package chi // Radix tree implementation below is a based on the original work by // Armon Dadgar in https://github.com/armon/go-radix/blob/master/radix.go // (MIT licensed). It's been heavily modified for use as a HTTP routing tree. import ( "fmt" "net/http" "regexp" "sort" "strconv" "strings" ) type methodTyp uint const ( mSTUB methodTyp = 1 << iota mCONNECT mDELETE mGET mHEAD mOPTIONS mPATCH mPOST mPUT mTRACE ) var mALL = mCONNECT | mDELETE | mGET | mHEAD | mOPTIONS | mPATCH | mPOST | mPUT | mTRACE var methodMap = map[string]methodTyp{ http.MethodConnect: mCONNECT, http.MethodDelete: mDELETE, http.MethodGet: mGET, http.MethodHead: mHEAD, http.MethodOptions: mOPTIONS, http.MethodPatch: mPATCH, http.MethodPost: mPOST, http.MethodPut: mPUT, http.MethodTrace: mTRACE, } // RegisterMethod adds support for custom HTTP method handlers, available // via Router#Method and Router#MethodFunc func RegisterMethod(method string) { if method == "" { return } method = strings.ToUpper(method) if _, ok := methodMap[method]; ok { return } n := len(methodMap) if n > strconv.IntSize-2 { panic(fmt.Sprintf("chi: max number of methods reached (%d)", strconv.IntSize)) } mt := methodTyp(2 << n) methodMap[method] = mt mALL |= mt } type nodeTyp uint8 const ( ntStatic nodeTyp = iota // /home ntRegexp // /{id:[0-9]+} ntParam // /{user} ntCatchAll // /api/v1/* ) type node struct { // subroutes on the leaf node subroutes Routes // regexp matcher for regexp nodes rex *regexp.Regexp // HTTP handler endpoints on the leaf node endpoints endpoints // prefix is the common prefix we ignore prefix string // child nodes should be stored in-order for iteration, // in groups of the node type. children [ntCatchAll + 1]nodes // first byte of the child prefix tail byte // node type: static, regexp, param, catchAll typ nodeTyp // first byte of the prefix label byte } // endpoints is a mapping of http method constants to handlers // for a given route. type endpoints map[methodTyp]*endpoint type endpoint struct { // endpoint handler handler http.Handler // pattern is the routing pattern for handler nodes pattern string // parameter keys recorded on handler nodes paramKeys []string } func (s endpoints) Value(method methodTyp) *endpoint { mh, ok := s[method] if !ok { mh = &endpoint{} s[method] = mh } return mh } func (n *node) InsertRoute(method methodTyp, pattern string, handler http.Handler) *node { var parent *node search := pattern for { // Handle key exhaustion if len(search) == 0 { // Insert or update the node's leaf handler n.setEndpoint(method, handler, pattern) return n } // We're going to be searching for a wild node next, // in this case, we need to get the tail var label = search[0] var segTail byte var segEndIdx int var segTyp nodeTyp var segRexpat string if label == '{' || label == '*' { segTyp, _, segRexpat, segTail, _, segEndIdx = patNextSegment(search) } var prefix string if segTyp == ntRegexp { prefix = segRexpat } // Look for the edge to attach to parent = n n = n.getEdge(segTyp, label, segTail, prefix) // No edge, create one if n == nil { child := &node{label: label, tail: segTail, prefix: search} hn := parent.addChild(child, search) hn.setEndpoint(method, handler, pattern) return hn } // Found an edge to match the pattern if n.typ > ntStatic { // We found a param node, trim the param from the search path and continue. // This param/wild pattern segment would already be on the tree from a previous // call to addChild when creating a new node. search = search[segEndIdx:] continue } // Static nodes fall below here. // Determine longest prefix of the search key on match. commonPrefix := longestPrefix(search, n.prefix) if commonPrefix == len(n.prefix) { // the common prefix is as long as the current node's prefix we're attempting to insert. // keep the search going. search = search[commonPrefix:] continue } // Split the node child := &node{ typ: ntStatic, prefix: search[:commonPrefix], } parent.replaceChild(search[0], segTail, child) // Restore the existing node n.label = n.prefix[commonPrefix] n.prefix = n.prefix[commonPrefix:] child.addChild(n, n.prefix) // If the new key is a subset, set the method/handler on this node and finish. search = search[commonPrefix:] if len(search) == 0 { child.setEndpoint(method, handler, pattern) return child } // Create a new edge for the node subchild := &node{ typ: ntStatic, label: search[0], prefix: search, } hn := child.addChild(subchild, search) hn.setEndpoint(method, handler, pattern) return hn } } // addChild appends the new `child` node to the tree using the `pattern` as the trie key. // For a URL router like chi's, we split the static, param, regexp and wildcard segments // into different nodes. In addition, addChild will recursively call itself until every // pattern segment is added to the url pattern tree as individual nodes, depending on type. func (n *node) addChild(child *node, prefix string) *node { search := prefix // handler leaf node added to the tree is the child. // this may be overridden later down the flow hn := child // Parse next segment segTyp, _, segRexpat, segTail, segStartIdx, segEndIdx := patNextSegment(search) // Add child depending on next up segment switch segTyp { case ntStatic: // Search prefix is all static (that is, has no params in path) // noop default: // Search prefix contains a param, regexp or wildcard if segTyp == ntRegexp { rex, err := regexp.Compile(segRexpat) if err != nil { panic(fmt.Sprintf("chi: invalid regexp pattern '%s' in route param", segRexpat)) } child.prefix = segRexpat child.rex = rex } if segStartIdx == 0 { // Route starts with a param child.typ = segTyp if segTyp == ntCatchAll { segStartIdx = -1 } else { segStartIdx = segEndIdx } if segStartIdx < 0 { segStartIdx = len(search) } child.tail = segTail // for params, we set the tail if segStartIdx != len(search) { // add static edge for the remaining part, split the end. // its not possible to have adjacent param nodes, so its certainly // going to be a static node next. search = search[segStartIdx:] // advance search position nn := &node{ typ: ntStatic, label: search[0], prefix: search, } hn = child.addChild(nn, search) } } else if segStartIdx > 0 { // Route has some param // starts with a static segment child.typ = ntStatic child.prefix = search[:segStartIdx] child.rex = nil // add the param edge node search = search[segStartIdx:] nn := &node{ typ: segTyp, label: search[0], tail: segTail, } hn = child.addChild(nn, search) } } n.children[child.typ] = append(n.children[child.typ], child) n.children[child.typ].Sort() return hn } func (n *node) replaceChild(label, tail byte, child *node) { for i := 0; i < len(n.children[child.typ]); i++ { if n.children[child.typ][i].label == label && n.children[child.typ][i].tail == tail { n.children[child.typ][i] = child n.children[child.typ][i].label = label n.children[child.typ][i].tail = tail return } } panic("chi: replacing missing child") } func (n *node) getEdge(ntyp nodeTyp, label, tail byte, prefix string) *node { nds := n.children[ntyp] for i := 0; i < len(nds); i++ { if nds[i].label == label && nds[i].tail == tail { if ntyp == ntRegexp && nds[i].prefix != prefix { continue } return nds[i] } } return nil } func (n *node) setEndpoint(method methodTyp, handler http.Handler, pattern string) { // Set the handler for the method type on the node if n.endpoints == nil { n.endpoints = make(endpoints) } paramKeys := patParamKeys(pattern) if method&mSTUB == mSTUB { n.endpoints.Value(mSTUB).handler = handler } if method&mALL == mALL { h := n.endpoints.Value(mALL) h.handler = handler h.pattern = pattern h.paramKeys = paramKeys for _, m := range methodMap { h := n.endpoints.Value(m) h.handler = handler h.pattern = pattern h.paramKeys = paramKeys } } else { h := n.endpoints.Value(method) h.handler = handler h.pattern = pattern h.paramKeys = paramKeys } } func (n *node) FindRoute(rctx *Context, method methodTyp, path string) (*node, endpoints, http.Handler) { // Reset the context routing pattern and params rctx.routePattern = "" rctx.routeParams.Keys = rctx.routeParams.Keys[:0] rctx.routeParams.Values = rctx.routeParams.Values[:0] // Find the routing handlers for the path rn := n.findRoute(rctx, method, path) if rn == nil { return nil, nil, nil } // Record the routing params in the request lifecycle rctx.URLParams.Keys = append(rctx.URLParams.Keys, rctx.routeParams.Keys...) rctx.URLParams.Values = append(rctx.URLParams.Values, rctx.routeParams.Values...) // Record the routing pattern in the request lifecycle if rn.endpoints[method].pattern != "" { rctx.routePattern = rn.endpoints[method].pattern rctx.RoutePatterns = append(rctx.RoutePatterns, rctx.routePattern) } return rn, rn.endpoints, rn.endpoints[method].handler } // Recursive edge traversal by checking all nodeTyp groups along the way. // It's like searching through a multi-dimensional radix trie. func (n *node) findRoute(rctx *Context, method methodTyp, path string) *node { nn := n search := path for t, nds := range nn.children { ntyp := nodeTyp(t) if len(nds) == 0 { continue } var xn *node xsearch := search var label byte if search != "" { label = search[0] } switch ntyp { case ntStatic: xn = nds.findEdge(label) if xn == nil || !strings.HasPrefix(xsearch, xn.prefix) { continue } xsearch = xsearch[len(xn.prefix):] case ntParam, ntRegexp: // short-circuit and return no matching route for empty param values if xsearch == "" { continue } // serially loop through each node grouped by the tail delimiter for idx := 0; idx < len(nds); idx++ { xn = nds[idx] // label for param nodes is the delimiter byte p := strings.IndexByte(xsearch, xn.tail) if p < 0 { if xn.tail == '/' { p = len(xsearch) } else { continue } } else if ntyp == ntRegexp && p == 0 { continue } if ntyp == ntRegexp && xn.rex != nil { if !xn.rex.MatchString(xsearch[:p]) { continue } } else if strings.IndexByte(xsearch[:p], '/') != -1 { // avoid a match across path segments continue } prevlen := len(rctx.routeParams.Values) rctx.routeParams.Values = append(rctx.routeParams.Values, xsearch[:p]) xsearch = xsearch[p:] if len(xsearch) == 0 { if xn.isLeaf() { h := xn.endpoints[method] if h != nil && h.handler != nil { rctx.routeParams.Keys = append(rctx.routeParams.Keys, h.paramKeys...) return xn } // flag that the routing context found a route, but not a corresponding // supported method rctx.methodNotAllowed = true } } // recursively find the next node on this branch fin := xn.findRoute(rctx, method, xsearch) if fin != nil { return fin } // not found on this branch, reset vars rctx.routeParams.Values = rctx.routeParams.Values[:prevlen] xsearch = search } rctx.routeParams.Values = append(rctx.routeParams.Values, "") default: // catch-all nodes rctx.routeParams.Values = append(rctx.routeParams.Values, search) xn = nds[0] xsearch = "" } if xn == nil { continue } // did we find it yet? if len(xsearch) == 0 { if xn.isLeaf() { h := xn.endpoints[method] if h != nil && h.handler != nil { rctx.routeParams.Keys = append(rctx.routeParams.Keys, h.paramKeys...) return xn } // flag that the routing context found a route, but not a corresponding // supported method rctx.methodNotAllowed = true } } // recursively find the next node.. fin := xn.findRoute(rctx, method, xsearch) if fin != nil { return fin } // Did not find final handler, let's remove the param here if it was set if xn.typ > ntStatic { if len(rctx.routeParams.Values) > 0 { rctx.routeParams.Values = rctx.routeParams.Values[:len(rctx.routeParams.Values)-1] } } } return nil } func (n *node) findEdge(ntyp nodeTyp, label byte) *node { nds := n.children[ntyp] num := len(nds) idx := 0 switch ntyp { case ntStatic, ntParam, ntRegexp: i, j := 0, num-1 for i <= j { idx = i + (j-i)/2 if label > nds[idx].label { i = idx + 1 } else if label < nds[idx].label { j = idx - 1 } else { i = num // breaks cond } } if nds[idx].label != label { return nil } return nds[idx] default: // catch all return nds[idx] } } func (n *node) isLeaf() bool { return n.endpoints != nil } func (n *node) findPattern(pattern string) bool { nn := n for _, nds := range nn.children { if len(nds) == 0 { continue } n = nn.findEdge(nds[0].typ, pattern[0]) if n == nil { continue } var idx int var xpattern string switch n.typ { case ntStatic: idx = longestPrefix(pattern, n.prefix) if idx < len(n.prefix) { continue } case ntParam, ntRegexp: idx = strings.IndexByte(pattern, '}') + 1 case ntCatchAll: idx = longestPrefix(pattern, "*") default: panic("chi: unknown node type") } xpattern = pattern[idx:] if len(xpattern) == 0 { return true } return n.findPattern(xpattern) } return false } func (n *node) routes() []Route { rts := []Route{} n.walk(func(eps endpoints, subroutes Routes) bool { if eps[mSTUB] != nil && eps[mSTUB].handler != nil && subroutes == nil { return false } // Group methodHandlers by unique patterns pats := make(map[string]endpoints) for mt, h := range eps { if h.pattern == "" { continue } p, ok := pats[h.pattern] if !ok { p = endpoints{} pats[h.pattern] = p } p[mt] = h } for p, mh := range pats { hs := make(map[string]http.Handler) if mh[mALL] != nil && mh[mALL].handler != nil { hs["*"] = mh[mALL].handler } for mt, h := range mh { if h.handler == nil { continue } m := methodTypString(mt) if m == "" { continue } hs[m] = h.handler } rt := Route{subroutes, hs, p} rts = append(rts, rt) } return false }) return rts } func (n *node) walk(fn func(eps endpoints, subroutes Routes) bool) bool { // Visit the leaf values if any if (n.endpoints != nil || n.subroutes != nil) && fn(n.endpoints, n.subroutes) { return true } // Recurse on the children for _, ns := range n.children { for _, cn := range ns { if cn.walk(fn) { return true } } } return false } // patNextSegment returns the next segment details from a pattern: // node type, param key, regexp string, param tail byte, param starting index, param ending index func patNextSegment(pattern string) (nodeTyp, string, string, byte, int, int) { ps := strings.Index(pattern, "{") ws := strings.Index(pattern, "*") if ps < 0 && ws < 0 { return ntStatic, "", "", 0, 0, len(pattern) // we return the entire thing } // Sanity check if ps >= 0 && ws >= 0 && ws < ps { panic("chi: wildcard '*' must be the last pattern in a route, otherwise use a '{param}'") } var tail byte = '/' // Default endpoint tail to / byte if ps >= 0 { // Param/Regexp pattern is next nt := ntParam // Read to closing } taking into account opens and closes in curl count (cc) cc := 0 pe := ps for i, c := range pattern[ps:] { if c == '{' { cc++ } else if c == '}' { cc-- if cc == 0 { pe = ps + i break } } } if pe == ps { panic("chi: route param closing delimiter '}' is missing") } key := pattern[ps+1 : pe] pe++ // set end to next position if pe < len(pattern) { tail = pattern[pe] } var rexpat string if idx := strings.Index(key, ":"); idx >= 0 { nt = ntRegexp rexpat = key[idx+1:] key = key[:idx] } if len(rexpat) > 0 { if rexpat[0] != '^' { rexpat = "^" + rexpat } if rexpat[len(rexpat)-1] != '$' { rexpat += "$" } } return nt, key, rexpat, tail, ps, pe } // Wildcard pattern as finale if ws < len(pattern)-1 { panic("chi: wildcard '*' must be the last value in a route. trim trailing text or use a '{param}' instead") } return ntCatchAll, "*", "", 0, ws, len(pattern) } func patParamKeys(pattern string) []string { pat := pattern paramKeys := []string{} for { ptyp, paramKey, _, _, _, e := patNextSegment(pat) if ptyp == ntStatic { return paramKeys } for i := 0; i < len(paramKeys); i++ { if paramKeys[i] == paramKey { panic(fmt.Sprintf("chi: routing pattern '%s' contains duplicate param key, '%s'", pattern, paramKey)) } } paramKeys = append(paramKeys, paramKey) pat = pat[e:] } } // longestPrefix finds the length of the shared prefix // of two strings func longestPrefix(k1, k2 string) int { max := len(k1) if l := len(k2); l < max { max = l } var i int for i = 0; i < max; i++ { if k1[i] != k2[i] { break } } return i } func methodTypString(method methodTyp) string { for s, t := range methodMap { if method == t { return s } } return "" } type nodes []*node // Sort the list of nodes by label func (ns nodes) Sort() { sort.Sort(ns); ns.tailSort() } func (ns nodes) Len() int { return len(ns) } func (ns nodes) Swap(i, j int) { ns[i], ns[j] = ns[j], ns[i] } func (ns nodes) Less(i, j int) bool { return ns[i].label < ns[j].label } // tailSort pushes nodes with '/' as the tail to the end of the list for param nodes. // The list order determines the traversal order. func (ns nodes) tailSort() { for i := len(ns) - 1; i >= 0; i-- { if ns[i].typ > ntStatic && ns[i].tail == '/' { ns.Swap(i, len(ns)-1) return } } } func (ns nodes) findEdge(label byte) *node { num := len(ns) idx := 0 i, j := 0, num-1 for i <= j { idx = i + (j-i)/2 if label > ns[idx].label { i = idx + 1 } else if label < ns[idx].label { j = idx - 1 } else { i = num // breaks cond } } if ns[idx].label != label { return nil } return ns[idx] } // Route describes the details of a routing handler. // Handlers map key is an HTTP method type Route struct { SubRoutes Routes Handlers map[string]http.Handler Pattern string } // WalkFunc is the type of the function called for each method and route visited by Walk. type WalkFunc func(method string, route string, handler http.Handler, middlewares ...func(http.Handler) http.Handler) error // Walk walks any router tree that implements Routes interface. func Walk(r Routes, walkFn WalkFunc) error { return walk(r, walkFn, "") } func walk(r Routes, walkFn WalkFunc, parentRoute string, parentMw ...func(http.Handler) http.Handler) error { for _, route := range r.Routes() { mws := make([]func(http.Handler) http.Handler, len(parentMw)) copy(mws, parentMw) mws = append(mws, r.Middlewares()...) if route.SubRoutes != nil { if err := walk(route.SubRoutes, walkFn, parentRoute+route.Pattern, mws...); err != nil { return err } continue } for method, handler := range route.Handlers { if method == "*" { // Ignore a "catchAll" method, since we pass down all the specific methods for each route. continue } fullRoute := parentRoute + route.Pattern fullRoute = strings.Replace(fullRoute, "/*/", "/", -1) if chain, ok := handler.(*ChainHandler); ok { if err := walkFn(method, fullRoute, chain.Endpoint, append(mws, chain.Middlewares...)...); err != nil { return err } } else { if err := walkFn(method, fullRoute, handler, mws...); err != nil { return err } } } } return nil }