// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package http2 import "fmt" // WriteScheduler is the interface implemented by HTTP/2 write schedulers. // Methods are never called concurrently. type WriteScheduler interface { // OpenStream opens a new stream in the write scheduler. // It is illegal to call this with streamID=0 or with a streamID that is // already open -- the call may panic. OpenStream(streamID uint32, options OpenStreamOptions) // CloseStream closes a stream in the write scheduler. Any frames queued on // this stream should be discarded. It is illegal to call this on a stream // that is not open -- the call may panic. CloseStream(streamID uint32) // AdjustStream adjusts the priority of the given stream. This may be called // on a stream that has not yet been opened or has been closed. Note that // RFC 7540 allows PRIORITY frames to be sent on streams in any state. See: // https://tools.ietf.org/html/rfc7540#section-5.1 AdjustStream(streamID uint32, priority PriorityParam) // Push queues a frame in the scheduler. In most cases, this will not be // called with wr.StreamID()!=0 unless that stream is currently open. The one // exception is RST_STREAM frames, which may be sent on idle or closed streams. Push(wr FrameWriteRequest) // Pop dequeues the next frame to write. Returns false if no frames can // be written. Frames with a given wr.StreamID() are Pop'd in the same // order they are Push'd, except RST_STREAM frames. No frames should be // discarded except by CloseStream. Pop() (wr FrameWriteRequest, ok bool) } // OpenStreamOptions specifies extra options for WriteScheduler.OpenStream. type OpenStreamOptions struct { // PusherID is zero if the stream was initiated by the client. Otherwise, // PusherID names the stream that pushed the newly opened stream. PusherID uint32 } // FrameWriteRequest is a request to write a frame. type FrameWriteRequest struct { // write is the interface value that does the writing, once the // WriteScheduler has selected this frame to write. The write // functions are all defined in write.go. write writeFramer // stream is the stream on which this frame will be written. // nil for non-stream frames like PING and SETTINGS. // nil for RST_STREAM streams, which use the StreamError.StreamID field instead. stream *stream // done, if non-nil, must be a buffered channel with space for // 1 message and is sent the return value from write (or an // earlier error) when the frame has been written. done chan error } // StreamID returns the id of the stream this frame will be written to. // 0 is used for non-stream frames such as PING and SETTINGS. func (wr FrameWriteRequest) StreamID() uint32 { if wr.stream == nil { if se, ok := wr.write.(StreamError); ok { // (*serverConn).resetStream doesn't set // stream because it doesn't necessarily have // one. So special case this type of write // message. return se.StreamID } return 0 } return wr.stream.id } // isControl reports whether wr is a control frame for MaxQueuedControlFrames // purposes. That includes non-stream frames and RST_STREAM frames. func (wr FrameWriteRequest) isControl() bool { return wr.stream == nil } // DataSize returns the number of flow control bytes that must be consumed // to write this entire frame. This is 0 for non-DATA frames. func (wr FrameWriteRequest) DataSize() int { if wd, ok := wr.write.(*writeData); ok { return len(wd.p) } return 0 } // Consume consumes min(n, available) bytes from this frame, where available // is the number of flow control bytes available on the stream. Consume returns // 0, 1, or 2 frames, where the integer return value gives the number of frames // returned. // // If flow control prevents consuming any bytes, this returns (_, _, 0). If // the entire frame was consumed, this returns (wr, _, 1). Otherwise, this // returns (consumed, rest, 2), where 'consumed' contains the consumed bytes and // 'rest' contains the remaining bytes. The consumed bytes are deducted from the // underlying stream's flow control budget. func (wr FrameWriteRequest) Consume(n int32) (FrameWriteRequest, FrameWriteRequest, int) { var empty FrameWriteRequest // Non-DATA frames are always consumed whole. wd, ok := wr.write.(*writeData) if !ok || len(wd.p) == 0 { return wr, empty, 1 } // Might need to split after applying limits. allowed := wr.stream.flow.available() if n < allowed { allowed = n } if wr.stream.sc.maxFrameSize < allowed { allowed = wr.stream.sc.maxFrameSize } if allowed <= 0 { return empty, empty, 0 } if len(wd.p) > int(allowed) { wr.stream.flow.take(allowed) consumed := FrameWriteRequest{ stream: wr.stream, write: &writeData{ streamID: wd.streamID, p: wd.p[:allowed], // Even if the original had endStream set, there // are bytes remaining because len(wd.p) > allowed, // so we know endStream is false. endStream: false, }, // Our caller is blocking on the final DATA frame, not // this intermediate frame, so no need to wait. done: nil, } rest := FrameWriteRequest{ stream: wr.stream, write: &writeData{ streamID: wd.streamID, p: wd.p[allowed:], endStream: wd.endStream, }, done: wr.done, } return consumed, rest, 2 } // The frame is consumed whole. // NB: This cast cannot overflow because allowed is <= math.MaxInt32. wr.stream.flow.take(int32(len(wd.p))) return wr, empty, 1 } // String is for debugging only. func (wr FrameWriteRequest) String() string { var des string if s, ok := wr.write.(fmt.Stringer); ok { des = s.String() } else { des = fmt.Sprintf("%T", wr.write) } return fmt.Sprintf("[FrameWriteRequest stream=%d, ch=%v, writer=%v]", wr.StreamID(), wr.done != nil, des) } // replyToWriter sends err to wr.done and panics if the send must block // This does nothing if wr.done is nil. func (wr *FrameWriteRequest) replyToWriter(err error) { if wr.done == nil { return } select { case wr.done <- err: default: panic(fmt.Sprintf("unbuffered done channel passed in for type %T", wr.write)) } wr.write = nil // prevent use (assume it's tainted after wr.done send) } // writeQueue is used by implementations of WriteScheduler. type writeQueue struct { s []FrameWriteRequest } func (q *writeQueue) empty() bool { return len(q.s) == 0 } func (q *writeQueue) push(wr FrameWriteRequest) { q.s = append(q.s, wr) } func (q *writeQueue) shift() FrameWriteRequest { if len(q.s) == 0 { panic("invalid use of queue") } wr := q.s[0] // TODO: less copy-happy queue. copy(q.s, q.s[1:]) q.s[len(q.s)-1] = FrameWriteRequest{} q.s = q.s[:len(q.s)-1] return wr } // consume consumes up to n bytes from q.s[0]. If the frame is // entirely consumed, it is removed from the queue. If the frame // is partially consumed, the frame is kept with the consumed // bytes removed. Returns true iff any bytes were consumed. func (q *writeQueue) consume(n int32) (FrameWriteRequest, bool) { if len(q.s) == 0 { return FrameWriteRequest{}, false } consumed, rest, numresult := q.s[0].Consume(n) switch numresult { case 0: return FrameWriteRequest{}, false case 1: q.shift() case 2: q.s[0] = rest } return consumed, true } type writeQueuePool []*writeQueue // put inserts an unused writeQueue into the pool. func (p *writeQueuePool) put(q *writeQueue) { for i := range q.s { q.s[i] = FrameWriteRequest{} } q.s = q.s[:0] *p = append(*p, q) } // get returns an empty writeQueue. func (p *writeQueuePool) get() *writeQueue { ln := len(*p) if ln == 0 { return new(writeQueue) } x := ln - 1 q := (*p)[x] (*p)[x] = nil *p = (*p)[:x] return q }