// Copyright 2022 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package typeparams import ( "go/types" ) // CoreType returns the core type of T or nil if T does not have a core type. // // See https://go.dev/ref/spec#Core_types for the definition of a core type. func CoreType(T types.Type) types.Type { U := T.Underlying() if _, ok := U.(*types.Interface); !ok { return U // for non-interface types, } terms, err := _NormalTerms(U) if len(terms) == 0 || err != nil { // len(terms) -> empty type set of interface. // err != nil => U is invalid, exceeds complexity bounds, or has an empty type set. return nil // no core type. } U = terms[0].Type().Underlying() var identical int // i in [0,identical) => Identical(U, terms[i].Type().Underlying()) for identical = 1; identical < len(terms); identical++ { if !types.Identical(U, terms[identical].Type().Underlying()) { break } } if identical == len(terms) { // https://go.dev/ref/spec#Core_types // "There is a single type U which is the underlying type of all types in the type set of T" return U } ch, ok := U.(*types.Chan) if !ok { return nil // no core type as identical < len(terms) and U is not a channel. } // https://go.dev/ref/spec#Core_types // "the type chan E if T contains only bidirectional channels, or the type chan<- E or // <-chan E depending on the direction of the directional channels present." for chans := identical; chans < len(terms); chans++ { curr, ok := terms[chans].Type().Underlying().(*types.Chan) if !ok { return nil } if !types.Identical(ch.Elem(), curr.Elem()) { return nil // channel elements are not identical. } if ch.Dir() == types.SendRecv { // ch is bidirectional. We can safely always use curr's direction. ch = curr } else if curr.Dir() != types.SendRecv && ch.Dir() != curr.Dir() { // ch and curr are not bidirectional and not the same direction. return nil } } return ch } // _NormalTerms returns a slice of terms representing the normalized structural // type restrictions of a type, if any. // // For all types other than *types.TypeParam, *types.Interface, and // *types.Union, this is just a single term with Tilde() == false and // Type() == typ. For *types.TypeParam, *types.Interface, and *types.Union, see // below. // // Structural type restrictions of a type parameter are created via // non-interface types embedded in its constraint interface (directly, or via a // chain of interface embeddings). For example, in the declaration type // T[P interface{~int; m()}] int the structural restriction of the type // parameter P is ~int. // // With interface embedding and unions, the specification of structural type // restrictions may be arbitrarily complex. For example, consider the // following: // // type A interface{ ~string|~[]byte } // // type B interface{ int|string } // // type C interface { ~string|~int } // // type T[P interface{ A|B; C }] int // // In this example, the structural type restriction of P is ~string|int: A|B // expands to ~string|~[]byte|int|string, which reduces to ~string|~[]byte|int, // which when intersected with C (~string|~int) yields ~string|int. // // _NormalTerms computes these expansions and reductions, producing a // "normalized" form of the embeddings. A structural restriction is normalized // if it is a single union containing no interface terms, and is minimal in the // sense that removing any term changes the set of types satisfying the // constraint. It is left as a proof for the reader that, modulo sorting, there // is exactly one such normalized form. // // Because the minimal representation always takes this form, _NormalTerms // returns a slice of tilde terms corresponding to the terms of the union in // the normalized structural restriction. An error is returned if the type is // invalid, exceeds complexity bounds, or has an empty type set. In the latter // case, _NormalTerms returns ErrEmptyTypeSet. // // _NormalTerms makes no guarantees about the order of terms, except that it // is deterministic. func _NormalTerms(typ types.Type) ([]*Term, error) { switch typ := typ.(type) { case *TypeParam: return StructuralTerms(typ) case *Union: return UnionTermSet(typ) case *types.Interface: return InterfaceTermSet(typ) default: return []*Term{NewTerm(false, typ)}, nil } }