cloudflared-mirror/quic/v3/muxer.go

398 lines
14 KiB
Go

package v3
import (
"context"
"errors"
"fmt"
"sync"
"time"
"github.com/rs/zerolog"
"github.com/cloudflare/cloudflared/ingress"
"github.com/cloudflare/cloudflared/packet"
)
const (
// Allocating a 16 channel buffer here allows for the writer to be slightly faster than the reader.
// This has worked previously well for datagramv2, so we will start with this as well
demuxChanCapacity = 16
logSrcKey = "src"
logDstKey = "dst"
logICMPTypeKey = "type"
logDurationKey = "durationMS"
)
// DatagramConn is the bridge that multiplexes writes and reads of datagrams for UDP sessions and ICMP packets to
// a connection.
type DatagramConn interface {
DatagramUDPWriter
DatagramICMPWriter
// Serve provides a server interface to process and handle incoming QUIC datagrams and demux their datagram v3 payloads.
Serve(context.Context) error
// ID indicates connection index identifier
ID() uint8
}
// DatagramUDPWriter provides the Muxer interface to create proper UDP Datagrams when sending over a connection.
type DatagramUDPWriter interface {
SendUDPSessionDatagram(datagram []byte) error
SendUDPSessionResponse(id RequestID, resp SessionRegistrationResp) error
}
// DatagramICMPWriter provides the Muxer interface to create ICMP Datagrams when sending over a connection.
type DatagramICMPWriter interface {
SendICMPPacket(icmp *packet.ICMP) error
SendICMPTTLExceed(icmp *packet.ICMP, rawPacket packet.RawPacket) error
}
// QuicConnection provides an interface that matches [quic.Connection] for only the datagram operations.
//
// We currently rely on the mutex for the [quic.Connection.SendDatagram] and [quic.Connection.ReceiveDatagram] and
// do not have any locking for them. If the implementation in quic-go were to ever change, we would need to make
// sure that we lock properly on these operations.
type QuicConnection interface {
Context() context.Context
SendDatagram(payload []byte) error
ReceiveDatagram(context.Context) ([]byte, error)
}
type datagramConn struct {
conn QuicConnection
index uint8
sessionManager SessionManager
icmpRouter ingress.ICMPRouter
metrics Metrics
logger *zerolog.Logger
datagrams chan []byte
readErrors chan error
icmpEncoderPool sync.Pool // a pool of *packet.Encoder
icmpDecoder *packet.ICMPDecoder
}
func NewDatagramConn(conn QuicConnection, sessionManager SessionManager, icmpRouter ingress.ICMPRouter, index uint8, metrics Metrics, logger *zerolog.Logger) DatagramConn {
log := logger.With().Uint8("datagramVersion", 3).Logger()
return &datagramConn{
conn: conn,
index: index,
sessionManager: sessionManager,
icmpRouter: icmpRouter,
metrics: metrics,
logger: &log,
datagrams: make(chan []byte, demuxChanCapacity),
readErrors: make(chan error, 2),
icmpEncoderPool: sync.Pool{
New: func() any {
return packet.NewEncoder()
},
},
icmpDecoder: packet.NewICMPDecoder(),
}
}
func (c *datagramConn) ID() uint8 {
return c.index
}
func (c *datagramConn) SendUDPSessionDatagram(datagram []byte) error {
return c.conn.SendDatagram(datagram)
}
func (c *datagramConn) SendUDPSessionResponse(id RequestID, resp SessionRegistrationResp) error {
datagram := UDPSessionRegistrationResponseDatagram{
RequestID: id,
ResponseType: resp,
}
data, err := datagram.MarshalBinary()
if err != nil {
return err
}
return c.conn.SendDatagram(data)
}
func (c *datagramConn) SendICMPPacket(icmp *packet.ICMP) error {
cachedEncoder := c.icmpEncoderPool.Get()
// The encoded packet is a slice to a buffer owned by the encoder, so we shouldn't return the encoder back to the
// pool until the encoded packet is sent.
defer c.icmpEncoderPool.Put(cachedEncoder)
encoder, ok := cachedEncoder.(*packet.Encoder)
if !ok {
return fmt.Errorf("encoderPool returned %T, expect *packet.Encoder", cachedEncoder)
}
payload, err := encoder.Encode(icmp)
if err != nil {
return err
}
icmpDatagram := ICMPDatagram{
Payload: payload.Data,
}
datagram, err := icmpDatagram.MarshalBinary()
if err != nil {
return err
}
return c.conn.SendDatagram(datagram)
}
func (c *datagramConn) SendICMPTTLExceed(icmp *packet.ICMP, rawPacket packet.RawPacket) error {
return c.SendICMPPacket(c.icmpRouter.ConvertToTTLExceeded(icmp, rawPacket))
}
var errReadTimeout error = errors.New("receive datagram timeout")
// pollDatagrams will read datagrams from the underlying connection until the provided context is done.
func (c *datagramConn) pollDatagrams(ctx context.Context) {
for ctx.Err() == nil {
datagram, err := c.conn.ReceiveDatagram(ctx)
// If the read returns an error, we want to return the failure to the channel.
if err != nil {
c.readErrors <- err
return
}
c.datagrams <- datagram
}
if ctx.Err() != nil {
c.readErrors <- ctx.Err()
}
}
// Serve will begin the process of receiving datagrams from the [quic.Connection] and demuxing them to their destination.
// The [DatagramConn] when serving, will be responsible for the sessions it accepts.
func (c *datagramConn) Serve(ctx context.Context) error {
connCtx := c.conn.Context()
// We want to make sure that we cancel the reader context if the Serve method returns. This could also mean that the
// underlying connection is also closing, but that is handled outside of the context of the datagram muxer.
readCtx, cancel := context.WithCancel(connCtx)
defer cancel()
go c.pollDatagrams(readCtx)
for {
// We make sure to monitor the context of cloudflared and the underlying connection to return if any errors occur.
var datagram []byte
select {
// Monitor the context of cloudflared
case <-ctx.Done():
return ctx.Err()
// Monitor the context of the underlying connection
case <-connCtx.Done():
return connCtx.Err()
// Monitor for any hard errors from reading the connection
case err := <-c.readErrors:
return err
// Otherwise, wait and dequeue datagrams as they come in
case d := <-c.datagrams:
datagram = d
}
// Each incoming datagram will be processed in a new go routine to handle the demuxing and action associated.
go func() {
typ, err := ParseDatagramType(datagram)
if err != nil {
c.logger.Err(err).Msgf("unable to parse datagram type: %d", typ)
return
}
switch typ {
case UDPSessionRegistrationType:
reg := &UDPSessionRegistrationDatagram{}
err := reg.UnmarshalBinary(datagram)
if err != nil {
c.logger.Err(err).Msgf("unable to unmarshal session registration datagram")
return
}
logger := c.logger.With().Str(logFlowID, reg.RequestID.String()).Logger()
// We bind the new session to the quic connection context instead of cloudflared context to allow for the
// quic connection to close and close only the sessions bound to it. Closing of cloudflared will also
// initiate the close of the quic connection, so we don't have to worry about the application context
// in the scope of a session.
c.handleSessionRegistrationDatagram(connCtx, reg, &logger)
case UDPSessionPayloadType:
payload := &UDPSessionPayloadDatagram{}
err := payload.UnmarshalBinary(datagram)
if err != nil {
c.logger.Err(err).Msgf("unable to unmarshal session payload datagram")
return
}
logger := c.logger.With().Str(logFlowID, payload.RequestID.String()).Logger()
c.handleSessionPayloadDatagram(payload, &logger)
case ICMPType:
packet := &ICMPDatagram{}
err := packet.UnmarshalBinary(datagram)
if err != nil {
c.logger.Err(err).Msgf("unable to unmarshal icmp datagram")
return
}
c.handleICMPPacket(packet)
case UDPSessionRegistrationResponseType:
// cloudflared should never expect to receive UDP session responses as it will not initiate new
// sessions towards the edge.
c.logger.Error().Msgf("unexpected datagram type received: %d", UDPSessionRegistrationResponseType)
return
default:
c.logger.Error().Msgf("unknown datagram type received: %d", typ)
}
}()
}
}
// This method handles new registrations of a session and the serve loop for the session.
func (c *datagramConn) handleSessionRegistrationDatagram(ctx context.Context, datagram *UDPSessionRegistrationDatagram, logger *zerolog.Logger) {
log := logger.With().
Str(logFlowID, datagram.RequestID.String()).
Str(logDstKey, datagram.Dest.String()).
Logger()
session, err := c.sessionManager.RegisterSession(datagram, c)
switch err {
case nil:
// Continue as normal
case ErrSessionAlreadyRegistered:
// Session is already registered and likely the response got lost
c.handleSessionAlreadyRegistered(datagram.RequestID, &log)
return
case ErrSessionBoundToOtherConn:
// Session is already registered but to a different connection
c.handleSessionMigration(datagram.RequestID, &log)
return
default:
log.Err(err).Msgf("flow registration failure")
c.handleSessionRegistrationFailure(datagram.RequestID, &log)
return
}
log = log.With().Str(logSrcKey, session.LocalAddr().String()).Logger()
c.metrics.IncrementFlows()
// Make sure to eventually remove the session from the session manager when the session is closed
defer c.sessionManager.UnregisterSession(session.ID())
defer c.metrics.DecrementFlows()
// Respond that we are able to process the new session
err = c.SendUDPSessionResponse(datagram.RequestID, ResponseOk)
if err != nil {
log.Err(err).Msgf("flow registration failure: unable to send session registration response")
return
}
// We bind the context of the session to the [quic.Connection] that initiated the session.
// [Session.Serve] is blocking and will continue this go routine till the end of the session lifetime.
start := time.Now()
err = session.Serve(ctx)
elapsedMS := time.Now().Sub(start).Milliseconds()
log = log.With().Int64(logDurationKey, elapsedMS).Logger()
if err == nil {
// We typically don't expect a session to close without some error response. [SessionIdleErr] is the typical
// expected error response.
log.Warn().Msg("flow closed: no explicit close or timeout elapsed")
return
}
// SessionIdleErr and SessionCloseErr are valid and successful error responses to end a session.
if errors.Is(err, SessionIdleErr{}) || errors.Is(err, SessionCloseErr) {
log.Debug().Msgf("flow closed: %s", err.Error())
return
}
// All other errors should be reported as errors
log.Err(err).Msgf("flow closed with an error")
}
func (c *datagramConn) handleSessionAlreadyRegistered(requestID RequestID, logger *zerolog.Logger) {
// Send another registration response since the session is already active
err := c.SendUDPSessionResponse(requestID, ResponseOk)
if err != nil {
logger.Err(err).Msgf("flow registration failure: unable to send an additional flow registration response")
return
}
session, err := c.sessionManager.GetSession(requestID)
if err != nil {
// If for some reason we can not find the session after attempting to register it, we can just return
// instead of trying to reset the idle timer for it.
return
}
// The session is already running in another routine so we want to restart the idle timeout since no proxied
// packets have come down yet.
session.ResetIdleTimer()
c.metrics.RetryFlowResponse()
logger.Debug().Msgf("flow registration response retry")
}
func (c *datagramConn) handleSessionMigration(requestID RequestID, logger *zerolog.Logger) {
// We need to migrate the currently running session to this edge connection.
session, err := c.sessionManager.GetSession(requestID)
if err != nil {
// If for some reason we can not find the session after attempting to register it, we can just return
// instead of trying to reset the idle timer for it.
return
}
// Migrate the session to use this edge connection instead of the currently running one.
// We also pass in this connection's logger to override the existing logger for the session.
session.Migrate(c, c.conn.Context(), c.logger)
// Send another registration response since the session is already active
err = c.SendUDPSessionResponse(requestID, ResponseOk)
if err != nil {
logger.Err(err).Msgf("flow registration failure: unable to send an additional flow registration response")
return
}
logger.Debug().Msgf("flow registration migration")
}
func (c *datagramConn) handleSessionRegistrationFailure(requestID RequestID, logger *zerolog.Logger) {
err := c.SendUDPSessionResponse(requestID, ResponseUnableToBindSocket)
if err != nil {
logger.Err(err).Msgf("unable to send flow registration error response (%d)", ResponseUnableToBindSocket)
}
}
// Handles incoming datagrams that need to be sent to a registered session.
func (c *datagramConn) handleSessionPayloadDatagram(datagram *UDPSessionPayloadDatagram, logger *zerolog.Logger) {
s, err := c.sessionManager.GetSession(datagram.RequestID)
if err != nil {
logger.Err(err).Msgf("unable to find flow")
return
}
// We ignore the bytes written to the socket because any partial write must return an error.
_, err = s.Write(datagram.Payload)
if err != nil {
logger.Err(err).Msgf("unable to write payload for the flow")
return
}
}
// Handles incoming ICMP datagrams.
func (c *datagramConn) handleICMPPacket(datagram *ICMPDatagram) {
if c.icmpRouter == nil {
// ICMPRouter is disabled so we drop the current packet and ignore all incoming ICMP packets
return
}
// Decode the provided ICMPDatagram as an ICMP packet
rawPacket := packet.RawPacket{Data: datagram.Payload}
icmp, err := c.icmpDecoder.Decode(rawPacket)
if err != nil {
c.logger.Err(err).Msgf("unable to marshal icmp packet")
return
}
// If the ICMP packet's TTL is expired, we won't send it to the origin and immediately return a TTL Exceeded Message
if icmp.TTL <= 1 {
if err := c.SendICMPTTLExceed(icmp, rawPacket); err != nil {
c.logger.Err(err).Msg("failed to return ICMP TTL exceed error")
}
return
}
icmp.TTL--
// The context isn't really needed here since it's only really used throughout the ICMP router as a way to store
// the tracing context, however datagram V3 does not support tracing ICMP packets, so we just pass the current
// connection context which will have no tracing information available.
err = c.icmpRouter.Request(c.conn.Context(), icmp, newPacketResponder(c, c.index))
if err != nil {
c.logger.Err(err).
Str(logSrcKey, icmp.Src.String()).
Str(logDstKey, icmp.Dst.String()).
Interface(logICMPTypeKey, icmp.Type).
Msgf("unable to write icmp datagram to origin")
return
}
}