package v3 import ( "context" "errors" "github.com/rs/zerolog" ) const ( // Allocating a 16 channel buffer here allows for the writer to be slightly faster than the reader. // This has worked previously well for datagramv2, so we will start with this as well demuxChanCapacity = 16 ) // DatagramConn is the bridge that multiplexes writes and reads of datagrams for UDP sessions and ICMP packets to // a connection. type DatagramConn interface { DatagramWriter // Serve provides a server interface to process and handle incoming QUIC datagrams and demux their datagram v3 payloads. Serve(context.Context) error } // DatagramWriter provides the Muxer interface to create proper Datagrams when sending over a connection. type DatagramWriter interface { SendUDPSessionDatagram(datagram []byte) error SendUDPSessionResponse(id RequestID, resp SessionRegistrationResp) error //SendICMPPacket(packet packet.IP) error } // QuicConnection provides an interface that matches [quic.Connection] for only the datagram operations. // // We currently rely on the mutex for the [quic.Connection.SendDatagram] and [quic.Connection.ReceiveDatagram] and // do not have any locking for them. If the implementation in quic-go were to ever change, we would need to make // sure that we lock properly on these operations. type QuicConnection interface { Context() context.Context SendDatagram(payload []byte) error ReceiveDatagram(context.Context) ([]byte, error) } type datagramConn struct { conn QuicConnection sessionManager SessionManager logger *zerolog.Logger datagrams chan []byte readErrors chan error } func NewDatagramConn(conn QuicConnection, sessionManager SessionManager, logger *zerolog.Logger) DatagramConn { log := logger.With().Uint8("datagramVersion", 3).Logger() return &datagramConn{ conn: conn, sessionManager: sessionManager, logger: &log, datagrams: make(chan []byte, demuxChanCapacity), readErrors: make(chan error, 2), } } func (c *datagramConn) SendUDPSessionDatagram(datagram []byte) error { return c.conn.SendDatagram(datagram) } func (c *datagramConn) SendUDPSessionResponse(id RequestID, resp SessionRegistrationResp) error { datagram := UDPSessionRegistrationResponseDatagram{ RequestID: id, ResponseType: resp, } data, err := datagram.MarshalBinary() if err != nil { return err } return c.conn.SendDatagram(data) } var errReadTimeout error = errors.New("receive datagram timeout") // pollDatagrams will read datagrams from the underlying connection until the provided context is done. func (c *datagramConn) pollDatagrams(ctx context.Context) { for ctx.Err() == nil { datagram, err := c.conn.ReceiveDatagram(ctx) // If the read returns an error, we want to return the failure to the channel. if err != nil { c.readErrors <- err return } c.datagrams <- datagram } if ctx.Err() != nil { c.readErrors <- ctx.Err() } } // Serve will begin the process of receiving datagrams from the [quic.Connection] and demuxing them to their destination. // The [DatagramConn] when serving, will be responsible for the sessions it accepts. func (c *datagramConn) Serve(ctx context.Context) error { connCtx := c.conn.Context() // We want to make sure that we cancel the reader context if the Serve method returns. This could also mean that the // underlying connection is also closing, but that is handled outside of the context of the datagram muxer. readCtx, cancel := context.WithCancel(connCtx) defer cancel() go c.pollDatagrams(readCtx) for { // We make sure to monitor the context of cloudflared and the underlying connection to return if any errors occur. var datagram []byte select { // Monitor the context of cloudflared case <-ctx.Done(): return ctx.Err() // Monitor the context of the underlying connection case <-connCtx.Done(): return connCtx.Err() // Monitor for any hard errors from reading the connection case err := <-c.readErrors: return err // Otherwise, wait and dequeue datagrams as they come in case d := <-c.datagrams: datagram = d } // Each incoming datagram will be processed in a new go routine to handle the demuxing and action associated. go func() { typ, err := parseDatagramType(datagram) if err != nil { c.logger.Err(err).Msgf("unable to parse datagram type: %d", typ) return } switch typ { case UDPSessionRegistrationType: reg := &UDPSessionRegistrationDatagram{} err := reg.UnmarshalBinary(datagram) if err != nil { c.logger.Err(err).Msgf("unable to unmarshal session registration datagram") return } // We bind the new session to the quic connection context instead of cloudflared context to allow for the // quic connection to close and close only the sessions bound to it. Closing of cloudflared will also // initiate the close of the quic connection, so we don't have to worry about the application context // in the scope of a session. c.handleSessionRegistrationDatagram(connCtx, reg) case UDPSessionPayloadType: payload := &UDPSessionPayloadDatagram{} err := payload.UnmarshalBinary(datagram) if err != nil { c.logger.Err(err).Msgf("unable to unmarshal session payload datagram") return } c.handleSessionPayloadDatagram(payload) case UDPSessionRegistrationResponseType: // cloudflared should never expect to receive UDP session responses as it will not initiate new // sessions towards the edge. c.logger.Error().Msgf("unexpected datagram type received: %d", UDPSessionRegistrationResponseType) return default: c.logger.Error().Msgf("unknown datagram type received: %d", typ) } }() } } // This method handles new registrations of a session and the serve loop for the session. func (c *datagramConn) handleSessionRegistrationDatagram(ctx context.Context, datagram *UDPSessionRegistrationDatagram) { session, err := c.sessionManager.RegisterSession(datagram, c) if err != nil { c.logger.Err(err).Msgf("session registration failure") c.handleSessionRegistrationFailure(datagram.RequestID, err) return } // Make sure to eventually remove the session from the session manager when the session is closed defer c.sessionManager.UnregisterSession(session.ID()) // Respond that we are able to process the new session err = c.SendUDPSessionResponse(datagram.RequestID, ResponseOk) if err != nil { c.logger.Err(err).Msgf("session registration failure: unable to send session registration response") return } // We bind the context of the session to the [quic.Connection] that initiated the session. // [Session.Serve] is blocking and will continue this go routine till the end of the session lifetime. err = session.Serve(ctx) if err == nil { // We typically don't expect a session to close without some error response. [SessionIdleErr] is the typical // expected error response. c.logger.Warn().Msg("session was closed without explicit close or timeout") return } // SessionIdleErr and SessionCloseErr are valid and successful error responses to end a session. if errors.Is(err, SessionIdleErr{}) || errors.Is(err, SessionCloseErr) { c.logger.Debug().Msg(err.Error()) return } // All other errors should be reported as errors c.logger.Err(err).Msgf("session was closed with an error") } func (c *datagramConn) handleSessionRegistrationFailure(requestID RequestID, regErr error) { var errResp SessionRegistrationResp switch regErr { case ErrSessionBoundToOtherConn: errResp = ResponseSessionAlreadyConnected default: errResp = ResponseUnableToBindSocket } err := c.SendUDPSessionResponse(requestID, errResp) if err != nil { c.logger.Err(err).Msgf("unable to send session registration error response (%d)", errResp) } } // Handles incoming datagrams that need to be sent to a registered session. func (c *datagramConn) handleSessionPayloadDatagram(datagram *UDPSessionPayloadDatagram) { s, err := c.sessionManager.GetSession(datagram.RequestID) if err != nil { c.logger.Err(err).Msgf("unable to find session") return } // We ignore the bytes written to the socket because any partial write must return an error. _, err = s.Write(datagram.Payload) if err != nil { c.logger.Err(err).Msgf("unable to write payload for unavailable session") return } }