||||
h[2] += carry[1]
|
||||
h[1] -= carry[1] << 25
|
||||
carry[2] = h[2] >> 26
|
||||
h[3] += carry[2]
|
||||
h[2] -= carry[2] << 26
|
||||
carry[3] = h[3] >> 25
|
||||
h[4] += carry[3]
|
||||
h[3] -= carry[3] << 25
|
||||
carry[4] = h[4] >> 26
|
||||
h[5] += carry[4]
|
||||
h[4] -= carry[4] << 26
|
||||
carry[5] = h[5] >> 25
|
||||
h[6] += carry[5]
|
||||
h[5] -= carry[5] << 25
|
||||
carry[6] = h[6] >> 26
|
||||
h[7] += carry[6]
|
||||
h[6] -= carry[6] << 26
|
||||
carry[7] = h[7] >> 25
|
||||
h[8] += carry[7]
|
||||
h[7] -= carry[7] << 25
|
||||
carry[8] = h[8] >> 26
|
||||
h[9] += carry[8]
|
||||
h[8] -= carry[8] << 26
|
||||
carry[9] = h[9] >> 25
|
||||
h[9] -= carry[9] << 25
|
||||
// h10 = carry9
|
||||
|
||||
// Goal: Output h[0]+...+2^255 h10-2^255 q, which is between 0 and 2^255-20.
|
||||
// Have h[0]+...+2^230 h[9] between 0 and 2^255-1;
|
||||
// evidently 2^255 h10-2^255 q = 0.
|
||||
// Goal: Output h[0]+...+2^230 h[9].
|
||||
|
||||
s[0] = byte(h[0] >> 0)
|
||||
s[1] = byte(h[0] >> 8)
|
||||
s[2] = byte(h[0] >> 16)
|
||||
s[3] = byte((h[0] >> 24) | (h[1] << 2))
|
||||
s[4] = byte(h[1] >> 6)
|
||||
s[5] = byte(h[1] >> 14)
|
||||
s[6] = byte((h[1] >> 22) | (h[2] << 3))
|
||||
s[7] = byte(h[2] >> 5)
|
||||
s[8] = byte(h[2] >> 13)
|
||||
s[9] = byte((h[2] >> 21) | (h[3] << 5))
|
||||
s[10] = byte(h[3] >> 3)
|
||||
s[11] = byte(h[3] >> 11)
|
||||
s[12] = byte((h[3] >> 19) | (h[4] << 6))
|
||||
s[13] = byte(h[4] >> 2)
|
||||
s[14] = byte(h[4] >> 10)
|
||||
s[15] = byte(h[4] >> 18)
|
||||
s[16] = byte(h[5] >> 0)
|
||||
s[17] = byte(h[5] >> 8)
|
||||
s[18] = byte(h[5] >> 16)
|
||||
s[19] = byte((h[5] >> 24) | (h[6] << 1))
|
||||
s[20] = byte(h[6] >> 7)
|
||||
s[21] = byte(h[6] >> 15)
|
||||
s[22] = byte((h[6] >> 23) | (h[7] << 3))
|
||||
s[23] = byte(h[7] >> 5)
|
||||
s[24] = byte(h[7] >> 13)
|
||||
s[25] = byte((h[7] >> 21) | (h[8] << 4))
|
||||
s[26] = byte(h[8] >> 4)
|
||||
s[27] = byte(h[8] >> 12)
|
||||
s[28] = byte((h[8] >> 20) | (h[9] << 6))
|
||||
s[29] = byte(h[9] >> 2)
|
||||
s[30] = byte(h[9] >> 10)
|
||||
s[31] = byte(h[9] >> 18)
|
||||
}
|
||||
|
||||
// feMul calculates h = f * g
|
||||
// Can overlap h with f or g.
|
||||
//
|
||||
// Preconditions:
|
||||
// |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
|
||||
// |g| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
|
||||
//
|
||||
// Postconditions:
|
||||
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
|
||||
//
|
||||
// Notes on implementation strategy:
|
||||
//
|
||||
// Using schoolbook multiplication.
|
||||
// Karatsuba would save a little in some cost models.
|
||||
//
|
||||
// Most multiplications by 2 and 19 are 32-bit precomputations;
|
||||
// cheaper than 64-bit postcomputations.
|
||||
//
|
||||
// There is one remaining multiplication by 19 in the carry chain;
|
||||
// one *19 precomputation can be merged into this,
|
||||
// but the resulting data flow is considerably less clean.
|
||||
//
|
||||
// There are 12 carries below.
|
||||
// 10 of them are 2-way parallelizable and vectorizable.
|
||||
// Can get away with 11 carries, but then data flow is much deeper.
|
||||
//
|
||||
// With tighter constraints on inputs can squeeze carries into int32.
|
||||
func feMul(h, f, g *fieldElement) {
|
||||
f0 := f[0]
|
||||
f1 := f[1]
|
||||
f2 := f[2]
|
||||
f3 := f[3]
|
||||
f4 := f[4]
|
||||
f5 := f[5]
|
||||
f6 := f[6]
|
||||
f7 := f[7]
|
||||
f8 := f[8]
|
||||
f9 := f[9]
|
||||
g0 := g[0]
|
||||
g1 := g[1]
|
||||
g2 := g[2]
|
||||
g3 := g[3]
|
||||
g4 := g[4]
|
||||
g5 := g[5]
|
||||
g6 := g[6]
|
||||
g7 := g[7]
|
||||
g8 := g[8]
|
||||
g9 := g[9]
|
||||
g1_19 := 19 * g1 // 1.4*2^29
|
||||
g2_19 := 19 * g2 // 1.4*2^30; still ok
|
||||
g3_19 := 19 * g3
|
||||
g4_19 := 19 * g4
|
||||
g5_19 := 19 * g5
|
||||
g6_19 := 19 * g6
|
||||
g7_19 := 19 * g7
|
||||
g8_19 := 19 * g8
|
||||
g9_19 := 19 * g9
|
||||
f1_2 := 2 * f1
|
||||
f3_2 := 2 * f3
|
||||
f5_2 := 2 * f5
|
||||
f7_2 := 2 * f7
|
||||
f9_2 := 2 * f9
|
||||
f0g0 := int64(f0) * int64(g0)
|
||||
f0g1 := int64(f0) * int64(g1)
|
||||
f0g2 := int64(f0) * int64(g2)
|
||||
f0g3 := int64(f0) * int64(g3)
|
||||
f0g4 := int64(f0) * int64(g4)
|
||||
f0g5 := int64(f0) * int64(g5)
|
||||
f0g6 := int64(f0) * int64(g6)
|
||||
f0g7 := int64(f0) * int64(g7)
|
||||
f0g8 := int64(f0) * int64(g8)
|
||||
f0g9 := int64(f0) * int64(g9)
|
||||
f1g0 := int64(f1) * int64(g0)
|
||||
f1g1_2 := int64(f1_2) * int64(g1)
|
||||
f1g2 := int64(f1) * int64(g2)
|
||||
f1g3_2 := int64(f1_2) * int64(g3)
|
||||
f1g4 := int64(f1) * int64(g4)
|
||||
f1g5_2 := int64(f1_2) * int64(g5)
|
||||
f1g6 := int64(f1) * int64(g6)
|
||||
f1g7_2 := int64(f1_2) * int64(g7)
|
||||
f1g8 := int64(f1) * int64(g8)
|
||||
f1g9_38 := int64(f1_2) * int64(g9_19)
|
||||
f2g0 := int64(f2) * int64(g0)
|
||||
f2g1 := int64(f2) * int64(g1)
|
||||
f2g2 := int64(f2) * int64(g2)
|
||||
f2g3 := int64(f2) * int64(g3)
|
||||
f2g4 := int64(f2) * int64(g4)
|
||||
f2g5 := int64(f2) * int64(g5)
|
||||
f2g6 := int64(f2) * int64(g6)
|
||||
f2g7 := int64(f2) * int64(g7)
|
||||
f2g8_19 := int64(f2) * int64(g8_19)
|
||||
f2g9_19 := int64(f2) * int64(g9_19)
|
||||
f3g0 := int64(f3) * int64(g0)
|
||||
f3g1_2 := int64(f3_2) * int64(g1)
|
||||
f3g2 := int64(f3) * int64(g2)
|
||||
f3g3_2 := int64(f3_2) * int64(g3)
|
||||
f3g4 := int64(f3) * int64(g4)
|
||||
f3g5_2 := int64(f3_2) * int64(g5)
|
||||
f3g6 := int64(f3) * int64(g6)
|
||||
f3g7_38 := int64(f3_2) * int64(g7_19)
|
||||
f3g8_19 := int64(f3) * int64(g8_19)
|
||||
f3g9_38 := int64(f3_2) * int64(g9_19)
|
||||
f4g0 := int64(f4) * int64(g0)
|
||||
f4g1 := int64(f4) * int64(g1)
|
||||
f4g2 := int64(f4) * int64(g2)
|
||||
f4g3 := int64(f4) * int64(g3)
|
||||
f4g4 := int64(f4) * int64(g4)
|
||||
f4g5 := int64(f4) * int64(g5)
|
||||
f4g6_19 := int64(f4) * int64(g6_19)
|
||||
f4g7_19 := int64(f4) * int64(g7_19)
|
||||
f4g8_19 := int64(f4) * int64(g8_19)
|
||||
f4g9_19 := int64(f4) * int64(g9_19)
|
||||
f5g0 := int64(f5) * int64(g0)
|
||||
f5g1_2 := int64(f5_2) * int64(g1)
|
||||
f5g2 := int64(f5) * int64(g2)
|
||||
f5g3_2 := int64(f5_2) * int64(g3)
|
||||
f5g4 := int64(f5) * int64(g4)
|
||||
f5g5_38 := int64(f5_2) * int64(g5_19)
|
||||
f5g6_19 := int64(f5) * int64(g6_19)
|
||||
f5g7_38 := int64(f5_2) * int64(g7_19)
|
||||
f5g8_19 := int64(f5) * int64(g8_19)
|
||||
f5g9_38 := int64(f5_2) * int64(g9_19)
|
||||
f6g0 := int64(f6) * int64(g0)
|
||||
f6g1 := int64(f6) * int64(g1)
|
||||
f6g2 := int64(f6) * int64(g2)
|
||||
f6g3 := int64(f6) * int64(g3)
|
||||
f6g4_19 := int64(f6) * int64(g4_19)
|
||||
f6g5_19 := int64(f6) * int64(g5_19)
|
||||
f6g6_19 := int64(f6) * int64(g6_19)
|
||||
f6g7_19 := int64(f6) * int64(g7_19)
|
||||
f6g8_19 := int64(f6) * int64(g8_19)
|
||||
f6g9_19 := int64(f6) * int64(g9_19)
|
||||
f7g0 := int64(f7) * int64(g0)
|
||||
f7g1_2 := int64(f7_2) * int64(g1)
|
||||
f7g2 := int64(f7) * int64(g2)
|
||||
f7g3_38 := int64(f7_2) * int64(g3_19)
|
||||
f7g4_19 := int64(f7) * int64(g4_19)
|
||||
f7g5_38 := int64(f7_2) * int64(g5_19)
|
||||
f7g6_19 := int64(f7) * int64(g6_19)
|
||||
f7g7_38 := int64(f7_2) * int64(g7_19)
|
||||
f7g8_19 := int64(f7) * int64(g8_19)
|
||||
f7g9_38 := int64(f7_2) * int64(g9_19)
|
||||
f8g0 := int64(f8) * int64(g0)
|
||||
f8g1 := int64(f8) * int64(g1)
|
||||
f8g2_19 := int64(f8) * int64(g2_19)
|
||||
f8g3_19 := int64(f8) * int64(g3_19)
|
||||
f8g4_19 := int64(f8) * int64(g4_19)
|
||||
f8g5_19 := int64(f8) * int64(g5_19)
|
||||
f8g6_19 := int64(f8) * int64(g6_19)
|
||||
f8g7_19 := int64(f8) * int64(g7_19)
|
||||
f8g8_19 := int64(f8) * int64(g8_19)
|
||||
f8g9_19 := int64(f8) * int64(g9_19)
|
||||
f9g0 := int64(f9) * int64(g0)
|
||||
f9g1_38 := int64(f9_2) * int64(g1_19)
|
||||
f9g2_19 := int64(f9) * int64(g2_19)
|
||||
f9g3_38 := int64(f9_2) * int64(g3_19)
|
||||
f9g4_19 := int64(f9) * int64(g4_19)
|
||||
f9g5_38 := int64(f9_2) * int64(g5_19)
|
||||
f9g6_19 := int64(f9) * int64(g6_19)
|
||||
f9g7_38 := int64(f9_2) * int64(g7_19)
|
||||
f9g8_19 := int64(f9) * int64(g8_19)
|
||||
f9g9_38 := int64(f9_2) * int64(g9_19)
|
||||
h0 := f0g0 + f1g9_38 + f2g8_19 + f3g7_38 + f4g6_19 + f5g5_38 + f6g4_19 + f7g3_38 + f8g2_19 + f9g1_38
|
||||
h1 := f0g1 + f1g0 + f2g9_19 + f3g8_19 + f4g7_19 + f5g6_19 + f6g5_19 + f7g4_19 + f8g3_19 + f9g2_19
|
||||
h2 := f0g2 + f1g1_2 + f2g0 + f3g9_38 + f4g8_19 + f5g7_38 + f6g6_19 + f7g5_38 + f8g4_19 + f9g3_38
|
||||
h3 := f0g3 + f1g2 + f2g1 + f3g0 + f4g9_19 + f5g8_19 + f6g7_19 + f7g6_19 + f8g5_19 + f9g4_19
|
||||
h4 := f0g4 + f1g3_2 + f2g2 + f3g1_2 + f4g0 + f5g9_38 + f6g8_19 + f7g7_38 + f8g6_19 + f9g5_38
|
||||
h5 := f0g5 + f1g4 + f2g3 + f3g2 + f4g1 + f5g0 + f6g9_19 + f7g8_19 + f8g7_19 + f9g6_19
|
||||
h6 := f0g6 + f1g5_2 + f2g4 + f3g3_2 + f4g2 + f5g1_2 + f6g0 + f7g9_38 + f8g8_19 + f9g7_38
|
||||
h7 := f0g7 + f1g6 + f2g5 + f3g4 + f4g3 + f5g2 + f6g1 + f7g0 + f8g9_19 + f9g8_19
|
||||
h8 := f0g8 + f1g7_2 + f2g6 + f3g5_2 + f4g4 + f5g3_2 + f6g2 + f7g1_2 + f8g0 + f9g9_38
|
||||
h9 := f0g9 + f1g8 + f2g7 + f3g6 + f4g5 + f5g4 + f6g3 + f7g2 + f8g1 + f9g0
|
||||
var carry [10]int64
|
||||
|
||||
// |h0| <= (1.1*1.1*2^52*(1+19+19+19+19)+1.1*1.1*2^50*(38+38+38+38+38))
|
||||
// i.e. |h0| <= 1.2*2^59; narrower ranges for h2, h4, h6, h8
|
||||
// |h1| <= (1.1*1.1*2^51*(1+1+19+19+19+19+19+19+19+19))
|
||||
// i.e. |h1| <= 1.5*2^58; narrower ranges for h3, h5, h7, h9
|
||||
|
||||
carry[0] = (h0 + (1 << 25)) >> 26
|
||||
h1 += carry[0]
|
||||
h0 -= carry[0] << 26
|
||||
carry[4] = (h4 + (1 << 25)) >> 26
|
||||
h5 += carry[4]
|
||||
h4 -= carry[4] << 26
|
||||
// |h0| <= 2^25
|
||||
// |h4| <= 2^25
|
||||
// |h1| <= 1.51*2^58
|
||||
// |h5| <= 1.51*2^58
|
||||
|
||||
carry[1] = (h1 + (1 << 24)) >> 25
|
||||
h2 += carry[1]
|
||||
h1 -= carry[1] << 25
|
||||
carry[5] = (h5 + (1 << 24)) >> 25
|
||||
h6 += carry[5]
|
||||
h5 -= carry[5] << 25
|
||||
// |h1| <= 2^24; from now on fits into int32
|
||||
// |h5| <= 2^24; from now on fits into int32
|
||||
// |h2| <= 1.21*2^59
|
||||
// |h6| <= 1.21*2^59
|
||||
|
||||
carry[2] = (h2 + (1 << 25)) >> 26
|
||||
h3 += carry[2]
|
||||
h2 -= carry[2] << 26
|
||||
carry[6] = (h6 + (1 << 25)) >> 26
|
||||
h7 += carry[6]
|
||||
h6 -= carry[6] << 26
|
||||
// |h2| <= 2^25; from now on fits into int32 unchanged
|
||||
// |h6| <= 2^25; from now on fits into int32 unchanged
|
||||
// |h3| <= 1.51*2^58
|
||||
// |h7| <= 1.51*2^58
|
||||
|
||||
carry[3] = (h3 + (1 << 24)) >> 25
|
||||
h4 += carry[3]
|
||||
h3 -= carry[3] << 25
|
||||
carry[7] = (h7 + (1 << 24)) >> 25
|
||||
h8 += carry[7]
|
||||
h7 -= carry[7] << 25
|
||||
// |h3| <= 2^24; from now on fits into int32 unchanged
|
||||
// |h7| <= 2^24; from now on fits into int32 unchanged
|
||||
// |h4| <= 1.52*2^33
|
||||
// |h8| <= 1.52*2^33
|
||||
|
||||
carry[4] = (h4 + (1 << 25)) >> 26
|
||||
h5 += carry[4]
|
||||
h4 -= carry[4] << 26
|
||||
carry[8] = (h8 + (1 << 25)) >> 26
|
||||
h9 += carry[8]
|
||||
h8 -= carry[8] << 26
|
||||
// |h4| <= 2^25; from now on fits into int32 unchanged
|
||||
// |h8| <= 2^25; from now on fits into int32 unchanged
|
||||
// |h5| <= 1.01*2^24
|
||||
// |h9| <= 1.51*2^58
|
||||
|
||||
carry[9] = (h9 + (1 << 24)) >> 25
|
||||
h0 += carry[9] * 19
|
||||
h9 -= carry[9] << 25
|
||||
// |h9| <= 2^24; from now on fits into int32 unchanged
|
||||
// |h0| <= 1.8*2^37
|
||||
|
||||
carry[0] = (h0 + (1 << 25)) >> 26
|
||||
h1 += carry[0]
|
||||
h0 -= carry[0] << 26
|
||||
// |h0| <= 2^25; from now on fits into int32 unchanged
|
||||
// |h1| <= 1.01*2^24
|
||||
|
||||
h[0] = int32(h0)
|
||||
h[1] = int32(h1)
|
||||
h[2] = int32(h2)
|
||||
h[3] = int32(h3)
|
||||
h[4] = int32(h4)
|
||||
h[5] = int32(h5)
|
||||
h[6] = int32(h6)
|
||||
h[7] = int32(h7)
|
||||
h[8] = int32(h8)
|
||||
h[9] = int32(h9)
|
||||
}
|
||||
|
||||
// feSquare calculates h = f*f. Can overlap h with f.
|
||||
//
|
||||
// Preconditions:
|
||||
// |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
|
||||
//
|
||||
// Postconditions:
|
||||
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
|
||||
func feSquare(h, f *fieldElement) {
|
||||
f0 := f[0]
|
||||
f1 := f[1]
|
||||
f2 := f[2]
|
||||
f3 := f[3]
|
||||
f4 := f[4]
|
||||
f5 := f[5]
|
||||
f6 := f[6]
|
||||
f7 := f[7]
|
||||
f8 := f[8]
|
||||
f9 := f[9]
|
||||
f0_2 := 2 * f0
|
||||
f1_2 := 2 * f1
|
||||
f2_2 := 2 * f2
|
||||
f3_2 := 2 * f3
|
||||
f4_2 := 2 * f4
|
||||
f5_2 := 2 * f5
|
||||
f6_2 := 2 * f6
|
||||
f7_2 := 2 * f7
|
||||
f5_38 := 38 * f5 // 1.31*2^30
|
||||
f6_19 := 19 * f6 // 1.31*2^30
|
||||
f7_38 := 38 * f7 // 1.31*2^30
|
||||
f8_19 := 19 * f8 // 1.31*2^30
|
||||
f9_38 := 38 * f9 // 1.31*2^30
|
||||
f0f0 := int64(f0) * int64(f0)
|
||||
f0f1_2 := int64(f0_2) * int64(f1)
|
||||
f0f2_2 := int64(f0_2) * int64(f2)
|
||||
f0f3_2 := int64(f0_2) * int64(f3)
|
||||
f0f4_2 := int64(f0_2) * int64(f4)
|
||||
f0f5_2 := int64(f0_2) * int64(f5)
|
||||
f0f6_2 := int64(f0_2) * int64(f6)
|
||||
f0f7_2 := int64(f0_2) * int64(f7)
|
||||
f0f8_2 := int64(f0_2) * int64(f8)
|
||||
f0f9_2 := int64(f0_2) * int64(f9)
|
||||
f1f1_2 := int64(f1_2) * int64(f1)
|
||||
f1f2_2 := int64(f1_2) * int64(f2)
|
||||
f1f3_4 := int64(f1_2) * int64(f3_2)
|
||||
f1f4_2 := int64(f1_2) * int64(f4)
|
||||
f1f5_4 := int64(f1_2) * int64(f5_2)
|
||||
f1f6_2 := int64(f1_2) * int64(f6)
|
||||
f1f7_4 := int64(f1_2) * int64(f7_2)
|
||||
f1f8_2 := int64(f1_2) * int64(f8)
|
||||
f1f9_76 := int64(f1_2) * int64(f9_38)
|
||||
f2f2 := int64(f2) * int64(f2)
|
||||
f2f3_2 := int64(f2_2) * int64(f3)
|
||||
f2f4_2 := int64(f2_2) * int64(f4)
|
||||
f2f5_2 := int64(f2_2) * int64(f5)
|
||||
f2f6_2 := int64(f2_2) * int64(f6)
|
||||
f2f7_2 := int64(f2_2) * int64(f7)
|
||||
f2f8_38 := int64(f2_2) * int64(f8_19)
|
||||
f2f9_38 := int64(f2) * int64(f9_38)
|
||||
f3f3_2 := int64(f3_2) * int64(f3)
|
||||
f3f4_2 := int64(f3_2) * int64(f4)
|
||||
f3f5_4 := int64(f3_2) * int64(f5_2)
|
||||
f3f6_2 := int64(f3_2) * int64(f6)
|
||||
f3f7_76 := int64(f3_2) * int64(f7_38)
|
||||
f3f8_38 := int64(f3_2) * int64(f8_19)
|
||||
f3f9_76 := int64(f3_2) * int64(f9_38)
|
||||
f4f4 := int64(f4) * int64(f4)
|
||||
f4f5_2 := int64(f4_2) * int64(f5)
|
||||
f4f6_38 := int64(f4_2) * int64(f6_19)
|
||||
f4f7_38 := int64(f4) * int64(f7_38)
|
||||
f4f8_38 := int64(f4_2) * int64(f8_19)
|
||||
f4f9_38 := int64(f4) * int64(f9_38)
|
||||
f5f5_38 := int64(f5) * int64(f5_38)
|
||||
f5f6_38 := int64(f5_2) * int64(f6_19)
|
||||
f5f7_76 := int64(f5_2) * int64(f7_38)
|
||||
f5f8_38 := int64(f5_2) * int64(f8_19)
|
||||
f5f9_76 := int64(f5_2) * int64(f9_38)
|
||||
f6f6_19 := int64(f6) * int64(f6_19)
|
||||
f6f7_38 := int64(f6) * int64(f7_38)
|
||||
f6f8_38 := int64(f6_2) * int64(f8_19)
|
||||
f6f9_38 := int64(f6) * int64(f9_38)
|
||||
f7f7_38 := int64(f7) * int64(f7_38)
|
||||
f7f8_38 := int64(f7_2) * int64(f8_19)
|
||||
f7f9_76 := int64(f7_2) * int64(f9_38)
|
||||
f8f8_19 := int64(f8) * int64(f8_19)
|
||||
f8f9_38 := int64(f8) * int64(f9_38)
|
||||
f9f9_38 := int64(f9) * int64(f9_38)
|
||||
h0 := f0f0 + f1f9_76 + f2f8_38 + f3f7_76 + f4f6_38 + f5f5_38
|
||||
h1 := f0f1_2 + f2f9_38 + f3f8_38 + f4f7_38 + f5f6_38
|
||||
h2 := f0f2_2 + f1f1_2 + f3f9_76 + f4f8_38 + f5f7_76 + f6f6_19
|
||||
h3 := f0f3_2 + f1f2_2 + f4f9_38 + f5f8_38 + f6f7_38
|
||||
h4 := f0f4_2 + f1f3_4 + f2f2 + f5f9_76 + f6f8_38 + f7f7_38
|
||||
h5 := f0f5_2 + f1f4_2 + f2f3_2 + f6f9_38 + f7f8_38
|
||||
h6 := f0f6_2 + f1f5_4 + f2f4_2 + f3f3_2 + f7f9_76 + f8f8_19
|
||||
h7 := f0f7_2 + f1f6_2 + f2f5_2 + f3f4_2 + f8f9_38
|
||||
h8 := f0f8_2 + f1f7_4 + f2f6_2 + f3f5_4 + f4f4 + f9f9_38
|
||||
h9 := f0f9_2 + f1f8_2 + f2f7_2 + f3f6_2 + f4f5_2
|
||||
var carry [10]int64
|
||||
|
||||
carry[0] = (h0 + (1 << 25)) >> 26
|
||||
h1 += carry[0]
|
||||
h0 -= carry[0] << 26
|
||||
carry[4] = (h4 + (1 << 25)) >> 26
|
||||
h5 += carry[4]
|
||||
h4 -= carry[4] << 26
|
||||
|
||||
carry[1] = (h1 + (1 << 24)) >> 25
|
||||
h2 += carry[1]
|
||||
h1 -= carry[1] << 25
|
||||
carry[5] = (h5 + (1 << 24)) >> 25
|
||||
h6 += carry[5]
|
||||
h5 -= carry[5] << 25
|
||||
|
||||
carry[2] = (h2 + (1 << 25)) >> 26
|
||||
h3 += carry[2]
|
||||
h2 -= carry[2] << 26
|
||||
carry[6] = (h6 + (1 << 25)) >> 26
|
||||
h7 += carry[6]
|
||||
h6 -= carry[6] << 26
|
||||
|
||||
carry[3] = (h3 + (1 << 24)) >> 25
|
||||
h4 += carry[3]
|
||||
h3 -= carry[3] << 25
|
||||
carry[7] = (h7 + (1 << 24)) >> 25
|
||||
h8 += carry[7]
|
||||
h7 -= carry[7] << 25
|
||||
|
||||
carry[4] = (h4 + (1 << 25)) >> 26
|
||||
h5 += carry[4]
|
||||
h4 -= carry[4] << 26
|
||||
carry[8] = (h8 + (1 << 25)) >> 26
|
||||
h9 += carry[8]
|
||||
h8 -= carry[8] << 26
|
||||
|
||||
carry[9] = (h9 + (1 << 24)) >> 25
|
||||
h0 += carry[9] * 19
|
||||
h9 -= carry[9] << 25
|
||||
|
||||
carry[0] = (h0 + (1 << 25)) >> 26
|
||||
h1 += carry[0]
|
||||
h0 -= carry[0] << 26
|
||||
|
||||
h[0] = int32(h0)
|
||||
h[1] = int32(h1)
|
||||
h[2] = int32(h2)
|
||||
h[3] = int32(h3)
|
||||
h[4] = int32(h4)
|
||||
h[5] = int32(h5)
|
||||
h[6] = int32(h6)
|
||||
h[7] = int32(h7)
|
||||
h[8] = int32(h8)
|
||||
h[9] = int32(h9)
|
||||
}
|
||||
|
||||
// feMul121666 calculates h = f * 121666. Can overlap h with f.
|
||||
//
|
||||
// Preconditions:
|
||||
// |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
|
||||
//
|
||||
// Postconditions:
|
||||
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
|
||||
func feMul121666(h, f *fieldElement) {
|
||||
h0 := int64(f[0]) * 121666
|
||||
h1 := int64(f[1]) * 121666
|
||||
h2 := int64(f[2]) * 121666
|
||||
h3 := int64(f[3]) * 121666
|
||||
h4 := int64(f[4]) * 121666
|
||||
h5 := int64(f[5]) * 121666
|
||||
h6 := int64(f[6]) * 121666
|
||||
h7 := int64(f[7]) * 121666
|
||||
h8 := int64(f[8]) * 121666
|
||||
h9 := int64(f[9]) * 121666
|
||||
var carry [10]int64
|
||||
|
||||
carry[9] = (h9 + (1 << 24)) >> 25
|
||||
h0 += carry[9] * 19
|
||||
h9 -= carry[9] << 25
|
||||
carry[1] = (h1 + (1 << 24)) >> 25
|
||||
h2 += carry[1]
|
||||
h1 -= carry[1] << 25
|
||||
carry[3] = (h3 + (1 << 24)) >> 25
|
||||
h4 += carry[3]
|
||||
h3 -= carry[3] << 25
|
||||
carry[5] = (h5 + (1 << 24)) >> 25
|
||||
h6 += carry[5]
|
||||
h5 -= carry[5] << 25
|
||||
carry[7] = (h7 + (1 << 24)) >> 25
|
||||
h8 += carry[7]
|
||||
h7 -= carry[7] << 25
|
||||
|
||||
carry[0] = (h0 + (1 << 25)) >> 26
|
||||
h1 += carry[0]
|
||||
h0 -= carry[0] << 26
|
||||
carry[2] = (h2 + (1 << 25)) >> 26
|
||||
h3 += carry[2]
|
||||
h2 -= carry[2] << 26
|
||||
carry[4] = (h4 + (1 << 25)) >> 26
|
||||
h5 += carry[4]
|
||||
h4 -= carry[4] << 26
|
||||
carry[6] = (h6 + (1 << 25)) >> 26
|
||||
h7 += carry[6]
|
||||
h6 -= carry[6] << 26
|
||||
carry[8] = (h8 + (1 << 25)) >> 26
|
||||
h9 += carry[8]
|
||||
h8 -= carry[8] << 26
|
||||
|
||||
h[0] = int32(h0)
|
||||
h[1] = int32(h1)
|
||||
h[2] = int32(h2)
|
||||
h[3] = int32(h3)
|
||||
h[4] = int32(h4)
|
||||
h[5] = int32(h5)
|
||||
h[6] = int32(h6)
|
||||
h[7] = int32(h7)
|
||||
h[8] = int32(h8)
|
||||
h[9] = int32(h9)
|
||||
}
|
||||
|
||||
// feInvert sets out = z^-1.
|
||||
func feInvert(out, z *fieldElement) {
|
||||
var t0, t1, t2, t3 fieldElement
|
||||
var i int
|
||||
|
||||
feSquare(&t0, z)
|
||||
for i = 1; i < 1; i++ {
|
||||
feSquare(&t0, &t0)
|
||||
}
|
||||
feSquare(&t1, &t0)
|
||||
for i = 1; i < 2; i++ {
|
||||
feSquare(&t1, &t1)
|
||||
}
|
||||
feMul(&t1, z, &t1)
|
||||
feMul(&t0, &t0, &t1)
|
||||
feSquare(&t2, &t0)
|
||||
for i = 1; i < 1; i++ {
|
||||
feSquare(&t2, &t2)
|
||||
}
|
||||
feMul(&t1, &t1, &t2)
|
||||
feSquare(&t2, &t1)
|
||||
for i = 1; i < 5; i++ {
|
||||
feSquare(&t2, &t2)
|
||||
}
|
||||
feMul(&t1, &t2, &t1)
|
||||
feSquare(&t2, &t1)
|
||||
for i = 1; i < 10; i++ {
|
||||
feSquare(&t2, &t2)
|
||||
}
|
||||
feMul(&t2, &t2, &t1)
|
||||
feSquare(&t3, &t2)
|
||||
for i = 1; i < 20; i++ {
|
||||
feSquare(&t3, &t3)
|
||||
}
|
||||
feMul(&t2, &t3, &t2)
|
||||
feSquare(&t2, &t2)
|
||||
for i = 1; i < 10; i++ {
|
||||
feSquare(&t2, &t2)
|
||||
}
|
||||
feMul(&t1, &t2, &t1)
|
||||
feSquare(&t2, &t1)
|
||||
for i = 1; i < 50; i++ {
|
||||
feSquare(&t2, &t2)
|
||||
}
|
||||
feMul(&t2, &t2, &t1)
|
||||
feSquare(&t3, &t2)
|
||||
for i = 1; i < 100; i++ {
|
||||
feSquare(&t3, &t3)
|
||||
}
|
||||
feMul(&t2, &t3, &t2)
|
||||
feSquare(&t2, &t2)
|
||||
for i = 1; i < 50; i++ {
|
||||
feSquare(&t2, &t2)
|
||||
}
|
||||
feMul(&t1, &t2, &t1)
|
||||
feSquare(&t1, &t1)
|
||||
for i = 1; i < 5; i++ {
|
||||
feSquare(&t1, &t1)
|
||||
}
|
||||
feMul(out, &t1, &t0)
|
||||
}
|
||||
|
||||
func scalarMultGeneric(out, in, base *[32]byte) {
|
||||
var e [32]byte
|
||||
|
||||
copy(e[:], in[:])
|
||||
e[0] &= 248
|
||||
e[31] &= 127
|
||||
e[31] |= 64
|
||||
|
||||
var x1, x2, z2, x3, z3, tmp0, tmp1 fieldElement
|
||||
feFromBytes(&x1, base)
|
||||
feOne(&x2)
|
||||
feCopy(&x3, &x1)
|
||||
feOne(&z3)
|
||||
|
||||
swap := int32(0)
|
||||
for pos := 254; pos >= 0; pos-- {
|
||||
b := e[pos/8] >> uint(pos&7)
|
||||
b &= 1
|
||||
swap ^= int32(b)
|
||||
feCSwap(&x2, &x3, swap)
|
||||
feCSwap(&z2, &z3, swap)
|
||||
swap = int32(b)
|
||||
|
||||
feSub(&tmp0, &x3, &z3)
|
||||
feSub(&tmp1, &x2, &z2)
|
||||
feAdd(&x2, &x2, &z2)
|
||||
feAdd(&z2, &x3, &z3)
|
||||
feMul(&z3, &tmp0, &x2)
|
||||
feMul(&z2, &z2, &tmp1)
|
||||
feSquare(&tmp0, &tmp1)
|
||||
feSquare(&tmp1, &x2)
|
||||
feAdd(&x3, &z3, &z2)
|
||||
feSub(&z2, &z3, &z2)
|
||||
feMul(&x2, &tmp1, &tmp0)
|
||||
feSub(&tmp1, &tmp1, &tmp0)
|
||||
feSquare(&z2, &z2)
|
||||
feMul121666(&z3, &tmp1)
|
||||
feSquare(&x3, &x3)
|
||||
feAdd(&tmp0, &tmp0, &z3)
|
||||
feMul(&z3, &x1, &z2)
|
||||
feMul(&z2, &tmp1, &tmp0)
|
||||
}
|
||||
|
||||
feCSwap(&x2, &x3, swap)
|
||||
feCSwap(&z2, &z3, swap)
|
||||
|
||||
feInvert(&z2, &z2)
|
||||
feMul(&x2, &x2, &z2)
|
||||
feToBytes(out, &x2)
|
||||
}
|
|
@ -0,0 +1,11 @@
|
|||
// Copyright 2019 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build !amd64 gccgo appengine purego
|
||||
|
||||
package curve25519
|
||||
|
||||
func scalarMult(out, in, base *[32]byte) {
|
||||
scalarMultGeneric(out, in, base)
|
||||
}
|
|
@ -1,23 +0,0 @@
|
|||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package curve25519 provides an implementation of scalar multiplication on
|
||||
// the elliptic curve known as curve25519. See https://cr.yp.to/ecdh.html
|
||||
package curve25519 // import "golang.org/x/crypto/curve25519"
|
||||
|
||||
// basePoint is the x coordinate of the generator of the curve.
|
||||
var basePoint = [32]byte{9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
|
||||
|
||||
// ScalarMult sets dst to the product in*base where dst and base are the x
|
||||
// coordinates of group points and all values are in little-endian form.
|
||||
func ScalarMult(dst, in, base *[32]byte) {
|
||||
scalarMult(dst, in, base)
|
||||
}
|
||||
|
||||
// ScalarBaseMult sets dst to the product in*base where dst and base are the x
|
||||
// coordinates of group points, base is the standard generator and all values
|
||||
// are in little-endian form.
|
||||
func ScalarBaseMult(dst, in *[32]byte) {
|
||||
ScalarMult(dst, in, &basePoint)
|
||||
}
|
|
@ -1,73 +0,0 @@
|
|||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// This code was translated into a form compatible with 6a from the public
|
||||
// domain sources in SUPERCOP: https://bench.cr.yp.to/supercop.html
|
||||
|
||||
// +build amd64,!gccgo,!appengine
|
||||
|
||||
#include "const_amd64.h"
|
||||
|
||||
// func freeze(inout *[5]uint64)
|
||||
TEXT ·freeze(SB),7,$0-8
|
||||
MOVQ inout+0(FP), DI
|
||||
|
||||
MOVQ 0(DI),SI
|
||||
MOVQ 8(DI),DX
|
||||
MOVQ 16(DI),CX
|
||||
MOVQ 24(DI),R8
|
||||
MOVQ 32(DI),R9
|
||||
MOVQ $REDMASK51,AX
|
||||
MOVQ AX,R10
|
||||
SUBQ $18,R10
|
||||
MOVQ $3,R11
|
||||
REDUCELOOP:
|
||||
MOVQ SI,R12
|
||||
SHRQ $51,R12
|
||||
ANDQ AX,SI
|
||||
ADDQ R12,DX
|
||||
MOVQ DX,R12
|
||||
SHRQ $51,R12
|
||||
ANDQ AX,DX
|
||||
ADDQ R12,CX
|
||||
MOVQ CX,R12
|
||||
SHRQ $51,R12
|
||||
ANDQ AX,CX
|
||||
ADDQ R12,R8
|
||||
MOVQ R8,R12
|
||||
SHRQ $51,R12
|
||||
ANDQ AX,R8
|
||||
ADDQ R12,R9
|
||||
MOVQ R9,R12
|
||||
SHRQ $51,R12
|
||||
ANDQ AX,R9
|
||||
IMUL3Q $19,R12,R12
|
||||
ADDQ R12,SI
|
||||
SUBQ $1,R11
|
||||
JA REDUCELOOP
|
||||
MOVQ $1,R12
|
||||
CMPQ R10,SI
|
||||
CMOVQLT R11,R12
|
||||
CMPQ AX,DX
|
||||
CMOVQNE R11,R12
|
||||
CMPQ AX,CX
|
||||
CMOVQNE R11,R12
|
||||
CMPQ AX,R8
|
||||
CMOVQNE R11,R12
|
||||
CMPQ AX,R9
|
||||
CMOVQNE R11,R12
|
||||
NEGQ R12
|
||||
ANDQ R12,AX
|
||||
ANDQ R12,R10
|
||||
SUBQ R10,SI
|
||||
SUBQ AX,DX
|
||||
SUBQ AX,CX
|
||||
SUBQ AX,R8
|
||||
SUBQ AX,R9
|
||||
MOVQ SI,0(DI)
|
||||
MOVQ DX,8(DI)
|
||||
MOVQ CX,16(DI)
|
||||
MOVQ R8,24(DI)
|
||||
MOVQ R9,32(DI)
|
||||
RET
|
|
@ -1,169 +0,0 @@
|
|||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// This code was translated into a form compatible with 6a from the public
|
||||
// domain sources in SUPERCOP: https://bench.cr.yp.to/supercop.html
|
||||
|
||||
// +build amd64,!gccgo,!appengine
|
||||
|
||||
#include "const_amd64.h"
|
||||
|
||||
// func mul(dest, a, b *[5]uint64)
|
||||
TEXT ·mul(SB),0,$16-24
|
||||
MOVQ dest+0(FP), DI
|
||||
MOVQ a+8(FP), SI
|
||||
MOVQ b+16(FP), DX
|
||||
|
||||
MOVQ DX,CX
|
||||
MOVQ 24(SI),DX
|
||||
IMUL3Q $19,DX,AX
|
||||
MOVQ AX,0(SP)
|
||||
MULQ 16(CX)
|
||||
MOVQ AX,R8
|
||||
MOVQ DX,R9
|
||||
MOVQ 32(SI),DX
|
||||
IMUL3Q $19,DX,AX
|
||||
MOVQ AX,8(SP)
|
||||
MULQ 8(CX)
|
||||
ADDQ AX,R8
|
||||
ADCQ DX,R9
|
||||
MOVQ 0(SI),AX
|
||||
MULQ 0(CX)
|
||||
ADDQ AX,R8
|
||||
ADCQ DX,R9
|
||||
MOVQ 0(SI),AX
|
||||
MULQ 8(CX)
|
||||
MOVQ AX,R10
|
||||
MOVQ DX,R11
|
||||
MOVQ 0(SI),AX
|
||||
MULQ 16(CX)
|
||||
MOVQ AX,R12
|
||||
MOVQ DX,R13
|
||||
MOVQ 0(SI),AX
|
||||
MULQ 24(CX)
|
||||
MOVQ AX,R14
|
||||
MOVQ DX,R15
|
||||
MOVQ 0(SI),AX
|
||||
MULQ 32(CX)
|
||||
MOVQ AX,BX
|
||||
MOVQ DX,BP
|
||||
MOVQ 8(SI),AX
|
||||
MULQ 0(CX)
|
||||
ADDQ AX,R10
|
||||
ADCQ DX,R11
|
||||
MOVQ 8(SI),AX
|
||||
MULQ 8(CX)
|
||||
ADDQ AX,R12
|
||||
ADCQ DX,R13
|
||||
MOVQ 8(SI),AX
|
||||
MULQ 16(CX)
|
||||
ADDQ AX,R14
|
||||
ADCQ DX,R15
|
||||
MOVQ 8(SI),AX
|
||||
MULQ 24(CX)
|
||||
ADDQ AX,BX
|
||||
ADCQ DX,BP
|
||||
MOVQ 8(SI),DX
|
||||
IMUL3Q $19,DX,AX
|
||||
MULQ 32(CX)
|
||||
ADDQ AX,R8
|
||||
ADCQ DX,R9
|
||||
MOVQ 16(SI),AX
|
||||
MULQ 0(CX)
|
||||
ADDQ AX,R12
|
||||
ADCQ DX,R13
|
||||
MOVQ 16(SI),AX
|
||||
MULQ 8(CX)
|
||||
ADDQ AX,R14
|
||||
ADCQ DX,R15
|
||||
MOVQ 16(SI),AX
|
||||
MULQ 16(CX)
|
||||
ADDQ AX,BX
|
||||
ADCQ DX,BP
|
||||
MOVQ 16(SI),DX
|
||||
IMUL3Q $19,DX,AX
|
||||
MULQ 24(CX)
|
||||
ADDQ AX,R8
|
||||
ADCQ DX,R9
|
||||
MOVQ 16(SI),DX
|
||||
IMUL3Q $19,DX,AX
|
||||
MULQ 32(CX)
|
||||
ADDQ AX,R10
|
||||
ADCQ DX,R11
|
||||
MOVQ 24(SI),AX
|
||||
MULQ 0(CX)
|
||||
ADDQ AX,R14
|
||||
ADCQ DX,R15
|
||||
MOVQ 24(SI),AX
|
||||
MULQ 8(CX)
|
||||
ADDQ AX,BX
|
||||
ADCQ DX,BP
|
||||
MOVQ 0(SP),AX
|
||||
MULQ 24(CX)
|
||||
ADDQ AX,R10
|
||||
ADCQ DX,R11
|
||||
MOVQ 0(SP),AX
|
||||
MULQ 32(CX)
|
||||
ADDQ AX,R12
|
||||
ADCQ DX,R13
|
||||
MOVQ 32(SI),AX
|
||||
MULQ 0(CX)
|
||||
ADDQ AX,BX
|
||||
ADCQ DX,BP
|
||||
MOVQ 8(SP),AX
|
||||
MULQ 16(CX)
|
||||
ADDQ AX,R10
|
||||
ADCQ DX,R11
|
||||
MOVQ 8(SP),AX
|
||||
MULQ 24(CX)
|
||||
ADDQ AX,R12
|
||||
ADCQ DX,R13
|
||||
MOVQ 8(SP),AX
|
||||
MULQ 32(CX)
|
||||
ADDQ AX,R14
|
||||
ADCQ DX,R15
|
||||
MOVQ $REDMASK51,SI
|
||||
SHLQ $13,R8,R9
|
||||
ANDQ SI,R8
|
||||
SHLQ $13,R10,R11
|
||||
ANDQ SI,R10
|
||||
ADDQ R9,R10
|
||||
SHLQ $13,R12,R13
|
||||
ANDQ SI,R12
|
||||
ADDQ R11,R12
|
||||
SHLQ $13,R14,R15
|
||||
ANDQ SI,R14
|
||||
ADDQ R13,R14
|
||||
SHLQ $13,BX,BP
|
||||
ANDQ SI,BX
|
||||
ADDQ R15,BX
|
||||
IMUL3Q $19,BP,DX
|
||||
ADDQ DX,R8
|
||||
MOVQ R8,DX
|
||||
SHRQ $51,DX
|
||||
ADDQ R10,DX
|
||||
MOVQ DX,CX
|
||||
SHRQ $51,DX
|
||||
ANDQ SI,R8
|
||||
ADDQ R12,DX
|
||||
MOVQ DX,R9
|
||||
SHRQ $51,DX
|
||||
ANDQ SI,CX
|
||||
ADDQ R14,DX
|
||||
MOVQ DX,AX
|
||||
SHRQ $51,DX
|
||||
ANDQ SI,R9
|
||||
ADDQ BX,DX
|
||||
MOVQ DX,R10
|
||||
SHRQ $51,DX
|
||||
ANDQ SI,AX
|
||||
IMUL3Q $19,DX,DX
|
||||
ADDQ DX,R8
|
||||
ANDQ SI,R10
|
||||
MOVQ R8,0(DI)
|
||||
MOVQ CX,8(DI)
|
||||
MOVQ R9,16(DI)
|
||||
MOVQ AX,24(DI)
|
||||
MOVQ R10,32(DI)
|
||||
RET
|
|
@ -1,132 +0,0 @@
|
|||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// This code was translated into a form compatible with 6a from the public
|
||||
// domain sources in SUPERCOP: https://bench.cr.yp.to/supercop.html
|
||||
|
||||
// +build amd64,!gccgo,!appengine
|
||||
|
||||
#include "const_amd64.h"
|
||||
|
||||
// func square(out, in *[5]uint64)
|
||||
TEXT ·square(SB),7,$0-16
|
||||
MOVQ out+0(FP), DI
|
||||
MOVQ in+8(FP), SI
|
||||
|
||||
MOVQ 0(SI),AX
|
||||
MULQ 0(SI)
|
||||
MOVQ AX,CX
|
||||
MOVQ DX,R8
|
||||
MOVQ 0(SI),AX
|
||||
SHLQ $1,AX
|
||||
MULQ 8(SI)
|
||||
MOVQ AX,R9
|
||||
MOVQ DX,R10
|
||||
MOVQ 0(SI),AX
|
||||
SHLQ $1,AX
|
||||
MULQ 16(SI)
|
||||
MOVQ AX,R11
|
||||
MOVQ DX,R12
|
||||
MOVQ 0(SI),AX
|
||||
SHLQ $1,AX
|
||||
MULQ 24(SI)
|
||||
MOVQ AX,R13
|
||||
MOVQ DX,R14
|
||||
MOVQ 0(SI),AX
|
||||
SHLQ $1,AX
|
||||
MULQ 32(SI)
|
||||
MOVQ AX,R15
|
||||
MOVQ DX,BX
|
||||
MOVQ 8(SI),AX
|
||||
MULQ 8(SI)
|
||||
ADDQ AX,R11
|
||||
ADCQ DX,R12
|
||||
MOVQ 8(SI),AX
|
||||
SHLQ $1,AX
|
||||
MULQ 16(SI)
|
||||
ADDQ AX,R13
|
||||
ADCQ DX,R14
|
||||
MOVQ 8(SI),AX
|
||||
SHLQ $1,AX
|
||||
MULQ 24(SI)
|
||||
ADDQ AX,R15
|
||||
ADCQ DX,BX
|
||||
MOVQ 8(SI),DX
|
||||
IMUL3Q $38,DX,AX
|
||||
MULQ 32(SI)
|
||||
ADDQ AX,CX
|
||||
ADCQ DX,R8
|
||||
MOVQ 16(SI),AX
|
||||
MULQ 16(SI)
|
||||
ADDQ AX,R15
|
||||
ADCQ DX,BX
|
||||
MOVQ 16(SI),DX
|
||||
IMUL3Q $38,DX,AX
|
||||
MULQ 24(SI)
|
||||
ADDQ AX,CX
|
||||
ADCQ DX,R8
|
||||
MOVQ 16(SI),DX
|
||||
IMUL3Q $38,DX,AX
|
||||
MULQ 32(SI)
|
||||
ADDQ AX,R9
|
||||
ADCQ DX,R10
|
||||
MOVQ 24(SI),DX
|
||||
IMUL3Q $19,DX,AX
|
||||
MULQ 24(SI)
|
||||
ADDQ AX,R9
|
||||
ADCQ DX,R10
|
||||
MOVQ 24(SI),DX
|
||||
IMUL3Q $38,DX,AX
|
||||
MULQ 32(SI)
|
||||
ADDQ AX,R11
|
||||
ADCQ DX,R12
|
||||
MOVQ 32(SI),DX
|
||||
IMUL3Q $19,DX,AX
|
||||
MULQ 32(SI)
|
||||
ADDQ AX,R13
|
||||
ADCQ DX,R14
|
||||
MOVQ $REDMASK51,SI
|
||||
SHLQ $13,CX,R8
|
||||
ANDQ SI,CX
|
||||
SHLQ $13,R9,R10
|
||||
ANDQ SI,R9
|
||||
ADDQ R8,R9
|
||||
SHLQ $13,R11,R12
|
||||
ANDQ SI,R11
|
||||
ADDQ R10,R11
|
||||
SHLQ $13,R13,R14
|
||||
ANDQ SI,R13
|
||||
ADDQ R12,R13
|
||||
SHLQ $13,R15,BX
|
||||
ANDQ SI,R15
|
||||
ADDQ R14,R15
|
||||
IMUL3Q $19,BX,DX
|
||||
ADDQ DX,CX
|
||||
MOVQ CX,DX
|
||||
SHRQ $51,DX
|
||||
ADDQ R9,DX
|
||||
ANDQ SI,CX
|
||||
MOVQ DX,R8
|
||||
SHRQ $51,DX
|
||||
ADDQ R11,DX
|
||||
ANDQ SI,R8
|
||||
MOVQ DX,R9
|
||||
SHRQ $51,DX
|
||||
ADDQ R13,DX
|
||||
ANDQ SI,R9
|
||||
MOVQ DX,AX
|
||||
SHRQ $51,DX
|
||||
ADDQ R15,DX
|
||||
ANDQ SI,AX
|
||||
MOVQ DX,R10
|
||||
SHRQ $51,DX
|
||||
IMUL3Q $19,DX,DX
|
||||
ADDQ DX,CX
|
||||
ANDQ SI,R10
|
||||
MOVQ CX,0(DI)
|
||||
MOVQ R8,8(DI)
|
||||
MOVQ R9,16(DI)
|
||||
MOVQ AX,24(DI)
|
||||
MOVQ R10,32(DI)
|
||||
RET
|
|
@ -1,31 +0,0 @@
|
|||
// Copyright 2018 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build go1.11
|
||||
// +build !gccgo
|
||||
|
||||
package chacha20
|
||||
|
||||
const (
|
||||
haveAsm = true
|
||||
bufSize = 256
|
||||
)
|
||||
|
||||
//go:noescape
|
||||
func xorKeyStreamVX(dst, src []byte, key *[8]uint32, nonce *[3]uint32, counter *uint32)
|
||||
|
||||
func (c *Cipher) xorKeyStreamAsm(dst, src []byte) {
|
||||
|
||||
if len(src) >= bufSize {
|
||||
xorKeyStreamVX(dst, src, &c.key, &c.nonce, &c.counter)
|
||||
}
|
||||
|
||||
if len(src)%bufSize != 0 {
|
||||
i := len(src) - len(src)%bufSize
|
||||
c.buf = [bufSize]byte{}
|
||||
copy(c.buf[:], src[i:])
|
||||
xorKeyStreamVX(c.buf[:], c.buf[:], &c.key, &c.nonce, &c.counter)
|
||||
c.len = bufSize - copy(dst[i:], c.buf[:len(src)%bufSize])
|
||||
}
|
||||
}
|
|
@ -1,264 +0,0 @@
|
|||
// Copyright 2016 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package ChaCha20 implements the core ChaCha20 function as specified
|
||||
// in https://tools.ietf.org/html/rfc7539#section-2.3.
|
||||
package chacha20
|
||||
|
||||
import (
|
||||
"crypto/cipher"
|
||||
"encoding/binary"
|
||||
|
||||
"golang.org/x/crypto/internal/subtle"
|
||||
)
|
||||
|
||||
// assert that *Cipher implements cipher.Stream
|
||||
var _ cipher.Stream = (*Cipher)(nil)
|
||||
|
||||
// Cipher is a stateful instance of ChaCha20 using a particular key
|
||||
// and nonce. A *Cipher implements the cipher.Stream interface.
|
||||
type Cipher struct {
|
||||
key [8]uint32
|
||||
counter uint32 // incremented after each block
|
||||
nonce [3]uint32
|
||||
buf [bufSize]byte // buffer for unused keystream bytes
|
||||
len int // number of unused keystream bytes at end of buf
|
||||
}
|
||||
|
||||
// New creates a new ChaCha20 stream cipher with the given key and nonce.
|
||||
// The initial counter value is set to 0.
|
||||
func New(key [8]uint32, nonce [3]uint32) *Cipher {
|
||||
return &Cipher{key: key, nonce: nonce}
|
||||
}
|
||||
|
||||
// ChaCha20 constants spelling "expand 32-byte k"
|
||||
const (
|
||||
j0 uint32 = 0x61707865
|
||||
j1 uint32 = 0x3320646e
|
||||
j2 uint32 = 0x79622d32
|
||||
j3 uint32 = 0x6b206574
|
||||
)
|
||||
|
||||
func quarterRound(a, b, c, d uint32) (uint32, uint32, uint32, uint32) {
|
||||
a += b
|
||||
d ^= a
|
||||
d = (d << 16) | (d >> 16)
|
||||
c += d
|
||||
b ^= c
|
||||
b = (b << 12) | (b >> 20)
|
||||
a += b
|
||||
d ^= a
|
||||
d = (d << 8) | (d >> 24)
|
||||
c += d
|
||||
b ^= c
|
||||
b = (b << 7) | (b >> 25)
|
||||
return a, b, c, d
|
||||
}
|
||||
|
||||
// XORKeyStream XORs each byte in the given slice with a byte from the
|
||||
// cipher's key stream. Dst and src must overlap entirely or not at all.
|
||||
//
|
||||
// If len(dst) < len(src), XORKeyStream will panic. It is acceptable
|
||||
// to pass a dst bigger than src, and in that case, XORKeyStream will
|
||||
// only update dst[:len(src)] and will not touch the rest of dst.
|
||||
//
|
||||
// Multiple calls to XORKeyStream behave as if the concatenation of
|
||||
// the src buffers was passed in a single run. That is, Cipher
|
||||
// maintains state and does not reset at each XORKeyStream call.
|
||||
func (s *Cipher) XORKeyStream(dst, src []byte) {
|
||||
if len(dst) < len(src) {
|
||||
panic("chacha20: output smaller than input")
|
||||
}
|
||||
if subtle.InexactOverlap(dst[:len(src)], src) {
|
||||
panic("chacha20: invalid buffer overlap")
|
||||
}
|
||||
|
||||
// xor src with buffered keystream first
|
||||
if s.len != 0 {
|
||||
buf := s.buf[len(s.buf)-s.len:]
|
||||
if len(src) < len(buf) {
|
||||
buf = buf[:len(src)]
|
||||
}
|
||||
td, ts := dst[:len(buf)], src[:len(buf)] // BCE hint
|
||||
for i, b := range buf {
|
||||
td[i] = ts[i] ^ b
|
||||
}
|
||||
s.len -= len(buf)
|
||||
if s.len != 0 {
|
||||
return
|
||||
}
|
||||
s.buf = [len(s.buf)]byte{} // zero the empty buffer
|
||||
src = src[len(buf):]
|
||||
dst = dst[len(buf):]
|
||||
}
|
||||
|
||||
if len(src) == 0 {
|
||||
return
|
||||
}
|
||||
if haveAsm {
|
||||
if uint64(len(src))+uint64(s.counter)*64 > (1<<38)-64 {
|
||||
panic("chacha20: counter overflow")
|
||||
}
|
||||
s.xorKeyStreamAsm(dst, src)
|
||||
return
|
||||
}
|
||||
|
||||
// set up a 64-byte buffer to pad out the final block if needed
|
||||
// (hoisted out of the main loop to avoid spills)
|
||||
rem := len(src) % 64 // length of final block
|
||||
fin := len(src) - rem // index of final block
|
||||
if rem > 0 {
|
||||
copy(s.buf[len(s.buf)-64:], src[fin:])
|
||||
}
|
||||
|
||||
// pre-calculate most of the first round
|
||||
s1, s5, s9, s13 := quarterRound(j1, s.key[1], s.key[5], s.nonce[0])
|
||||
s2, s6, s10, s14 := quarterRound(j2, s.key[2], s.key[6], s.nonce[1])
|
||||
s3, s7, s11, s15 := quarterRound(j3, s.key[3], s.key[7], s.nonce[2])
|
||||
|
||||
n := len(src)
|
||||
src, dst = src[:n:n], dst[:n:n] // BCE hint
|
||||
for i := 0; i < n; i += 64 {
|
||||
// calculate the remainder of the first round
|
||||
s0, s4, s8, s12 := quarterRound(j0, s.key[0], s.key[4], s.counter)
|
||||
|
||||
// execute the second round
|
||||
x0, x5, x10, x15 := quarterRound(s0, s5, s10, s15)
|
||||
x1, x6, x11, x12 := quarterRound(s1, s6, s11, s12)
|
||||
x2, x7, x8, x13 := quarterRound(s2, s7, s8, s13)
|
||||
x3, x4, x9, x14 := quarterRound(s3, s4, s9, s14)
|
||||
|
||||
// execute the remaining 18 rounds
|
||||
for i := 0; i < 9; i++ {
|
||||
x0, x4, x8, x12 = quarterRound(x0, x4, x8, x12)
|
||||
x1, x5, x9, x13 = quarterRound(x1, x5, x9, x13)
|
||||
x2, x6, x10, x14 = quarterRound(x2, x6, x10, x14)
|
||||
x3, x7, x11, x15 = quarterRound(x3, x7, x11, x15)
|
||||
|
||||
x0, x5, x10, x15 = quarterRound(x0, x5, x10, x15)
|
||||
x1, x6, x11, x12 = quarterRound(x1, x6, x11, x12)
|
||||
x2, x7, x8, x13 = quarterRound(x2, x7, x8, x13)
|
||||
x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14)
|
||||
}
|
||||
|
||||
x0 += j0
|
||||
x1 += j1
|
||||
x2 += j2
|
||||
x3 += j3
|
||||
|
||||
x4 += s.key[0]
|
||||
x5 += s.key[1]
|
||||
x6 += s.key[2]
|
||||
x7 += s.key[3]
|
||||
x8 += s.key[4]
|
||||
x9 += s.key[5]
|
||||
x10 += s.key[6]
|
||||
x11 += s.key[7]
|
||||
|
||||
x12 += s.counter
|
||||
x13 += s.nonce[0]
|
||||
x14 += s.nonce[1]
|
||||
x15 += s.nonce[2]
|
||||
|
||||
// increment the counter
|
||||
s.counter += 1
|
||||
if s.counter == 0 {
|
||||
panic("chacha20: counter overflow")
|
||||
}
|
||||
|
||||
// pad to 64 bytes if needed
|
||||
in, out := src[i:], dst[i:]
|
||||
if i == fin {
|
||||
// src[fin:] has already been copied into s.buf before
|
||||
// the main loop
|
||||
in, out = s.buf[len(s.buf)-64:], s.buf[len(s.buf)-64:]
|
||||
}
|
||||
in, out = in[:64], out[:64] // BCE hint
|
||||
|
||||
// XOR the key stream with the source and write out the result
|
||||
xor(out[0:], in[0:], x0)
|
||||
xor(out[4:], in[4:], x1)
|
||||
xor(out[8:], in[8:], x2)
|
||||
xor(out[12:], in[12:], x3)
|
||||
xor(out[16:], in[16:], x4)
|
||||
xor(out[20:], in[20:], x5)
|
||||
xor(out[24:], in[24:], x6)
|
||||
xor(out[28:], in[28:], x7)
|
||||
xor(out[32:], in[32:], x8)
|
||||
xor(out[36:], in[36:], x9)
|
||||
xor(out[40:], in[40:], x10)
|
||||
xor(out[44:], in[44:], x11)
|
||||
xor(out[48:], in[48:], x12)
|
||||
xor(out[52:], in[52:], x13)
|
||||
xor(out[56:], in[56:], x14)
|
||||
xor(out[60:], in[60:], x15)
|
||||
}
|
||||
// copy any trailing bytes out of the buffer and into dst
|
||||
if rem != 0 {
|
||||
s.len = 64 - rem
|
||||
copy(dst[fin:], s.buf[len(s.buf)-64:])
|
||||
}
|
||||
}
|
||||
|
||||
// Advance discards bytes in the key stream until the next 64 byte block
|
||||
// boundary is reached and updates the counter accordingly. If the key
|
||||
// stream is already at a block boundary no bytes will be discarded and
|
||||
// the counter will be unchanged.
|
||||
func (s *Cipher) Advance() {
|
||||
s.len -= s.len % 64
|
||||
if s.len == 0 {
|
||||
s.buf = [len(s.buf)]byte{}
|
||||
}
|
||||
}
|
||||
|
||||
// XORKeyStream crypts bytes from in to out using the given key and counters.
|
||||
// In and out must overlap entirely or not at all. Counter contains the raw
|
||||
// ChaCha20 counter bytes (i.e. block counter followed by nonce).
|
||||
func XORKeyStream(out, in []byte, counter *[16]byte, key *[32]byte) {
|
||||
s := Cipher{
|
||||
key: [8]uint32{
|
||||
binary.LittleEndian.Uint32(key[0:4]),
|
||||
binary.LittleEndian.Uint32(key[4:8]),
|
||||
binary.LittleEndian.Uint32(key[8:12]),
|
||||
binary.LittleEndian.Uint32(key[12:16]),
|
||||
binary.LittleEndian.Uint32(key[16:20]),
|
||||
binary.LittleEndian.Uint32(key[20:24]),
|
||||
binary.LittleEndian.Uint32(key[24:28]),
|
||||
binary.LittleEndian.Uint32(key[28:32]),
|
||||
},
|
||||
nonce: [3]uint32{
|
||||
binary.LittleEndian.Uint32(counter[4:8]),
|
||||
binary.LittleEndian.Uint32(counter[8:12]),
|
||||
binary.LittleEndian.Uint32(counter[12:16]),
|
||||
},
|
||||
counter: binary.LittleEndian.Uint32(counter[0:4]),
|
||||
}
|
||||
s.XORKeyStream(out, in)
|
||||
}
|
||||
|
||||
// HChaCha20 uses the ChaCha20 core to generate a derived key from a key and a
|
||||
// nonce. It should only be used as part of the XChaCha20 construction.
|
||||
func HChaCha20(key *[8]uint32, nonce *[4]uint32) [8]uint32 {
|
||||
x0, x1, x2, x3 := j0, j1, j2, j3
|
||||
x4, x5, x6, x7 := key[0], key[1], key[2], key[3]
|
||||
x8, x9, x10, x11 := key[4], key[5], key[6], key[7]
|
||||
x12, x13, x14, x15 := nonce[0], nonce[1], nonce[2], nonce[3]
|
||||
|
||||
for i := 0; i < 10; i++ {
|
||||
x0, x4, x8, x12 = quarterRound(x0, x4, x8, x12)
|
||||
x1, x5, x9, x13 = quarterRound(x1, x5, x9, x13)
|
||||
x2, x6, x10, x14 = quarterRound(x2, x6, x10, x14)
|
||||
x3, x7, x11, x15 = quarterRound(x3, x7, x11, x15)
|
||||
|
||||
x0, x5, x10, x15 = quarterRound(x0, x5, x10, x15)
|
||||
x1, x6, x11, x12 = quarterRound(x1, x6, x11, x12)
|
||||
x2, x7, x8, x13 = quarterRound(x2, x7, x8, x13)
|
||||
x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14)
|
||||
}
|
||||
|
||||
var out [8]uint32
|
||||
out[0], out[1], out[2], out[3] = x0, x1, x2, x3
|
||||
out[4], out[5], out[6], out[7] = x12, x13, x14, x15
|
||||
return out
|
||||
}
|
|
@ -1,53 +0,0 @@
|
|||
// Copyright 2019 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build ppc64le,!gccgo,!appengine
|
||||
|
||||
package chacha20
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
)
|
||||
|
||||
var haveAsm = true
|
||||
|
||||
const bufSize = 256
|
||||
|
||||
//go:noescape
|
||||
func chaCha20_ctr32_vsx(out, inp *byte, len int, key *[8]uint32, counter *uint32)
|
||||
|
||||
func (c *Cipher) xorKeyStreamAsm(dst, src []byte) {
|
||||
// This implementation can handle buffers that aren't multiples of
|
||||
// 256.
|
||||
if len(src) >= bufSize {
|
||||
chaCha20_ctr32_vsx(&dst[0], &src[0], len(src), &c.key, &c.counter)
|
||||
} else if len(src)%bufSize != 0 {
|
||||
chaCha20_ctr32_vsx(&c.buf[0], &c.buf[0], bufSize, &c.key, &c.counter)
|
||||
start := len(src) - len(src)%bufSize
|
||||
ts, td, tb := src[start:], dst[start:], c.buf[:]
|
||||
// Unroll loop to XOR 32 bytes per iteration.
|
||||
for i := 0; i < len(ts)-32; i += 32 {
|
||||
td, tb = td[:len(ts)], tb[:len(ts)] // bounds check elimination
|
||||
s0 := binary.LittleEndian.Uint64(ts[0:8])
|
||||
s1 := binary.LittleEndian.Uint64(ts[8:16])
|
||||
s2 := binary.LittleEndian.Uint64(ts[16:24])
|
||||
s3 := binary.LittleEndian.Uint64(ts[24:32])
|
||||
b0 := binary.LittleEndian.Uint64(tb[0:8])
|
||||
b1 := binary.LittleEndian.Uint64(tb[8:16])
|
||||
b2 := binary.LittleEndian.Uint64(tb[16:24])
|
||||
b3 := binary.LittleEndian.Uint64(tb[24:32])
|
||||
binary.LittleEndian.PutUint64(td[0:8], s0^b0)
|
||||
binary.LittleEndian.PutUint64(td[8:16], s1^b1)
|
||||
binary.LittleEndian.PutUint64(td[16:24], s2^b2)
|
||||
binary.LittleEndian.PutUint64(td[24:32], s3^b3)
|
||||
ts, td, tb = ts[32:], td[32:], tb[32:]
|
||||
}
|
||||
td, tb = td[:len(ts)], tb[:len(ts)] // bounds check elimination
|
||||
for i, v := range ts {
|
||||
td[i] = tb[i] ^ v
|
||||
}
|
||||
c.len = bufSize - (len(src) % bufSize)
|
||||
}
|
||||
|
||||
}
|
|
@ -1,29 +0,0 @@
|
|||
// Copyright 2018 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build s390x,!gccgo,!appengine
|
||||
|
||||
package chacha20
|
||||
|
||||
import (
|
||||
"golang.org/x/sys/cpu"
|
||||
)
|
||||
|
||||
var haveAsm = cpu.S390X.HasVX
|
||||
|
||||
const bufSize = 256
|
||||
|
||||
// xorKeyStreamVX is an assembly implementation of XORKeyStream. It must only
|
||||
// be called when the vector facility is available.
|
||||
// Implementation in asm_s390x.s.
|
||||
//go:noescape
|
||||
func xorKeyStreamVX(dst, src []byte, key *[8]uint32, nonce *[3]uint32, counter *uint32, buf *[256]byte, len *int)
|
||||
|
||||
func (c *Cipher) xorKeyStreamAsm(dst, src []byte) {
|
||||
xorKeyStreamVX(dst, src, &c.key, &c.nonce, &c.counter, &c.buf, &c.len)
|
||||
}
|
||||
|
||||
// EXRL targets, DO NOT CALL!
|
||||
func mvcSrcToBuf()
|
||||
func mvcBufToDst()
|
|
@ -31,19 +31,30 @@ Thus large amounts of data should be chunked so that each message is small.
|
|||
chunk size.
|
||||
|
||||
This package is interoperable with NaCl: https://nacl.cr.yp.to/box.html.
|
||||
Anonymous sealing/opening is an extension of NaCl defined by and interoperable
|
||||
with libsodium:
|
||||
https://libsodium.gitbook.io/doc/public-key_cryptography/sealed_boxes.
|
||||
*/
|
||||
package box // import "golang.org/x/crypto/nacl/box"
|
||||
|
||||
import (
|
||||
cryptorand "crypto/rand"
|
||||
"io"
|
||||
|
||||
"golang.org/x/crypto/blake2b"
|
||||
"golang.org/x/crypto/curve25519"
|
||||
"golang.org/x/crypto/nacl/secretbox"
|
||||
"golang.org/x/crypto/salsa20/salsa"
|
||||
)
|
||||
|
||||
// Overhead is the number of bytes of overhead when boxing a message.
|
||||
const Overhead = secretbox.Overhead
|
||||
const (
|
||||
// Overhead is the number of bytes of overhead when boxing a message.
|
||||
Overhead = secretbox.Overhead
|
||||
|
||||
// AnonymousOverhead is the number of bytes of overhead when using anonymous
|
||||
// sealed boxes.
|
||||
AnonymousOverhead = Overhead + 32
|
||||
)
|
||||
|
||||
// GenerateKey generates a new public/private key pair suitable for use with
|
||||
// Seal and Open.
|
||||
|
@ -101,3 +112,71 @@ func Open(out, box []byte, nonce *[24]byte, peersPublicKey, privateKey *[32]byte
|
|||
func OpenAfterPrecomputation(out, box []byte, nonce *[24]byte, sharedKey *[32]byte) ([]byte, bool) {
|
||||
return secretbox.Open(out, box, nonce, sharedKey)
|
||||
}
|
||||
|
||||
// SealAnonymous appends an encrypted and authenticated copy of message to out,
|
||||
// which will be AnonymousOverhead bytes longer than the original and must not
|
||||
// overlap it. This differs from Seal in that the sender is not required to
|
||||
// provide a private key.
|
||||
func SealAnonymous(out, message []byte, recipient *[32]byte, rand io.Reader) ([]byte, error) {
|
||||
if rand == nil {
|
||||
rand = cryptorand.Reader
|
||||
}
|
||||
ephemeralPub, ephemeralPriv, err := GenerateKey(rand)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var nonce [24]byte
|
||||
if err := sealNonce(ephemeralPub, recipient, &nonce); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if total := len(out) + AnonymousOverhead + len(message); cap(out) < total {
|
||||
original := out
|
||||
out = make([]byte, 0, total)
|
||||
out = append(out, original...)
|
||||
}
|
||||
out = append(out, ephemeralPub[:]...)
|
||||
|
||||
return Seal(out, message, &nonce, recipient, ephemeralPriv), nil
|
||||
}
|
||||
|
||||
// OpenAnonymous authenticates and decrypts a box produced by SealAnonymous and
|
||||
// appends the message to out, which must not overlap box. The output will be
|
||||
// AnonymousOverhead bytes smaller than box.
|
||||
func OpenAnonymous(out, box []byte, publicKey, privateKey *[32]byte) (message []byte, ok bool) {
|
||||
if len(box) < AnonymousOverhead {
|
||||
return nil, false
|
||||
}
|
||||
|
||||
var ephemeralPub [32]byte
|
||||
copy(ephemeralPub[:], box[:32])
|
||||
|
||||
var nonce [24]byte
|
||||
if err := sealNonce(&ephemeralPub, publicKey, &nonce); err != nil {
|
||||
return nil, false
|
||||
}
|
||||
|
||||
return Open(out, box[32:], &nonce, &ephemeralPub, privateKey)
|
||||
}
|
||||
|
||||
// sealNonce generates a 24 byte nonce that is a blake2b digest of the
|
||||
// ephemeral public key and the receiver's public key.
|
||||
func sealNonce(ephemeralPub, peersPublicKey *[32]byte, nonce *[24]byte) error {
|
||||
h, err := blake2b.New(24, nil)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if _, err = h.Write(ephemeralPub[:]); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if _, err = h.Write(peersPublicKey[:]); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
h.Sum(nonce[:0])
|
||||
|
||||
return nil
|
||||
}
|
||||
|
|
|
@ -0,0 +1,39 @@
|
|||
// Copyright 2019 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build !go1.13
|
||||
|
||||
package poly1305
|
||||
|
||||
// Generic fallbacks for the math/bits intrinsics, copied from
|
||||
// src/math/bits/bits.go. They were added in Go 1.12, but Add64 and Sum64 had
|
||||
// variable time fallbacks until Go 1.13.
|
||||
|
||||
func bitsAdd64(x, y, carry uint64) (sum, carryOut uint64) {
|
||||
sum = x + y + carry
|
||||
carryOut = ((x & y) | ((x | y) &^ sum)) >> 63
|
||||
return
|
||||
}
|
||||
|
||||
func bitsSub64(x, y, borrow uint64) (diff, borrowOut uint64) {
|
||||
diff = x - y - borrow
|
||||
borrowOut = ((^x & y) | (^(x ^ y) & diff)) >> 63
|
||||
return
|
||||
}
|
||||
|
||||
func bitsMul64(x, y uint64) (hi, lo uint64) {
|
||||
const mask32 = 1<<32 - 1
|
||||
x0 := x & mask32
|
||||
x1 := x >> 32
|
||||
y0 := y & mask32
|
||||
y1 := y >> 32
|
||||
w0 := x0 * y0
|
||||
t := x1*y0 + w0>>32
|
||||
w1 := t & mask32
|
||||
w2 := t >> 32
|
||||
w1 += x0 * y1
|
||||
hi = x1*y1 + w2 + w1>>32
|
||||
lo = x * y
|
||||
return
|
||||
}
|
|
@ -0,0 +1,21 @@
|
|||
// Copyright 2019 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build go1.13
|
||||
|
||||
package poly1305
|
||||
|
||||
import "math/bits"
|
||||
|
||||
func bitsAdd64(x, y, carry uint64) (sum, carryOut uint64) {
|
||||
return bits.Add64(x, y, carry)
|
||||
}
|
||||
|
||||
func bitsSub64(x, y, borrow uint64) (diff, borrowOut uint64) {
|
||||
return bits.Sub64(x, y, borrow)
|
||||
}
|
||||
|
||||
func bitsMul64(x, y uint64) (hi, lo uint64) {
|
||||
return bits.Mul64(x, y)
|
||||
}
|
|
@ -2,10 +2,8 @@
|
|||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build !amd64,!ppc64le gccgo appengine
|
||||
// +build !amd64,!ppc64le,!s390x gccgo purego
|
||||
|
||||
package poly1305
|
||||
|
||||
type mac struct{ macGeneric }
|
||||
|
||||
func newMAC(key *[32]byte) mac { return mac{newMACGeneric(key)} }
|
||||
|
|
|
@ -22,8 +22,16 @@ import "crypto/subtle"
|
|||
// TagSize is the size, in bytes, of a poly1305 authenticator.
|
||||
const TagSize = 16
|
||||
|
||||
// Verify returns true if mac is a valid authenticator for m with the given
|
||||
// key.
|
||||
// Sum generates an authenticator for msg using a one-time key and puts the
|
||||
// 16-byte result into out. Authenticating two different messages with the same
|
||||
// key allows an attacker to forge messages at will.
|
||||
func Sum(out *[16]byte, m []byte, key *[32]byte) {
|
||||
h := New(key)
|
||||
h.Write(m)
|
||||
h.Sum(out[:0])
|
||||
}
|
||||
|
||||
// Verify returns true if mac is a valid authenticator for m with the given key.
|
||||
func Verify(mac *[16]byte, m []byte, key *[32]byte) bool {
|
||||
var tmp [16]byte
|
||||
Sum(&tmp, m, key)
|
||||
|
@ -40,10 +48,9 @@ func Verify(mac *[16]byte, m []byte, key *[32]byte) bool {
|
|||
// two different messages with the same key allows an attacker
|
||||
// to forge messages at will.
|
||||
func New(key *[32]byte) *MAC {
|
||||
return &MAC{
|
||||
mac: newMAC(key),
|
||||
finalized: false,
|
||||
}
|
||||
m := &MAC{}
|
||||
initialize(key, &m.macState)
|
||||
return m
|
||||
}
|
||||
|
||||
// MAC is an io.Writer computing an authentication tag
|
||||
|
@ -52,7 +59,7 @@ func New(key *[32]byte) *MAC {
|
|||
// MAC cannot be used like common hash.Hash implementations,
|
||||
// because using a poly1305 key twice breaks its security.
|
||||
// Therefore writing data to a running MAC after calling
|
||||
// Sum causes it to panic.
|
||||
// Sum or Verify causes it to panic.
|
||||
type MAC struct {
|
||||
mac // platform-dependent implementation
|
||||
|
||||
|
@ -65,10 +72,10 @@ func (h *MAC) Size() int { return TagSize }
|
|||
// Write adds more data to the running message authentication code.
|
||||
// It never returns an error.
|
||||
//
|
||||
// It must not be called after the first call of Sum.
|
||||
// It must not be called after the first call of Sum or Verify.
|
||||
func (h *MAC) Write(p []byte) (n int, err error) {
|
||||
if h.finalized {
|
||||
panic("poly1305: write to MAC after Sum")
|
||||
panic("poly1305: write to MAC after Sum or Verify")
|
||||
}
|
||||
return h.mac.Write(p)
|
||||
}
|
||||
|
@ -81,3 +88,12 @@ func (h *MAC) Sum(b []byte) []byte {
|
|||
h.finalized = true
|
||||
return append(b, mac[:]...)
|
||||
}
|
||||
|
||||
// Verify returns whether the authenticator of all data written to
|
||||
// the message authentication code matches the expected value.
|
||||
func (h *MAC) Verify(expected []byte) bool {
|
||||
var mac [TagSize]byte
|
||||
h.mac.Sum(&mac)
|
||||
h.finalized = true
|
||||
return subtle.ConstantTimeCompare(expected, mac[:]) == 1
|
||||
}
|
||||
|
|
|
@ -2,67 +2,46 @@
|
|||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build amd64,!gccgo,!appengine
|
||||
// +build !gccgo,!purego
|
||||
|
||||
package poly1305
|
||||
|
||||
//go:noescape
|
||||
func initialize(state *[7]uint64, key *[32]byte)
|
||||
func update(state *macState, msg []byte)
|
||||
|
||||
//go:noescape
|
||||
func update(state *[7]uint64, msg []byte)
|
||||
// mac is a wrapper for macGeneric that redirects calls that would have gone to
|
||||
// updateGeneric to update.
|
||||
//
|
||||
// Its Write and Sum methods are otherwise identical to the macGeneric ones, but
|
||||
// using function pointers would carry a major performance cost.
|
||||
type mac struct{ macGeneric }
|
||||
|
||||
//go:noescape
|
||||
func finalize(tag *[TagSize]byte, state *[7]uint64)
|
||||
|
||||
// Sum generates an authenticator for m using a one-time key and puts the
|
||||
// 16-byte result into out. Authenticating two different messages with the same
|
||||
// key allows an attacker to forge messages at will.
|
||||
func Sum(out *[16]byte, m []byte, key *[32]byte) {
|
||||
h := newMAC(key)
|
||||
h.Write(m)
|
||||
h.Sum(out)
|
||||
}
|
||||
|
||||
func newMAC(key *[32]byte) (h mac) {
|
||||
initialize(&h.state, key)
|
||||
return
|
||||
}
|
||||
|
||||
type mac struct {
|
||||
state [7]uint64 // := uint64{ h0, h1, h2, r0, r1, pad0, pad1 }
|
||||
|
||||
buffer [TagSize]byte
|
||||
offset int
|
||||
}
|
||||
|
||||
func (h *mac) Write(p []byte) (n int, err error) {
|
||||
n = len(p)
|
||||
func (h *mac) Write(p []byte) (int, error) {
|
||||
nn := len(p)
|
||||
if h.offset > 0 {
|
||||
remaining := TagSize - h.offset
|
||||
if n < remaining {
|
||||
h.offset += copy(h.buffer[h.offset:], p)
|
||||
return n, nil
|
||||
n := copy(h.buffer[h.offset:], p)
|
||||
if h.offset+n < TagSize {
|
||||
h.offset += n
|
||||
return nn, nil
|
||||
}
|
||||
copy(h.buffer[h.offset:], p[:remaining])
|
||||
p = p[remaining:]
|
||||
p = p[n:]
|
||||
h.offset = 0
|
||||
update(&h.state, h.buffer[:])
|
||||
update(&h.macState, h.buffer[:])
|
||||
}
|
||||
if nn := len(p) - (len(p) % TagSize); nn > 0 {
|
||||
update(&h.state, p[:nn])
|
||||
p = p[nn:]
|
||||
if n := len(p) - (len(p) % TagSize); n > 0 {
|
||||
update(&h.macState, p[:n])
|
||||
p = p[n:]
|
||||
}
|
||||
if len(p) > 0 {
|
||||
h.offset += copy(h.buffer[h.offset:], p)
|
||||
}
|
||||
return n, nil
|
||||
return nn, nil
|
||||
}
|
||||
|
||||
func (h *mac) Sum(out *[16]byte) {
|
||||
state := h.state
|
||||
state := h.macState
|
||||
if h.offset > 0 {
|
||||
update(&state, h.buffer[:h.offset])
|
||||
}
|
||||
finalize(out, &state)
|
||||
finalize(out, &state.h, &state.s)
|
||||
}
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build amd64,!gccgo,!appengine
|
||||
// +build !gccgo,!purego
|
||||
|
||||
#include "textflag.h"
|
||||
|
||||
|
@ -54,10 +54,6 @@
|
|||
ADCQ t3, h1; \
|
||||
ADCQ $0, h2
|
||||
|
||||
DATA ·poly1305Mask<>+0x00(SB)/8, $0x0FFFFFFC0FFFFFFF
|
||||
DATA ·poly1305Mask<>+0x08(SB)/8, $0x0FFFFFFC0FFFFFFC
|
||||
GLOBL ·poly1305Mask<>(SB), RODATA, $16
|
||||
|
||||
// func update(state *[7]uint64, msg []byte)
|
||||
TEXT ·update(SB), $0-32
|
||||
MOVQ state+0(FP), DI
|
||||
|
@ -110,39 +106,3 @@ done:
|
|||
MOVQ R9, 8(DI)
|
||||
MOVQ R10, 16(DI)
|
||||
RET
|
||||
|
||||
// func initialize(state *[7]uint64, key *[32]byte)
|
||||
TEXT ·initialize(SB), $0-16
|
||||
MOVQ state+0(FP), DI
|
||||
MOVQ key+8(FP), SI
|
||||
|
||||
// state[0...7] is initialized with zero
|
||||
MOVOU 0(SI), X0
|
||||
MOVOU 16(SI), X1
|
||||
MOVOU ·poly1305Mask<>(SB), X2
|
||||
PAND X2, X0
|
||||
MOVOU X0, 24(DI)
|
||||
MOVOU X1, 40(DI)
|
||||
RET
|
||||
|
||||
// func finalize(tag *[TagSize]byte, state *[7]uint64)
|
||||
TEXT ·finalize(SB), $0-16
|
||||
MOVQ tag+0(FP), DI
|
||||
MOVQ state+8(FP), SI
|
||||
|
||||
MOVQ 0(SI), AX
|
||||
MOVQ 8(SI), BX
|
||||
MOVQ 16(SI), CX
|
||||
MOVQ AX, R8
|
||||
MOVQ BX, R9
|
||||
SUBQ $0xFFFFFFFFFFFFFFFB, AX
|
||||
SBBQ $0xFFFFFFFFFFFFFFFF, BX
|
||||
SBBQ $3, CX
|
||||
CMOVQCS R8, AX
|
||||
CMOVQCS R9, BX
|
||||
ADDQ 40(SI), AX
|
||||
ADCQ 48(SI), BX
|
||||
|
||||
MOVQ AX, 0(DI)
|
||||
MOVQ BX, 8(DI)
|
||||
RET
|
||||
|
|
|
@ -1,22 +0,0 @@
|
|||
// Copyright 2015 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build arm,!gccgo,!appengine,!nacl
|
||||
|
||||
package poly1305
|
||||
|
||||
// This function is implemented in sum_arm.s
|
||||
//go:noescape
|
||||
func poly1305_auth_armv6(out *[16]byte, m *byte, mlen uint32, key *[32]byte)
|
||||
|
||||
// Sum generates an authenticator for m using a one-time key and puts the
|
||||
// 16-byte result into out. Authenticating two different messages with the same
|
||||
// key allows an attacker to forge messages at will.
|
||||
func Sum(out *[16]byte, m []byte, key *[32]byte) {
|
||||
var mPtr *byte
|
||||
if len(m) > 0 {
|
||||
mPtr = &m[0]
|
||||
}
|
||||
poly1305_auth_armv6(out, mPtr, uint32(len(m)), key)
|
||||
}
|
|
@ -1,427 +0,0 @@
|
|||
// Copyright 2015 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build arm,!gccgo,!appengine,!nacl
|
||||
|
||||
#include "textflag.h"
|
||||
|
||||
// This code was translated into a form compatible with 5a from the public
|
||||
// domain source by Andrew Moon: github.com/floodyberry/poly1305-opt/blob/master/app/extensions/poly1305.
|
||||
|
||||
DATA ·poly1305_init_constants_armv6<>+0x00(SB)/4, $0x3ffffff
|
||||
DATA ·poly1305_init_constants_armv6<>+0x04(SB)/4, $0x3ffff03
|
||||
DATA ·poly1305_init_constants_armv6<>+0x08(SB)/4, $0x3ffc0ff
|
||||
DATA ·poly1305_init_constants_armv6<>+0x0c(SB)/4, $0x3f03fff
|
||||
DATA ·poly1305_init_constants_armv6<>+0x10(SB)/4, $0x00fffff
|
||||
GLOBL ·poly1305_init_constants_armv6<>(SB), 8, $20
|
||||
|
||||
// Warning: the linker may use R11 to synthesize certain instructions. Please
|
||||
// take care and verify that no synthetic instructions use it.
|
||||
|
||||
TEXT poly1305_init_ext_armv6<>(SB), NOSPLIT, $0
|
||||
// Needs 16 bytes of stack and 64 bytes of space pointed to by R0. (It
|
||||
// might look like it's only 60 bytes of space but the final four bytes
|
||||
// will be written by another function.) We need to skip over four
|
||||
// bytes of stack because that's saving the value of 'g'.
|
||||
ADD $4, R13, R8
|
||||
MOVM.IB [R4-R7], (R8)
|
||||
MOVM.IA.W (R1), [R2-R5]
|
||||
MOVW $·poly1305_init_constants_armv6<>(SB), R7
|
||||
MOVW R2, R8
|
||||
MOVW R2>>26, R9
|
||||
MOVW R3>>20, g
|
||||
MOVW R4>>14, R11
|
||||
MOVW R5>>8, R12
|
||||
ORR R3<<6, R9, R9
|
||||
ORR R4<<12, g, g
|
||||
ORR R5<<18, R11, R11
|
||||
MOVM.IA (R7), [R2-R6]
|
||||
AND R8, R2, R2
|
||||
AND R9, R3, R3
|
||||
AND g, R4, R4
|
||||
AND R11, R5, R5
|
||||
AND R12, R6, R6
|
||||
MOVM.IA.W [R2-R6], (R0)
|
||||
EOR R2, R2, R2
|
||||
EOR R3, R3, R3
|
||||
EOR R4, R4, R4
|
||||
EOR R5, R5, R5
|
||||
EOR R6, R6, R6
|
||||
MOVM.IA.W [R2-R6], (R0)
|
||||
MOVM.IA.W (R1), [R2-R5]
|
||||
MOVM.IA [R2-R6], (R0)
|
||||
ADD $20, R13, R0
|
||||
MOVM.DA (R0), [R4-R7]
|
||||
RET
|
||||
|
||||
#define MOVW_UNALIGNED(Rsrc, Rdst, Rtmp, offset) \
|
||||
MOVBU (offset+0)(Rsrc), Rtmp; \
|
||||
MOVBU Rtmp, (offset+0)(Rdst); \
|
||||
MOVBU (offset+1)(Rsrc), Rtmp; \
|
||||
MOVBU Rtmp, (offset+1)(Rdst); \
|
||||
MOVBU (offset+2)(Rsrc), Rtmp; \
|
||||
MOVBU Rtmp, (offset+2)(Rdst); \
|
||||
MOVBU (offset+3)(Rsrc), Rtmp; \
|
||||
MOVBU Rtmp, (offset+3)(Rdst)
|
||||
|
||||
TEXT poly1305_blocks_armv6<>(SB), NOSPLIT, $0
|
||||
// Needs 24 bytes of stack for saved registers and then 88 bytes of
|
||||
// scratch space after that. We assume that 24 bytes at (R13) have
|
||||
// already been used: four bytes for the link register saved in the
|
||||
// prelude of poly1305_auth_armv6, four bytes for saving the value of g
|
||||
// in that function and 16 bytes of scratch space used around
|
||||
// poly1305_finish_ext_armv6_skip1.
|
||||
ADD $24, R13, R12
|
||||
MOVM.IB [R4-R8, R14], (R12)
|
||||
MOVW R0, 88(R13)
|
||||
MOVW R1, 92(R13)
|
||||
MOVW R2, 96(R13)
|
||||
MOVW R1, R14
|
||||
MOVW R2, R12
|
||||
MOVW 56(R0), R8
|
||||
WORD $0xe1180008 // TST R8, R8 not working see issue 5921
|
||||
EOR R6, R6, R6
|
||||
MOVW.EQ $(1<<24), R6
|
||||
MOVW R6, 84(R13)
|
||||
ADD $116, R13, g
|
||||
MOVM.IA (R0), [R0-R9]
|
||||
MOVM.IA [R0-R4], (g)
|
||||
CMP $16, R12
|
||||
BLO poly1305_blocks_armv6_done
|
||||
|
||||
poly1305_blocks_armv6_mainloop:
|
||||
WORD $0xe31e0003 // TST R14, #3 not working see issue 5921
|
||||
BEQ poly1305_blocks_armv6_mainloop_aligned
|
||||
ADD $100, R13, g
|
||||
MOVW_UNALIGNED(R14, g, R0, 0)
|
||||
MOVW_UNALIGNED(R14, g, R0, 4)
|
||||
MOVW_UNALIGNED(R14, g, R0, 8)
|
||||
MOVW_UNALIGNED(R14, g, R0, 12)
|
||||
MOVM.IA (g), [R0-R3]
|
||||
ADD $16, R14
|
||||
B poly1305_blocks_armv6_mainloop_loaded
|
||||
|
||||
poly1305_blocks_armv6_mainloop_aligned:
|
||||
MOVM.IA.W (R14), [R0-R3]
|
||||
|
||||
poly1305_blocks_armv6_mainloop_loaded:
|
||||
MOVW R0>>26, g
|
||||
MOVW R1>>20, R11
|
||||
MOVW R2>>14, R12
|
||||
MOVW R14, 92(R13)
|
||||
MOVW R3>>8, R4
|
||||
ORR R1<<6, g, g
|
||||
ORR R2<<12, R11, R11
|
||||
ORR R3<<18, R12, R12
|
||||
BIC $0xfc000000, R0, R0
|
||||
BIC $0xfc000000, g, g
|
||||
MOVW 84(R13), R3
|
||||
BIC $0xfc000000, R11, R11
|
||||
BIC $0xfc000000, R12, R12
|
||||
ADD R0, R5, R5
|
||||
ADD g, R6, R6
|
||||
ORR R3, R4, R4
|
||||
ADD R11, R7, R7
|
||||
ADD $116, R13, R14
|
||||
ADD R12, R8, R8
|
||||
ADD R4, R9, R9
|
||||
MOVM.IA (R14), [R0-R4]
|
||||
MULLU R4, R5, (R11, g)
|
||||
MULLU R3, R5, (R14, R12)
|
||||
MULALU R3, R6, (R11, g)
|
||||
MULALU R2, R6, (R14, R12)
|
||||
MULALU R2, R7, (R11, g)
|
||||
MULALU R1, R7, (R14, R12)
|
||||
ADD R4<<2, R4, R4
|
||||
ADD R3<<2, R3, R3
|
||||
MULALU R1, R8, (R11, g)
|
||||
MULALU R0, R8, (R14, R12)
|
||||
MULALU R0, R9, (R11, g)
|
||||
MULALU R4, R9, (R14, R12)
|
||||
MOVW g, 76(R13)
|
||||
MOVW R11, 80(R13)
|
||||
MOVW R12, 68(R13)
|
||||
MOVW R14, 72(R13)
|
||||
MULLU R2, R5, (R11, g)
|
||||
MULLU R1, R5, (R14, R12)
|
||||
MULALU R1, R6, (R11, g)
|
||||
MULALU R0, R6, (R14, R12)
|
||||
MULALU R0, R7, (R11, g)
|
||||
MULALU R4, R7, (R14, R12)
|
||||
ADD R2<<2, R2, R2
|
||||
ADD R1<<2, R1, R1
|
||||
MULALU R4, R8, (R11, g)
|
||||
MULALU R3, R8, (R14, R12)
|
||||
MULALU R3, R9, (R11, g)
|
||||
MULALU R2, R9, (R14, R12)
|
||||
MOVW g, 60(R13)
|
||||
MOVW R11, 64(R13)
|
||||
MOVW R12, 52(R13)
|
||||
MOVW R14, 56(R13)
|
||||
MULLU R0, R5, (R11, g)
|
||||
MULALU R4, R6, (R11, g)
|
||||
MULALU R3, R7, (R11, g)
|
||||
MULALU R2, R8, (R11, g)
|
||||
MULALU R1, R9, (R11, g)
|
||||
ADD $52, R13, R0
|
||||
MOVM.IA (R0), [R0-R7]
|
||||
MOVW g>>26, R12
|
||||
MOVW R4>>26, R14
|
||||
ORR R11<<6, R12, R12
|
||||
ORR R5<<6, R14, R14
|
||||
BIC $0xfc000000, g, g
|
||||
BIC $0xfc000000, R4, R4
|
||||
ADD.S R12, R0, R0
|
||||
ADC $0, R1, R1
|
||||
ADD.S R14, R6, R6
|
||||
ADC $0, R7, R7
|
||||
MOVW R0>>26, R12
|
||||
MOVW R6>>26, R14
|
||||
ORR R1<<6, R12, R12
|
||||
ORR R7<<6, R14, R14
|
||||
BIC $0xfc000000, R0, R0
|
||||
BIC $0xfc000000, R6, R6
|
||||
ADD R14<<2, R14, R14
|
||||
ADD.S R12, R2, R2
|
||||
ADC $0, R3, R3
|
||||
ADD R14, g, g
|
||||
MOVW R2>>26, R12
|
||||
MOVW g>>26, R14
|
||||
ORR R3<<6, R12, R12
|
||||
BIC $0xfc000000, g, R5
|
||||
BIC $0xfc000000, R2, R7
|
||||
ADD R12, R4, R4
|
||||
ADD R14, R0, R0
|
||||
MOVW R4>>26, R12
|
||||
BIC $0xfc000000, R4, R8
|
||||
ADD R12, R6, R9
|
||||
MOVW 96(R13), R12
|
||||
MOVW 92(R13), R14
|
||||
MOVW R0, R6
|
||||
CMP $32, R12
|
||||
SUB $16, R12, R12
|
||||
MOVW R12, 96(R13)
|
||||
BHS poly1305_blocks_armv6_mainloop
|
||||
|
||||
poly1305_blocks_armv6_done:
|
||||
MOVW 88(R13), R12
|
||||
MOVW R5, 20(R12)
|
||||
MOVW R6, 24(R12)
|
||||
MOVW R7, 28(R12)
|
||||
MOVW R8, 32(R12)
|
||||
MOVW R9, 36(R12)
|
||||
ADD $48, R13, R0
|
||||
MOVM.DA (R0), [R4-R8, R14]
|
||||
RET
|
||||
|
||||
#define MOVHUP_UNALIGNED(Rsrc, Rdst, Rtmp) \
|
||||
MOVBU.P 1(Rsrc), Rtmp; \
|
||||
MOVBU.P Rtmp, 1(Rdst); \
|
||||
MOVBU.P 1(Rsrc), Rtmp; \
|
||||
MOVBU.P Rtmp, 1(Rdst)
|
||||
|
||||
#define MOVWP_UNALIGNED(Rsrc, Rdst, Rtmp) \
|
||||
MOVHUP_UNALIGNED(Rsrc, Rdst, Rtmp); \
|
||||
MOVHUP_UNALIGNED(Rsrc, Rdst, Rtmp)
|
||||
|
||||
// func poly1305_auth_armv6(out *[16]byte, m *byte, mlen uint32, key *[32]key)
|
||||
TEXT ·poly1305_auth_armv6(SB), $196-16
|
||||
// The value 196, just above, is the sum of 64 (the size of the context
|
||||
// structure) and 132 (the amount of stack needed).
|
||||
//
|
||||
// At this point, the stack pointer (R13) has been moved down. It
|
||||
// points to the saved link register and there's 196 bytes of free
|
||||
// space above it.
|
||||
//
|
||||
// The stack for this function looks like:
|
||||
//
|
||||
// +---------------------
|
||||
// |
|
||||
// | 64 bytes of context structure
|
||||
// |
|
||||
// +---------------------
|
||||
// |
|
||||
// | 112 bytes for poly1305_blocks_armv6
|
||||
// |
|
||||
// +---------------------
|
||||
// | 16 bytes of final block, constructed at
|
||||
// | poly1305_finish_ext_armv6_skip8
|
||||
// +---------------------
|
||||
// | four bytes of saved 'g'
|
||||
// +---------------------
|
||||
// | lr, saved by prelude <- R13 points here
|
||||
// +---------------------
|
||||
MOVW g, 4(R13)
|
||||
|
||||
MOVW out+0(FP), R4
|
||||
MOVW m+4(FP), R5
|
||||
MOVW mlen+8(FP), R6
|
||||
MOVW key+12(FP), R7
|
||||
|
||||
ADD $136, R13, R0 // 136 = 4 + 4 + 16 + 112
|
||||
MOVW R7, R1
|
||||
|
||||
// poly1305_init_ext_armv6 will write to the stack from R13+4, but
|
||||
// that's ok because none of the other values have been written yet.
|
||||
BL poly1305_init_ext_armv6<>(SB)
|
||||
BIC.S $15, R6, R2
|
||||
BEQ poly1305_auth_armv6_noblocks
|
||||
ADD $136, R13, R0
|
||||
MOVW R5, R1
|
||||
ADD R2, R5, R5
|
||||
SUB R2, R6, R6
|
||||
BL poly1305_blocks_armv6<>(SB)
|
||||
|
||||
poly1305_auth_armv6_noblocks:
|
||||
ADD $136, R13, R0
|
||||
MOVW R5, R1
|
||||
MOVW R6, R2
|
||||
MOVW R4, R3
|
||||
|
||||
MOVW R0, R5
|
||||
MOVW R1, R6
|
||||
MOVW R2, R7
|
||||
MOVW R3, R8
|
||||
AND.S R2, R2, R2
|
||||
BEQ poly1305_finish_ext_armv6_noremaining
|
||||
EOR R0, R0
|
||||
ADD $8, R13, R9 // 8 = offset to 16 byte scratch space
|
||||
MOVW R0, (R9)
|
||||
MOVW R0, 4(R9)
|
||||
MOVW R0, 8(R9)
|
||||
MOVW R0, 12(R9)
|
||||
WORD $0xe3110003 // TST R1, #3 not working see issue 5921
|
||||
BEQ poly1305_finish_ext_armv6_aligned
|
||||
WORD $0xe3120008 // TST R2, #8 not working see issue 5921
|
||||
BEQ poly1305_finish_ext_armv6_skip8
|
||||
MOVWP_UNALIGNED(R1, R9, g)
|
||||
MOVWP_UNALIGNED(R1, R9, g)
|
||||
|
||||
poly1305_finish_ext_armv6_skip8:
|
||||
WORD $0xe3120004 // TST $4, R2 not working see issue 5921
|
||||
BEQ poly1305_finish_ext_armv6_skip4
|
||||
MOVWP_UNALIGNED(R1, R9, g)
|
||||
|
||||
poly1305_finish_ext_armv6_skip4:
|
||||
WORD $0xe3120002 // TST $2, R2 not working see issue 5921
|
||||
BEQ poly1305_finish_ext_armv6_skip2
|
||||
MOVHUP_UNALIGNED(R1, R9, g)
|
||||
B poly1305_finish_ext_armv6_skip2
|
||||
|
||||
poly1305_finish_ext_armv6_aligned:
|
||||
WORD $0xe3120008 // TST R2, #8 not working see issue 5921
|
||||
BEQ poly1305_finish_ext_armv6_skip8_aligned
|
||||
MOVM.IA.W (R1), [g-R11]
|
||||
MOVM.IA.W [g-R11], (R9)
|
||||
|
||||
poly1305_finish_ext_armv6_skip8_aligned:
|
||||
WORD $0xe3120004 // TST $4, R2 not working see issue 5921
|
||||
BEQ poly1305_finish_ext_armv6_skip4_aligned
|
||||
MOVW.P 4(R1), g
|
||||
MOVW.P g, 4(R9)
|
||||
|
||||
poly1305_finish_ext_armv6_skip4_aligned:
|
||||
WORD $0xe3120002 // TST $2, R2 not working see issue 5921
|
||||
BEQ poly1305_finish_ext_armv6_skip2
|
||||
MOVHU.P 2(R1), g
|
||||
MOVH.P g, 2(R9)
|
||||
|
||||
poly1305_finish_ext_armv6_skip2:
|
||||
WORD $0xe3120001 // TST $1, R2 not working see issue 5921
|
||||
BEQ poly1305_finish_ext_armv6_skip1
|
||||
MOVBU.P 1(R1), g
|
||||
MOVBU.P g, 1(R9)
|
||||
|
||||
poly1305_finish_ext_armv6_skip1:
|
||||
MOVW $1, R11
|
||||
MOVBU R11, 0(R9)
|
||||
MOVW R11, 56(R5)
|
||||
MOVW R5, R0
|
||||
ADD $8, R13, R1
|
||||
MOVW $16, R2
|
||||
BL poly1305_blocks_armv6<>(SB)
|
||||
|
||||
poly1305_finish_ext_armv6_noremaining:
|
||||
MOVW 20(R5), R0
|
||||
MOVW 24(R5), R1
|
||||
MOVW 28(R5), R2
|
||||
MOVW 32(R5), R3
|
||||
MOVW 36(R5), R4
|
||||
MOVW R4>>26, R12
|
||||
BIC $0xfc000000, R4, R4
|
||||
ADD R12<<2, R12, R12
|
||||
ADD R12, R0, R0
|
||||
MOVW R0>>26, R12
|
||||
BIC $0xfc000000, R0, R0
|
||||
ADD R12, R1, R1
|
||||
MOVW R1>>26, R12
|
||||
BIC $0xfc000000, R1, R1
|
||||
ADD R12, R2, R2
|
||||
MOVW R2>>26, R12
|
||||
BIC $0xfc000000, R2, R2
|
||||
ADD R12, R3, R3
|
||||
MOVW R3>>26, R12
|
||||
BIC $0xfc000000, R3, R3
|
||||
ADD R12, R4, R4
|
||||
ADD $5, R0, R6
|
||||
MOVW R6>>26, R12
|
||||
BIC $0xfc000000, R6, R6
|
||||
ADD R12, R1, R7
|
||||
MOVW R7>>26, R12
|
||||
BIC $0xfc000000, R7, R7
|
||||
ADD R12, R2, g
|
||||
MOVW g>>26, R12
|
||||
BIC $0xfc000000, g, g
|
||||
ADD R12, R3, R11
|
||||
MOVW $-(1<<26), R12
|
||||
ADD R11>>26, R12, R12
|
||||
BIC $0xfc000000, R11, R11
|
||||
ADD R12, R4, R9
|
||||
MOVW R9>>31, R12
|
||||
SUB $1, R12
|
||||
AND R12, R6, R6
|
||||
AND R12, R7, R7
|
||||
AND R12, g, g
|
||||
AND R12, R11, R11
|
||||
AND R12, R9, R9
|
||||
MVN R12, R12
|
||||
AND R12, R0, R0
|
||||
AND R12, R1, R1
|
||||
AND R12, R2, R2
|
||||
AND R12, R3, R3
|
||||
AND R12, R4, R4
|
||||
ORR R6, R0, R0
|
||||
ORR R7, R1, R1
|
||||
ORR g, R2, R2
|
||||
ORR R11, R3, R3
|
||||
ORR R9, R4, R4
|
||||
ORR R1<<26, R0, R0
|
||||
MOVW R1>>6, R1
|
||||
ORR R2<<20, R1, R1
|
||||
MOVW R2>>12, R2
|
||||
ORR R3<<14, R2, R2
|
||||
MOVW R3>>18, R3
|
||||
ORR R4<<8, R3, R3
|
||||
MOVW 40(R5), R6
|
||||
MOVW 44(R5), R7
|
||||
MOVW 48(R5), g
|
||||
MOVW 52(R5), R11
|
||||
ADD.S R6, R0, R0
|
||||
ADC.S R7, R1, R1
|
||||
ADC.S g, R2, R2
|
||||
ADC.S R11, R3, R3
|
||||
MOVM.IA [R0-R3], (R8)
|
||||
MOVW R5, R12
|
||||
EOR R0, R0, R0
|
||||
EOR R1, R1, R1
|
||||
EOR R2, R2, R2
|
||||
EOR R3, R3, R3
|
||||
EOR R4, R4, R4
|
||||
EOR R5, R5, R5
|
||||
EOR R6, R6, R6
|
||||
EOR R7, R7, R7
|
||||
MOVM.IA.W [R0-R7], (R12)
|
||||
MOVM.IA [R0-R7], (R12)
|
||||
MOVW 4(R13), g
|
||||
RET
|
|
@ -2,171 +2,309 @@
|
|||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// This file provides the generic implementation of Sum and MAC. Other files
|
||||
// might provide optimized assembly implementations of some of this code.
|
||||
|
||||
package poly1305
|
||||
|
||||
import "encoding/binary"
|
||||
|
||||
const (
|
||||
msgBlock = uint32(1 << 24)
|
||||
finalBlock = uint32(0)
|
||||
)
|
||||
// Poly1305 [RFC 7539] is a relatively simple algorithm: the authentication tag
|
||||
// for a 64 bytes message is approximately
|
||||
//
|
||||
// s + m[0:16] * r⁴ + m[16:32] * r³ + m[32:48] * r² + m[48:64] * r mod 2¹³⁰ - 5
|
||||
//
|
||||
// for some secret r and s. It can be computed sequentially like
|
||||
//
|
||||
// for len(msg) > 0:
|
||||
// h += read(msg, 16)
|
||||
// h *= r
|
||||
// h %= 2¹³⁰ - 5
|
||||
// return h + s
|
||||
//
|
||||
// All the complexity is about doing performant constant-time math on numbers
|
||||
// larger than any available numeric type.
|
||||
|
||||
// sumGeneric generates an authenticator for msg using a one-time key and
|
||||
// puts the 16-byte result into out. This is the generic implementation of
|
||||
// Sum and should be called if no assembly implementation is available.
|
||||
func sumGeneric(out *[TagSize]byte, msg []byte, key *[32]byte) {
|
||||
h := newMACGeneric(key)
|
||||
h.Write(msg)
|
||||
h.Sum(out)
|
||||
}
|
||||
|
||||
func newMACGeneric(key *[32]byte) (h macGeneric) {
|
||||
h.r[0] = binary.LittleEndian.Uint32(key[0:]) & 0x3ffffff
|
||||
h.r[1] = (binary.LittleEndian.Uint32(key[3:]) >> 2) & 0x3ffff03
|
||||
h.r[2] = (binary.LittleEndian.Uint32(key[6:]) >> 4) & 0x3ffc0ff
|
||||
h.r[3] = (binary.LittleEndian.Uint32(key[9:]) >> 6) & 0x3f03fff
|
||||
h.r[4] = (binary.LittleEndian.Uint32(key[12:]) >> 8) & 0x00fffff
|
||||
func newMACGeneric(key *[32]byte) macGeneric {
|
||||
m := macGeneric{}
|
||||
initialize(key, &m.macState)
|
||||
return m
|
||||
}
|
||||
|
||||
h.s[0] = binary.LittleEndian.Uint32(key[16:])
|
||||
h.s[1] = binary.LittleEndian.Uint32(key[20:])
|
||||
h.s[2] = binary.LittleEndian.Uint32(key[24:])
|
||||
h.s[3] = binary.LittleEndian.Uint32(key[28:])
|
||||
return
|
||||
// macState holds numbers in saturated 64-bit little-endian limbs. That is,
|
||||
// the value of [x0, x1, x2] is x[0] + x[1] * 2⁶⁴ + x[2] * 2¹²⁸.
|
||||
type macState struct {
|
||||
// h is the main accumulator. It is to be interpreted modulo 2¹³⁰ - 5, but
|
||||
// can grow larger during and after rounds. It must, however, remain below
|
||||
// 2 * (2¹³⁰ - 5).
|
||||
h [3]uint64
|
||||
// r and s are the private key components.
|
||||
r [2]uint64
|
||||
s [2]uint64
|
||||
}
|
||||
|
||||
type macGeneric struct {
|
||||
h, r [5]uint32
|
||||
s [4]uint32
|
||||
macState
|
||||
|
||||
buffer [TagSize]byte
|
||||
offset int
|
||||
}
|
||||
|
||||
func (h *macGeneric) Write(p []byte) (n int, err error) {
|
||||
n = len(p)
|
||||
// Write splits the incoming message into TagSize chunks, and passes them to
|
||||
// update. It buffers incomplete chunks.
|
||||
func (h *macGeneric) Write(p []byte) (int, error) {
|
||||
nn := len(p)
|
||||
if h.offset > 0 {
|
||||
remaining := TagSize - h.offset
|
||||
if n < remaining {
|
||||
h.offset += copy(h.buffer[h.offset:], p)
|
||||
return n, nil
|
||||
n := copy(h.buffer[h.offset:], p)
|
||||
if h.offset+n < TagSize {
|
||||
h.offset += n
|
||||
return nn, nil
|
||||
}
|
||||
copy(h.buffer[h.offset:], p[:remaining])
|
||||
p = p[remaining:]
|
||||
p = p[n:]
|
||||
h.offset = 0
|
||||
updateGeneric(h.buffer[:], msgBlock, &(h.h), &(h.r))
|
||||
updateGeneric(&h.macState, h.buffer[:])
|
||||
}
|
||||
if nn := len(p) - (len(p) % TagSize); nn > 0 {
|
||||
updateGeneric(p, msgBlock, &(h.h), &(h.r))
|
||||
p = p[nn:]
|
||||
if n := len(p) - (len(p) % TagSize); n > 0 {
|
||||
updateGeneric(&h.macState, p[:n])
|
||||
p = p[n:]
|
||||
}
|
||||
if len(p) > 0 {
|
||||
h.offset += copy(h.buffer[h.offset:], p)
|
||||
}
|
||||
return n, nil
|
||||
return nn, nil
|
||||
}
|
||||
|
||||
func (h *macGeneric) Sum(out *[16]byte) {
|
||||
H, R := h.h, h.r
|
||||
// Sum flushes the last incomplete chunk from the buffer, if any, and generates
|
||||
// the MAC output. It does not modify its state, in order to allow for multiple
|
||||
// calls to Sum, even if no Write is allowed after Sum.
|
||||
func (h *macGeneric) Sum(out *[TagSize]byte) {
|
||||
state := h.macState
|
||||
if h.offset > 0 {
|
||||
var buffer [TagSize]byte
|
||||
copy(buffer[:], h.buffer[:h.offset])
|
||||
buffer[h.offset] = 1 // invariant: h.offset < TagSize
|
||||
updateGeneric(buffer[:], finalBlock, &H, &R)
|
||||
updateGeneric(&state, h.buffer[:h.offset])
|
||||
}
|
||||
finalizeGeneric(out, &H, &(h.s))
|
||||
finalize(out, &state.h, &state.s)
|
||||
}
|
||||
|
||||
func updateGeneric(msg []byte, flag uint32, h, r *[5]uint32) {
|
||||
h0, h1, h2, h3, h4 := h[0], h[1], h[2], h[3], h[4]
|
||||
r0, r1, r2, r3, r4 := uint64(r[0]), uint64(r[1]), uint64(r[2]), uint64(r[3]), uint64(r[4])
|
||||
R1, R2, R3, R4 := r1*5, r2*5, r3*5, r4*5
|
||||
// [rMask0, rMask1] is the specified Poly1305 clamping mask in little-endian. It
|
||||
// clears some bits of the secret coefficient to make it possible to implement
|
||||
// multiplication more efficiently.
|
||||
const (
|
||||
rMask0 = 0x0FFFFFFC0FFFFFFF
|
||||
rMask1 = 0x0FFFFFFC0FFFFFFC
|
||||
)
|
||||
|
||||
for len(msg) >= TagSize {
|
||||
// h += msg
|
||||
h0 += binary.LittleEndian.Uint32(msg[0:]) & 0x3ffffff
|
||||
h1 += (binary.LittleEndian.Uint32(msg[3:]) >> 2) & 0x3ffffff
|
||||
h2 += (binary.LittleEndian.Uint32(msg[6:]) >> 4) & 0x3ffffff
|
||||
h3 += (binary.LittleEndian.Uint32(msg[9:]) >> 6) & 0x3ffffff
|
||||
h4 += (binary.LittleEndian.Uint32(msg[12:]) >> 8) | flag
|
||||
// initialize loads the 256-bit key into the two 128-bit secret values r and s.
|
||||
func initialize(key *[32]byte, m *macState) {
|
||||
m.r[0] = binary.LittleEndian.Uint64(key[0:8]) & rMask0
|
||||
m.r[1] = binary.LittleEndian.Uint64(key[8:16]) & rMask1
|
||||
m.s[0] = binary.LittleEndian.Uint64(key[16:24])
|
||||
m.s[1] = binary.LittleEndian.Uint64(key[24:32])
|
||||
}
|
||||
|
||||
// h *= r
|
||||
d0 := (uint64(h0) * r0) + (uint64(h1) * R4) + (uint64(h2) * R3) + (uint64(h3) * R2) + (uint64(h4) * R1)
|
||||
d1 := (d0 >> 26) + (uint64(h0) * r1) + (uint64(h1) * r0) + (uint64(h2) * R4) + (uint64(h3) * R3) + (uint64(h4) * R2)
|
||||
d2 := (d1 >> 26) + (uint64(h0) * r2) + (uint64(h1) * r1) + (uint64(h2) * r0) + (uint64(h3) * R4) + (uint64(h4) * R3)
|
||||
d3 := (d2 >> 26) + (uint64(h0) * r3) + (uint64(h1) * r2) + (uint64(h2) * r1) + (uint64(h3) * r0) + (uint64(h4) * R4)
|
||||
d4 := (d3 >> 26) + (uint64(h0) * r4) + (uint64(h1) * r3) + (uint64(h2) * r2) + (uint64(h3) * r1) + (uint64(h4) * r0)
|
||||
// uint128 holds a 128-bit number as two 64-bit limbs, for use with the
|
||||
// bits.Mul64 and bits.Add64 intrinsics.
|
||||
type uint128 struct {
|
||||
lo, hi uint64
|
||||
}
|
||||
|
||||
// h %= p
|
||||
h0 = uint32(d0) & 0x3ffffff
|
||||
h1 = uint32(d1) & 0x3ffffff
|
||||
h2 = uint32(d2) & 0x3ffffff
|
||||
h3 = uint32(d3) & 0x3ffffff
|
||||
h4 = uint32(d4) & 0x3ffffff
|
||||
func mul64(a, b uint64) uint128 {
|
||||
hi, lo := bitsMul64(a, b)
|
||||
return uint128{lo, hi}
|
||||
}
|
||||
|
||||
h0 += uint32(d4>>26) * 5
|
||||
h1 += h0 >> 26
|
||||
h0 = h0 & 0x3ffffff
|
||||
func add128(a, b uint128) uint128 {
|
||||
lo, c := bitsAdd64(a.lo, b.lo, 0)
|
||||
hi, c := bitsAdd64(a.hi, b.hi, c)
|
||||
if c != 0 {
|
||||
panic("poly1305: unexpected overflow")
|
||||
}
|
||||
return uint128{lo, hi}
|
||||
}
|
||||
|
||||
func shiftRightBy2(a uint128) uint128 {
|
||||
a.lo = a.lo>>2 | (a.hi&3)<<62
|
||||
a.hi = a.hi >> 2
|
||||
return a
|
||||
}
|
||||
|
||||
// updateGeneric absorbs msg into the state.h accumulator. For each chunk m of
|
||||
// 128 bits of message, it computes
|
||||
//
|
||||
// h₊ = (h + m) * r mod 2¹³⁰ - 5
|
||||
//
|
||||
// If the msg length is not a multiple of TagSize, it assumes the last
|
||||
// incomplete chunk is the final one.
|
||||
func updateGeneric(state *macState, msg []byte) {
|
||||
h0, h1, h2 := state.h[0], state.h[1], state.h[2]
|
||||
r0, r1 := state.r[0], state.r[1]
|
||||
|
||||
for len(msg) > 0 {
|
||||
var c uint64
|
||||
|
||||
// For the first step, h + m, we use a chain of bits.Add64 intrinsics.
|
||||
// The resulting value of h might exceed 2¹³⁰ - 5, but will be partially
|
||||
// reduced at the end of the multiplication below.
|
||||
//
|
||||
// The spec requires us to set a bit just above the message size, not to
|
||||
// hide leading zeroes. For full chunks, that's 1 << 128, so we can just
|
||||
// add 1 to the most significant (2¹²⁸) limb, h2.
|
||||
if len(msg) >= TagSize {
|
||||
h0, c = bitsAdd64(h0, binary.LittleEndian.Uint64(msg[0:8]), 0)
|
||||
h1, c = bitsAdd64(h1, binary.LittleEndian.Uint64(msg[8:16]), c)
|
||||
h2 += c + 1
|
||||
|
||||
msg = msg[TagSize:]
|
||||
} else {
|
||||
var buf [TagSize]byte
|
||||
copy(buf[:], msg)
|
||||
buf[len(msg)] = 1
|
||||
|
||||
h0, c = bitsAdd64(h0, binary.LittleEndian.Uint64(buf[0:8]), 0)
|
||||
h1, c = bitsAdd64(h1, binary.LittleEndian.Uint64(buf[8:16]), c)
|
||||
h2 += c
|
||||
|
||||
msg = nil
|
||||
}
|
||||
|
||||
h[0], h[1], h[2], h[3], h[4] = h0, h1, h2, h3, h4
|
||||
// Multiplication of big number limbs is similar to elementary school
|
||||
// columnar multiplication. Instead of digits, there are 64-bit limbs.
|
||||
//
|
||||
// We are multiplying a 3 limbs number, h, by a 2 limbs number, r.
|
||||
//
|
||||
// h2 h1 h0 x
|
||||
// r1 r0 =
|
||||
// ----------------
|
||||
// h2r0 h1r0 h0r0 <-- individual 128-bit products
|
||||
// + h2r1 h1r1 h0r1
|
||||
// ------------------------
|
||||
// m3 m2 m1 m0 <-- result in 128-bit overlapping limbs
|
||||
// ------------------------
|
||||
// m3.hi m2.hi m1.hi m0.hi <-- carry propagation
|
||||
// + m3.lo m2.lo m1.lo m0.lo
|
||||
// -------------------------------
|
||||
// t4 t3 t2 t1 t0 <-- final result in 64-bit limbs
|
||||
//
|
||||
// The main difference from pen-and-paper multiplication is that we do
|
||||
// carry propagation in a separate step, as if we wrote two digit sums
|
||||
// at first (the 128-bit limbs), and then carried the tens all at once.
|
||||
|
||||
h0r0 := mul64(h0, r0)
|
||||
h1r0 := mul64(h1, r0)
|
||||
h2r0 := mul64(h2, r0)
|
||||
h0r1 := mul64(h0, r1)
|
||||
h1r1 := mul64(h1, r1)
|
||||
h2r1 := mul64(h2, r1)
|
||||
|
||||
// Since h2 is known to be at most 7 (5 + 1 + 1), and r0 and r1 have their
|
||||
// top 4 bits cleared by rMask{0,1}, we know that their product is not going
|
||||
// to overflow 64 bits, so we can ignore the high part of the products.
|
||||
//
|
||||
// This also means that the product doesn't have a fifth limb (t4).
|
||||
if h2r0.hi != 0 {
|
||||
panic("poly1305: unexpected overflow")
|
||||
}
|
||||
if h2r1.hi != 0 {
|
||||
panic("poly1305: unexpected overflow")
|
||||
}
|
||||
|
||||
m0 := h0r0
|
||||
m1 := add128(h1r0, h0r1) // These two additions don't overflow thanks again
|
||||
m2 := add128(h2r0, h1r1) // to the 4 masked bits at the top of r0 and r1.
|
||||
m3 := h2r1
|
||||
|
||||
t0 := m0.lo
|
||||
t1, c := bitsAdd64(m1.lo, m0.hi, 0)
|
||||
t2, c := bitsAdd64(m2.lo, m1.hi, c)
|
||||
t3, _ := bitsAdd64(m3.lo, m2.hi, c)
|
||||
|
||||
// Now we have the result as 4 64-bit limbs, and we need to reduce it
|
||||
// modulo 2¹³⁰ - 5. The special shape of this Crandall prime lets us do
|
||||
// a cheap partial reduction according to the reduction identity
|
||||
//
|
||||
// c * 2¹³⁰ + n = c * 5 + n mod 2¹³⁰ - 5
|
||||
//
|
||||
// because 2¹³⁰ = 5 mod 2¹³⁰ - 5. Partial reduction since the result is
|
||||
// likely to be larger than 2¹³⁰ - 5, but still small enough to fit the
|
||||
// assumptions we make about h in the rest of the code.
|
||||
//
|
||||
// See also https://speakerdeck.com/gtank/engineering-prime-numbers?slide=23
|
||||
|
||||
// We split the final result at the 2¹³⁰ mark into h and cc, the carry.
|
||||
// Note that the carry bits are effectively shifted left by 2, in other
|
||||
// words, cc = c * 4 for the c in the reduction identity.
|
||||
h0, h1, h2 = t0, t1, t2&maskLow2Bits
|
||||
cc := uint128{t2 & maskNotLow2Bits, t3}
|
||||
|
||||
// To add c * 5 to h, we first add cc = c * 4, and then add (cc >> 2) = c.
|
||||
|
||||
h0, c = bitsAdd64(h0, cc.lo, 0)
|
||||
h1, c = bitsAdd64(h1, cc.hi, c)
|
||||
h2 += c
|
||||
|
||||
cc = shiftRightBy2(cc)
|
||||
|
||||
h0, c = bitsAdd64(h0, cc.lo, 0)
|
||||
h1, c = bitsAdd64(h1, cc.hi, c)
|
||||
h2 += c
|
||||
|
||||
// h2 is at most 3 + 1 + 1 = 5, making the whole of h at most
|
||||
//
|
||||
// 5 * 2¹²⁸ + (2¹²⁸ - 1) = 6 * 2¹²⁸ - 1
|
||||
}
|
||||
|
||||
state.h[0], state.h[1], state.h[2] = h0, h1, h2
|
||||
}
|
||||
|
||||
func finalizeGeneric(out *[TagSize]byte, h *[5]uint32, s *[4]uint32) {
|
||||
h0, h1, h2, h3, h4 := h[0], h[1], h[2], h[3], h[4]
|
||||
const (
|
||||
maskLow2Bits uint64 = 0x0000000000000003
|
||||
maskNotLow2Bits uint64 = ^maskLow2Bits
|
||||
)
|
||||
|
||||
// h %= p reduction
|
||||
h2 += h1 >> 26
|
||||
h1 &= 0x3ffffff
|
||||
h3 += h2 >> 26
|
||||
h2 &= 0x3ffffff
|
||||
h4 += h3 >> 26
|
||||
h3 &= 0x3ffffff
|
||||
h0 += 5 * (h4 >> 26)
|
||||
h4 &= 0x3ffffff
|
||||
h1 += h0 >> 26
|
||||
h0 &= 0x3ffffff
|
||||
// select64 returns x if v == 1 and y if v == 0, in constant time.
|
||||
func select64(v, x, y uint64) uint64 { return ^(v-1)&x | (v-1)&y }
|
||||
|
||||
// h - p
|
||||
t0 := h0 + 5
|
||||
t1 := h1 + (t0 >> 26)
|
||||
t2 := h2 + (t1 >> 26)
|
||||
t3 := h3 + (t2 >> 26)
|
||||
t4 := h4 + (t3 >> 26) - (1 << 26)
|
||||
t0 &= 0x3ffffff
|
||||
t1 &= 0x3ffffff
|
||||
t2 &= 0x3ffffff
|
||||
t3 &= 0x3ffffff
|
||||
// [p0, p1, p2] is 2¹³⁰ - 5 in little endian order.
|
||||
const (
|
||||
p0 = 0xFFFFFFFFFFFFFFFB
|
||||
p1 = 0xFFFFFFFFFFFFFFFF
|
||||
p2 = 0x0000000000000003
|
||||
)
|
||||
|
||||
// select h if h < p else h - p
|
||||
t_mask := (t4 >> 31) - 1
|
||||
h_mask := ^t_mask
|
||||
h0 = (h0 & h_mask) | (t0 & t_mask)
|
||||
h1 = (h1 & h_mask) | (t1 & t_mask)
|
||||
h2 = (h2 & h_mask) | (t2 & t_mask)
|
||||
h3 = (h3 & h_mask) | (t3 & t_mask)
|
||||
h4 = (h4 & h_mask) | (t4 & t_mask)
|
||||
// finalize completes the modular reduction of h and computes
|
||||
//
|
||||
// out = h + s mod 2¹²⁸
|
||||
//
|
||||
func finalize(out *[TagSize]byte, h *[3]uint64, s *[2]uint64) {
|
||||
h0, h1, h2 := h[0], h[1], h[2]
|
||||
|
||||
// h %= 2^128
|
||||
h0 |= h1 << 26
|
||||
h1 = ((h1 >> 6) | (h2 << 20))
|
||||
h2 = ((h2 >> 12) | (h3 << 14))
|
||||
h3 = ((h3 >> 18) | (h4 << 8))
|
||||
// After the partial reduction in updateGeneric, h might be more than
|
||||
// 2¹³⁰ - 5, but will be less than 2 * (2¹³⁰ - 5). To complete the reduction
|
||||
// in constant time, we compute t = h - (2¹³⁰ - 5), and select h as the
|
||||
// result if the subtraction underflows, and t otherwise.
|
||||
|
||||
// s: the s part of the key
|
||||
// tag = (h + s) % (2^128)
|
||||
t := uint64(h0) + uint64(s[0])
|
||||
h0 = uint32(t)
|
||||
t = uint64(h1) + uint64(s[1]) + (t >> 32)
|
||||
h1 = uint32(t)
|
||||
t = uint64(h2) + uint64(s[2]) + (t >> 32)
|
||||
h2 = uint32(t)
|
||||
t = uint64(h3) + uint64(s[3]) + (t >> 32)
|
||||
h3 = uint32(t)
|
||||
hMinusP0, b := bitsSub64(h0, p0, 0)
|
||||
hMinusP1, b := bitsSub64(h1, p1, b)
|
||||
_, b = bitsSub64(h2, p2, b)
|
||||
|
||||
binary.LittleEndian.PutUint32(out[0:], h0)
|
||||
binary.LittleEndian.PutUint32(out[4:], h1)
|
||||
binary.LittleEndian.PutUint32(out[8:], h2)
|
||||
binary.LittleEndian.PutUint32(out[12:], h3)
|
||||
// h = h if h < p else h - p
|
||||
h0 = select64(b, h0, hMinusP0)
|
||||
h1 = select64(b, h1, hMinusP1)
|
||||
|
||||
// Finally, we compute the last Poly1305 step
|
||||
//
|
||||
// tag = h + s mod 2¹²⁸
|
||||
//
|
||||
// by just doing a wide addition with the 128 low bits of h and discarding
|
||||
// the overflow.
|
||||
h0, c := bitsAdd64(h0, s[0], 0)
|
||||
h1, _ = bitsAdd64(h1, s[1], c)
|
||||
|
||||
binary.LittleEndian.PutUint64(out[0:8], h0)
|
||||
binary.LittleEndian.PutUint64(out[8:16], h1)
|
||||
}
|
||||
|
|
|
@ -1,16 +0,0 @@
|
|||
// Copyright 2018 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build s390x,!go1.11 !arm,!amd64,!s390x,!ppc64le gccgo appengine nacl
|
||||
|
||||
package poly1305
|
||||
|
||||
// Sum generates an authenticator for msg using a one-time key and puts the
|
||||
// 16-byte result into out. Authenticating two different messages with the same
|
||||
// key allows an attacker to forge messages at will.
|
||||
func Sum(out *[TagSize]byte, msg []byte, key *[32]byte) {
|
||||
h := newMAC(key)
|
||||
h.Write(msg)
|
||||
h.Sum(out)
|
||||
}
|
|
@ -2,67 +2,46 @@
|
|||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build ppc64le,!gccgo,!appengine
|
||||
// +build !gccgo,!purego
|
||||
|
||||
package poly1305
|
||||
|
||||
//go:noescape
|
||||
func initialize(state *[7]uint64, key *[32]byte)
|
||||
func update(state *macState, msg []byte)
|
||||
|
||||
//go:noescape
|
||||
func update(state *[7]uint64, msg []byte)
|
||||
// mac is a wrapper for macGeneric that redirects calls that would have gone to
|
||||
// updateGeneric to update.
|
||||
//
|
||||
// Its Write and Sum methods are otherwise identical to the macGeneric ones, but
|
||||
// using function pointers would carry a major performance cost.
|
||||
type mac struct{ macGeneric }
|
||||
|
||||
//go:noescape
|
||||
func finalize(tag *[TagSize]byte, state *[7]uint64)
|
||||
|
||||
// Sum generates an authenticator for m using a one-time key and puts the
|
||||
// 16-byte result into out. Authenticating two different messages with the same
|
||||
// key allows an attacker to forge messages at will.
|
||||
func Sum(out *[16]byte, m []byte, key *[32]byte) {
|
||||
h := newMAC(key)
|
||||
h.Write(m)
|
||||
h.Sum(out)
|
||||
}
|
||||
|
||||
func newMAC(key *[32]byte) (h mac) {
|
||||
initialize(&h.state, key)
|
||||
return
|
||||
}
|
||||
|
||||
type mac struct {
|
||||
state [7]uint64 // := uint64{ h0, h1, h2, r0, r1, pad0, pad1 }
|
||||
|
||||
buffer [TagSize]byte
|
||||
offset int
|
||||
}
|
||||
|
||||
func (h *mac) Write(p []byte) (n int, err error) {
|
||||
n = len(p)
|
||||
func (h *mac) Write(p []byte) (int, error) {
|
||||
nn := len(p)
|
||||
if h.offset > 0 {
|
||||
remaining := TagSize - h.offset
|
||||
if n < remaining {
|
||||
h.offset += copy(h.buffer[h.offset:], p)
|
||||
return n, nil
|
||||
n := copy(h.buffer[h.offset:], p)
|
||||
if h.offset+n < TagSize {
|
||||
h.offset += n
|
||||
return nn, nil
|
||||
}
|
||||
copy(h.buffer[h.offset:], p[:remaining])
|
||||
p = p[remaining:]
|
||||
p = p[n:]
|
||||
h.offset = 0
|
||||
update(&h.state, h.buffer[:])
|
||||
update(&h.macState, h.buffer[:])
|
||||
}
|
||||
if nn := len(p) - (len(p) % TagSize); nn > 0 {
|
||||
update(&h.state, p[:nn])
|
||||
p = p[nn:]
|
||||
if n := len(p) - (len(p) % TagSize); n > 0 {
|
||||
update(&h.macState, p[:n])
|
||||
p = p[n:]
|
||||
}
|
||||
if len(p) > 0 {
|
||||
h.offset += copy(h.buffer[h.offset:], p)
|
||||
}
|
||||
return n, nil
|
||||
return nn, nil
|
||||
}
|
||||
|
||||
func (h *mac) Sum(out *[16]byte) {
|
||||
state := h.state
|
||||
state := h.macState
|
||||
if h.offset > 0 {
|
||||
update(&state, h.buffer[:h.offset])
|
||||
}
|
||||
finalize(out, &state)
|
||||
finalize(out, &state.h, &state.s)
|
||||
}
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build ppc64le,!gccgo,!appengine
|
||||
// +build !gccgo,!purego
|
||||
|
||||
#include "textflag.h"
|
||||
|
||||
|
@ -58,7 +58,6 @@ DATA ·poly1305Mask<>+0x08(SB)/8, $0x0FFFFFFC0FFFFFFC
|
|||
GLOBL ·poly1305Mask<>(SB), RODATA, $16
|
||||
|
||||
// func update(state *[7]uint64, msg []byte)
|
||||
|
||||
TEXT ·update(SB), $0-32
|
||||
MOVD state+0(FP), R3
|
||||
MOVD msg_base+8(FP), R4
|
||||
|
@ -180,68 +179,3 @@ done:
|
|||
MOVD R9, 8(R3)
|
||||
MOVD R10, 16(R3)
|
||||
RET
|
||||
|
||||
// func initialize(state *[7]uint64, key *[32]byte)
|
||||
TEXT ·initialize(SB), $0-16
|
||||
MOVD state+0(FP), R3
|
||||
MOVD key+8(FP), R4
|
||||
|
||||
// state[0...7] is initialized with zero
|
||||
// Load key
|
||||
MOVD 0(R4), R5
|
||||
MOVD 8(R4), R6
|
||||
MOVD 16(R4), R7
|
||||
MOVD 24(R4), R8
|
||||
|
||||
// Address of key mask
|
||||
MOVD $·poly1305Mask<>(SB), R9
|
||||
|
||||
// Save original key in state
|
||||
MOVD R7, 40(R3)
|
||||
MOVD R8, 48(R3)
|
||||
|
||||
// Get mask
|
||||
MOVD (R9), R7
|
||||
MOVD 8(R9), R8
|
||||
|
||||
// And with key
|
||||
AND R5, R7, R5
|
||||
AND R6, R8, R6
|
||||
|
||||
// Save masked key in state
|
||||
MOVD R5, 24(R3)
|
||||
MOVD R6, 32(R3)
|
||||
RET
|
||||
|
||||
// func finalize(tag *[TagSize]byte, state *[7]uint64)
|
||||
TEXT ·finalize(SB), $0-16
|
||||
MOVD tag+0(FP), R3
|
||||
MOVD state+8(FP), R4
|
||||
|
||||
// Get h0, h1, h2 from state
|
||||
MOVD 0(R4), R5
|
||||
MOVD 8(R4), R6
|
||||
MOVD 16(R4), R7
|
||||
|
||||
// Save h0, h1
|
||||
MOVD R5, R8
|
||||
MOVD R6, R9
|
||||
MOVD $3, R20
|
||||
MOVD $-1, R21
|
||||
SUBC $-5, R5
|
||||
SUBE R21, R6
|
||||
SUBE R20, R7
|
||||
MOVD $0, R21
|
||||
SUBZE R21
|
||||
|
||||
// Check for carry
|
||||
CMP $0, R21
|
||||
ISEL $2, R5, R8, R5
|
||||
ISEL $2, R6, R9, R6
|
||||
MOVD 40(R4), R8
|
||||
MOVD 48(R4), R9
|
||||
ADDC R8, R5
|
||||
ADDE R9, R6
|
||||
MOVD R5, 0(R3)
|
||||
MOVD R6, 8(R3)
|
||||
RET
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build s390x,go1.11,!gccgo,!appengine
|
||||
// +build !gccgo,!purego
|
||||
|
||||
package poly1305
|
||||
|
||||
|
@ -10,33 +10,66 @@ import (
|
|||
"golang.org/x/sys/cpu"
|
||||
)
|
||||
|
||||
// poly1305vx is an assembly implementation of Poly1305 that uses vector
|
||||
// updateVX is an assembly implementation of Poly1305 that uses vector
|
||||
// instructions. It must only be called if the vector facility (vx) is
|
||||
// available.
|
||||
//go:noescape
|
||||
func poly1305vx(out *[16]byte, m *byte, mlen uint64, key *[32]byte)
|
||||
func updateVX(state *macState, msg []byte)
|
||||
|
||||
// poly1305vmsl is an assembly implementation of Poly1305 that uses vector
|
||||
// instructions, including VMSL. It must only be called if the vector facility (vx) is
|
||||
// available and if VMSL is supported.
|
||||
//go:noescape
|
||||
func poly1305vmsl(out *[16]byte, m *byte, mlen uint64, key *[32]byte)
|
||||
// mac is a replacement for macGeneric that uses a larger buffer and redirects
|
||||
// calls that would have gone to updateGeneric to updateVX if the vector
|
||||
// facility is installed.
|
||||
//
|
||||
// A larger buffer is required for good performance because the vector
|
||||
// implementation has a higher fixed cost per call than the generic
|
||||
// implementation.
|
||||
type mac struct {
|
||||
macState
|
||||
|
||||
// Sum generates an authenticator for m using a one-time key and puts the
|
||||
// 16-byte result into out. Authenticating two different messages with the same
|
||||
// key allows an attacker to forge messages at will.
|
||||
func Sum(out *[16]byte, m []byte, key *[32]byte) {
|
||||
if cpu.S390X.HasVX {
|
||||
var mPtr *byte
|
||||
if len(m) > 0 {
|
||||
mPtr = &m[0]
|
||||
}
|
||||
if cpu.S390X.HasVXE && len(m) > 256 {
|
||||
poly1305vmsl(out, mPtr, uint64(len(m)), key)
|
||||
} else {
|
||||
poly1305vx(out, mPtr, uint64(len(m)), key)
|
||||
}
|
||||
} else {
|
||||
sumGeneric(out, m, key)
|
||||
}
|
||||
buffer [16 * TagSize]byte // size must be a multiple of block size (16)
|
||||
offset int
|
||||
}
|
||||
|
||||
func (h *mac) Write(p []byte) (int, error) {
|
||||
nn := len(p)
|
||||
if h.offset > 0 {
|
||||
n := copy(h.buffer[h.offset:], p)
|
||||
if h.offset+n < len(h.buffer) {
|
||||
h.offset += n
|
||||
return nn, nil
|
||||
}
|
||||
p = p[n:]
|
||||
h.offset = 0
|
||||
if cpu.S390X.HasVX {
|
||||
updateVX(&h.macState, h.buffer[:])
|
||||
} else {
|
||||
updateGeneric(&h.macState, h.buffer[:])
|
||||
}
|
||||
}
|
||||
|
||||
tail := len(p) % len(h.buffer) // number of bytes to copy into buffer
|
||||
body := len(p) - tail // number of bytes to process now
|
||||
if body > 0 {
|
||||
if cpu.S390X.HasVX {
|
||||
updateVX(&h.macState, p[:body])
|
||||
} else {
|
||||
updateGeneric(&h.macState, p[:body])
|
||||
}
|
||||
}
|
||||
h.offset = copy(h.buffer[:], p[body:]) // copy tail bytes - can be 0
|
||||
return nn, nil
|
||||
}
|
||||
|
||||
func (h *mac) Sum(out *[TagSize]byte) {
|
||||
state := h.macState
|
||||
remainder := h.buffer[:h.offset]
|
||||
|
||||
// Use the generic implementation if we have 2 or fewer blocks left
|
||||
// to sum. The vector implementation has a higher startup time.
|
||||
if cpu.S390X.HasVX && len(remainder) > 2*TagSize {
|
||||
updateVX(&state, remainder)
|
||||
} else if len(remainder) > 0 {
|
||||
updateGeneric(&state, remainder)
|
||||
}
|
||||
finalize(out, &state.h, &state.s)
|
||||
}
|
||||
|
|
|
@ -2,115 +2,187 @@
|
|||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build s390x,go1.11,!gccgo,!appengine
|
||||
// +build !gccgo,!purego
|
||||
|
||||
#include "textflag.h"
|
||||
|
||||
// Implementation of Poly1305 using the vector facility (vx).
|
||||
// This implementation of Poly1305 uses the vector facility (vx)
|
||||
// to process up to 2 blocks (32 bytes) per iteration using an
|
||||
// algorithm based on the one described in:
|
||||
//
|
||||
// NEON crypto, Daniel J. Bernstein & Peter Schwabe
|
||||
// https://cryptojedi.org/papers/neoncrypto-20120320.pdf
|
||||
//
|
||||
// This algorithm uses 5 26-bit limbs to represent a 130-bit
|
||||
// value. These limbs are, for the most part, zero extended and
|
||||
// placed into 64-bit vector register elements. Each vector
|
||||
// register is 128-bits wide and so holds 2 of these elements.
|
||||
// Using 26-bit limbs allows us plenty of headroom to accomodate
|
||||
// accumulations before and after multiplication without
|
||||
// overflowing either 32-bits (before multiplication) or 64-bits
|
||||
// (after multiplication).
|
||||
//
|
||||
// In order to parallelise the operations required to calculate
|
||||
// the sum we use two separate accumulators and then sum those
|
||||
// in an extra final step. For compatibility with the generic
|
||||
// implementation we perform this summation at the end of every
|
||||
// updateVX call.
|
||||
//
|
||||
// To use two accumulators we must multiply the message blocks
|
||||
// by r² rather than r. Only the final message block should be
|
||||
// multiplied by r.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// We want to calculate the sum (h) for a 64 byte message (m):
|
||||
//
|
||||
// h = m[0:16]r⁴ + m[16:32]r³ + m[32:48]r² + m[48:64]r
|
||||
//
|
||||
// To do this we split the calculation into the even indices
|
||||
// and odd indices of the message. These form our SIMD 'lanes':
|
||||
//
|
||||
// h = m[ 0:16]r⁴ + m[32:48]r² + <- lane 0
|
||||
// m[16:32]r³ + m[48:64]r <- lane 1
|
||||
//
|
||||
// To calculate this iteratively we refactor so that both lanes
|
||||
// are written in terms of r² and r:
|
||||
//
|
||||
// h = (m[ 0:16]r² + m[32:48])r² + <- lane 0
|
||||
// (m[16:32]r² + m[48:64])r <- lane 1
|
||||
// ^ ^
|
||||
// | coefficients for second iteration
|
||||
// coefficients for first iteration
|
||||
//
|
||||
// So in this case we would have two iterations. In the first
|
||||
// both lanes are multiplied by r². In the second only the
|
||||
// first lane is multiplied by r² and the second lane is
|
||||
// instead multiplied by r. This gives use the odd and even
|
||||
// powers of r that we need from the original equation.
|
||||
//
|
||||
// Notation:
|
||||
//
|
||||
// h - accumulator
|
||||
// r - key
|
||||
// m - message
|
||||
//
|
||||
// [a, b] - SIMD register holding two 64-bit values
|
||||
// [a, b, c, d] - SIMD register holding four 32-bit values
|
||||
// xᵢ[n] - limb n of variable x with bit width i
|
||||
//
|
||||
// Limbs are expressed in little endian order, so for 26-bit
|
||||
// limbs x₂₆[4] will be the most significant limb and x₂₆[0]
|
||||
// will be the least significant limb.
|
||||
|
||||
// constants
|
||||
#define MOD26 V0
|
||||
#define EX0 V1
|
||||
#define EX1 V2
|
||||
#define EX2 V3
|
||||
// masking constants
|
||||
#define MOD24 V0 // [0x0000000000ffffff, 0x0000000000ffffff] - mask low 24-bits
|
||||
#define MOD26 V1 // [0x0000000003ffffff, 0x0000000003ffffff] - mask low 26-bits
|
||||
|
||||
// temporaries
|
||||
#define T_0 V4
|
||||
#define T_1 V5
|
||||
#define T_2 V6
|
||||
#define T_3 V7
|
||||
#define T_4 V8
|
||||
// expansion constants (see EXPAND macro)
|
||||
#define EX0 V2
|
||||
#define EX1 V3
|
||||
#define EX2 V4
|
||||
|
||||
// key (r)
|
||||
#define R_0 V9
|
||||
#define R_1 V10
|
||||
#define R_2 V11
|
||||
#define R_3 V12
|
||||
#define R_4 V13
|
||||
#define R5_1 V14
|
||||
#define R5_2 V15
|
||||
#define R5_3 V16
|
||||
#define R5_4 V17
|
||||
#define RSAVE_0 R5
|
||||
#define RSAVE_1 R6
|
||||
#define RSAVE_2 R7
|
||||
#define RSAVE_3 R8
|
||||
#define RSAVE_4 R9
|
||||
#define R5SAVE_1 V28
|
||||
#define R5SAVE_2 V29
|
||||
#define R5SAVE_3 V30
|
||||
#define R5SAVE_4 V31
|
||||
// key (r², r or 1 depending on context)
|
||||
#define R_0 V5
|
||||
#define R_1 V6
|
||||
#define R_2 V7
|
||||
#define R_3 V8
|
||||
#define R_4 V9
|
||||
|
||||
// message block
|
||||
#define F_0 V18
|
||||
#define F_1 V19
|
||||
#define F_2 V20
|
||||
#define F_3 V21
|
||||
#define F_4 V22
|
||||
// precalculated coefficients (5r², 5r or 0 depending on context)
|
||||
#define R5_1 V10
|
||||
#define R5_2 V11
|
||||
#define R5_3 V12
|
||||
#define R5_4 V13
|
||||
|
||||
// accumulator
|
||||
#define H_0 V23
|
||||
#define H_1 V24
|
||||
#define H_2 V25
|
||||
#define H_3 V26
|
||||
#define H_4 V27
|
||||
// message block (m)
|
||||
#define M_0 V14
|
||||
#define M_1 V15
|
||||
#define M_2 V16
|
||||
#define M_3 V17
|
||||
#define M_4 V18
|
||||
|
||||
GLOBL ·keyMask<>(SB), RODATA, $16
|
||||
DATA ·keyMask<>+0(SB)/8, $0xffffff0ffcffff0f
|
||||
DATA ·keyMask<>+8(SB)/8, $0xfcffff0ffcffff0f
|
||||
// accumulator (h)
|
||||
#define H_0 V19
|
||||
#define H_1 V20
|
||||
#define H_2 V21
|
||||
#define H_3 V22
|
||||
#define H_4 V23
|
||||
|
||||
GLOBL ·bswapMask<>(SB), RODATA, $16
|
||||
DATA ·bswapMask<>+0(SB)/8, $0x0f0e0d0c0b0a0908
|
||||
DATA ·bswapMask<>+8(SB)/8, $0x0706050403020100
|
||||
// temporary registers (for short-lived values)
|
||||
#define T_0 V24
|
||||
#define T_1 V25
|
||||
#define T_2 V26
|
||||
#define T_3 V27
|
||||
#define T_4 V28
|
||||
|
||||
GLOBL ·constants<>(SB), RODATA, $64
|
||||
// MOD26
|
||||
DATA ·constants<>+0(SB)/8, $0x3ffffff
|
||||
DATA ·constants<>+8(SB)/8, $0x3ffffff
|
||||
GLOBL ·constants<>(SB), RODATA, $0x30
|
||||
// EX0
|
||||
DATA ·constants<>+16(SB)/8, $0x0006050403020100
|
||||
DATA ·constants<>+24(SB)/8, $0x1016151413121110
|
||||
DATA ·constants<>+0x00(SB)/8, $0x0006050403020100
|
||||
DATA ·constants<>+0x08(SB)/8, $0x1016151413121110
|
||||
// EX1
|
||||
DATA ·constants<>+32(SB)/8, $0x060c0b0a09080706
|
||||
DATA ·constants<>+40(SB)/8, $0x161c1b1a19181716
|
||||
DATA ·constants<>+0x10(SB)/8, $0x060c0b0a09080706
|
||||
DATA ·constants<>+0x18(SB)/8, $0x161c1b1a19181716
|
||||
// EX2
|
||||
DATA ·constants<>+48(SB)/8, $0x0d0d0d0d0d0f0e0d
|
||||
DATA ·constants<>+56(SB)/8, $0x1d1d1d1d1d1f1e1d
|
||||
DATA ·constants<>+0x20(SB)/8, $0x0d0d0d0d0d0f0e0d
|
||||
DATA ·constants<>+0x28(SB)/8, $0x1d1d1d1d1d1f1e1d
|
||||
|
||||
// h = (f*g) % (2**130-5) [partial reduction]
|
||||
// MULTIPLY multiplies each lane of f and g, partially reduced
|
||||
// modulo 2¹³⁰ - 5. The result, h, consists of partial products
|
||||
// in each lane that need to be reduced further to produce the
|
||||
// final result.
|
||||
//
|
||||
// h₁₃₀ = (f₁₃₀g₁₃₀) % 2¹³⁰ + (5f₁₃₀g₁₃₀) / 2¹³⁰
|
||||
//
|
||||
// Note that the multiplication by 5 of the high bits is
|
||||
// achieved by precalculating the multiplication of four of the
|
||||
// g coefficients by 5. These are g51-g54.
|
||||
#define MULTIPLY(f0, f1, f2, f3, f4, g0, g1, g2, g3, g4, g51, g52, g53, g54, h0, h1, h2, h3, h4) \
|
||||
VMLOF f0, g0, h0 \
|
||||
VMLOF f0, g1, h1 \
|
||||
VMLOF f0, g2, h2 \
|
||||
VMLOF f0, g3, h3 \
|
||||
VMLOF f0, g1, h1 \
|
||||
VMLOF f0, g4, h4 \
|
||||
VMLOF f0, g2, h2 \
|
||||
VMLOF f1, g54, T_0 \
|
||||
VMLOF f1, g0, T_1 \
|
||||
VMLOF f1, g1, T_2 \
|
||||
VMLOF f1, g2, T_3 \
|
||||
VMLOF f1, g0, T_1 \
|
||||
VMLOF f1, g3, T_4 \
|
||||
VMLOF f1, g1, T_2 \
|
||||
VMALOF f2, g53, h0, h0 \
|
||||
VMALOF f2, g54, h1, h1 \
|
||||
VMALOF f2, g0, h2, h2 \
|
||||
VMALOF f2, g1, h3, h3 \
|
||||
VMALOF f2, g54, h1, h1 \
|
||||
VMALOF f2, g2, h4, h4 \
|
||||
VMALOF f2, g0, h2, h2 \
|
||||
VMALOF f3, g52, T_0, T_0 \
|
||||
VMALOF f3, g53, T_1, T_1 \
|
||||
VMALOF f3, g54, T_2, T_2 \
|
||||
VMALOF f3, g0, T_3, T_3 \
|
||||
VMALOF f3, g53, T_1, T_1 \
|
||||
VMALOF f3, g1, T_4, T_4 \
|
||||
VMALOF f3, g54, T_2, T_2 \
|
||||
VMALOF f4, g51, h0, h0 \
|
||||
VMALOF f4, g52, h1, h1 \
|
||||
VMALOF f4, g53, h2, h2 \
|
||||
VMALOF f4, g54, h3, h3 \
|
||||
VMALOF f4, g52, h1, h1 \
|
||||
VMALOF f4, g0, h4, h4 \
|
||||
VMALOF f4, g53, h2, h2 \
|
||||
VAG T_0, h0, h0 \
|
||||
VAG T_1, h1, h1 \
|
||||
VAG T_2, h2, h2 \
|
||||
VAG T_3, h3, h3 \
|
||||
VAG T_4, h4, h4
|
||||
VAG T_1, h1, h1 \
|
||||
VAG T_4, h4, h4 \
|
||||
VAG T_2, h2, h2
|
||||
|
||||
// carry h0->h1 h3->h4, h1->h2 h4->h0, h0->h1 h2->h3, h3->h4
|
||||
// REDUCE performs the following carry operations in four
|
||||
// stages, as specified in Bernstein & Schwabe:
|
||||
//
|
||||
// 1: h₂₆[0]->h₂₆[1] h₂₆[3]->h₂₆[4]
|
||||
// 2: h₂₆[1]->h₂₆[2] h₂₆[4]->h₂₆[0]
|
||||
// 3: h₂₆[0]->h₂₆[1] h₂₆[2]->h₂₆[3]
|
||||
// 4: h₂₆[3]->h₂₆[4]
|
||||
//
|
||||
// The result is that all of the limbs are limited to 26-bits
|
||||
// except for h₂₆[1] and h₂₆[4] which are limited to 27-bits.
|
||||
//
|
||||
// Note that although each limb is aligned at 26-bit intervals
|
||||
// they may contain values that exceed 2²⁶ - 1, hence the need
|
||||
// to carry the excess bits in each limb.
|
||||
#define REDUCE(h0, h1, h2, h3, h4) \
|
||||
VESRLG $26, h0, T_0 \
|
||||
VESRLG $26, h3, T_1 \
|
||||
|
@ -136,144 +208,155 @@ DATA ·constants<>+56(SB)/8, $0x1d1d1d1d1d1f1e1d
|
|||
VN MOD26, h3, h3 \
|
||||
VAG T_2, h4, h4
|
||||
|
||||
// expand in0 into d[0] and in1 into d[1]
|
||||
// EXPAND splits the 128-bit little-endian values in0 and in1
|
||||
// into 26-bit big-endian limbs and places the results into
|
||||
// the first and second lane of d₂₆[0:4] respectively.
|
||||
//
|
||||
// The EX0, EX1 and EX2 constants are arrays of byte indices
|
||||
// for permutation. The permutation both reverses the bytes
|
||||
// in the input and ensures the bytes are copied into the
|
||||
// destination limb ready to be shifted into their final
|
||||
// position.
|
||||
#define EXPAND(in0, in1, d0, d1, d2, d3, d4) \
|
||||
VGBM $0x0707, d1 \ // d1=tmp
|
||||
VPERM in0, in1, EX2, d4 \
|
||||
VPERM in0, in1, EX0, d0 \
|
||||
VPERM in0, in1, EX1, d2 \
|
||||
VN d1, d4, d4 \
|
||||
VPERM in0, in1, EX2, d4 \
|
||||
VESRLG $26, d0, d1 \
|
||||
VESRLG $30, d2, d3 \
|
||||
VESRLG $4, d2, d2 \
|
||||
VN MOD26, d0, d0 \
|
||||
VN MOD26, d1, d1 \
|
||||
VN MOD26, d2, d2 \
|
||||
VN MOD26, d3, d3
|
||||
VN MOD26, d0, d0 \ // [in0₂₆[0], in1₂₆[0]]
|
||||
VN MOD26, d3, d3 \ // [in0₂₆[3], in1₂₆[3]]
|
||||
VN MOD26, d1, d1 \ // [in0₂₆[1], in1₂₆[1]]
|
||||
VN MOD24, d4, d4 \ // [in0₂₆[4], in1₂₆[4]]
|
||||
VN MOD26, d2, d2 // [in0₂₆[2], in1₂₆[2]]
|
||||
|
||||
// pack h4:h0 into h1:h0 (no carry)
|
||||
#define PACK(h0, h1, h2, h3, h4) \
|
||||
VESLG $26, h1, h1 \
|
||||
VESLG $26, h3, h3 \
|
||||
VO h0, h1, h0 \
|
||||
VO h2, h3, h2 \
|
||||
VESLG $4, h2, h2 \
|
||||
VLEIB $7, $48, h1 \
|
||||
VSLB h1, h2, h2 \
|
||||
VO h0, h2, h0 \
|
||||
VLEIB $7, $104, h1 \
|
||||
VSLB h1, h4, h3 \
|
||||
VO h3, h0, h0 \
|
||||
VLEIB $7, $24, h1 \
|
||||
VSRLB h1, h4, h1
|
||||
// func updateVX(state *macState, msg []byte)
|
||||
TEXT ·updateVX(SB), NOSPLIT, $0
|
||||
MOVD state+0(FP), R1
|
||||
LMG msg+8(FP), R2, R3 // R2=msg_base, R3=msg_len
|
||||
|
||||
// if h > 2**130-5 then h -= 2**130-5
|
||||
#define MOD(h0, h1, t0, t1, t2) \
|
||||
VZERO t0 \
|
||||
VLEIG $1, $5, t0 \
|
||||
VACCQ h0, t0, t1 \
|
||||
VAQ h0, t0, t0 \
|
||||
VONE t2 \
|
||||
VLEIG $1, $-4, t2 \
|
||||
VAQ t2, t1, t1 \
|
||||
VACCQ h1, t1, t1 \
|
||||
VONE t2 \
|
||||
VAQ t2, t1, t1 \
|
||||
VN h0, t1, t2 \
|
||||
VNC t0, t1, t1 \
|
||||
VO t1, t2, h0
|
||||
|
||||
// func poly1305vx(out *[16]byte, m *byte, mlen uint64, key *[32]key)
|
||||
TEXT ·poly1305vx(SB), $0-32
|
||||
// This code processes up to 2 blocks (32 bytes) per iteration
|
||||
// using the algorithm described in:
|
||||
// NEON crypto, Daniel J. Bernstein & Peter Schwabe
|
||||
// https://cryptojedi.org/papers/neoncrypto-20120320.pdf
|
||||
LMG out+0(FP), R1, R4 // R1=out, R2=m, R3=mlen, R4=key
|
||||
|
||||
// load MOD26, EX0, EX1 and EX2
|
||||
// load EX0, EX1 and EX2
|
||||
MOVD $·constants<>(SB), R5
|
||||
VLM (R5), MOD26, EX2
|
||||
VLM (R5), EX0, EX2
|
||||
|
||||
// setup r
|
||||
VL (R4), T_0
|
||||
MOVD $·keyMask<>(SB), R6
|
||||
VL (R6), T_1
|
||||
VN T_0, T_1, T_0
|
||||
EXPAND(T_0, T_0, R_0, R_1, R_2, R_3, R_4)
|
||||
// generate masks
|
||||
VGMG $(64-24), $63, MOD24 // [0x00ffffff, 0x00ffffff]
|
||||
VGMG $(64-26), $63, MOD26 // [0x03ffffff, 0x03ffffff]
|
||||
|
||||
// setup r*5
|
||||
VLEIG $0, $5, T_0
|
||||
VLEIG $1, $5, T_0
|
||||
// load h (accumulator) and r (key) from state
|
||||
VZERO T_1 // [0, 0]
|
||||
VL 0(R1), T_0 // [h₆₄[0], h₆₄[1]]
|
||||
VLEG $0, 16(R1), T_1 // [h₆₄[2], 0]
|
||||
VL 24(R1), T_2 // [r₆₄[0], r₆₄[1]]
|
||||
VPDI $0, T_0, T_2, T_3 // [h₆₄[0], r₆₄[0]]
|
||||
VPDI $5, T_0, T_2, T_4 // [h₆₄[1], r₆₄[1]]
|
||||
|
||||
// store r (for final block)
|
||||
VMLOF T_0, R_1, R5SAVE_1
|
||||
VMLOF T_0, R_2, R5SAVE_2
|
||||
VMLOF T_0, R_3, R5SAVE_3
|
||||
VMLOF T_0, R_4, R5SAVE_4
|
||||
VLGVG $0, R_0, RSAVE_0
|
||||
VLGVG $0, R_1, RSAVE_1
|
||||
VLGVG $0, R_2, RSAVE_2
|
||||
VLGVG $0, R_3, RSAVE_3
|
||||
VLGVG $0, R_4, RSAVE_4
|
||||
// unpack h and r into 26-bit limbs
|
||||
// note: h₆₄[2] may have the low 3 bits set, so h₂₆[4] is a 27-bit value
|
||||
VN MOD26, T_3, H_0 // [h₂₆[0], r₂₆[0]]
|
||||
VZERO H_1 // [0, 0]
|
||||
VZERO H_3 // [0, 0]
|
||||
VGMG $(64-12-14), $(63-12), T_0 // [0x03fff000, 0x03fff000] - 26-bit mask with low 12 bits masked out
|
||||
VESLG $24, T_1, T_1 // [h₆₄[2]<<24, 0]
|
||||
VERIMG $-26&63, T_3, MOD26, H_1 // [h₂₆[1], r₂₆[1]]
|
||||
VESRLG $+52&63, T_3, H_2 // [h₂₆[2], r₂₆[2]] - low 12 bits only
|
||||
VERIMG $-14&63, T_4, MOD26, H_3 // [h₂₆[1], r₂₆[1]]
|
||||
VESRLG $40, T_4, H_4 // [h₂₆[4], r₂₆[4]] - low 24 bits only
|
||||
VERIMG $+12&63, T_4, T_0, H_2 // [h₂₆[2], r₂₆[2]] - complete
|
||||
VO T_1, H_4, H_4 // [h₂₆[4], r₂₆[4]] - complete
|
||||
|
||||
// skip r**2 calculation
|
||||
// replicate r across all 4 vector elements
|
||||
VREPF $3, H_0, R_0 // [r₂₆[0], r₂₆[0], r₂₆[0], r₂₆[0]]
|
||||
VREPF $3, H_1, R_1 // [r₂₆[1], r₂₆[1], r₂₆[1], r₂₆[1]]
|
||||
VREPF $3, H_2, R_2 // [r₂₆[2], r₂₆[2], r₂₆[2], r₂₆[2]]
|
||||
VREPF $3, H_3, R_3 // [r₂₆[3], r₂₆[3], r₂₆[3], r₂₆[3]]
|
||||
VREPF $3, H_4, R_4 // [r₂₆[4], r₂₆[4], r₂₆[4], r₂₆[4]]
|
||||
|
||||
// zero out lane 1 of h
|
||||
VLEIG $1, $0, H_0 // [h₂₆[0], 0]
|
||||
VLEIG $1, $0, H_1 // [h₂₆[1], 0]
|
||||
VLEIG $1, $0, H_2 // [h₂₆[2], 0]
|
||||
VLEIG $1, $0, H_3 // [h₂₆[3], 0]
|
||||
VLEIG $1, $0, H_4 // [h₂₆[4], 0]
|
||||
|
||||
// calculate 5r (ignore least significant limb)
|
||||
VREPIF $5, T_0
|
||||
VMLF T_0, R_1, R5_1 // [5r₂₆[1], 5r₂₆[1], 5r₂₆[1], 5r₂₆[1]]
|
||||
VMLF T_0, R_2, R5_2 // [5r₂₆[2], 5r₂₆[2], 5r₂₆[2], 5r₂₆[2]]
|
||||
VMLF T_0, R_3, R5_3 // [5r₂₆[3], 5r₂₆[3], 5r₂₆[3], 5r₂₆[3]]
|
||||
VMLF T_0, R_4, R5_4 // [5r₂₆[4], 5r₂₆[4], 5r₂₆[4], 5r₂₆[4]]
|
||||
|
||||
// skip r² calculation if we are only calculating one block
|
||||
CMPBLE R3, $16, skip
|
||||
|
||||
// calculate r**2
|
||||
MULTIPLY(R_0, R_1, R_2, R_3, R_4, R_0, R_1, R_2, R_3, R_4, R5SAVE_1, R5SAVE_2, R5SAVE_3, R5SAVE_4, H_0, H_1, H_2, H_3, H_4)
|
||||
REDUCE(H_0, H_1, H_2, H_3, H_4)
|
||||
VLEIG $0, $5, T_0
|
||||
VLEIG $1, $5, T_0
|
||||
VMLOF T_0, H_1, R5_1
|
||||
VMLOF T_0, H_2, R5_2
|
||||
VMLOF T_0, H_3, R5_3
|
||||
VMLOF T_0, H_4, R5_4
|
||||
VLR H_0, R_0
|
||||
VLR H_1, R_1
|
||||
VLR H_2, R_2
|
||||
VLR H_3, R_3
|
||||
VLR H_4, R_4
|
||||
// calculate r²
|
||||
MULTIPLY(R_0, R_1, R_2, R_3, R_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, M_0, M_1, M_2, M_3, M_4)
|
||||
REDUCE(M_0, M_1, M_2, M_3, M_4)
|
||||
VGBM $0x0f0f, T_0
|
||||
VERIMG $0, M_0, T_0, R_0 // [r₂₆[0], r²₂₆[0], r₂₆[0], r²₂₆[0]]
|
||||
VERIMG $0, M_1, T_0, R_1 // [r₂₆[1], r²₂₆[1], r₂₆[1], r²₂₆[1]]
|
||||
VERIMG $0, M_2, T_0, R_2 // [r₂₆[2], r²₂₆[2], r₂₆[2], r²₂₆[2]]
|
||||
VERIMG $0, M_3, T_0, R_3 // [r₂₆[3], r²₂₆[3], r₂₆[3], r²₂₆[3]]
|
||||
VERIMG $0, M_4, T_0, R_4 // [r₂₆[4], r²₂₆[4], r₂₆[4], r²₂₆[4]]
|
||||
|
||||
// initialize h
|
||||
VZERO H_0
|
||||
VZERO H_1
|
||||
VZERO H_2
|
||||
VZERO H_3
|
||||
VZERO H_4
|
||||
// calculate 5r² (ignore least significant limb)
|
||||
VREPIF $5, T_0
|
||||
VMLF T_0, R_1, R5_1 // [5r₂₆[1], 5r²₂₆[1], 5r₂₆[1], 5r²₂₆[1]]
|
||||
VMLF T_0, R_2, R5_2 // [5r₂₆[2], 5r²₂₆[2], 5r₂₆[2], 5r²₂₆[2]]
|
||||
VMLF T_0, R_3, R5_3 // [5r₂₆[3], 5r²₂₆[3], 5r₂₆[3], 5r²₂₆[3]]
|
||||
VMLF T_0, R_4, R5_4 // [5r₂₆[4], 5r²₂₆[4], 5r₂₆[4], 5r²₂₆[4]]
|
||||
|
||||
loop:
|
||||
CMPBLE R3, $32, b2
|
||||
CMPBLE R3, $32, b2 // 2 or fewer blocks remaining, need to change key coefficients
|
||||
|
||||
// load next 2 blocks from message
|
||||
VLM (R2), T_0, T_1
|
||||
|
||||
// update message slice
|
||||
SUB $32, R3
|
||||
MOVD $32(R2), R2
|
||||
EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4)
|
||||
VLEIB $4, $1, F_4
|
||||
VLEIB $12, $1, F_4
|
||||
|
||||
// unpack message blocks into 26-bit big-endian limbs
|
||||
EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)
|
||||
|
||||
// add 2¹²⁸ to each message block value
|
||||
VLEIB $4, $1, M_4
|
||||
VLEIB $12, $1, M_4
|
||||
|
||||
multiply:
|
||||
VAG H_0, F_0, F_0
|
||||
VAG H_1, F_1, F_1
|
||||
VAG H_2, F_2, F_2
|
||||
VAG H_3, F_3, F_3
|
||||
VAG H_4, F_4, F_4
|
||||
MULTIPLY(F_0, F_1, F_2, F_3, F_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, H_0, H_1, H_2, H_3, H_4)
|
||||
// accumulate the incoming message
|
||||
VAG H_0, M_0, M_0
|
||||
VAG H_3, M_3, M_3
|
||||
VAG H_1, M_1, M_1
|
||||
VAG H_4, M_4, M_4
|
||||
VAG H_2, M_2, M_2
|
||||
|
||||
// multiply the accumulator by the key coefficient
|
||||
MULTIPLY(M_0, M_1, M_2, M_3, M_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, H_0, H_1, H_2, H_3, H_4)
|
||||
|
||||
// carry and partially reduce the partial products
|
||||
REDUCE(H_0, H_1, H_2, H_3, H_4)
|
||||
|
||||
CMPBNE R3, $0, loop
|
||||
|
||||
finish:
|
||||
// sum vectors
|
||||
// sum lane 0 and lane 1 and put the result in lane 1
|
||||
VZERO T_0
|
||||
VSUMQG H_0, T_0, H_0
|
||||
VSUMQG H_1, T_0, H_1
|
||||
VSUMQG H_2, T_0, H_2
|
||||
VSUMQG H_3, T_0, H_3
|
||||
VSUMQG H_1, T_0, H_1
|
||||
VSUMQG H_4, T_0, H_4
|
||||
VSUMQG H_2, T_0, H_2
|
||||
|
||||
// h may be >= 2*(2**130-5) so we need to reduce it again
|
||||
// reduce again after summation
|
||||
// TODO(mundaym): there might be a more efficient way to do this
|
||||
// now that we only have 1 active lane. For example, we could
|
||||
// simultaneously pack the values as we reduce them.
|
||||
REDUCE(H_0, H_1, H_2, H_3, H_4)
|
||||
|
||||
// carry h1->h4
|
||||
// carry h[1] through to h[4] so that only h[4] can exceed 2²⁶ - 1
|
||||
// TODO(mundaym): in testing this final carry was unnecessary.
|
||||
// Needs a proof before it can be removed though.
|
||||
VESRLG $26, H_1, T_1
|
||||
VN MOD26, H_1, H_1
|
||||
VAQ T_1, H_2, H_2
|
||||
|
@ -284,95 +367,137 @@ finish:
|
|||
VN MOD26, H_3, H_3
|
||||
VAQ T_3, H_4, H_4
|
||||
|
||||
// h is now < 2*(2**130-5)
|
||||
// pack h into h1 (hi) and h0 (lo)
|
||||
PACK(H_0, H_1, H_2, H_3, H_4)
|
||||
|
||||
// if h > 2**130-5 then h -= 2**130-5
|
||||
MOD(H_0, H_1, T_0, T_1, T_2)
|
||||
|
||||
// h += s
|
||||
MOVD $·bswapMask<>(SB), R5
|
||||
VL (R5), T_1
|
||||
VL 16(R4), T_0
|
||||
VPERM T_0, T_0, T_1, T_0 // reverse bytes (to big)
|
||||
VAQ T_0, H_0, H_0
|
||||
VPERM H_0, H_0, T_1, H_0 // reverse bytes (to little)
|
||||
VST H_0, (R1)
|
||||
// h is now < 2(2¹³⁰ - 5)
|
||||
// Pack each lane in h₂₆[0:4] into h₁₂₈[0:1].
|
||||
VESLG $26, H_1, H_1
|
||||
VESLG $26, H_3, H_3
|
||||
VO H_0, H_1, H_0
|
||||
VO H_2, H_3, H_2
|
||||
VESLG $4, H_2, H_2
|
||||
VLEIB $7, $48, H_1
|
||||
VSLB H_1, H_2, H_2
|
||||
VO H_0, H_2, H_0
|
||||
VLEIB $7, $104, H_1
|
||||
VSLB H_1, H_4, H_3
|
||||
VO H_3, H_0, H_0
|
||||
VLEIB $7, $24, H_1
|
||||
VSRLB H_1, H_4, H_1
|
||||
|
||||
// update state
|
||||
VSTEG $1, H_0, 0(R1)
|
||||
VSTEG $0, H_0, 8(R1)
|
||||
VSTEG $1, H_1, 16(R1)
|
||||
RET
|
||||
|
||||
b2:
|
||||
b2: // 2 or fewer blocks remaining
|
||||
CMPBLE R3, $16, b1
|
||||
|
||||
// 2 blocks remaining
|
||||
SUB $17, R3
|
||||
VL (R2), T_0
|
||||
VLL R3, 16(R2), T_1
|
||||
ADD $1, R3
|
||||
MOVBZ $1, R0
|
||||
CMPBEQ R3, $16, 2(PC)
|
||||
VLVGB R3, R0, T_1
|
||||
EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4)
|
||||
CMPBNE R3, $16, 2(PC)
|
||||
VLEIB $12, $1, F_4
|
||||
VLEIB $4, $1, F_4
|
||||
// Load the 2 remaining blocks (17-32 bytes remaining).
|
||||
MOVD $-17(R3), R0 // index of final byte to load modulo 16
|
||||
VL (R2), T_0 // load full 16 byte block
|
||||
VLL R0, 16(R2), T_1 // load final (possibly partial) block and pad with zeros to 16 bytes
|
||||
|
||||
// setup [r²,r]
|
||||
VLVGG $1, RSAVE_0, R_0
|
||||
VLVGG $1, RSAVE_1, R_1
|
||||
VLVGG $1, RSAVE_2, R_2
|
||||
VLVGG $1, RSAVE_3, R_3
|
||||
VLVGG $1, RSAVE_4, R_4
|
||||
VPDI $0, R5_1, R5SAVE_1, R5_1
|
||||
VPDI $0, R5_2, R5SAVE_2, R5_2
|
||||
VPDI $0, R5_3, R5SAVE_3, R5_3
|
||||
VPDI $0, R5_4, R5SAVE_4, R5_4
|
||||
// The Poly1305 algorithm requires that a 1 bit be appended to
|
||||
// each message block. If the final block is less than 16 bytes
|
||||
// long then it is easiest to insert the 1 before the message
|
||||
// block is split into 26-bit limbs. If, on the other hand, the
|
||||
// final message block is 16 bytes long then we append the 1 bit
|
||||
// after expansion as normal.
|
||||
MOVBZ $1, R0
|
||||
MOVD $-16(R3), R3 // index of byte in last block to insert 1 at (could be 16)
|
||||
CMPBEQ R3, $16, 2(PC) // skip the insertion if the final block is 16 bytes long
|
||||
VLVGB R3, R0, T_1 // insert 1 into the byte at index R3
|
||||
|
||||
// Split both blocks into 26-bit limbs in the appropriate lanes.
|
||||
EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)
|
||||
|
||||
// Append a 1 byte to the end of the second to last block.
|
||||
VLEIB $4, $1, M_4
|
||||
|
||||
// Append a 1 byte to the end of the last block only if it is a
|
||||
// full 16 byte block.
|
||||
CMPBNE R3, $16, 2(PC)
|
||||
VLEIB $12, $1, M_4
|
||||
|
||||
// Finally, set up the coefficients for the final multiplication.
|
||||
// We have previously saved r and 5r in the 32-bit even indexes
|
||||
// of the R_[0-4] and R5_[1-4] coefficient registers.
|
||||
//
|
||||
// We want lane 0 to be multiplied by r² so that can be kept the
|
||||
// same. We want lane 1 to be multiplied by r so we need to move
|
||||
// the saved r value into the 32-bit odd index in lane 1 by
|
||||
// rotating the 64-bit lane by 32.
|
||||
VGBM $0x00ff, T_0 // [0, 0xffffffffffffffff] - mask lane 1 only
|
||||
VERIMG $32, R_0, T_0, R_0 // [_, r²₂₆[0], _, r₂₆[0]]
|
||||
VERIMG $32, R_1, T_0, R_1 // [_, r²₂₆[1], _, r₂₆[1]]
|
||||
VERIMG $32, R_2, T_0, R_2 // [_, r²₂₆[2], _, r₂₆[2]]
|
||||
VERIMG $32, R_3, T_0, R_3 // [_, r²₂₆[3], _, r₂₆[3]]
|
||||
VERIMG $32, R_4, T_0, R_4 // [_, r²₂₆[4], _, r₂₆[4]]
|
||||
VERIMG $32, R5_1, T_0, R5_1 // [_, 5r²₂₆[1], _, 5r₂₆[1]]
|
||||
VERIMG $32, R5_2, T_0, R5_2 // [_, 5r²₂₆[2], _, 5r₂₆[2]]
|
||||
VERIMG $32, R5_3, T_0, R5_3 // [_, 5r²₂₆[3], _, 5r₂₆[3]]
|
||||
VERIMG $32, R5_4, T_0, R5_4 // [_, 5r²₂₆[4], _, 5r₂₆[4]]
|
||||
|
||||
MOVD $0, R3
|
||||
BR multiply
|
||||
|
||||
skip:
|
||||
VZERO H_0
|
||||
VZERO H_1
|
||||
VZERO H_2
|
||||
VZERO H_3
|
||||
VZERO H_4
|
||||
|
||||
CMPBEQ R3, $0, finish
|
||||
|
||||
b1:
|
||||
// 1 block remaining
|
||||
SUB $1, R3
|
||||
VLL R3, (R2), T_0
|
||||
ADD $1, R3
|
||||
b1: // 1 block remaining
|
||||
|
||||
// Load the final block (1-16 bytes). This will be placed into
|
||||
// lane 0.
|
||||
MOVD $-1(R3), R0
|
||||
VLL R0, (R2), T_0 // pad to 16 bytes with zeros
|
||||
|
||||
// The Poly1305 algorithm requires that a 1 bit be appended to
|
||||
// each message block. If the final block is less than 16 bytes
|
||||
// long then it is easiest to insert the 1 before the message
|
||||
// block is split into 26-bit limbs. If, on the other hand, the
|
||||
// final message block is 16 bytes long then we append the 1 bit
|
||||
// after expansion as normal.
|
||||
MOVBZ $1, R0
|
||||
CMPBEQ R3, $16, 2(PC)
|
||||
VLVGB R3, R0, T_0
|
||||
VZERO T_1
|
||||
EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4)
|
||||
CMPBNE R3, $16, 2(PC)
|
||||
VLEIB $4, $1, F_4
|
||||
VLEIG $1, $1, R_0
|
||||
VZERO R_1
|
||||
VZERO R_2
|
||||
VZERO R_3
|
||||
VZERO R_4
|
||||
VZERO R5_1
|
||||
VZERO R5_2
|
||||
VZERO R5_3
|
||||
VZERO R5_4
|
||||
|
||||
// setup [r, 1]
|
||||
VLVGG $0, RSAVE_0, R_0
|
||||
VLVGG $0, RSAVE_1, R_1
|
||||
VLVGG $0, RSAVE_2, R_2
|
||||
VLVGG $0, RSAVE_3, R_3
|
||||
VLVGG $0, RSAVE_4, R_4
|
||||
VPDI $0, R5SAVE_1, R5_1, R5_1
|
||||
VPDI $0, R5SAVE_2, R5_2, R5_2
|
||||
VPDI $0, R5SAVE_3, R5_3, R5_3
|
||||
VPDI $0, R5SAVE_4, R5_4, R5_4
|
||||
// Set the message block in lane 1 to the value 0 so that it
|
||||
// can be accumulated without affecting the final result.
|
||||
VZERO T_1
|
||||
|
||||
// Split the final message block into 26-bit limbs in lane 0.
|
||||
// Lane 1 will be contain 0.
|
||||
EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)
|
||||
|
||||
// Append a 1 byte to the end of the last block only if it is a
|
||||
// full 16 byte block.
|
||||
CMPBNE R3, $16, 2(PC)
|
||||
VLEIB $4, $1, M_4
|
||||
|
||||
// We have previously saved r and 5r in the 32-bit even indexes
|
||||
// of the R_[0-4] and R5_[1-4] coefficient registers.
|
||||
//
|
||||
// We want lane 0 to be multiplied by r so we need to move the
|
||||
// saved r value into the 32-bit odd index in lane 0. We want
|
||||
// lane 1 to be set to the value 1. This makes multiplication
|
||||
// a no-op. We do this by setting lane 1 in every register to 0
|
||||
// and then just setting the 32-bit index 3 in R_0 to 1.
|
||||
VZERO T_0
|
||||
MOVD $0, R0
|
||||
MOVD $0x10111213, R12
|
||||
VLVGP R12, R0, T_1 // [_, 0x10111213, _, 0x00000000]
|
||||
VPERM T_0, R_0, T_1, R_0 // [_, r₂₆[0], _, 0]
|
||||
VPERM T_0, R_1, T_1, R_1 // [_, r₂₆[1], _, 0]
|
||||
VPERM T_0, R_2, T_1, R_2 // [_, r₂₆[2], _, 0]
|
||||
VPERM T_0, R_3, T_1, R_3 // [_, r₂₆[3], _, 0]
|
||||
VPERM T_0, R_4, T_1, R_4 // [_, r₂₆[4], _, 0]
|
||||
VPERM T_0, R5_1, T_1, R5_1 // [_, 5r₂₆[1], _, 0]
|
||||
VPERM T_0, R5_2, T_1, R5_2 // [_, 5r₂₆[2], _, 0]
|
||||
VPERM T_0, R5_3, T_1, R5_3 // [_, 5r₂₆[3], _, 0]
|
||||
VPERM T_0, R5_4, T_1, R5_4 // [_, 5r₂₆[4], _, 0]
|
||||
|
||||
// Set the value of lane 1 to be 1.
|
||||
VLEIF $3, $1, R_0 // [_, r₂₆[0], _, 1]
|
||||
|
||||
MOVD $0, R3
|
||||
BR multiply
|
||||
|
|
|
@ -1,909 +0,0 @@
|
|||
// Copyright 2018 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build s390x,go1.11,!gccgo,!appengine
|
||||
|
||||
#include "textflag.h"
|
||||
|
||||
// Implementation of Poly1305 using the vector facility (vx) and the VMSL instruction.
|
||||
|
||||
// constants
|
||||
#define EX0 V1
|
||||
#define EX1 V2
|
||||
#define EX2 V3
|
||||
|
||||
// temporaries
|
||||
#define T_0 V4
|
||||
#define T_1 V5
|
||||
#define T_2 V6
|
||||
#define T_3 V7
|
||||
#define T_4 V8
|
||||
#define T_5 V9
|
||||
#define T_6 V10
|
||||
#define T_7 V11
|
||||
#define T_8 V12
|
||||
#define T_9 V13
|
||||
#define T_10 V14
|
||||
|
||||
// r**2 & r**4
|
||||
#define R_0 V15
|
||||
#define R_1 V16
|
||||
#define R_2 V17
|
||||
#define R5_1 V18
|
||||
#define R5_2 V19
|
||||
// key (r)
|
||||
#define RSAVE_0 R7
|
||||
#define RSAVE_1 R8
|
||||
#define RSAVE_2 R9
|
||||
#define R5SAVE_1 R10
|
||||
#define R5SAVE_2 R11
|
||||
|
||||
// message block
|
||||
#define M0 V20
|
||||
#define M1 V21
|
||||
#define M2 V22
|
||||
#define M3 V23
|
||||
#define M4 V24
|
||||
#define M5 V25
|
||||
|
||||
// accumulator
|
||||
#define H0_0 V26
|
||||
#define H1_0 V27
|
||||
#define H2_0 V28
|
||||
#define H0_1 V29
|
||||
#define H1_1 V30
|
||||
#define H2_1 V31
|
||||
|
||||
GLOBL ·keyMask<>(SB), RODATA, $16
|
||||
DATA ·keyMask<>+0(SB)/8, $0xffffff0ffcffff0f
|
||||
DATA ·keyMask<>+8(SB)/8, $0xfcffff0ffcffff0f
|
||||
|
||||
GLOBL ·bswapMask<>(SB), RODATA, $16
|
||||
DATA ·bswapMask<>+0(SB)/8, $0x0f0e0d0c0b0a0908
|
||||
DATA ·bswapMask<>+8(SB)/8, $0x0706050403020100
|
||||
|
||||
GLOBL ·constants<>(SB), RODATA, $48
|
||||
// EX0
|
||||
DATA ·constants<>+0(SB)/8, $0x18191a1b1c1d1e1f
|
||||
DATA ·constants<>+8(SB)/8, $0x0000050403020100
|
||||
// EX1
|
||||
DATA ·constants<>+16(SB)/8, $0x18191a1b1c1d1e1f
|
||||
DATA ·constants<>+24(SB)/8, $0x00000a0908070605
|
||||
// EX2
|
||||
DATA ·constants<>+32(SB)/8, $0x18191a1b1c1d1e1f
|
||||
DATA ·constants<>+40(SB)/8, $0x0000000f0e0d0c0b
|
||||
|
||||
GLOBL ·c<>(SB), RODATA, $48
|
||||
// EX0
|
||||
DATA ·c<>+0(SB)/8, $0x0000050403020100
|
||||
DATA ·c<>+8(SB)/8, $0x0000151413121110
|
||||
// EX1
|
||||
DATA ·c<>+16(SB)/8, $0x00000a0908070605
|
||||
DATA ·c<>+24(SB)/8, $0x00001a1918171615
|
||||
// EX2
|
||||
DATA ·c<>+32(SB)/8, $0x0000000f0e0d0c0b
|
||||
DATA ·c<>+40(SB)/8, $0x0000001f1e1d1c1b
|
||||
|
||||
GLOBL ·reduce<>(SB), RODATA, $32
|
||||
// 44 bit
|
||||
DATA ·reduce<>+0(SB)/8, $0x0
|
||||
DATA ·reduce<>+8(SB)/8, $0xfffffffffff
|
||||
// 42 bit
|
||||
DATA ·reduce<>+16(SB)/8, $0x0
|
||||
DATA ·reduce<>+24(SB)/8, $0x3ffffffffff
|
||||
|
||||
// h = (f*g) % (2**130-5) [partial reduction]
|
||||
// uses T_0...T_9 temporary registers
|
||||
// input: m02_0, m02_1, m02_2, m13_0, m13_1, m13_2, r_0, r_1, r_2, r5_1, r5_2, m4_0, m4_1, m4_2, m5_0, m5_1, m5_2
|
||||
// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8, t9
|
||||
// output: m02_0, m02_1, m02_2, m13_0, m13_1, m13_2
|
||||
#define MULTIPLY(m02_0, m02_1, m02_2, m13_0, m13_1, m13_2, r_0, r_1, r_2, r5_1, r5_2, m4_0, m4_1, m4_2, m5_0, m5_1, m5_2, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) \
|
||||
\ // Eliminate the dependency for the last 2 VMSLs
|
||||
VMSLG m02_0, r_2, m4_2, m4_2 \
|
||||
VMSLG m13_0, r_2, m5_2, m5_2 \ // 8 VMSLs pipelined
|
||||
VMSLG m02_0, r_0, m4_0, m4_0 \
|
||||
VMSLG m02_1, r5_2, V0, T_0 \
|
||||
VMSLG m02_0, r_1, m4_1, m4_1 \
|
||||
VMSLG m02_1, r_0, V0, T_1 \
|
||||
VMSLG m02_1, r_1, V0, T_2 \
|
||||
VMSLG m02_2, r5_1, V0, T_3 \
|
||||
VMSLG m02_2, r5_2, V0, T_4 \
|
||||
VMSLG m13_0, r_0, m5_0, m5_0 \
|
||||
VMSLG m13_1, r5_2, V0, T_5 \
|
||||
VMSLG m13_0, r_1, m5_1, m5_1 \
|
||||
VMSLG m13_1, r_0, V0, T_6 \
|
||||
VMSLG m13_1, r_1, V0, T_7 \
|
||||
VMSLG m13_2, r5_1, V0, T_8 \
|
||||
VMSLG m13_2, r5_2, V0, T_9 \
|
||||
VMSLG m02_2, r_0, m4_2, m4_2 \
|
||||
VMSLG m13_2, r_0, m5_2, m5_2 \
|
||||
VAQ m4_0, T_0, m02_0 \
|
||||
VAQ m4_1, T_1, m02_1 \
|
||||
VAQ m5_0, T_5, m13_0 \
|
||||
VAQ m5_1, T_6, m13_1 \
|
||||
VAQ m02_0, T_3, m02_0 \
|
||||
VAQ m02_1, T_4, m02_1 \
|
||||
VAQ m13_0, T_8, m13_0 \
|
||||
VAQ m13_1, T_9, m13_1 \
|
||||
VAQ m4_2, T_2, m02_2 \
|
||||
VAQ m5_2, T_7, m13_2 \
|
||||
|
||||
// SQUARE uses three limbs of r and r_2*5 to output square of r
|
||||
// uses T_1, T_5 and T_7 temporary registers
|
||||
// input: r_0, r_1, r_2, r5_2
|
||||
// temp: TEMP0, TEMP1, TEMP2
|
||||
// output: p0, p1, p2
|
||||
#define SQUARE(r_0, r_1, r_2, r5_2, p0, p1, p2, TEMP0, TEMP1, TEMP2) \
|
||||
VMSLG r_0, r_0, p0, p0 \
|
||||
VMSLG r_1, r5_2, V0, TEMP0 \
|
||||
VMSLG r_2, r5_2, p1, p1 \
|
||||
VMSLG r_0, r_1, V0, TEMP1 \
|
||||
VMSLG r_1, r_1, p2, p2 \
|
||||
VMSLG r_0, r_2, V0, TEMP2 \
|
||||
VAQ TEMP0, p0, p0 \
|
||||
VAQ TEMP1, p1, p1 \
|
||||
VAQ TEMP2, p2, p2 \
|
||||
VAQ TEMP0, p0, p0 \
|
||||
VAQ TEMP1, p1, p1 \
|
||||
VAQ TEMP2, p2, p2 \
|
||||
|
||||
// carry h0->h1->h2->h0 || h3->h4->h5->h3
|
||||
// uses T_2, T_4, T_5, T_7, T_8, T_9
|
||||
// t6, t7, t8, t9, t10, t11
|
||||
// input: h0, h1, h2, h3, h4, h5
|
||||
// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11
|
||||
// output: h0, h1, h2, h3, h4, h5
|
||||
#define REDUCE(h0, h1, h2, h3, h4, h5, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11) \
|
||||
VLM (R12), t6, t7 \ // 44 and 42 bit clear mask
|
||||
VLEIB $7, $0x28, t10 \ // 5 byte shift mask
|
||||
VREPIB $4, t8 \ // 4 bit shift mask
|
||||
VREPIB $2, t11 \ // 2 bit shift mask
|
||||
VSRLB t10, h0, t0 \ // h0 byte shift
|
||||
VSRLB t10, h1, t1 \ // h1 byte shift
|
||||
VSRLB t10, h2, t2 \ // h2 byte shift
|
||||
VSRLB t10, h3, t3 \ // h3 byte shift
|
||||
VSRLB t10, h4, t4 \ // h4 byte shift
|
||||
VSRLB t10, h5, t5 \ // h5 byte shift
|
||||
VSRL t8, t0, t0 \ // h0 bit shift
|
||||
VSRL t8, t1, t1 \ // h2 bit shift
|
||||
VSRL t11, t2, t2 \ // h2 bit shift
|
||||
VSRL t8, t3, t3 \ // h3 bit shift
|
||||
VSRL t8, t4, t4 \ // h4 bit shift
|
||||
VESLG $2, t2, t9 \ // h2 carry x5
|
||||
VSRL t11, t5, t5 \ // h5 bit shift
|
||||
VN t6, h0, h0 \ // h0 clear carry
|
||||
VAQ t2, t9, t2 \ // h2 carry x5
|
||||
VESLG $2, t5, t9 \ // h5 carry x5
|
||||
VN t6, h1, h1 \ // h1 clear carry
|
||||
VN t7, h2, h2 \ // h2 clear carry
|
||||
VAQ t5, t9, t5 \ // h5 carry x5
|
||||
VN t6, h3, h3 \ // h3 clear carry
|
||||
VN t6, h4, h4 \ // h4 clear carry
|
||||
VN t7, h5, h5 \ // h5 clear carry
|
||||
VAQ t0, h1, h1 \ // h0->h1
|
||||
VAQ t3, h4, h4 \ // h3->h4
|
||||
VAQ t1, h2, h2 \ // h1->h2
|
||||
VAQ t4, h5, h5 \ // h4->h5
|
||||
VAQ t2, h0, h0 \ // h2->h0
|
||||
VAQ t5, h3, h3 \ // h5->h3
|
||||
VREPG $1, t6, t6 \ // 44 and 42 bit masks across both halves
|
||||
VREPG $1, t7, t7 \
|
||||
VSLDB $8, h0, h0, h0 \ // set up [h0/1/2, h3/4/5]
|
||||
VSLDB $8, h1, h1, h1 \
|
||||
VSLDB $8, h2, h2, h2 \
|
||||
VO h0, h3, h3 \
|
||||
VO h1, h4, h4 \
|
||||
VO h2, h5, h5 \
|
||||
VESRLG $44, h3, t0 \ // 44 bit shift right
|
||||
VESRLG $44, h4, t1 \
|
||||
VESRLG $42, h5, t2 \
|
||||
VN t6, h3, h3 \ // clear carry bits
|
||||
VN t6, h4, h4 \
|
||||
VN t7, h5, h5 \
|
||||
VESLG $2, t2, t9 \ // multiply carry by 5
|
||||
VAQ t9, t2, t2 \
|
||||
VAQ t0, h4, h4 \
|
||||
VAQ t1, h5, h5 \
|
||||
VAQ t2, h3, h3 \
|
||||
|
||||
// carry h0->h1->h2->h0
|
||||
// input: h0, h1, h2
|
||||
// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8
|
||||
// output: h0, h1, h2
|
||||
#define REDUCE2(h0, h1, h2, t0, t1, t2, t3, t4, t5, t6, t7, t8) \
|
||||
VLEIB $7, $0x28, t3 \ // 5 byte shift mask
|
||||
VREPIB $4, t4 \ // 4 bit shift mask
|
||||
VREPIB $2, t7 \ // 2 bit shift mask
|
||||
VGBM $0x003F, t5 \ // mask to clear carry bits
|
||||
VSRLB t3, h0, t0 \
|
||||
VSRLB t3, h1, t1 \
|
||||
VSRLB t3, h2, t2 \
|
||||
VESRLG $4, t5, t5 \ // 44 bit clear mask
|
||||
VSRL t4, t0, t0 \
|
||||
VSRL t4, t1, t1 \
|
||||
VSRL t7, t2, t2 \
|
||||
VESRLG $2, t5, t6 \ // 42 bit clear mask
|
||||
VESLG $2, t2, t8 \
|
||||
VAQ t8, t2, t2 \
|
||||
VN t5, h0, h0 \
|
||||
VN t5, h1, h1 \
|
||||
VN t6, h2, h2 \
|
||||
VAQ t0, h1, h1 \
|
||||
VAQ t1, h2, h2 \
|
||||
VAQ t2, h0, h0 \
|
||||
VSRLB t3, h0, t0 \
|
||||
VSRLB t3, h1, t1 \
|
||||
VSRLB t3, h2, t2 \
|
||||
VSRL t4, t0, t0 \
|
||||
VSRL t4, t1, t1 \
|
||||
VSRL t7, t2, t2 \
|
||||
VN t5, h0, h0 \
|
||||
VN t5, h1, h1 \
|
||||
VESLG $2, t2, t8 \
|
||||
VN t6, h2, h2 \
|
||||
VAQ t0, h1, h1 \
|
||||
VAQ t8, t2, t2 \
|
||||
VAQ t1, h2, h2 \
|
||||
VAQ t2, h0, h0 \
|
||||
|
||||
// expands two message blocks into the lower halfs of the d registers
|
||||
// moves the contents of the d registers into upper halfs
|
||||
// input: in1, in2, d0, d1, d2, d3, d4, d5
|
||||
// temp: TEMP0, TEMP1, TEMP2, TEMP3
|
||||
// output: d0, d1, d2, d3, d4, d5
|
||||
#define EXPACC(in1, in2, d0, d1, d2, d3, d4, d5, TEMP0, TEMP1, TEMP2, TEMP3) \
|
||||
VGBM $0xff3f, TEMP0 \
|
||||
VGBM $0xff1f, TEMP1 \
|
||||
VESLG $4, d1, TEMP2 \
|
||||
VESLG $4, d4, TEMP3 \
|
||||
VESRLG $4, TEMP0, TEMP0 \
|
||||
VPERM in1, d0, EX0, d0 \
|
||||
VPERM in2, d3, EX0, d3 \
|
||||
VPERM in1, d2, EX2, d2 \
|
||||
VPERM in2, d5, EX2, d5 \
|
||||
VPERM in1, TEMP2, EX1, d1 \
|
||||
VPERM in2, TEMP3, EX1, d4 \
|
||||
VN TEMP0, d0, d0 \
|
||||
VN TEMP0, d3, d3 \
|
||||
VESRLG $4, d1, d1 \
|
||||
VESRLG $4, d4, d4 \
|
||||
VN TEMP1, d2, d2 \
|
||||
VN TEMP1, d5, d5 \
|
||||
VN TEMP0, d1, d1 \
|
||||
VN TEMP0, d4, d4 \
|
||||
|
||||
// expands one message block into the lower halfs of the d registers
|
||||
// moves the contents of the d registers into upper halfs
|
||||
// input: in, d0, d1, d2
|
||||
// temp: TEMP0, TEMP1, TEMP2
|
||||
// output: d0, d1, d2
|
||||
#define EXPACC2(in, d0, d1, d2, TEMP0, TEMP1, TEMP2) \
|
||||
VGBM $0xff3f, TEMP0 \
|
||||
VESLG $4, d1, TEMP2 \
|
||||
VGBM $0xff1f, TEMP1 \
|
||||
VPERM in, d0, EX0, d0 \
|
||||
VESRLG $4, TEMP0, TEMP0 \
|
||||
VPERM in, d2, EX2, d2 \
|
||||
VPERM in, TEMP2, EX1, d1 \
|
||||
VN TEMP0, d0, d0 \
|
||||
VN TEMP1, d2, d2 \
|
||||
VESRLG $4, d1, d1 \
|
||||
VN TEMP0, d1, d1 \
|
||||
|
||||
// pack h2:h0 into h1:h0 (no carry)
|
||||
// input: h0, h1, h2
|
||||
// output: h0, h1, h2
|
||||
#define PACK(h0, h1, h2) \
|
||||
VMRLG h1, h2, h2 \ // copy h1 to upper half h2
|
||||
VESLG $44, h1, h1 \ // shift limb 1 44 bits, leaving 20
|
||||
VO h0, h1, h0 \ // combine h0 with 20 bits from limb 1
|
||||
VESRLG $20, h2, h1 \ // put top 24 bits of limb 1 into h1
|
||||
VLEIG $1, $0, h1 \ // clear h2 stuff from lower half of h1
|
||||
VO h0, h1, h0 \ // h0 now has 88 bits (limb 0 and 1)
|
||||
VLEIG $0, $0, h2 \ // clear upper half of h2
|
||||
VESRLG $40, h2, h1 \ // h1 now has upper two bits of result
|
||||
VLEIB $7, $88, h1 \ // for byte shift (11 bytes)
|
||||
VSLB h1, h2, h2 \ // shift h2 11 bytes to the left
|
||||
VO h0, h2, h0 \ // combine h0 with 20 bits from limb 1
|
||||
VLEIG $0, $0, h1 \ // clear upper half of h1
|
||||
|
||||
// if h > 2**130-5 then h -= 2**130-5
|
||||
// input: h0, h1
|
||||
// temp: t0, t1, t2
|
||||
// output: h0
|
||||
#define MOD(h0, h1, t0, t1, t2) \
|
||||
VZERO t0 \
|
||||
VLEIG $1, $5, t0 \
|
||||
VACCQ h0, t0, t1 \
|
||||
VAQ h0, t0, t0 \
|
||||
VONE t2 \
|
||||
VLEIG $1, $-4, t2 \
|
||||
VAQ t2, t1, t1 \
|
||||
VACCQ h1, t1, t1 \
|
||||
VONE t2 \
|
||||
VAQ t2, t1, t1 \
|
||||
VN h0, t1, t2 \
|
||||
VNC t0, t1, t1 \
|
||||
VO t1, t2, h0 \
|
||||
|
||||
// func poly1305vmsl(out *[16]byte, m *byte, mlen uint64, key *[32]key)
|
||||
TEXT ·poly1305vmsl(SB), $0-32
|
||||
// This code processes 6 + up to 4 blocks (32 bytes) per iteration
|
||||
// using the algorithm described in:
|
||||
// NEON crypto, Daniel J. Bernstein & Peter Schwabe
|
||||
// https://cryptojedi.org/papers/neoncrypto-20120320.pdf
|
||||
// And as moddified for VMSL as described in
|
||||
// Accelerating Poly1305 Cryptographic Message Authentication on the z14
|
||||
// O'Farrell et al, CASCON 2017, p48-55
|
||||
// https://ibm.ent.box.com/s/jf9gedj0e9d2vjctfyh186shaztavnht
|
||||
|
||||
LMG out+0(FP), R1, R4 // R1=out, R2=m, R3=mlen, R4=key
|
||||
VZERO V0 // c
|
||||
|
||||
// load EX0, EX1 and EX2
|
||||
MOVD $·constants<>(SB), R5
|
||||
VLM (R5), EX0, EX2 // c
|
||||
|
||||
// setup r
|
||||
VL (R4), T_0
|
||||
MOVD $·keyMask<>(SB), R6
|
||||
VL (R6), T_1
|
||||
VN T_0, T_1, T_0
|
||||
VZERO T_2 // limbs for r
|
||||
VZERO T_3
|
||||
VZERO T_4
|
||||
EXPACC2(T_0, T_2, T_3, T_4, T_1, T_5, T_7)
|
||||
|
||||
// T_2, T_3, T_4: [0, r]
|
||||
|
||||
// setup r*20
|
||||
VLEIG $0, $0, T_0
|
||||
VLEIG $1, $20, T_0 // T_0: [0, 20]
|
||||
VZERO T_5
|
||||
VZERO T_6
|
||||
VMSLG T_0, T_3, T_5, T_5
|
||||
VMSLG T_0, T_4, T_6, T_6
|
||||
|
||||
// store r for final block in GR
|
||||
VLGVG $1, T_2, RSAVE_0 // c
|
||||
VLGVG $1, T_3, RSAVE_1 // c
|
||||
VLGVG $1, T_4, RSAVE_2 // c
|
||||
VLGVG $1, T_5, R5SAVE_1 // c
|
||||
VLGVG $1, T_6, R5SAVE_2 // c
|
||||
|
||||
// initialize h
|
||||
VZERO H0_0
|
||||
VZERO H1_0
|
||||
VZERO H2_0
|
||||
VZERO H0_1
|
||||
VZERO H1_1
|
||||
VZERO H2_1
|
||||
|
||||
// initialize pointer for reduce constants
|
||||
MOVD $·reduce<>(SB), R12
|
||||
|
||||
// calculate r**2 and 20*(r**2)
|
||||
VZERO R_0
|
||||
VZERO R_1
|
||||
VZERO R_2
|
||||
SQUARE(T_2, T_3, T_4, T_6, R_0, R_1, R_2, T_1, T_5, T_7)
|
||||
REDUCE2(R_0, R_1, R_2, M0, M1, M2, M3, M4, R5_1, R5_2, M5, T_1)
|
||||
VZERO R5_1
|
||||
VZERO R5_2
|
||||
VMSLG T_0, R_1, R5_1, R5_1
|
||||
VMSLG T_0, R_2, R5_2, R5_2
|
||||
|
||||
// skip r**4 calculation if 3 blocks or less
|
||||
CMPBLE R3, $48, b4
|
||||
|
||||
// calculate r**4 and 20*(r**4)
|
||||
VZERO T_8
|
||||
VZERO T_9
|
||||
VZERO T_10
|
||||
SQUARE(R_0, R_1, R_2, R5_2, T_8, T_9, T_10, T_1, T_5, T_7)
|
||||
REDUCE2(T_8, T_9, T_10, M0, M1, M2, M3, M4, T_2, T_3, M5, T_1)
|
||||
VZERO T_2
|
||||
VZERO T_3
|
||||
VMSLG T_0, T_9, T_2, T_2
|
||||
VMSLG T_0, T_10, T_3, T_3
|
||||
|
||||
// put r**2 to the right and r**4 to the left of R_0, R_1, R_2
|
||||
VSLDB $8, T_8, T_8, T_8
|
||||
VSLDB $8, T_9, T_9, T_9
|
||||
VSLDB $8, T_10, T_10, T_10
|
||||
VSLDB $8, T_2, T_2, T_2
|
||||
VSLDB $8, T_3, T_3, T_3
|
||||
|
||||
VO T_8, R_0, R_0
|
||||
VO T_9, R_1, R_1
|
||||
VO T_10, R_2, R_2
|
||||
VO T_2, R5_1, R5_1
|
||||
VO T_3, R5_2, R5_2
|
||||
|
||||
CMPBLE R3, $80, load // less than or equal to 5 blocks in message
|
||||
|
||||
// 6(or 5+1) blocks
|
||||
SUB $81, R3
|
||||
VLM (R2), M0, M4
|
||||
VLL R3, 80(R2), M5
|
||||
ADD $1, R3
|
||||
MOVBZ $1, R0
|
||||
CMPBGE R3, $16, 2(PC)
|
||||
VLVGB R3, R0, M5
|
||||
MOVD $96(R2), R2
|
||||
EXPACC(M0, M1, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3)
|
||||
EXPACC(M2, M3, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3)
|
||||
VLEIB $2, $1, H2_0
|
||||
VLEIB $2, $1, H2_1
|
||||
VLEIB $10, $1, H2_0
|
||||
VLEIB $10, $1, H2_1
|
||||
|
||||
VZERO M0
|
||||
VZERO M1
|
||||
VZERO M2
|
||||
VZERO M3
|
||||
VZERO T_4
|
||||
VZERO T_10
|
||||
EXPACC(M4, M5, M0, M1, M2, M3, T_4, T_10, T_0, T_1, T_2, T_3)
|
||||
VLR T_4, M4
|
||||
VLEIB $10, $1, M2
|
||||
CMPBLT R3, $16, 2(PC)
|
||||
VLEIB $10, $1, T_10
|
||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
|
||||
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M2, M3, M4, T_4, T_5, T_2, T_7, T_8, T_9)
|
||||
VMRHG V0, H0_1, H0_0
|
||||
VMRHG V0, H1_1, H1_0
|
||||
VMRHG V0, H2_1, H2_0
|
||||
VMRLG V0, H0_1, H0_1
|
||||
VMRLG V0, H1_1, H1_1
|
||||
VMRLG V0, H2_1, H2_1
|
||||
|
||||
SUB $16, R3
|
||||
CMPBLE R3, $0, square
|
||||
|
||||
load:
|
||||
// load EX0, EX1 and EX2
|
||||
MOVD $·c<>(SB), R5
|
||||
VLM (R5), EX0, EX2
|
||||
|
||||
loop:
|
||||
CMPBLE R3, $64, add // b4 // last 4 or less blocks left
|
||||
|
||||
// next 4 full blocks
|
||||
VLM (R2), M2, M5
|
||||
SUB $64, R3
|
||||
MOVD $64(R2), R2
|
||||
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, T_0, T_1, T_3, T_4, T_5, T_2, T_7, T_8, T_9)
|
||||
|
||||
// expacc in-lined to create [m2, m3] limbs
|
||||
VGBM $0x3f3f, T_0 // 44 bit clear mask
|
||||
VGBM $0x1f1f, T_1 // 40 bit clear mask
|
||||
VPERM M2, M3, EX0, T_3
|
||||
VESRLG $4, T_0, T_0 // 44 bit clear mask ready
|
||||
VPERM M2, M3, EX1, T_4
|
||||
VPERM M2, M3, EX2, T_5
|
||||
VN T_0, T_3, T_3
|
||||
VESRLG $4, T_4, T_4
|
||||
VN T_1, T_5, T_5
|
||||
VN T_0, T_4, T_4
|
||||
VMRHG H0_1, T_3, H0_0
|
||||
VMRHG H1_1, T_4, H1_0
|
||||
VMRHG H2_1, T_5, H2_0
|
||||
VMRLG H0_1, T_3, H0_1
|
||||
VMRLG H1_1, T_4, H1_1
|
||||
VMRLG H2_1, T_5, H2_1
|
||||
VLEIB $10, $1, H2_0
|
||||
VLEIB $10, $1, H2_1
|
||||
VPERM M4, M5, EX0, T_3
|
||||
VPERM M4, M5, EX1, T_4
|
||||
VPERM M4, M5, EX2, T_5
|
||||
VN T_0, T_3, T_3
|
||||
VESRLG $4, T_4, T_4
|
||||
VN T_1, T_5, T_5
|
||||
VN T_0, T_4, T_4
|
||||
VMRHG V0, T_3, M0
|
||||
VMRHG V0, T_4, M1
|
||||
VMRHG V0, T_5, M2
|
||||
VMRLG V0, T_3, M3
|
||||
VMRLG V0, T_4, M4
|
||||
VMRLG V0, T_5, M5
|
||||
VLEIB $10, $1, M2
|
||||
VLEIB $10, $1, M5
|
||||
|
||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
|
||||
CMPBNE R3, $0, loop
|
||||
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9)
|
||||
VMRHG V0, H0_1, H0_0
|
||||
VMRHG V0, H1_1, H1_0
|
||||
VMRHG V0, H2_1, H2_0
|
||||
VMRLG V0, H0_1, H0_1
|
||||
VMRLG V0, H1_1, H1_1
|
||||
VMRLG V0, H2_1, H2_1
|
||||
|
||||
// load EX0, EX1, EX2
|
||||
MOVD $·constants<>(SB), R5
|
||||
VLM (R5), EX0, EX2
|
||||
|
||||
// sum vectors
|
||||
VAQ H0_0, H0_1, H0_0
|
||||
VAQ H1_0, H1_1, H1_0
|
||||
VAQ H2_0, H2_1, H2_0
|
||||
|
||||
// h may be >= 2*(2**130-5) so we need to reduce it again
|
||||
// M0...M4 are used as temps here
|
||||
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5)
|
||||
|
||||
next: // carry h1->h2
|
||||
VLEIB $7, $0x28, T_1
|
||||
VREPIB $4, T_2
|
||||
VGBM $0x003F, T_3
|
||||
VESRLG $4, T_3
|
||||
|
||||
// byte shift
|
||||
VSRLB T_1, H1_0, T_4
|
||||
|
||||
// bit shift
|
||||
VSRL T_2, T_4, T_4
|
||||
|
||||
// clear h1 carry bits
|
||||
VN T_3, H1_0, H1_0
|
||||
|
||||
// add carry
|
||||
VAQ T_4, H2_0, H2_0
|
||||
|
||||
// h is now < 2*(2**130-5)
|
||||
// pack h into h1 (hi) and h0 (lo)
|
||||
PACK(H0_0, H1_0, H2_0)
|
||||
|
||||
// if h > 2**130-5 then h -= 2**130-5
|
||||
MOD(H0_0, H1_0, T_0, T_1, T_2)
|
||||
|
||||
// h += s
|
||||
MOVD $·bswapMask<>(SB), R5
|
||||
VL (R5), T_1
|
||||
VL 16(R4), T_0
|
||||
VPERM T_0, T_0, T_1, T_0 // reverse bytes (to big)
|
||||
VAQ T_0, H0_0, H0_0
|
||||
VPERM H0_0, H0_0, T_1, H0_0 // reverse bytes (to little)
|
||||
VST H0_0, (R1)
|
||||
RET
|
||||
|
||||
add:
|
||||
// load EX0, EX1, EX2
|
||||
MOVD $·constants<>(SB), R5
|
||||
VLM (R5), EX0, EX2
|
||||
|
||||
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9)
|
||||
VMRHG V0, H0_1, H0_0
|
||||
VMRHG V0, H1_1, H1_0
|
||||
VMRHG V0, H2_1, H2_0
|
||||
VMRLG V0, H0_1, H0_1
|
||||
VMRLG V0, H1_1, H1_1
|
||||
VMRLG V0, H2_1, H2_1
|
||||
CMPBLE R3, $64, b4
|
||||
|
||||
b4:
|
||||
CMPBLE R3, $48, b3 // 3 blocks or less
|
||||
|
||||
// 4(3+1) blocks remaining
|
||||
SUB $49, R3
|
||||
VLM (R2), M0, M2
|
||||
VLL R3, 48(R2), M3
|
||||
ADD $1, R3
|
||||
MOVBZ $1, R0
|
||||
CMPBEQ R3, $16, 2(PC)
|
||||
VLVGB R3, R0, M3
|
||||
MOVD $64(R2), R2
|
||||
EXPACC(M0, M1, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3)
|
||||
VLEIB $10, $1, H2_0
|
||||
VLEIB $10, $1, H2_1
|
||||
VZERO M0
|
||||
VZERO M1
|
||||
VZERO M4
|
||||
VZERO M5
|
||||
VZERO T_4
|
||||
VZERO T_10
|
||||
EXPACC(M2, M3, M0, M1, M4, M5, T_4, T_10, T_0, T_1, T_2, T_3)
|
||||
VLR T_4, M2
|
||||
VLEIB $10, $1, M4
|
||||
CMPBNE R3, $16, 2(PC)
|
||||
VLEIB $10, $1, T_10
|
||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M4, M5, M2, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
|
||||
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9)
|
||||
VMRHG V0, H0_1, H0_0
|
||||
VMRHG V0, H1_1, H1_0
|
||||
VMRHG V0, H2_1, H2_0
|
||||
VMRLG V0, H0_1, H0_1
|
||||
VMRLG V0, H1_1, H1_1
|
||||
VMRLG V0, H2_1, H2_1
|
||||
SUB $16, R3
|
||||
CMPBLE R3, $0, square // this condition must always hold true!
|
||||
|
||||
b3:
|
||||
CMPBLE R3, $32, b2
|
||||
|
||||
// 3 blocks remaining
|
||||
|
||||
// setup [r²,r]
|
||||
VSLDB $8, R_0, R_0, R_0
|
||||
VSLDB $8, R_1, R_1, R_1
|
||||
VSLDB $8, R_2, R_2, R_2
|
||||
VSLDB $8, R5_1, R5_1, R5_1
|
||||
VSLDB $8, R5_2, R5_2, R5_2
|
||||
|
||||
VLVGG $1, RSAVE_0, R_0
|
||||
VLVGG $1, RSAVE_1, R_1
|
||||
VLVGG $1, RSAVE_2, R_2
|
||||
VLVGG $1, R5SAVE_1, R5_1
|
||||
VLVGG $1, R5SAVE_2, R5_2
|
||||
|
||||
// setup [h0, h1]
|
||||
VSLDB $8, H0_0, H0_0, H0_0
|
||||
VSLDB $8, H1_0, H1_0, H1_0
|
||||
VSLDB $8, H2_0, H2_0, H2_0
|
||||
VO H0_1, H0_0, H0_0
|
||||
VO H1_1, H1_0, H1_0
|
||||
VO H2_1, H2_0, H2_0
|
||||
VZERO H0_1
|
||||
VZERO H1_1
|
||||
VZERO H2_1
|
||||
|
||||
VZERO M0
|
||||
VZERO M1
|
||||
VZERO M2
|
||||
VZERO M3
|
||||
VZERO M4
|
||||
VZERO M5
|
||||
|
||||
// H*[r**2, r]
|
||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
|
||||
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, H0_1, H1_1, T_10, M5)
|
||||
|
||||
SUB $33, R3
|
||||
VLM (R2), M0, M1
|
||||
VLL R3, 32(R2), M2
|
||||
ADD $1, R3
|
||||
MOVBZ $1, R0
|
||||
CMPBEQ R3, $16, 2(PC)
|
||||
VLVGB R3, R0, M2
|
||||
|
||||
// H += m0
|
||||
VZERO T_1
|
||||
VZERO T_2
|
||||
VZERO T_3
|
||||
EXPACC2(M0, T_1, T_2, T_3, T_4, T_5, T_6)
|
||||
VLEIB $10, $1, T_3
|
||||
VAG H0_0, T_1, H0_0
|
||||
VAG H1_0, T_2, H1_0
|
||||
VAG H2_0, T_3, H2_0
|
||||
|
||||
VZERO M0
|
||||
VZERO M3
|
||||
VZERO M4
|
||||
VZERO M5
|
||||
VZERO T_10
|
||||
|
||||
// (H+m0)*r
|
||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M3, M4, M5, V0, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
|
||||
REDUCE2(H0_0, H1_0, H2_0, M0, M3, M4, M5, T_10, H0_1, H1_1, H2_1, T_9)
|
||||
|
||||
// H += m1
|
||||
VZERO V0
|
||||
VZERO T_1
|
||||
VZERO T_2
|
||||
VZERO T_3
|
||||
EXPACC2(M1, T_1, T_2, T_3, T_4, T_5, T_6)
|
||||
VLEIB $10, $1, T_3
|
||||
VAQ H0_0, T_1, H0_0
|
||||
VAQ H1_0, T_2, H1_0
|
||||
VAQ H2_0, T_3, H2_0
|
||||
REDUCE2(H0_0, H1_0, H2_0, M0, M3, M4, M5, T_9, H0_1, H1_1, H2_1, T_10)
|
||||
|
||||
// [H, m2] * [r**2, r]
|
||||
EXPACC2(M2, H0_0, H1_0, H2_0, T_1, T_2, T_3)
|
||||
CMPBNE R3, $16, 2(PC)
|
||||
VLEIB $10, $1, H2_0
|
||||
VZERO M0
|
||||
VZERO M1
|
||||
VZERO M2
|
||||
VZERO M3
|
||||
VZERO M4
|
||||
VZERO M5
|
||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
|
||||
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, H0_1, H1_1, M5, T_10)
|
||||
SUB $16, R3
|
||||
CMPBLE R3, $0, next // this condition must always hold true!
|
||||
|
||||
b2:
|
||||
CMPBLE R3, $16, b1
|
||||
|
||||
// 2 blocks remaining
|
||||
|
||||
// setup [r²,r]
|
||||
VSLDB $8, R_0, R_0, R_0
|
||||
VSLDB $8, R_1, R_1, R_1
|
||||
VSLDB $8, R_2, R_2, R_2
|
||||
VSLDB $8, R5_1, R5_1, R5_1
|
||||
VSLDB $8, R5_2, R5_2, R5_2
|
||||
|
||||
VLVGG $1, RSAVE_0, R_0
|
||||
VLVGG $1, RSAVE_1, R_1
|
||||
VLVGG $1, RSAVE_2, R_2
|
||||
VLVGG $1, R5SAVE_1, R5_1
|
||||
VLVGG $1, R5SAVE_2, R5_2
|
||||
|
||||
// setup [h0, h1]
|
||||
VSLDB $8, H0_0, H0_0, H0_0
|
||||
VSLDB $8, H1_0, H1_0, H1_0
|
||||
VSLDB $8, H2_0, H2_0, H2_0
|
||||
VO H0_1, H0_0, H0_0
|
||||
VO H1_1, H1_0, H1_0
|
||||
VO H2_1, H2_0, H2_0
|
||||
VZERO H0_1
|
||||
VZERO H1_1
|
||||
VZERO H2_1
|
||||
|
||||
VZERO M0
|
||||
VZERO M1
|
||||
VZERO M2
|
||||
VZERO M3
|
||||
VZERO M4
|
||||
VZERO M5
|
||||
|
||||
// H*[r**2, r]
|
||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
|
||||
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M2, M3, M4, T_4, T_5, T_2, T_7, T_8, T_9)
|
||||
VMRHG V0, H0_1, H0_0
|
||||
VMRHG V0, H1_1, H1_0
|
||||
VMRHG V0, H2_1, H2_0
|
||||
VMRLG V0, H0_1, H0_1
|
||||
VMRLG V0, H1_1, H1_1
|
||||
VMRLG V0, H2_1, H2_1
|
||||
|
||||
// move h to the left and 0s at the right
|
||||
VSLDB $8, H0_0, H0_0, H0_0
|
||||
VSLDB $8, H1_0, H1_0, H1_0
|
||||
VSLDB $8, H2_0, H2_0, H2_0
|
||||
|
||||
// get message blocks and append 1 to start
|
||||
SUB $17, R3
|
||||
VL (R2), M0
|
||||
VLL R3, 16(R2), M1
|
||||
ADD $1, R3
|
||||
MOVBZ $1, R0
|
||||
CMPBEQ R3, $16, 2(PC)
|
||||
VLVGB R3, R0, M1
|
||||
VZERO T_6
|
||||
VZERO T_7
|
||||
VZERO T_8
|
||||
EXPACC2(M0, T_6, T_7, T_8, T_1, T_2, T_3)
|
||||
EXPACC2(M1, T_6, T_7, T_8, T_1, T_2, T_3)
|
||||
VLEIB $2, $1, T_8
|
||||
CMPBNE R3, $16, 2(PC)
|
||||
VLEIB $10, $1, T_8
|
||||
|
||||
// add [m0, m1] to h
|
||||
VAG H0_0, T_6, H0_0
|
||||
VAG H1_0, T_7, H1_0
|
||||
VAG H2_0, T_8, H2_0
|
||||
|
||||
VZERO M2
|
||||
VZERO M3
|
||||
VZERO M4
|
||||
VZERO M5
|
||||
VZERO T_10
|
||||
VZERO M0
|
||||
|
||||
// at this point R_0 .. R5_2 look like [r**2, r]
|
||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M2, M3, M4, M5, T_10, M0, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
|
||||
REDUCE2(H0_0, H1_0, H2_0, M2, M3, M4, M5, T_9, H0_1, H1_1, H2_1, T_10)
|
||||
SUB $16, R3, R3
|
||||
CMPBLE R3, $0, next
|
||||
|
||||
b1:
|
||||
CMPBLE R3, $0, next
|
||||
|
||||
// 1 block remaining
|
||||
|
||||
// setup [r²,r]
|
||||
VSLDB $8, R_0, R_0, R_0
|
||||
VSLDB $8, R_1, R_1, R_1
|
||||
VSLDB $8, R_2, R_2, R_2
|
||||
VSLDB $8, R5_1, R5_1, R5_1
|
||||
VSLDB $8, R5_2, R5_2, R5_2
|
||||
|
||||
VLVGG $1, RSAVE_0, R_0
|
||||
VLVGG $1, RSAVE_1, R_1
|
||||
VLVGG $1, RSAVE_2, R_2
|
||||
VLVGG $1, R5SAVE_1, R5_1
|
||||
VLVGG $1, R5SAVE_2, R5_2
|
||||
|
||||
// setup [h0, h1]
|
||||
VSLDB $8, H0_0, H0_0, H0_0
|
||||
VSLDB $8, H1_0, H1_0, H1_0
|
||||
VSLDB $8, H2_0, H2_0, H2_0
|
||||
VO H0_1, H0_0, H0_0
|
||||
VO H1_1, H1_0, H1_0
|
||||
VO H2_1, H2_0, H2_0
|
||||
VZERO H0_1
|
||||
VZERO H1_1
|
||||
VZERO H2_1
|
||||
|
||||
VZERO M0
|
||||
VZERO M1
|
||||
VZERO M2
|
||||
VZERO M3
|
||||
VZERO M4
|
||||
VZERO M5
|
||||
|
||||
// H*[r**2, r]
|
||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
|
||||
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5)
|
||||
|
||||
// set up [0, m0] limbs
|
||||
SUB $1, R3
|
||||
VLL R3, (R2), M0
|
||||
ADD $1, R3
|
||||
MOVBZ $1, R0
|
||||
CMPBEQ R3, $16, 2(PC)
|
||||
VLVGB R3, R0, M0
|
||||
VZERO T_1
|
||||
VZERO T_2
|
||||
VZERO T_3
|
||||
EXPACC2(M0, T_1, T_2, T_3, T_4, T_5, T_6)// limbs: [0, m]
|
||||
CMPBNE R3, $16, 2(PC)
|
||||
VLEIB $10, $1, T_3
|
||||
|
||||
// h+m0
|
||||
VAQ H0_0, T_1, H0_0
|
||||
VAQ H1_0, T_2, H1_0
|
||||
VAQ H2_0, T_3, H2_0
|
||||
|
||||
VZERO M0
|
||||
VZERO M1
|
||||
VZERO M2
|
||||
VZERO M3
|
||||
VZERO M4
|
||||
VZERO M5
|
||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
|
||||
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5)
|
||||
|
||||
BR next
|
||||
|
||||
square:
|
||||
// setup [r²,r]
|
||||
VSLDB $8, R_0, R_0, R_0
|
||||
VSLDB $8, R_1, R_1, R_1
|
||||
VSLDB $8, R_2, R_2, R_2
|
||||
VSLDB $8, R5_1, R5_1, R5_1
|
||||
VSLDB $8, R5_2, R5_2, R5_2
|
||||
|
||||
VLVGG $1, RSAVE_0, R_0
|
||||
VLVGG $1, RSAVE_1, R_1
|
||||
VLVGG $1, RSAVE_2, R_2
|
||||
VLVGG $1, R5SAVE_1, R5_1
|
||||
VLVGG $1, R5SAVE_2, R5_2
|
||||
|
||||
// setup [h0, h1]
|
||||
VSLDB $8, H0_0, H0_0, H0_0
|
||||
VSLDB $8, H1_0, H1_0, H1_0
|
||||
VSLDB $8, H2_0, H2_0, H2_0
|
||||
VO H0_1, H0_0, H0_0
|
||||
VO H1_1, H1_0, H1_0
|
||||
VO H2_1, H2_0, H2_0
|
||||
VZERO H0_1
|
||||
VZERO H1_1
|
||||
VZERO H2_1
|
||||
|
||||
VZERO M0
|
||||
VZERO M1
|
||||
VZERO M2
|
||||
VZERO M3
|
||||
VZERO M4
|
||||
VZERO M5
|
||||
|
||||
// (h0*r**2) + (h1*r)
|
||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
|
||||
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5)
|
||||
BR next
|
|
@ -22,7 +22,9 @@ const (
|
|||
CertAlgoECDSA256v01 = "ecdsa-sha2-nistp256-cert-v01@openssh.com"
|
||||
CertAlgoECDSA384v01 = "ecdsa-sha2-nistp384-cert-v01@openssh.com"
|
||||
CertAlgoECDSA521v01 = "ecdsa-sha2-nistp521-cert-v01@openssh.com"
|
||||
CertAlgoSKECDSA256v01 = "sk-ecdsa-sha2-nistp256-cert-v01@openssh.com"
|
||||
CertAlgoED25519v01 = "ssh-ed25519-cert-v01@openssh.com"
|
||||
CertAlgoSKED25519v01 = "sk-ssh-ed25519-cert-v01@openssh.com"
|
||||
)
|
||||
|
||||
// Certificate types distinguish between host and user
|
||||
|
@ -37,6 +39,7 @@ const (
|
|||
type Signature struct {
|
||||
Format string
|
||||
Blob []byte
|
||||
Rest []byte `ssh:"rest"`
|
||||
}
|
||||
|
||||
// CertTimeInfinity can be used for OpenSSHCertV01.ValidBefore to indicate that
|
||||
|
@ -411,8 +414,8 @@ func (c *CertChecker) CheckCert(principal string, cert *Certificate) error {
|
|||
return nil
|
||||
}
|
||||
|
||||
// SignCert sets c.SignatureKey to the authority's public key and stores a
|
||||
// Signature, by authority, in the certificate.
|
||||
// SignCert signs the certificate with an authority, setting the Nonce,
|
||||
// SignatureKey, and Signature fields.
|
||||
func (c *Certificate) SignCert(rand io.Reader, authority Signer) error {
|
||||
c.Nonce = make([]byte, 32)
|
||||
if _, err := io.ReadFull(rand, c.Nonce); err != nil {
|
||||
|
@ -434,7 +437,9 @@ var certAlgoNames = map[string]string{
|
|||
KeyAlgoECDSA256: CertAlgoECDSA256v01,
|
||||
KeyAlgoECDSA384: CertAlgoECDSA384v01,
|
||||
KeyAlgoECDSA521: CertAlgoECDSA521v01,
|
||||
KeyAlgoSKECDSA256: CertAlgoSKECDSA256v01,
|
||||
KeyAlgoED25519: CertAlgoED25519v01,
|
||||
KeyAlgoSKED25519: CertAlgoSKED25519v01,
|
||||
}
|
||||
|
||||
// certToPrivAlgo returns the underlying algorithm for a certificate algorithm.
|
||||
|
@ -518,6 +523,12 @@ func parseSignatureBody(in []byte) (out *Signature, rest []byte, ok bool) {
|
|||
return
|
||||
}
|
||||
|
||||
switch out.Format {
|
||||
case KeyAlgoSKECDSA256, CertAlgoSKECDSA256v01, KeyAlgoSKED25519, CertAlgoSKED25519v01:
|
||||
out.Rest = in
|
||||
return out, nil, ok
|
||||
}
|
||||
|
||||
return out, in, ok
|
||||
}
|
||||
|
||||
|
|
|
@ -16,9 +16,8 @@ import (
|
|||
"hash"
|
||||
"io"
|
||||
"io/ioutil"
|
||||
"math/bits"
|
||||
|
||||
"golang.org/x/crypto/internal/chacha20"
|
||||
"golang.org/x/crypto/chacha20"
|
||||
"golang.org/x/crypto/poly1305"
|
||||
)
|
||||
|
||||
|
@ -120,7 +119,7 @@ var cipherModes = map[string]*cipherMode{
|
|||
chacha20Poly1305ID: {64, 0, newChaCha20Cipher},
|
||||
|
||||
// CBC mode is insecure and so is not included in the default config.
|
||||
// (See http://www.isg.rhul.ac.uk/~kp/SandPfinal.pdf). If absolutely
|
||||
// (See https://www.ieee-security.org/TC/SP2013/papers/4977a526.pdf). If absolutely
|
||||
// needed, it's possible to specify a custom Config to enable it.
|
||||
// You should expect that an active attacker can recover plaintext if
|
||||
// you do.
|
||||
|
@ -642,8 +641,8 @@ const chacha20Poly1305ID = "chacha20-poly1305@openssh.com"
|
|||
// the methods here also implement padding, which RFC4253 Section 6
|
||||
// also requires of stream ciphers.
|
||||
type chacha20Poly1305Cipher struct {
|
||||
lengthKey [8]uint32
|
||||
contentKey [8]uint32
|
||||
lengthKey [32]byte
|
||||
contentKey [32]byte
|
||||
buf []byte
|
||||
}
|
||||
|
||||
|
@ -656,21 +655,21 @@ func newChaCha20Cipher(key, unusedIV, unusedMACKey []byte, unusedAlgs directionA
|
|||
buf: make([]byte, 256),
|
||||
}
|
||||
|
||||
for i := range c.contentKey {
|
||||
c.contentKey[i] = binary.LittleEndian.Uint32(key[i*4 : (i+1)*4])
|
||||
}
|
||||
for i := range c.lengthKey {
|
||||
c.lengthKey[i] = binary.LittleEndian.Uint32(key[(i+8)*4 : (i+9)*4])
|
||||
}
|
||||
copy(c.contentKey[:], key[:32])
|
||||
copy(c.lengthKey[:], key[32:])
|
||||
return c, nil
|
||||
}
|
||||
|
||||
func (c *chacha20Poly1305Cipher) readCipherPacket(seqNum uint32, r io.Reader) ([]byte, error) {
|
||||
nonce := [3]uint32{0, 0, bits.ReverseBytes32(seqNum)}
|
||||
s := chacha20.New(c.contentKey, nonce)
|
||||
var polyKey [32]byte
|
||||
nonce := make([]byte, 12)
|
||||
binary.BigEndian.PutUint32(nonce[8:], seqNum)
|
||||
s, err := chacha20.NewUnauthenticatedCipher(c.contentKey[:], nonce)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
var polyKey, discardBuf [32]byte
|
||||
s.XORKeyStream(polyKey[:], polyKey[:])
|
||||
s.Advance() // skip next 32 bytes
|
||||
s.XORKeyStream(discardBuf[:], discardBuf[:]) // skip the next 32 bytes
|
||||
|
||||
encryptedLength := c.buf[:4]
|
||||
if _, err := io.ReadFull(r, encryptedLength); err != nil {
|
||||
|
@ -678,7 +677,11 @@ func (c *chacha20Poly1305Cipher) readCipherPacket(seqNum uint32, r io.Reader) ([
|
|||
}
|
||||
|
||||
var lenBytes [4]byte
|
||||
chacha20.New(c.lengthKey, nonce).XORKeyStream(lenBytes[:], encryptedLength)
|
||||
ls, err := chacha20.NewUnauthenticatedCipher(c.lengthKey[:], nonce)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
ls.XORKeyStream(lenBytes[:], encryptedLength)
|
||||
|
||||
length := binary.BigEndian.Uint32(lenBytes[:])
|
||||
if length > maxPacket {
|
||||
|
@ -724,11 +727,15 @@ func (c *chacha20Poly1305Cipher) readCipherPacket(seqNum uint32, r io.Reader) ([
|
|||
}
|
||||
|
||||
func (c *chacha20Poly1305Cipher) writeCipherPacket(seqNum uint32, w io.Writer, rand io.Reader, payload []byte) error {
|
||||
nonce := [3]uint32{0, 0, bits.ReverseBytes32(seqNum)}
|
||||
s := chacha20.New(c.contentKey, nonce)
|
||||
var polyKey [32]byte
|
||||
nonce := make([]byte, 12)
|
||||
binary.BigEndian.PutUint32(nonce[8:], seqNum)
|
||||
s, err := chacha20.NewUnauthenticatedCipher(c.contentKey[:], nonce)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
var polyKey, discardBuf [32]byte
|
||||
s.XORKeyStream(polyKey[:], polyKey[:])
|
||||
s.Advance() // skip next 32 bytes
|
||||
s.XORKeyStream(discardBuf[:], discardBuf[:]) // skip the next 32 bytes
|
||||
|
||||
// There is no blocksize, so fall back to multiple of 8 byte
|
||||
// padding, as described in RFC 4253, Sec 6.
|
||||
|
@ -748,7 +755,11 @@ func (c *chacha20Poly1305Cipher) writeCipherPacket(seqNum uint32, w io.Writer, r
|
|||
}
|
||||
|
||||
binary.BigEndian.PutUint32(c.buf, uint32(1+len(payload)+padding))
|
||||
chacha20.New(c.lengthKey, nonce).XORKeyStream(c.buf, c.buf[:4])
|
||||
ls, err := chacha20.NewUnauthenticatedCipher(c.lengthKey[:], nonce)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
ls.XORKeyStream(c.buf, c.buf[:4])
|
||||
c.buf[4] = byte(padding)
|
||||
copy(c.buf[5:], payload)
|
||||
packetEnd := 5 + len(payload) + padding
|
||||
|
|
93
vendor/golang.org/x/crypto/ssh/internal/bcrypt_pbkdf/bcrypt_pbkdf.go
generated
vendored
Normal file
93
vendor/golang.org/x/crypto/ssh/internal/bcrypt_pbkdf/bcrypt_pbkdf.go
generated
vendored
Normal file
|
@ -0,0 +1,93 @@
|
|||
// Copyright 2014 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package bcrypt_pbkdf implements bcrypt_pbkdf(3) from OpenBSD.
|
||||
//
|
||||
// See https://flak.tedunangst.com/post/bcrypt-pbkdf and
|
||||
// https://cvsweb.openbsd.org/cgi-bin/cvsweb/src/lib/libutil/bcrypt_pbkdf.c.
|
||||
package bcrypt_pbkdf
|
||||
|
||||
import (
|
||||
"crypto/sha512"
|
||||
"errors"
|
||||
"golang.org/x/crypto/blowfish"
|
||||
)
|
||||
|
||||
const blockSize = 32
|
||||
|
||||
// Key derives a key from the password, salt and rounds count, returning a
|
||||
// []byte of length keyLen that can be used as cryptographic key.
|
||||
func Key(password, salt []byte, rounds, keyLen int) ([]byte, error) {
|
||||
if rounds < 1 {
|
||||
return nil, errors.New("bcrypt_pbkdf: number of rounds is too small")
|
||||
}
|
||||
if len(password) == 0 {
|
||||
return nil, errors.New("bcrypt_pbkdf: empty password")
|
||||
}
|
||||
if len(salt) == 0 || len(salt) > 1<<20 {
|
||||
return nil, errors.New("bcrypt_pbkdf: bad salt length")
|
||||
}
|
||||
if keyLen > 1024 {
|
||||
return nil, errors.New("bcrypt_pbkdf: keyLen is too large")
|
||||
}
|
||||
|
||||
numBlocks := (keyLen + blockSize - 1) / blockSize
|
||||
key := make([]byte, numBlocks*blockSize)
|
||||
|
||||
h := sha512.New()
|
||||
h.Write(password)
|
||||
shapass := h.Sum(nil)
|
||||
|
||||
shasalt := make([]byte, 0, sha512.Size)
|
||||
cnt, tmp := make([]byte, 4), make([]byte, blockSize)
|
||||
for block := 1; block <= numBlocks; block++ {
|
||||
h.Reset()
|
||||
h.Write(salt)
|
||||
cnt[0] = byte(block >> 24)
|
||||
cnt[1] = byte(block >> 16)
|
||||
cnt[2] = byte(block >> 8)
|
||||
cnt[3] = byte(block)
|
||||
h.Write(cnt)
|
||||
bcryptHash(tmp, shapass, h.Sum(shasalt))
|
||||
|
||||
out := make([]byte, blockSize)
|
||||
copy(out, tmp)
|
||||
for i := 2; i <= rounds; i++ {
|
||||
h.Reset()
|
||||
h.Write(tmp)
|
||||
bcryptHash(tmp, shapass, h.Sum(shasalt))
|
||||
for j := 0; j < len(out); j++ {
|
||||
out[j] ^= tmp[j]
|
||||
}
|
||||
}
|
||||
|
||||
for i, v := range out {
|
||||
key[i*numBlocks+(block-1)] = v
|
||||
}
|
||||
}
|
||||
return key[:keyLen], nil
|
||||
}
|
||||
|
||||
var magic = []byte("OxychromaticBlowfishSwatDynamite")
|
||||
|
||||
func bcryptHash(out, shapass, shasalt []byte) {
|
||||
c, err := blowfish.NewSaltedCipher(shapass, shasalt)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
for i := 0; i < 64; i++ {
|
||||
blowfish.ExpandKey(shasalt, c)
|
||||
blowfish.ExpandKey(shapass, c)
|
||||
}
|
||||
copy(out, magic)
|
||||
for i := 0; i < 32; i += 8 {
|
||||
for j := 0; j < 64; j++ {
|
||||
c.Encrypt(out[i:i+8], out[i:i+8])
|
||||
}
|
||||
}
|
||||
// Swap bytes due to different endianness.
|
||||
for i := 0; i < 32; i += 4 {
|
||||
out[i+3], out[i+2], out[i+1], out[i] = out[i], out[i+1], out[i+2], out[i+3]
|
||||
}
|
||||
}
|
|
@ -212,7 +212,7 @@ func (group *dhGroup) Server(c packetConn, randSource io.Reader, magics *handsha
|
|||
HostKey: hostKeyBytes,
|
||||
Signature: sig,
|
||||
Hash: crypto.SHA1,
|
||||
}, nil
|
||||
}, err
|
||||
}
|
||||
|
||||
// ecdh performs Elliptic Curve Diffie-Hellman key exchange as
|
||||
|
@ -572,7 +572,7 @@ func (gex *dhGEXSHA) diffieHellman(theirPublic, myPrivate *big.Int) (*big.Int, e
|
|||
return new(big.Int).Exp(theirPublic, myPrivate, gex.p), nil
|
||||
}
|
||||
|
||||
func (gex *dhGEXSHA) Client(c packetConn, randSource io.Reader, magics *handshakeMagics) (*kexResult, error) {
|
||||
func (gex dhGEXSHA) Client(c packetConn, randSource io.Reader, magics *handshakeMagics) (*kexResult, error) {
|
||||
// Send GexRequest
|
||||
kexDHGexRequest := kexDHGexRequestMsg{
|
||||
MinBits: dhGroupExchangeMinimumBits,
|
||||
|
@ -677,7 +677,7 @@ func (gex *dhGEXSHA) Client(c packetConn, randSource io.Reader, magics *handshak
|
|||
// Server half implementation of the Diffie Hellman Key Exchange with SHA1 and SHA256.
|
||||
//
|
||||
// This is a minimal implementation to satisfy the automated tests.
|
||||
func (gex *dhGEXSHA) Server(c packetConn, randSource io.Reader, magics *handshakeMagics, priv Signer) (result *kexResult, err error) {
|
||||
func (gex dhGEXSHA) Server(c packetConn, randSource io.Reader, magics *handshakeMagics, priv Signer) (result *kexResult, err error) {
|
||||
// Receive GexRequest
|
||||
packet, err := c.readPacket()
|
||||
if err != nil {
|
||||
|
|
|
@ -7,6 +7,8 @@ package ssh
|
|||
import (
|
||||
"bytes"
|
||||
"crypto"
|
||||
"crypto/aes"
|
||||
"crypto/cipher"
|
||||
"crypto/dsa"
|
||||
"crypto/ecdsa"
|
||||
"crypto/elliptic"
|
||||
|
@ -25,6 +27,7 @@ import (
|
|||
"strings"
|
||||
|
||||
"golang.org/x/crypto/ed25519"
|
||||
"golang.org/x/crypto/ssh/internal/bcrypt_pbkdf"
|
||||
)
|
||||
|
||||
// These constants represent the algorithm names for key types supported by this
|
||||
|
@ -33,9 +36,11 @@ const (
|
|||
KeyAlgoRSA = "ssh-rsa"
|
||||
KeyAlgoDSA = "ssh-dss"
|
||||
KeyAlgoECDSA256 = "ecdsa-sha2-nistp256"
|
||||
KeyAlgoSKECDSA256 = "sk-ecdsa-sha2-nistp256@openssh.com"
|
||||
KeyAlgoECDSA384 = "ecdsa-sha2-nistp384"
|
||||
KeyAlgoECDSA521 = "ecdsa-sha2-nistp521"
|
||||
KeyAlgoED25519 = "ssh-ed25519"
|
||||
KeyAlgoSKED25519 = "sk-ssh-ed25519@openssh.com"
|
||||
)
|
||||
|
||||
// These constants represent non-default signature algorithms that are supported
|
||||
|
@ -58,9 +63,13 @@ func parsePubKey(in []byte, algo string) (pubKey PublicKey, rest []byte, err err
|
|||
return parseDSA(in)
|
||||
case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521:
|
||||
return parseECDSA(in)
|
||||
case KeyAlgoSKECDSA256:
|
||||
return parseSKECDSA(in)
|
||||
case KeyAlgoED25519:
|
||||
return parseED25519(in)
|
||||
case CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01, CertAlgoED25519v01:
|
||||
case KeyAlgoSKED25519:
|
||||
return parseSKEd25519(in)
|
||||
case CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01, CertAlgoSKECDSA256v01, CertAlgoED25519v01, CertAlgoSKED25519v01:
|
||||
cert, err := parseCert(in, certToPrivAlgo(algo))
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
|
@ -553,9 +562,11 @@ func parseED25519(in []byte) (out PublicKey, rest []byte, err error) {
|
|||
return nil, nil, err
|
||||
}
|
||||
|
||||
key := ed25519.PublicKey(w.KeyBytes)
|
||||
if l := len(w.KeyBytes); l != ed25519.PublicKeySize {
|
||||
return nil, nil, fmt.Errorf("invalid size %d for Ed25519 public key", l)
|
||||
}
|
||||
|
||||
return (ed25519PublicKey)(key), w.Rest, nil
|
||||
return ed25519PublicKey(w.KeyBytes), w.Rest, nil
|
||||
}
|
||||
|
||||
func (k ed25519PublicKey) Marshal() []byte {
|
||||
|
@ -573,9 +584,11 @@ func (k ed25519PublicKey) Verify(b []byte, sig *Signature) error {
|
|||
if sig.Format != k.Type() {
|
||||
return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
|
||||
}
|
||||
if l := len(k); l != ed25519.PublicKeySize {
|
||||
return fmt.Errorf("ssh: invalid size %d for Ed25519 public key", l)
|
||||
}
|
||||
|
||||
edKey := (ed25519.PublicKey)(k)
|
||||
if ok := ed25519.Verify(edKey, b, sig.Blob); !ok {
|
||||
if ok := ed25519.Verify(ed25519.PublicKey(k), b, sig.Blob); !ok {
|
||||
return errors.New("ssh: signature did not verify")
|
||||
}
|
||||
|
||||
|
@ -685,6 +698,224 @@ func (k *ecdsaPublicKey) CryptoPublicKey() crypto.PublicKey {
|
|||
return (*ecdsa.PublicKey)(k)
|
||||
}
|
||||
|
||||
// skFields holds the additional fields present in U2F/FIDO2 signatures.
|
||||
// See openssh/PROTOCOL.u2f 'SSH U2F Signatures' for details.
|
||||
type skFields struct {
|
||||
// Flags contains U2F/FIDO2 flags such as 'user present'
|
||||
Flags byte
|
||||
// Counter is a monotonic signature counter which can be
|
||||
// used to detect concurrent use of a private key, should
|
||||
// it be extracted from hardware.
|
||||
Counter uint32
|
||||
}
|
||||
|
||||
type skECDSAPublicKey struct {
|
||||
// application is a URL-like string, typically "ssh:" for SSH.
|
||||
// see openssh/PROTOCOL.u2f for details.
|
||||
application string
|
||||
ecdsa.PublicKey
|
||||
}
|
||||
|
||||
func (k *skECDSAPublicKey) Type() string {
|
||||
return KeyAlgoSKECDSA256
|
||||
}
|
||||
|
||||
func (k *skECDSAPublicKey) nistID() string {
|
||||
return "nistp256"
|
||||
}
|
||||
|
||||
func parseSKECDSA(in []byte) (out PublicKey, rest []byte, err error) {
|
||||
var w struct {
|
||||
Curve string
|
||||
KeyBytes []byte
|
||||
Application string
|
||||
Rest []byte `ssh:"rest"`
|
||||
}
|
||||
|
||||
if err := Unmarshal(in, &w); err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
key := new(skECDSAPublicKey)
|
||||
key.application = w.Application
|
||||
|
||||
if w.Curve != "nistp256" {
|
||||
return nil, nil, errors.New("ssh: unsupported curve")
|
||||
}
|
||||
key.Curve = elliptic.P256()
|
||||
|
||||
key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes)
|
||||
if key.X == nil || key.Y == nil {
|
||||
return nil, nil, errors.New("ssh: invalid curve point")
|
||||
}
|
||||
|
||||
return key, w.Rest, nil
|
||||
}
|
||||
|
||||
func (k *skECDSAPublicKey) Marshal() []byte {
|
||||
// See RFC 5656, section 3.1.
|
||||
keyBytes := elliptic.Marshal(k.Curve, k.X, k.Y)
|
||||
w := struct {
|
||||
Name string
|
||||
ID string
|
||||
Key []byte
|
||||
Application string
|
||||
}{
|
||||
k.Type(),
|
||||
k.nistID(),
|
||||
keyBytes,
|
||||
k.application,
|
||||
}
|
||||
|
||||
return Marshal(&w)
|
||||
}
|
||||
|
||||
func (k *skECDSAPublicKey) Verify(data []byte, sig *Signature) error {
|
||||
if sig.Format != k.Type() {
|
||||
return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
|
||||
}
|
||||
|
||||
h := ecHash(k.Curve).New()
|
||||
h.Write([]byte(k.application))
|
||||
appDigest := h.Sum(nil)
|
||||
|
||||
h.Reset()
|
||||
h.Write(data)
|
||||
dataDigest := h.Sum(nil)
|
||||
|
||||
var ecSig struct {
|
||||
R *big.Int
|
||||
S *big.Int
|
||||
}
|
||||
if err := Unmarshal(sig.Blob, &ecSig); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
var skf skFields
|
||||
if err := Unmarshal(sig.Rest, &skf); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
blob := struct {
|
||||
ApplicationDigest []byte `ssh:"rest"`
|
||||
Flags byte
|
||||
Counter uint32
|
||||
MessageDigest []byte `ssh:"rest"`
|
||||
}{
|
||||
appDigest,
|
||||
skf.Flags,
|
||||
skf.Counter,
|
||||
dataDigest,
|
||||
}
|
||||
|
||||
original := Marshal(blob)
|
||||
|
||||
h.Reset()
|
||||
h.Write(original)
|
||||
digest := h.Sum(nil)
|
||||
|
||||
if ecdsa.Verify((*ecdsa.PublicKey)(&k.PublicKey), digest, ecSig.R, ecSig.S) {
|
||||
return nil
|
||||
}
|
||||
return errors.New("ssh: signature did not verify")
|
||||
}
|
||||
|
||||
type skEd25519PublicKey struct {
|
||||
// application is a URL-like string, typically "ssh:" for SSH.
|
||||
// see openssh/PROTOCOL.u2f for details.
|
||||
application string
|
||||
ed25519.PublicKey
|
||||
}
|
||||
|
||||
func (k *skEd25519PublicKey) Type() string {
|
||||
return KeyAlgoSKED25519
|
||||
}
|
||||
|
||||
func parseSKEd25519(in []byte) (out PublicKey, rest []byte, err error) {
|
||||
var w struct {
|
||||
KeyBytes []byte
|
||||
Application string
|
||||
Rest []byte `ssh:"rest"`
|
||||
}
|
||||
|
||||
if err := Unmarshal(in, &w); err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
if l := len(w.KeyBytes); l != ed25519.PublicKeySize {
|
||||
return nil, nil, fmt.Errorf("invalid size %d for Ed25519 public key", l)
|
||||
}
|
||||
|
||||
key := new(skEd25519PublicKey)
|
||||
key.application = w.Application
|
||||
key.PublicKey = ed25519.PublicKey(w.KeyBytes)
|
||||
|
||||
return key, w.Rest, nil
|
||||
}
|
||||
|
||||
func (k *skEd25519PublicKey) Marshal() []byte {
|
||||
w := struct {
|
||||
Name string
|
||||
KeyBytes []byte
|
||||
Application string
|
||||
}{
|
||||
KeyAlgoSKED25519,
|
||||
[]byte(k.PublicKey),
|
||||
k.application,
|
||||
}
|
||||
return Marshal(&w)
|
||||
}
|
||||
|
||||
func (k *skEd25519PublicKey) Verify(data []byte, sig *Signature) error {
|
||||
if sig.Format != k.Type() {
|
||||
return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
|
||||
}
|
||||
if l := len(k.PublicKey); l != ed25519.PublicKeySize {
|
||||
return fmt.Errorf("invalid size %d for Ed25519 public key", l)
|
||||
}
|
||||
|
||||
h := sha256.New()
|
||||
h.Write([]byte(k.application))
|
||||
appDigest := h.Sum(nil)
|
||||
|
||||
h.Reset()
|
||||
h.Write(data)
|
||||
dataDigest := h.Sum(nil)
|
||||
|
||||
var edSig struct {
|
||||
Signature []byte `ssh:"rest"`
|
||||
}
|
||||
|
||||
if err := Unmarshal(sig.Blob, &edSig); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
var skf skFields
|
||||
if err := Unmarshal(sig.Rest, &skf); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
blob := struct {
|
||||
ApplicationDigest []byte `ssh:"rest"`
|
||||
Flags byte
|
||||
Counter uint32
|
||||
MessageDigest []byte `ssh:"rest"`
|
||||
}{
|
||||
appDigest,
|
||||
skf.Flags,
|
||||
skf.Counter,
|
||||
dataDigest,
|
||||
}
|
||||
|
||||
original := Marshal(blob)
|
||||
|
||||
if ok := ed25519.Verify(k.PublicKey, original, edSig.Signature); !ok {
|
||||
return errors.New("ssh: signature did not verify")
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// NewSignerFromKey takes an *rsa.PrivateKey, *dsa.PrivateKey,
|
||||
// *ecdsa.PrivateKey or any other crypto.Signer and returns a
|
||||
// corresponding Signer instance. ECDSA keys must use P-256, P-384 or
|
||||
|
@ -830,14 +1061,18 @@ func NewPublicKey(key interface{}) (PublicKey, error) {
|
|||
case *dsa.PublicKey:
|
||||
return (*dsaPublicKey)(key), nil
|
||||
case ed25519.PublicKey:
|
||||
return (ed25519PublicKey)(key), nil
|
||||
if l := len(key); l != ed25519.PublicKeySize {
|
||||
return nil, fmt.Errorf("ssh: invalid size %d for Ed25519 public key", l)
|
||||
}
|
||||
return ed25519PublicKey(key), nil
|
||||
default:
|
||||
return nil, fmt.Errorf("ssh: unsupported key type %T", key)
|
||||
}
|
||||
}
|
||||
|
||||
// ParsePrivateKey returns a Signer from a PEM encoded private key. It supports
|
||||
// the same keys as ParseRawPrivateKey.
|
||||
// the same keys as ParseRawPrivateKey. If the private key is encrypted, it
|
||||
// will return a PassphraseMissingError.
|
||||
func ParsePrivateKey(pemBytes []byte) (Signer, error) {
|
||||
key, err := ParseRawPrivateKey(pemBytes)
|
||||
if err != nil {
|
||||
|
@ -850,8 +1085,8 @@ func ParsePrivateKey(pemBytes []byte) (Signer, error) {
|
|||
// ParsePrivateKeyWithPassphrase returns a Signer from a PEM encoded private
|
||||
// key and passphrase. It supports the same keys as
|
||||
// ParseRawPrivateKeyWithPassphrase.
|
||||
func ParsePrivateKeyWithPassphrase(pemBytes, passPhrase []byte) (Signer, error) {
|
||||
key, err := ParseRawPrivateKeyWithPassphrase(pemBytes, passPhrase)
|
||||
func ParsePrivateKeyWithPassphrase(pemBytes, passphrase []byte) (Signer, error) {
|
||||
key, err := ParseRawPrivateKeyWithPassphrase(pemBytes, passphrase)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
@ -867,8 +1102,21 @@ func encryptedBlock(block *pem.Block) bool {
|
|||
return strings.Contains(block.Headers["Proc-Type"], "ENCRYPTED")
|
||||
}
|
||||
|
||||
// A PassphraseMissingError indicates that parsing this private key requires a
|
||||
// passphrase. Use ParsePrivateKeyWithPassphrase.
|
||||
type PassphraseMissingError struct {
|
||||
// PublicKey will be set if the private key format includes an unencrypted
|
||||
// public key along with the encrypted private key.
|
||||
PublicKey PublicKey
|
||||
}
|
||||
|
||||
func (*PassphraseMissingError) Error() string {
|
||||
return "ssh: this private key is passphrase protected"
|
||||
}
|
||||
|
||||
// ParseRawPrivateKey returns a private key from a PEM encoded private key. It
|
||||
// supports RSA (PKCS#1), PKCS#8, DSA (OpenSSL), and ECDSA private keys.
|
||||
// supports RSA (PKCS#1), PKCS#8, DSA (OpenSSL), and ECDSA private keys. If the
|
||||
// private key is encrypted, it will return a PassphraseMissingError.
|
||||
func ParseRawPrivateKey(pemBytes []byte) (interface{}, error) {
|
||||
block, _ := pem.Decode(pemBytes)
|
||||
if block == nil {
|
||||
|
@ -876,7 +1124,7 @@ func ParseRawPrivateKey(pemBytes []byte) (interface{}, error) {
|
|||
}
|
||||
|
||||
if encryptedBlock(block) {
|
||||
return nil, errors.New("ssh: cannot decode encrypted private keys")
|
||||
return nil, &PassphraseMissingError{}
|
||||
}
|
||||
|
||||
switch block.Type {
|
||||
|
@ -890,34 +1138,36 @@ func ParseRawPrivateKey(pemBytes []byte) (interface{}, error) {
|
|||
case "DSA PRIVATE KEY":
|
||||
return ParseDSAPrivateKey(block.Bytes)
|
||||
case "OPENSSH PRIVATE KEY":
|
||||
return parseOpenSSHPrivateKey(block.Bytes)
|
||||
return parseOpenSSHPrivateKey(block.Bytes, unencryptedOpenSSHKey)
|
||||
default:
|
||||
return nil, fmt.Errorf("ssh: unsupported key type %q", block.Type)
|
||||
}
|
||||
}
|
||||
|
||||
// ParseRawPrivateKeyWithPassphrase returns a private key decrypted with
|
||||
// passphrase from a PEM encoded private key. If wrong passphrase, return
|
||||
// x509.IncorrectPasswordError.
|
||||
func ParseRawPrivateKeyWithPassphrase(pemBytes, passPhrase []byte) (interface{}, error) {
|
||||
// passphrase from a PEM encoded private key. If the passphrase is wrong, it
|
||||
// will return x509.IncorrectPasswordError.
|
||||
func ParseRawPrivateKeyWithPassphrase(pemBytes, passphrase []byte) (interface{}, error) {
|
||||
block, _ := pem.Decode(pemBytes)
|
||||
if block == nil {
|
||||
return nil, errors.New("ssh: no key found")
|
||||
}
|
||||
buf := block.Bytes
|
||||
|
||||
if encryptedBlock(block) {
|
||||
if x509.IsEncryptedPEMBlock(block) {
|
||||
var err error
|
||||
buf, err = x509.DecryptPEMBlock(block, passPhrase)
|
||||
if block.Type == "OPENSSH PRIVATE KEY" {
|
||||
return parseOpenSSHPrivateKey(block.Bytes, passphraseProtectedOpenSSHKey(passphrase))
|
||||
}
|
||||
|
||||
if !encryptedBlock(block) || !x509.IsEncryptedPEMBlock(block) {
|
||||
return nil, errors.New("ssh: not an encrypted key")
|
||||
}
|
||||
|
||||
buf, err := x509.DecryptPEMBlock(block, passphrase)
|
||||
if err != nil {
|
||||
if err == x509.IncorrectPasswordError {
|
||||
return nil, err
|
||||
}
|
||||
return nil, fmt.Errorf("ssh: cannot decode encrypted private keys: %v", err)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
switch block.Type {
|
||||
case "RSA PRIVATE KEY":
|
||||
|
@ -926,8 +1176,6 @@ func ParseRawPrivateKeyWithPassphrase(pemBytes, passPhrase []byte) (interface{},
|
|||
return x509.ParseECPrivateKey(buf)
|
||||
case "DSA PRIVATE KEY":
|
||||
return ParseDSAPrivateKey(buf)
|
||||
case "OPENSSH PRIVATE KEY":
|
||||
return parseOpenSSHPrivateKey(buf)
|
||||
default:
|
||||
return nil, fmt.Errorf("ssh: unsupported key type %q", block.Type)
|
||||
}
|
||||
|
@ -965,9 +1213,68 @@ func ParseDSAPrivateKey(der []byte) (*dsa.PrivateKey, error) {
|
|||
}, nil
|
||||
}
|
||||
|
||||
// Implemented based on the documentation at
|
||||
// https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.key
|
||||
func parseOpenSSHPrivateKey(key []byte) (crypto.PrivateKey, error) {
|
||||
func unencryptedOpenSSHKey(cipherName, kdfName, kdfOpts string, privKeyBlock []byte) ([]byte, error) {
|
||||
if kdfName != "none" || cipherName != "none" {
|
||||
return nil, &PassphraseMissingError{}
|
||||
}
|
||||
if kdfOpts != "" {
|
||||
return nil, errors.New("ssh: invalid openssh private key")
|
||||
}
|
||||
return privKeyBlock, nil
|
||||
}
|
||||
|
||||
func passphraseProtectedOpenSSHKey(passphrase []byte) openSSHDecryptFunc {
|
||||
return func(cipherName, kdfName, kdfOpts string, privKeyBlock []byte) ([]byte, error) {
|
||||
if kdfName == "none" || cipherName == "none" {
|
||||
return nil, errors.New("ssh: key is not password protected")
|
||||
}
|
||||
if kdfName != "bcrypt" {
|
||||
return nil, fmt.Errorf("ssh: unknown KDF %q, only supports %q", kdfName, "bcrypt")
|
||||
}
|
||||
|
||||
var opts struct {
|
||||
Salt string
|
||||
Rounds uint32
|
||||
}
|
||||
if err := Unmarshal([]byte(kdfOpts), &opts); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
k, err := bcrypt_pbkdf.Key(passphrase, []byte(opts.Salt), int(opts.Rounds), 32+16)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
key, iv := k[:32], k[32:]
|
||||
|
||||
c, err := aes.NewCipher(key)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
switch cipherName {
|
||||
case "aes256-ctr":
|
||||
ctr := cipher.NewCTR(c, iv)
|
||||
ctr.XORKeyStream(privKeyBlock, privKeyBlock)
|
||||
case "aes256-cbc":
|
||||
if len(privKeyBlock)%c.BlockSize() != 0 {
|
||||
return nil, fmt.Errorf("ssh: invalid encrypted private key length, not a multiple of the block size")
|
||||
}
|
||||
cbc := cipher.NewCBCDecrypter(c, iv)
|
||||
cbc.CryptBlocks(privKeyBlock, privKeyBlock)
|
||||
default:
|
||||
return nil, fmt.Errorf("ssh: unknown cipher %q, only supports %q or %q", cipherName, "aes256-ctr", "aes256-cbc")
|
||||
}
|
||||
|
||||
return privKeyBlock, nil
|
||||
}
|
||||
}
|
||||
|
||||
type openSSHDecryptFunc func(CipherName, KdfName, KdfOpts string, PrivKeyBlock []byte) ([]byte, error)
|
||||
|
||||
// parseOpenSSHPrivateKey parses an OpenSSH private key, using the decrypt
|
||||
// function to unwrap the encrypted portion. unencryptedOpenSSHKey can be used
|
||||
// as the decrypt function to parse an unencrypted private key. See
|
||||
// https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.key.
|
||||
func parseOpenSSHPrivateKey(key []byte, decrypt openSSHDecryptFunc) (crypto.PrivateKey, error) {
|
||||
const magic = "openssh-key-v1\x00"
|
||||
if len(key) < len(magic) || string(key[:len(magic)]) != magic {
|
||||
return nil, errors.New("ssh: invalid openssh private key format")
|
||||
|
@ -986,9 +1293,22 @@ func parseOpenSSHPrivateKey(key []byte) (crypto.PrivateKey, error) {
|
|||
if err := Unmarshal(remaining, &w); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if w.NumKeys != 1 {
|
||||
// We only support single key files, and so does OpenSSH.
|
||||
// https://github.com/openssh/openssh-portable/blob/4103a3ec7/sshkey.c#L4171
|
||||
return nil, errors.New("ssh: multi-key files are not supported")
|
||||
}
|
||||
|
||||
if w.KdfName != "none" || w.CipherName != "none" {
|
||||
return nil, errors.New("ssh: cannot decode encrypted private keys")
|
||||
privKeyBlock, err := decrypt(w.CipherName, w.KdfName, w.KdfOpts, w.PrivKeyBlock)
|
||||
if err != nil {
|
||||
if err, ok := err.(*PassphraseMissingError); ok {
|
||||
pub, errPub := ParsePublicKey(w.PubKey)
|
||||
if errPub != nil {
|
||||
return nil, fmt.Errorf("ssh: failed to parse embedded public key: %v", errPub)
|
||||
}
|
||||
err.PublicKey = pub
|
||||
}
|
||||
return nil, err
|
||||
}
|
||||
|
||||
pk1 := struct {
|
||||
|
@ -998,15 +1318,13 @@ func parseOpenSSHPrivateKey(key []byte) (crypto.PrivateKey, error) {
|
|||
Rest []byte `ssh:"rest"`
|
||||
}{}
|
||||
|
||||
if err := Unmarshal(w.PrivKeyBlock, &pk1); err != nil {
|
||||
return nil, err
|
||||
if err := Unmarshal(privKeyBlock, &pk1); err != nil || pk1.Check1 != pk1.Check2 {
|
||||
if w.CipherName != "none" {
|
||||
return nil, x509.IncorrectPasswordError
|
||||
}
|
||||
return nil, errors.New("ssh: malformed OpenSSH key")
|
||||
}
|
||||
|
||||
if pk1.Check1 != pk1.Check2 {
|
||||
return nil, errors.New("ssh: checkint mismatch")
|
||||
}
|
||||
|
||||
// we only handle ed25519 and rsa keys currently
|
||||
switch pk1.Keytype {
|
||||
case KeyAlgoRSA:
|
||||
// https://github.com/openssh/openssh-portable/blob/master/sshkey.c#L2760-L2773
|
||||
|
@ -1025,10 +1343,8 @@ func parseOpenSSHPrivateKey(key []byte) (crypto.PrivateKey, error) {
|
|||
return nil, err
|
||||
}
|
||||
|
||||
for i, b := range key.Pad {
|
||||
if int(b) != i+1 {
|
||||
return nil, errors.New("ssh: padding not as expected")
|
||||
}
|
||||
if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
pk := &rsa.PrivateKey{
|
||||
|
@ -1063,20 +1379,78 @@ func parseOpenSSHPrivateKey(key []byte) (crypto.PrivateKey, error) {
|
|||
return nil, errors.New("ssh: private key unexpected length")
|
||||
}
|
||||
|
||||
for i, b := range key.Pad {
|
||||
if int(b) != i+1 {
|
||||
return nil, errors.New("ssh: padding not as expected")
|
||||
}
|
||||
if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
pk := ed25519.PrivateKey(make([]byte, ed25519.PrivateKeySize))
|
||||
copy(pk, key.Priv)
|
||||
return &pk, nil
|
||||
case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521:
|
||||
key := struct {
|
||||
Curve string
|
||||
Pub []byte
|
||||
D *big.Int
|
||||
Comment string
|
||||
Pad []byte `ssh:"rest"`
|
||||
}{}
|
||||
|
||||
if err := Unmarshal(pk1.Rest, &key); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var curve elliptic.Curve
|
||||
switch key.Curve {
|
||||
case "nistp256":
|
||||
curve = elliptic.P256()
|
||||
case "nistp384":
|
||||
curve = elliptic.P384()
|
||||
case "nistp521":
|
||||
curve = elliptic.P521()
|
||||
default:
|
||||
return nil, errors.New("ssh: unhandled elliptic curve: " + key.Curve)
|
||||
}
|
||||
|
||||
X, Y := elliptic.Unmarshal(curve, key.Pub)
|
||||
if X == nil || Y == nil {
|
||||
return nil, errors.New("ssh: failed to unmarshal public key")
|
||||
}
|
||||
|
||||
if key.D.Cmp(curve.Params().N) >= 0 {
|
||||
return nil, errors.New("ssh: scalar is out of range")
|
||||
}
|
||||
|
||||
x, y := curve.ScalarBaseMult(key.D.Bytes())
|
||||
if x.Cmp(X) != 0 || y.Cmp(Y) != 0 {
|
||||
return nil, errors.New("ssh: public key does not match private key")
|
||||
}
|
||||
|
||||
return &ecdsa.PrivateKey{
|
||||
PublicKey: ecdsa.PublicKey{
|
||||
Curve: curve,
|
||||
X: X,
|
||||
Y: Y,
|
||||
},
|
||||
D: key.D,
|
||||
}, nil
|
||||
default:
|
||||
return nil, errors.New("ssh: unhandled key type")
|
||||
}
|
||||
}
|
||||
|
||||
func checkOpenSSHKeyPadding(pad []byte) error {
|
||||
for i, b := range pad {
|
||||
if int(b) != i+1 {
|
||||
return errors.New("ssh: padding not as expected")
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// FingerprintLegacyMD5 returns the user presentation of the key's
|
||||
// fingerprint as described by RFC 4716 section 4.
|
||||
func FingerprintLegacyMD5(pubKey PublicKey) string {
|
||||
|
|
|
@ -240,7 +240,7 @@ func (m *mux) onePacket() error {
|
|||
id := binary.BigEndian.Uint32(packet[1:])
|
||||
ch := m.chanList.getChan(id)
|
||||
if ch == nil {
|
||||
return fmt.Errorf("ssh: invalid channel %d", id)
|
||||
return m.handleUnknownChannelPacket(id, packet)
|
||||
}
|
||||
|
||||
return ch.handlePacket(packet)
|
||||
|
@ -328,3 +328,24 @@ func (m *mux) openChannel(chanType string, extra []byte) (*channel, error) {
|
|||
return nil, fmt.Errorf("ssh: unexpected packet in response to channel open: %T", msg)
|
||||
}
|
||||
}
|
||||
|
||||
func (m *mux) handleUnknownChannelPacket(id uint32, packet []byte) error {
|
||||
msg, err := decode(packet)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
switch msg := msg.(type) {
|
||||
// RFC 4254 section 5.4 says unrecognized channel requests should
|
||||
// receive a failure response.
|
||||
case *channelRequestMsg:
|
||||
if msg.WantReply {
|
||||
return m.sendMessage(channelRequestFailureMsg{
|
||||
PeersID: msg.PeersID,
|
||||
})
|
||||
}
|
||||
return nil
|
||||
default:
|
||||
return fmt.Errorf("ssh: invalid channel %d", id)
|
||||
}
|
||||
}
|
||||
|
|
|
@ -284,8 +284,8 @@ func (s *connection) serverHandshake(config *ServerConfig) (*Permissions, error)
|
|||
|
||||
func isAcceptableAlgo(algo string) bool {
|
||||
switch algo {
|
||||
case KeyAlgoRSA, KeyAlgoDSA, KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521, KeyAlgoED25519,
|
||||
CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01, CertAlgoED25519v01:
|
||||
case KeyAlgoRSA, KeyAlgoDSA, KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521, KeyAlgoSKECDSA256, KeyAlgoED25519, KeyAlgoSKED25519,
|
||||
CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01, CertAlgoSKECDSA256v01, CertAlgoED25519v01, CertAlgoSKED25519v01:
|
||||
return true
|
||||
}
|
||||
return false
|
||||
|
|
|
@ -7,6 +7,7 @@ package terminal
|
|||
import (
|
||||
"bytes"
|
||||
"io"
|
||||
"runtime"
|
||||
"strconv"
|
||||
"sync"
|
||||
"unicode/utf8"
|
||||
|
@ -112,6 +113,7 @@ func NewTerminal(c io.ReadWriter, prompt string) *Terminal {
|
|||
}
|
||||
|
||||
const (
|
||||
keyCtrlC = 3
|
||||
keyCtrlD = 4
|
||||
keyCtrlU = 21
|
||||
keyEnter = '\r'
|
||||
|
@ -150,8 +152,12 @@ func bytesToKey(b []byte, pasteActive bool) (rune, []byte) {
|
|||
switch b[0] {
|
||||
case 1: // ^A
|
||||
return keyHome, b[1:]
|
||||
case 2: // ^B
|
||||
return keyLeft, b[1:]
|
||||
case 5: // ^E
|
||||
return keyEnd, b[1:]
|
||||
case 6: // ^F
|
||||
return keyRight, b[1:]
|
||||
case 8: // ^H
|
||||
return keyBackspace, b[1:]
|
||||
case 11: // ^K
|
||||
|
@ -737,6 +743,9 @@ func (t *Terminal) readLine() (line string, err error) {
|
|||
return "", io.EOF
|
||||
}
|
||||
}
|
||||
if key == keyCtrlC {
|
||||
return "", io.EOF
|
||||
}
|
||||
if key == keyPasteStart {
|
||||
t.pasteActive = true
|
||||
if len(t.line) == 0 {
|
||||
|
@ -939,6 +948,8 @@ func (s *stRingBuffer) NthPreviousEntry(n int) (value string, ok bool) {
|
|||
// readPasswordLine reads from reader until it finds \n or io.EOF.
|
||||
// The slice returned does not include the \n.
|
||||
// readPasswordLine also ignores any \r it finds.
|
||||
// Windows uses \r as end of line. So, on Windows, readPasswordLine
|
||||
// reads until it finds \r and ignores any \n it finds during processing.
|
||||
func readPasswordLine(reader io.Reader) ([]byte, error) {
|
||||
var buf [1]byte
|
||||
var ret []byte
|
||||
|
@ -947,10 +958,20 @@ func readPasswordLine(reader io.Reader) ([]byte, error) {
|
|||
n, err := reader.Read(buf[:])
|
||||
if n > 0 {
|
||||
switch buf[0] {
|
||||
case '\b':
|
||||
if len(ret) > 0 {
|
||||
ret = ret[:len(ret)-1]
|
||||
}
|
||||
case '\n':
|
||||
if runtime.GOOS != "windows" {
|
||||
return ret, nil
|
||||
}
|
||||
// otherwise ignore \n
|
||||
case '\r':
|
||||
// remove \r from passwords on Windows
|
||||
if runtime.GOOS == "windows" {
|
||||
return ret, nil
|
||||
}
|
||||
// otherwise ignore \r
|
||||
default:
|
||||
ret = append(ret, buf[0])
|
||||
}
|
||||
|
|
|
@ -85,8 +85,8 @@ func ReadPassword(fd int) ([]byte, error) {
|
|||
}
|
||||
old := st
|
||||
|
||||
st &^= (windows.ENABLE_ECHO_INPUT)
|
||||
st |= (windows.ENABLE_PROCESSED_INPUT | windows.ENABLE_LINE_INPUT | windows.ENABLE_PROCESSED_OUTPUT)
|
||||
st &^= (windows.ENABLE_ECHO_INPUT | windows.ENABLE_LINE_INPUT)
|
||||
st |= (windows.ENABLE_PROCESSED_OUTPUT | windows.ENABLE_PROCESSED_INPUT)
|
||||
if err := windows.SetConsoleMode(windows.Handle(fd), st); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
|
|
@ -194,11 +194,13 @@ github.com/stretchr/testify/assert
|
|||
github.com/stretchr/testify/require
|
||||
# github.com/xo/dburl v0.0.0-20191005012637-293c3298d6c0
|
||||
github.com/xo/dburl
|
||||
# golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550
|
||||
# golang.org/x/crypto v0.0.0-20200604202706-70a84ac30bf9
|
||||
golang.org/x/crypto/blake2b
|
||||
golang.org/x/crypto/blowfish
|
||||
golang.org/x/crypto/chacha20
|
||||
golang.org/x/crypto/curve25519
|
||||
golang.org/x/crypto/ed25519
|
||||
golang.org/x/crypto/ed25519/internal/edwards25519
|
||||
golang.org/x/crypto/internal/chacha20
|
||||
golang.org/x/crypto/internal/subtle
|
||||
golang.org/x/crypto/md4
|
||||
golang.org/x/crypto/nacl/box
|
||||
|
@ -207,6 +209,7 @@ golang.org/x/crypto/pbkdf2
|
|||
golang.org/x/crypto/poly1305
|
||||
golang.org/x/crypto/salsa20/salsa
|
||||
golang.org/x/crypto/ssh
|
||||
golang.org/x/crypto/ssh/internal/bcrypt_pbkdf
|
||||
golang.org/x/crypto/ssh/terminal
|
||||
# golang.org/x/net v0.0.0-20191014212845-da9a3fd4c582
|
||||
golang.org/x/net/bpf
|
||||
|
|
Loading…
Reference in New Issue