package common // Zetas lists precomputed powers of the primitive root of unity in // Montgomery representation used for the NTT: // // Zetas[i] = ζᵇʳᵛ⁽ⁱ⁾ R mod q // // where ζ = 17, brv(i) is the bitreversal of a 7-bit number and R=2¹⁶ mod q. // // The following Python code generates the Zetas arrays: // // q = 13*2**8 + 1; zeta = 17 // R = 2**16 % q # Montgomery const. // def brv(x): return int(''.join(reversed(bin(x)[2:].zfill(7))),2) // print([(pow(zeta, brv(i), q)*R)%q for i in range(128)]) var Zetas = [128]int16{ 2285, 2571, 2970, 1812, 1493, 1422, 287, 202, 3158, 622, 1577, 182, 962, 2127, 1855, 1468, 573, 2004, 264, 383, 2500, 1458, 1727, 3199, 2648, 1017, 732, 608, 1787, 411, 3124, 1758, 1223, 652, 2777, 1015, 2036, 1491, 3047, 1785, 516, 3321, 3009, 2663, 1711, 2167, 126, 1469, 2476, 3239, 3058, 830, 107, 1908, 3082, 2378, 2931, 961, 1821, 2604, 448, 2264, 677, 2054, 2226, 430, 555, 843, 2078, 871, 1550, 105, 422, 587, 177, 3094, 3038, 2869, 1574, 1653, 3083, 778, 1159, 3182, 2552, 1483, 2727, 1119, 1739, 644, 2457, 349, 418, 329, 3173, 3254, 817, 1097, 603, 610, 1322, 2044, 1864, 384, 2114, 3193, 1218, 1994, 2455, 220, 2142, 1670, 2144, 1799, 2051, 794, 1819, 2475, 2459, 478, 3221, 3021, 996, 991, 958, 1869, 1522, 1628, } // InvNTTReductions keeps track of which coefficients to apply Barrett // reduction to in Poly.InvNTT(). // // Generated in a lazily: once a butterfly is computed which is about to // overflow the int16, the largest coefficient is reduced. If that is // not enough, the other coefficient is reduced as well. // // This is actually optimal, as proven in https://eprint.iacr.org/2020/1377.pdf var InvNTTReductions = [...]int{ -1, // after layer 1 -1, // after layer 2 16, 17, 48, 49, 80, 81, 112, 113, 144, 145, 176, 177, 208, 209, 240, 241, -1, // after layer 3 0, 1, 32, 33, 34, 35, 64, 65, 96, 97, 98, 99, 128, 129, 160, 161, 162, 163, 192, 193, 224, 225, 226, 227, -1, // after layer 4 2, 3, 66, 67, 68, 69, 70, 71, 130, 131, 194, 195, 196, 197, 198, 199, -1, // after layer 5 4, 5, 6, 7, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, -1, // after layer 6 -1, // after layer 7 } // Executes an in-place forward "NTT" on p. // // Assumes the coefficients are in absolute value ≤q. The resulting // coefficients are in absolute value ≤7q. If the input is in Montgomery // form, then the result is in Montgomery form and so (by linearity of the NTT) // if the input is in regular form, then the result is also in regular form. // The order of coefficients will be "tangled". These can be put back into // their proper order by calling Detangle(). func (p *Poly) nttGeneric() { // Note that ℤ_q does not have a primitive 512ᵗʰ root of unity (as 512 // does not divide into q-1) and so we cannot do a regular NTT. ℤ_q // does have a primitive 256ᵗʰ root of unity, the smallest of which // is ζ := 17. // // Recall that our base ring R := ℤ_q[x] / (x²⁵⁶ + 1). The polynomial // x²⁵⁶+1 will not split completely (as its roots would be 512ᵗʰ roots // of unity.) However, it does split almost (using ζ¹²⁸ = -1): // // x²⁵⁶ + 1 = (x²)¹²⁸ - ζ¹²⁸ // = ((x²)⁶⁴ - ζ⁶⁴)((x²)⁶⁴ + ζ⁶⁴) // = ((x²)³² - ζ³²)((x²)³² + ζ³²)((x²)³² - ζ⁹⁶)((x²)³² + ζ⁹⁶) // ⋮ // = (x² - ζ)(x² + ζ)(x² - ζ⁶⁵)(x² + ζ⁶⁵) … (x² + ζ¹²⁷) // // Note that the powers of ζ that appear (from the second line down) are // in binary // // 0100000 1100000 // 0010000 1010000 0110000 1110000 // 0001000 1001000 0101000 1101000 0011000 1011000 0111000 1111000 // … // // That is: brv(2), brv(3), brv(4), …, where brv(x) denotes the 7-bit // bitreversal of x. These powers of ζ are given by the Zetas array. // // The polynomials x² ± ζⁱ are irreducible and coprime, hence by // the Chinese Remainder Theorem we know // // ℤ_q[x]/(x²⁵⁶+1) → ℤ_q[x]/(x²-ζ) x … x ℤ_q[x]/(x²+ζ¹²⁷) // // given by a ↦ ( a mod x²-ζ, …, a mod x²+ζ¹²⁷ ) // is an isomorphism, which is the "NTT". It can be efficiently computed by // // // a ↦ ( a mod (x²)⁶⁴ - ζ⁶⁴, a mod (x²)⁶⁴ + ζ⁶⁴ ) // ↦ ( a mod (x²)³² - ζ³², a mod (x²)³² + ζ³², // a mod (x²)⁹⁶ - ζ⁹⁶, a mod (x²)⁹⁶ + ζ⁹⁶ ) // // et cetera // // If N was 8 then this can be pictured in the following diagram: // // https://cnx.org/resources/17ee4dfe517a6adda05377b25a00bf6e6c93c334/File0026.png // // Each cross is a Cooley-Tukey butterfly: it's the map // // (a, b) ↦ (a + ζb, a - ζb) // // for the appropriate power ζ for that column and row group. k := 0 // Index into Zetas // l runs effectively over the columns in the diagram above; it is half the // height of a row group, i.e. the number of butterflies in each row group. // In the diagram above it would be 4, 2, 1. for l := N / 2; l > 1; l >>= 1 { // On the nᵗʰ iteration of the l-loop, the absolute value of the // coefficients are bounded by nq. // offset effectively loops over the row groups in this column; it is // the first row in the row group. for offset := 0; offset < N-l; offset += 2 * l { k++ zeta := int32(Zetas[k]) // j loops over each butterfly in the row group. for j := offset; j < offset+l; j++ { t := montReduce(zeta * int32(p[j+l])) p[j+l] = p[j] - t p[j] += t } } } } // Executes an in-place inverse "NTT" on p and multiply by the Montgomery // factor R. // // Requires coefficients to be in "tangled" order, see Tangle(). // Assumes the coefficients are in absolute value ≤q. The resulting // coefficients are in absolute value ≤q. If the input is in Montgomery // form, then the result is in Montgomery form and so (by linearity) // if the input is in regular form, then the result is also in regular form. func (p *Poly) invNTTGeneric() { k := 127 // Index into Zetas r := -1 // Index into InvNTTReductions. // We basically do the oppposite of NTT, but postpone dividing by 2 in the // inverse of the Cooley-Tukey butterfly and accumulate that into a big // division by 2⁷ at the end. See the comments in the NTT() function. for l := 2; l < N; l <<= 1 { for offset := 0; offset < N-l; offset += 2 * l { // As we're inverting, we need powers of ζ⁻¹ (instead of ζ). // To be precise, we need ζᵇʳᵛ⁽ᵏ⁾⁻¹²⁸. However, as ζ⁻¹²⁸ = -1, // we can use the existing Zetas table instead of // keeping a separate InvZetas table as in Dilithium. minZeta := int32(Zetas[k]) k-- for j := offset; j < offset+l; j++ { // Gentleman-Sande butterfly: (a, b) ↦ (a + b, ζ(a-b)) t := p[j+l] - p[j] p[j] += p[j+l] p[j+l] = montReduce(minZeta * int32(t)) // Note that if we had |a| < αq and |b| < βq before the // butterfly, then now we have |a| < (α+β)q and |b| < q. } } // We let the InvNTTReductions instruct us which coefficients to // Barrett reduce. See TestInvNTTReductions, which tests whether // there is an overflow. for { r++ i := InvNTTReductions[r] if i < 0 { break } p[i] = barrettReduce(p[i]) } } for j := 0; j < N; j++ { // Note 1441 = (128)⁻¹ R². The coefficients are bounded by 9q, so // as 1441 * 9 ≈ 2¹⁴ < 2¹⁵, we're within the required bounds // for montReduce(). p[j] = montReduce(1441 * int32(p[j])) } }