// Copyright 2019 The TCell Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use file except in compliance with the License. // You may obtain a copy of the license at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package tcell import ( "bytes" "io" "os" "strconv" "sync" "time" "unicode/utf8" "golang.org/x/text/transform" "github.com/gdamore/tcell/terminfo" // import the stock terminals _ "github.com/gdamore/tcell/terminfo/base" ) // NewTerminfoScreen returns a Screen that uses the stock TTY interface // and POSIX termios, combined with a terminfo description taken from // the $TERM environment variable. It returns an error if the terminal // is not supported for any reason. // // For terminals that do not support dynamic resize events, the $LINES // $COLUMNS environment variables can be set to the actual window size, // otherwise defaults taken from the terminal database are used. func NewTerminfoScreen() (Screen, error) { ti, e := terminfo.LookupTerminfo(os.Getenv("TERM")) if e != nil { ti, e = loadDynamicTerminfo(os.Getenv("TERM")) if e != nil { return nil, e } terminfo.AddTerminfo(ti) } t := &tScreen{ti: ti} t.keyexist = make(map[Key]bool) t.keycodes = make(map[string]*tKeyCode) if len(ti.Mouse) > 0 { t.mouse = []byte(ti.Mouse) } t.prepareKeys() t.buildAcsMap() t.sigwinch = make(chan os.Signal, 10) t.fallback = make(map[rune]string) for k, v := range RuneFallbacks { t.fallback[k] = v } return t, nil } // tKeyCode represents a combination of a key code and modifiers. type tKeyCode struct { key Key mod ModMask } // tScreen represents a screen backed by a terminfo implementation. type tScreen struct { ti *terminfo.Terminfo h int w int fini bool cells CellBuffer in *os.File out *os.File buffering bool // true if we are collecting writes to buf instead of sending directly to out buf bytes.Buffer curstyle Style style Style evch chan Event sigwinch chan os.Signal quit chan struct{} indoneq chan struct{} keyexist map[Key]bool keycodes map[string]*tKeyCode keychan chan []byte keytimer *time.Timer keyexpire time.Time cx int cy int mouse []byte clear bool cursorx int cursory int tiosp *termiosPrivate wasbtn bool acs map[rune]string charset string encoder transform.Transformer decoder transform.Transformer fallback map[rune]string colors map[Color]Color palette []Color truecolor bool escaped bool buttondn bool sync.Mutex } func (t *tScreen) Init() error { t.evch = make(chan Event, 10) t.indoneq = make(chan struct{}) t.keychan = make(chan []byte, 10) t.keytimer = time.NewTimer(time.Millisecond * 50) t.charset = "UTF-8" t.charset = getCharset() if enc := GetEncoding(t.charset); enc != nil { t.encoder = enc.NewEncoder() t.decoder = enc.NewDecoder() } else { return ErrNoCharset } ti := t.ti // environment overrides w := ti.Columns h := ti.Lines if i, _ := strconv.Atoi(os.Getenv("LINES")); i != 0 { h = i } if i, _ := strconv.Atoi(os.Getenv("COLUMNS")); i != 0 { w = i } if e := t.termioInit(); e != nil { return e } if t.ti.SetFgBgRGB != "" || t.ti.SetFgRGB != "" || t.ti.SetBgRGB != "" { t.truecolor = true } // A user who wants to have his themes honored can // set this environment variable. if os.Getenv("TCELL_TRUECOLOR") == "disable" { t.truecolor = false } if !t.truecolor { t.colors = make(map[Color]Color) t.palette = make([]Color, t.Colors()) for i := 0; i < t.Colors(); i++ { t.palette[i] = Color(i) // identity map for our builtin colors t.colors[Color(i)] = Color(i) } } t.TPuts(ti.EnterCA) t.TPuts(ti.HideCursor) t.TPuts(ti.EnableAcs) t.TPuts(ti.Clear) t.quit = make(chan struct{}) t.Lock() t.cx = -1 t.cy = -1 t.style = StyleDefault t.cells.Resize(w, h) t.cursorx = -1 t.cursory = -1 t.resize() t.Unlock() go t.mainLoop() go t.inputLoop() return nil } func (t *tScreen) prepareKeyMod(key Key, mod ModMask, val string) { if val != "" { // Do not overrride codes that already exist if _, exist := t.keycodes[val]; !exist { t.keyexist[key] = true t.keycodes[val] = &tKeyCode{key: key, mod: mod} } } } func (t *tScreen) prepareKey(key Key, val string) { t.prepareKeyMod(key, ModNone, val) } func (t *tScreen) prepareKeys() { ti := t.ti t.prepareKey(KeyBackspace, ti.KeyBackspace) t.prepareKey(KeyF1, ti.KeyF1) t.prepareKey(KeyF2, ti.KeyF2) t.prepareKey(KeyF3, ti.KeyF3) t.prepareKey(KeyF4, ti.KeyF4) t.prepareKey(KeyF5, ti.KeyF5) t.prepareKey(KeyF6, ti.KeyF6) t.prepareKey(KeyF7, ti.KeyF7) t.prepareKey(KeyF8, ti.KeyF8) t.prepareKey(KeyF9, ti.KeyF9) t.prepareKey(KeyF10, ti.KeyF10) t.prepareKey(KeyF11, ti.KeyF11) t.prepareKey(KeyF12, ti.KeyF12) t.prepareKey(KeyF13, ti.KeyF13) t.prepareKey(KeyF14, ti.KeyF14) t.prepareKey(KeyF15, ti.KeyF15) t.prepareKey(KeyF16, ti.KeyF16) t.prepareKey(KeyF17, ti.KeyF17) t.prepareKey(KeyF18, ti.KeyF18) t.prepareKey(KeyF19, ti.KeyF19) t.prepareKey(KeyF20, ti.KeyF20) t.prepareKey(KeyF21, ti.KeyF21) t.prepareKey(KeyF22, ti.KeyF22) t.prepareKey(KeyF23, ti.KeyF23) t.prepareKey(KeyF24, ti.KeyF24) t.prepareKey(KeyF25, ti.KeyF25) t.prepareKey(KeyF26, ti.KeyF26) t.prepareKey(KeyF27, ti.KeyF27) t.prepareKey(KeyF28, ti.KeyF28) t.prepareKey(KeyF29, ti.KeyF29) t.prepareKey(KeyF30, ti.KeyF30) t.prepareKey(KeyF31, ti.KeyF31) t.prepareKey(KeyF32, ti.KeyF32) t.prepareKey(KeyF33, ti.KeyF33) t.prepareKey(KeyF34, ti.KeyF34) t.prepareKey(KeyF35, ti.KeyF35) t.prepareKey(KeyF36, ti.KeyF36) t.prepareKey(KeyF37, ti.KeyF37) t.prepareKey(KeyF38, ti.KeyF38) t.prepareKey(KeyF39, ti.KeyF39) t.prepareKey(KeyF40, ti.KeyF40) t.prepareKey(KeyF41, ti.KeyF41) t.prepareKey(KeyF42, ti.KeyF42) t.prepareKey(KeyF43, ti.KeyF43) t.prepareKey(KeyF44, ti.KeyF44) t.prepareKey(KeyF45, ti.KeyF45) t.prepareKey(KeyF46, ti.KeyF46) t.prepareKey(KeyF47, ti.KeyF47) t.prepareKey(KeyF48, ti.KeyF48) t.prepareKey(KeyF49, ti.KeyF49) t.prepareKey(KeyF50, ti.KeyF50) t.prepareKey(KeyF51, ti.KeyF51) t.prepareKey(KeyF52, ti.KeyF52) t.prepareKey(KeyF53, ti.KeyF53) t.prepareKey(KeyF54, ti.KeyF54) t.prepareKey(KeyF55, ti.KeyF55) t.prepareKey(KeyF56, ti.KeyF56) t.prepareKey(KeyF57, ti.KeyF57) t.prepareKey(KeyF58, ti.KeyF58) t.prepareKey(KeyF59, ti.KeyF59) t.prepareKey(KeyF60, ti.KeyF60) t.prepareKey(KeyF61, ti.KeyF61) t.prepareKey(KeyF62, ti.KeyF62) t.prepareKey(KeyF63, ti.KeyF63) t.prepareKey(KeyF64, ti.KeyF64) t.prepareKey(KeyInsert, ti.KeyInsert) t.prepareKey(KeyDelete, ti.KeyDelete) t.prepareKey(KeyHome, ti.KeyHome) t.prepareKey(KeyEnd, ti.KeyEnd) t.prepareKey(KeyUp, ti.KeyUp) t.prepareKey(KeyDown, ti.KeyDown) t.prepareKey(KeyLeft, ti.KeyLeft) t.prepareKey(KeyRight, ti.KeyRight) t.prepareKey(KeyPgUp, ti.KeyPgUp) t.prepareKey(KeyPgDn, ti.KeyPgDn) t.prepareKey(KeyHelp, ti.KeyHelp) t.prepareKey(KeyPrint, ti.KeyPrint) t.prepareKey(KeyCancel, ti.KeyCancel) t.prepareKey(KeyExit, ti.KeyExit) t.prepareKey(KeyBacktab, ti.KeyBacktab) t.prepareKeyMod(KeyRight, ModShift, ti.KeyShfRight) t.prepareKeyMod(KeyLeft, ModShift, ti.KeyShfLeft) t.prepareKeyMod(KeyUp, ModShift, ti.KeyShfUp) t.prepareKeyMod(KeyDown, ModShift, ti.KeyShfDown) t.prepareKeyMod(KeyHome, ModShift, ti.KeyShfHome) t.prepareKeyMod(KeyEnd, ModShift, ti.KeyShfEnd) t.prepareKeyMod(KeyRight, ModCtrl, ti.KeyCtrlRight) t.prepareKeyMod(KeyLeft, ModCtrl, ti.KeyCtrlLeft) t.prepareKeyMod(KeyUp, ModCtrl, ti.KeyCtrlUp) t.prepareKeyMod(KeyDown, ModCtrl, ti.KeyCtrlDown) t.prepareKeyMod(KeyHome, ModCtrl, ti.KeyCtrlHome) t.prepareKeyMod(KeyEnd, ModCtrl, ti.KeyCtrlEnd) t.prepareKeyMod(KeyRight, ModAlt, ti.KeyAltRight) t.prepareKeyMod(KeyLeft, ModAlt, ti.KeyAltLeft) t.prepareKeyMod(KeyUp, ModAlt, ti.KeyAltUp) t.prepareKeyMod(KeyDown, ModAlt, ti.KeyAltDown) t.prepareKeyMod(KeyHome, ModAlt, ti.KeyAltHome) t.prepareKeyMod(KeyEnd, ModAlt, ti.KeyAltEnd) t.prepareKeyMod(KeyRight, ModAlt, ti.KeyMetaRight) t.prepareKeyMod(KeyLeft, ModAlt, ti.KeyMetaLeft) t.prepareKeyMod(KeyUp, ModAlt, ti.KeyMetaUp) t.prepareKeyMod(KeyDown, ModAlt, ti.KeyMetaDown) t.prepareKeyMod(KeyHome, ModAlt, ti.KeyMetaHome) t.prepareKeyMod(KeyEnd, ModAlt, ti.KeyMetaEnd) t.prepareKeyMod(KeyRight, ModAlt|ModShift, ti.KeyAltShfRight) t.prepareKeyMod(KeyLeft, ModAlt|ModShift, ti.KeyAltShfLeft) t.prepareKeyMod(KeyUp, ModAlt|ModShift, ti.KeyAltShfUp) t.prepareKeyMod(KeyDown, ModAlt|ModShift, ti.KeyAltShfDown) t.prepareKeyMod(KeyHome, ModAlt|ModShift, ti.KeyAltShfHome) t.prepareKeyMod(KeyEnd, ModAlt|ModShift, ti.KeyAltShfEnd) t.prepareKeyMod(KeyRight, ModAlt|ModShift, ti.KeyMetaShfRight) t.prepareKeyMod(KeyLeft, ModAlt|ModShift, ti.KeyMetaShfLeft) t.prepareKeyMod(KeyUp, ModAlt|ModShift, ti.KeyMetaShfUp) t.prepareKeyMod(KeyDown, ModAlt|ModShift, ti.KeyMetaShfDown) t.prepareKeyMod(KeyHome, ModAlt|ModShift, ti.KeyMetaShfHome) t.prepareKeyMod(KeyEnd, ModAlt|ModShift, ti.KeyMetaShfEnd) t.prepareKeyMod(KeyRight, ModCtrl|ModShift, ti.KeyCtrlShfRight) t.prepareKeyMod(KeyLeft, ModCtrl|ModShift, ti.KeyCtrlShfLeft) t.prepareKeyMod(KeyUp, ModCtrl|ModShift, ti.KeyCtrlShfUp) t.prepareKeyMod(KeyDown, ModCtrl|ModShift, ti.KeyCtrlShfDown) t.prepareKeyMod(KeyHome, ModCtrl|ModShift, ti.KeyCtrlShfHome) t.prepareKeyMod(KeyEnd, ModCtrl|ModShift, ti.KeyCtrlShfEnd) // Sadly, xterm handling of keycodes is somewhat erratic. In // particular, different codes are sent depending on application // mode is in use or not, and the entries for many of these are // simply absent from terminfo on many systems. So we insert // a number of escape sequences if they are not already used, in // order to have the widest correct usage. Note that prepareKey // will not inject codes if the escape sequence is already known. // We also only do this for terminals that have the application // mode present. // Cursor mode if ti.EnterKeypad != "" { t.prepareKey(KeyUp, "\x1b[A") t.prepareKey(KeyDown, "\x1b[B") t.prepareKey(KeyRight, "\x1b[C") t.prepareKey(KeyLeft, "\x1b[D") t.prepareKey(KeyEnd, "\x1b[F") t.prepareKey(KeyHome, "\x1b[H") t.prepareKey(KeyDelete, "\x1b[3~") t.prepareKey(KeyHome, "\x1b[1~") t.prepareKey(KeyEnd, "\x1b[4~") t.prepareKey(KeyPgUp, "\x1b[5~") t.prepareKey(KeyPgDn, "\x1b[6~") // Application mode t.prepareKey(KeyUp, "\x1bOA") t.prepareKey(KeyDown, "\x1bOB") t.prepareKey(KeyRight, "\x1bOC") t.prepareKey(KeyLeft, "\x1bOD") t.prepareKey(KeyHome, "\x1bOH") } outer: // Add key mappings for control keys. for i := 0; i < ' '; i++ { // Do not insert direct key codes for ambiguous keys. // For example, ESC is used for lots of other keys, so // when parsing this we don't want to fast path handling // of it, but instead wait a bit before parsing it as in // isolation. for esc := range t.keycodes { if []byte(esc)[0] == byte(i) { continue outer } } t.keyexist[Key(i)] = true mod := ModCtrl switch Key(i) { case KeyBS, KeyTAB, KeyESC, KeyCR: // directly typeable- no control sequence mod = ModNone } t.keycodes[string(rune(i))] = &tKeyCode{key: Key(i), mod: mod} } } func (t *tScreen) Fini() { t.Lock() defer t.Unlock() ti := t.ti t.cells.Resize(0, 0) t.TPuts(ti.ShowCursor) t.TPuts(ti.AttrOff) t.TPuts(ti.Clear) t.TPuts(ti.ExitCA) t.TPuts(ti.ExitKeypad) t.TPuts(ti.TParm(ti.MouseMode, 0)) t.curstyle = Style(-1) t.clear = false t.fini = true select { case <-t.quit: // do nothing, already closed default: close(t.quit) } t.termioFini() } func (t *tScreen) SetStyle(style Style) { t.Lock() if !t.fini { t.style = style } t.Unlock() } func (t *tScreen) Clear() { t.Fill(' ', t.style) } func (t *tScreen) Fill(r rune, style Style) { t.Lock() if !t.fini { t.cells.Fill(r, style) } t.Unlock() } func (t *tScreen) SetContent(x, y int, mainc rune, combc []rune, style Style) { t.Lock() if !t.fini { t.cells.SetContent(x, y, mainc, combc, style) } t.Unlock() } func (t *tScreen) GetContent(x, y int) (rune, []rune, Style, int) { t.Lock() mainc, combc, style, width := t.cells.GetContent(x, y) t.Unlock() return mainc, combc, style, width } func (t *tScreen) SetCell(x, y int, style Style, ch ...rune) { if len(ch) > 0 { t.SetContent(x, y, ch[0], ch[1:], style) } else { t.SetContent(x, y, ' ', nil, style) } } func (t *tScreen) encodeRune(r rune, buf []byte) []byte { nb := make([]byte, 6) ob := make([]byte, 6) num := utf8.EncodeRune(ob, r) ob = ob[:num] dst := 0 var err error if enc := t.encoder; enc != nil { enc.Reset() dst, _, err = enc.Transform(nb, ob, true) } if err != nil || dst == 0 || nb[0] == '\x1a' { // Combining characters are elided if len(buf) == 0 { if acs, ok := t.acs[r]; ok { buf = append(buf, []byte(acs)...) } else if fb, ok := t.fallback[r]; ok { buf = append(buf, []byte(fb)...) } else { buf = append(buf, '?') } } } else { buf = append(buf, nb[:dst]...) } return buf } func (t *tScreen) sendFgBg(fg Color, bg Color) { ti := t.ti if ti.Colors == 0 { return } if t.truecolor { if ti.SetFgBgRGB != "" && fg != ColorDefault && bg != ColorDefault { r1, g1, b1 := fg.RGB() r2, g2, b2 := bg.RGB() t.TPuts(ti.TParm(ti.SetFgBgRGB, int(r1), int(g1), int(b1), int(r2), int(g2), int(b2))) } else { if fg != ColorDefault && ti.SetFgRGB != "" { r, g, b := fg.RGB() t.TPuts(ti.TParm(ti.SetFgRGB, int(r), int(g), int(b))) } if bg != ColorDefault && ti.SetBgRGB != "" { r, g, b := bg.RGB() t.TPuts(ti.TParm(ti.SetBgRGB, int(r), int(g), int(b))) } } return } if fg != ColorDefault { if v, ok := t.colors[fg]; ok { fg = v } else { v = FindColor(fg, t.palette) t.colors[fg] = v fg = v } } if bg != ColorDefault { if v, ok := t.colors[bg]; ok { bg = v } else { v = FindColor(bg, t.palette) t.colors[bg] = v bg = v } } if ti.SetFgBg != "" && fg != ColorDefault && bg != ColorDefault { t.TPuts(ti.TParm(ti.SetFgBg, int(fg), int(bg))) } else { if fg != ColorDefault && ti.SetFg != "" { t.TPuts(ti.TParm(ti.SetFg, int(fg))) } if bg != ColorDefault && ti.SetBg != "" { t.TPuts(ti.TParm(ti.SetBg, int(bg))) } } } func (t *tScreen) drawCell(x, y int) int { ti := t.ti mainc, combc, style, width := t.cells.GetContent(x, y) if !t.cells.Dirty(x, y) { return width } if t.cy != y || t.cx != x { t.TPuts(ti.TGoto(x, y)) t.cx = x t.cy = y } if style == StyleDefault { style = t.style } if style != t.curstyle { fg, bg, attrs := style.Decompose() t.TPuts(ti.AttrOff) t.sendFgBg(fg, bg) if attrs&AttrBold != 0 { t.TPuts(ti.Bold) } if attrs&AttrUnderline != 0 { t.TPuts(ti.Underline) } if attrs&AttrReverse != 0 { t.TPuts(ti.Reverse) } if attrs&AttrBlink != 0 { t.TPuts(ti.Blink) } if attrs&AttrDim != 0 { t.TPuts(ti.Dim) } t.curstyle = style } // now emit runes - taking care to not overrun width with a // wide character, and to ensure that we emit exactly one regular // character followed up by any residual combing characters if width < 1 { width = 1 } var str string buf := make([]byte, 0, 6) buf = t.encodeRune(mainc, buf) for _, r := range combc { buf = t.encodeRune(r, buf) } str = string(buf) if width > 1 && str == "?" { // No FullWidth character support str = "? " t.cx = -1 } // XXX: check for hazeltine not being able to display ~ if x > t.w-width { // too wide to fit; emit a single space instead width = 1 str = " " } t.writeString(str) t.cx += width t.cells.SetDirty(x, y, false) if width > 1 { t.cx = -1 } return width } func (t *tScreen) ShowCursor(x, y int) { t.Lock() t.cursorx = x t.cursory = y t.Unlock() } func (t *tScreen) HideCursor() { t.ShowCursor(-1, -1) } func (t *tScreen) showCursor() { x, y := t.cursorx, t.cursory w, h := t.cells.Size() if x < 0 || y < 0 || x >= w || y >= h { t.hideCursor() return } t.TPuts(t.ti.TGoto(x, y)) t.TPuts(t.ti.ShowCursor) t.cx = x t.cy = y } // writeString sends a string to the terminal. The string is sent as-is and // this function does not expand inline padding indications (of the form // $<[delay]> where [delay] is msec). In order to have these expanded, use // TPuts. If the screen is "buffering", the string is collected in a buffer, // with the intention that the entire buffer be sent to the terminal in one // write operation at some point later. func (t *tScreen) writeString(s string) { if t.buffering { io.WriteString(&t.buf, s) } else { io.WriteString(t.out, s) } } func (t *tScreen) TPuts(s string) { if t.buffering { t.ti.TPuts(&t.buf, s) } else { t.ti.TPuts(t.out, s) } } func (t *tScreen) Show() { t.Lock() if !t.fini { t.resize() t.draw() } t.Unlock() } func (t *tScreen) clearScreen() { fg, bg, _ := t.style.Decompose() t.sendFgBg(fg, bg) t.TPuts(t.ti.Clear) t.clear = false } func (t *tScreen) hideCursor() { // does not update cursor position if t.ti.HideCursor != "" { t.TPuts(t.ti.HideCursor) } else { // No way to hide cursor, stick it // at bottom right of screen t.cx, t.cy = t.cells.Size() t.TPuts(t.ti.TGoto(t.cx, t.cy)) } } func (t *tScreen) draw() { // clobber cursor position, because we're gonna change it all t.cx = -1 t.cy = -1 t.buf.Reset() t.buffering = true defer func() { t.buffering = false }() // hide the cursor while we move stuff around t.hideCursor() if t.clear { t.clearScreen() } for y := 0; y < t.h; y++ { for x := 0; x < t.w; x++ { width := t.drawCell(x, y) if width > 1 { if x+1 < t.w { // this is necessary so that if we ever // go back to drawing that cell, we // actually will *draw* it. t.cells.SetDirty(x+1, y, true) } } x += width - 1 } } // restore the cursor t.showCursor() t.buf.WriteTo(t.out) } func (t *tScreen) EnableMouse() { if len(t.mouse) != 0 { t.TPuts(t.ti.TParm(t.ti.MouseMode, 1)) } } func (t *tScreen) DisableMouse() { if len(t.mouse) != 0 { t.TPuts(t.ti.TParm(t.ti.MouseMode, 0)) } } func (t *tScreen) Size() (int, int) { t.Lock() w, h := t.w, t.h t.Unlock() return w, h } func (t *tScreen) resize() { if w, h, e := t.getWinSize(); e == nil { if w != t.w || h != t.h { t.cx = -1 t.cy = -1 t.cells.Resize(w, h) t.cells.Invalidate() t.h = h t.w = w ev := NewEventResize(w, h) t.PostEvent(ev) } } } func (t *tScreen) Colors() int { // this doesn't change, no need for lock if t.truecolor { return 1 << 24 } return t.ti.Colors } func (t *tScreen) PollEvent() Event { select { case <-t.quit: return nil case ev := <-t.evch: return ev } } // vtACSNames is a map of bytes defined by terminfo that are used in // the terminals Alternate Character Set to represent other glyphs. // For example, the upper left corner of the box drawing set can be // displayed by printing "l" while in the alternate character set. // Its not quite that simple, since the "l" is the terminfo name, // and it may be necessary to use a different character based on // the terminal implementation (or the terminal may lack support for // this altogether). See buildAcsMap below for detail. var vtACSNames = map[byte]rune{ '+': RuneRArrow, ',': RuneLArrow, '-': RuneUArrow, '.': RuneDArrow, '0': RuneBlock, '`': RuneDiamond, 'a': RuneCkBoard, 'b': '␉', // VT100, Not defined by terminfo 'c': '␌', // VT100, Not defined by terminfo 'd': '␋', // VT100, Not defined by terminfo 'e': '␊', // VT100, Not defined by terminfo 'f': RuneDegree, 'g': RunePlMinus, 'h': RuneBoard, 'i': RuneLantern, 'j': RuneLRCorner, 'k': RuneURCorner, 'l': RuneULCorner, 'm': RuneLLCorner, 'n': RunePlus, 'o': RuneS1, 'p': RuneS3, 'q': RuneHLine, 'r': RuneS7, 's': RuneS9, 't': RuneLTee, 'u': RuneRTee, 'v': RuneBTee, 'w': RuneTTee, 'x': RuneVLine, 'y': RuneLEqual, 'z': RuneGEqual, '{': RunePi, '|': RuneNEqual, '}': RuneSterling, '~': RuneBullet, } // buildAcsMap builds a map of characters that we translate from Unicode to // alternate character encodings. To do this, we use the standard VT100 ACS // maps. This is only done if the terminal lacks support for Unicode; we // always prefer to emit Unicode glyphs when we are able. func (t *tScreen) buildAcsMap() { acsstr := t.ti.AltChars t.acs = make(map[rune]string) for len(acsstr) > 2 { srcv := acsstr[0] dstv := string(acsstr[1]) if r, ok := vtACSNames[srcv]; ok { t.acs[r] = t.ti.EnterAcs + dstv + t.ti.ExitAcs } acsstr = acsstr[2:] } } func (t *tScreen) PostEventWait(ev Event) { t.evch <- ev } func (t *tScreen) PostEvent(ev Event) error { select { case t.evch <- ev: return nil default: return ErrEventQFull } } func (t *tScreen) clip(x, y int) (int, int) { w, h := t.cells.Size() if x < 0 { x = 0 } if y < 0 { y = 0 } if x > w-1 { x = w - 1 } if y > h-1 { y = h - 1 } return x, y } // buildMouseEvent returns an event based on the supplied coordinates and button // state. Note that the screen's mouse button state is updated based on the // input to this function (i.e. it mutates the receiver). func (t *tScreen) buildMouseEvent(x, y, btn int) *EventMouse { // XTerm mouse events only report at most one button at a time, // which may include a wheel button. Wheel motion events are // reported as single impulses, while other button events are reported // as separate press & release events. button := ButtonNone mod := ModNone // Mouse wheel has bit 6 set, no release events. It should be noted // that wheel events are sometimes misdelivered as mouse button events // during a click-drag, so we debounce these, considering them to be // button press events unless we see an intervening release event. switch btn & 0x43 { case 0: button = Button1 t.wasbtn = true case 1: button = Button2 t.wasbtn = true case 2: button = Button3 t.wasbtn = true case 3: button = ButtonNone t.wasbtn = false case 0x40: if !t.wasbtn { button = WheelUp } else { button = Button1 } case 0x41: if !t.wasbtn { button = WheelDown } else { button = Button2 } } if btn&0x4 != 0 { mod |= ModShift } if btn&0x8 != 0 { mod |= ModAlt } if btn&0x10 != 0 { mod |= ModCtrl } // Some terminals will report mouse coordinates outside the // screen, especially with click-drag events. Clip the coordinates // to the screen in that case. x, y = t.clip(x, y) return NewEventMouse(x, y, button, mod) } // parseSgrMouse attempts to locate an SGR mouse record at the start of the // buffer. It returns true, true if it found one, and the associated bytes // be removed from the buffer. It returns true, false if the buffer might // contain such an event, but more bytes are necessary (partial match), and // false, false if the content is definitely *not* an SGR mouse record. func (t *tScreen) parseSgrMouse(buf *bytes.Buffer, evs *[]Event) (bool, bool) { b := buf.Bytes() var x, y, btn, state int dig := false neg := false motion := false i := 0 val := 0 for i = range b { switch b[i] { case '\x1b': if state != 0 { return false, false } state = 1 case '\x9b': if state != 0 { return false, false } state = 2 case '[': if state != 1 { return false, false } state = 2 case '<': if state != 2 { return false, false } val = 0 dig = false neg = false state = 3 case '-': if state != 3 && state != 4 && state != 5 { return false, false } if dig || neg { return false, false } neg = true // stay in state case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9': if state != 3 && state != 4 && state != 5 { return false, false } val *= 10 val += int(b[i] - '0') dig = true // stay in state case ';': if neg { val = -val } switch state { case 3: btn, val = val, 0 neg, dig, state = false, false, 4 case 4: x, val = val-1, 0 neg, dig, state = false, false, 5 default: return false, false } case 'm', 'M': if state != 5 { return false, false } if neg { val = -val } y = val - 1 motion = (btn & 32) != 0 btn &^= 32 if b[i] == 'm' { // mouse release, clear all buttons btn |= 3 btn &^= 0x40 t.buttondn = false } else if motion { /* * Some broken terminals appear to send * mouse button one motion events, instead of * encoding 35 (no buttons) into these events. * We resolve these by looking for a non-motion * event first. */ if !t.buttondn { btn |= 3 btn &^= 0x40 } } else { t.buttondn = true } // consume the event bytes for i >= 0 { buf.ReadByte() i-- } *evs = append(*evs, t.buildMouseEvent(x, y, btn)) return true, true } } // incomplete & inconclusve at this point return true, false } // parseXtermMouse is like parseSgrMouse, but it parses a legacy // X11 mouse record. func (t *tScreen) parseXtermMouse(buf *bytes.Buffer, evs *[]Event) (bool, bool) { b := buf.Bytes() state := 0 btn := 0 x := 0 y := 0 for i := range b { switch state { case 0: switch b[i] { case '\x1b': state = 1 case '\x9b': state = 2 default: return false, false } case 1: if b[i] != '[' { return false, false } state = 2 case 2: if b[i] != 'M' { return false, false } state++ case 3: btn = int(b[i]) state++ case 4: x = int(b[i]) - 32 - 1 state++ case 5: y = int(b[i]) - 32 - 1 for i >= 0 { buf.ReadByte() i-- } *evs = append(*evs, t.buildMouseEvent(x, y, btn)) return true, true } } return true, false } func (t *tScreen) parseFunctionKey(buf *bytes.Buffer, evs *[]Event) (bool, bool) { b := buf.Bytes() partial := false for e, k := range t.keycodes { esc := []byte(e) if (len(esc) == 1) && (esc[0] == '\x1b') { continue } if bytes.HasPrefix(b, esc) { // matched var r rune if len(esc) == 1 { r = rune(b[0]) } mod := k.mod if t.escaped { mod |= ModAlt t.escaped = false } *evs = append(*evs, NewEventKey(k.key, r, mod)) for i := 0; i < len(esc); i++ { buf.ReadByte() } return true, true } if bytes.HasPrefix(esc, b) { partial = true } } return partial, false } func (t *tScreen) parseRune(buf *bytes.Buffer, evs *[]Event) (bool, bool) { b := buf.Bytes() if b[0] >= ' ' && b[0] <= 0x7F { // printable ASCII easy to deal with -- no encodings mod := ModNone if t.escaped { mod = ModAlt t.escaped = false } *evs = append(*evs, NewEventKey(KeyRune, rune(b[0]), mod)) buf.ReadByte() return true, true } if b[0] < 0x80 { // Low numbered values are control keys, not runes. return false, false } utfb := make([]byte, 12) for l := 1; l <= len(b); l++ { t.decoder.Reset() nout, nin, e := t.decoder.Transform(utfb, b[:l], true) if e == transform.ErrShortSrc { continue } if nout != 0 { r, _ := utf8.DecodeRune(utfb[:nout]) if r != utf8.RuneError { mod := ModNone if t.escaped { mod = ModAlt t.escaped = false } *evs = append(*evs, NewEventKey(KeyRune, r, mod)) } for nin > 0 { buf.ReadByte() nin-- } return true, true } } // Looks like potential escape return true, false } func (t *tScreen) scanInput(buf *bytes.Buffer, expire bool) { evs := t.collectEventsFromInput(buf, expire) for _, ev := range evs { t.PostEventWait(ev) } } // Return an array of Events extracted from the supplied buffer. This is done // while holding the screen's lock - the events can then be queued for // application processing with the lock released. func (t *tScreen) collectEventsFromInput(buf *bytes.Buffer, expire bool) []Event { res := make([]Event, 0, 20) t.Lock() defer t.Unlock() for { b := buf.Bytes() if len(b) == 0 { buf.Reset() return res } partials := 0 if part, comp := t.parseRune(buf, &res); comp { continue } else if part { partials++ } if part, comp := t.parseFunctionKey(buf, &res); comp { continue } else if part { partials++ } // Only parse mouse records if this term claims to have // mouse support if t.ti.Mouse != "" { if part, comp := t.parseXtermMouse(buf, &res); comp { continue } else if part { partials++ } if part, comp := t.parseSgrMouse(buf, &res); comp { continue } else if part { partials++ } } if partials == 0 || expire { if b[0] == '\x1b' { if len(b) == 1 { res = append(res, NewEventKey(KeyEsc, 0, ModNone)) t.escaped = false } else { t.escaped = true } buf.ReadByte() continue } // Nothing was going to match, or we timed out // waiting for more data -- just deliver the characters // to the app & let them sort it out. Possibly we // should only do this for control characters like ESC. by, _ := buf.ReadByte() mod := ModNone if t.escaped { t.escaped = false mod = ModAlt } res = append(res, NewEventKey(KeyRune, rune(by), mod)) continue } // well we have some partial data, wait until we get // some more break } return res } func (t *tScreen) mainLoop() { buf := &bytes.Buffer{} for { select { case <-t.quit: close(t.indoneq) return case <-t.sigwinch: t.Lock() t.cx = -1 t.cy = -1 t.resize() t.cells.Invalidate() t.draw() t.Unlock() continue case <-t.keytimer.C: // If the timer fired, and the current time // is after the expiration of the escape sequence, // then we assume the escape sequence reached it's // conclusion, and process the chunk independently. // This lets us detect conflicts such as a lone ESC. if buf.Len() > 0 { if time.Now().After(t.keyexpire) { t.scanInput(buf, true) } } if buf.Len() > 0 { if !t.keytimer.Stop() { select { case <-t.keytimer.C: default: } } t.keytimer.Reset(time.Millisecond * 50) } case chunk := <-t.keychan: buf.Write(chunk) t.keyexpire = time.Now().Add(time.Millisecond * 50) t.scanInput(buf, false) if !t.keytimer.Stop() { select { case <-t.keytimer.C: default: } } if buf.Len() > 0 { t.keytimer.Reset(time.Millisecond * 50) } } } } func (t *tScreen) inputLoop() { for { chunk := make([]byte, 128) n, e := t.in.Read(chunk) switch e { case io.EOF: case nil: default: t.PostEvent(NewEventError(e)) return } t.keychan <- chunk[:n] } } func (t *tScreen) Sync() { t.Lock() t.cx = -1 t.cy = -1 if !t.fini { t.resize() t.clear = true t.cells.Invalidate() t.draw() } t.Unlock() } func (t *tScreen) CharacterSet() string { return t.charset } func (t *tScreen) RegisterRuneFallback(orig rune, fallback string) { t.Lock() t.fallback[orig] = fallback t.Unlock() } func (t *tScreen) UnregisterRuneFallback(orig rune) { t.Lock() delete(t.fallback, orig) t.Unlock() } func (t *tScreen) CanDisplay(r rune, checkFallbacks bool) bool { if enc := t.encoder; enc != nil { nb := make([]byte, 6) ob := make([]byte, 6) num := utf8.EncodeRune(ob, r) enc.Reset() dst, _, err := enc.Transform(nb, ob[:num], true) if dst != 0 && err == nil && nb[0] != '\x1A' { return true } } // Terminal fallbacks always permitted, since we assume they are // basically nearly perfect renditions. if _, ok := t.acs[r]; ok { return true } if !checkFallbacks { return false } if _, ok := t.fallback[r]; ok { return true } return false } func (t *tScreen) HasMouse() bool { return len(t.mouse) != 0 } func (t *tScreen) HasKey(k Key) bool { if k == KeyRune { return true } return t.keyexist[k] } func (t *tScreen) Resize(int, int, int, int) {}