cloudflared-mirror/vendor/github.com/lucas-clemente/quic-go/internal/handshake/crypto_setup.go

801 lines
23 KiB
Go

package handshake
import (
"bytes"
"crypto/tls"
"errors"
"fmt"
"io"
"net"
"sync"
"time"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/qerr"
"github.com/lucas-clemente/quic-go/internal/qtls"
"github.com/lucas-clemente/quic-go/internal/utils"
"github.com/lucas-clemente/quic-go/internal/wire"
"github.com/lucas-clemente/quic-go/logging"
"github.com/lucas-clemente/quic-go/quicvarint"
)
// TLS unexpected_message alert
const alertUnexpectedMessage uint8 = 10
type messageType uint8
// TLS handshake message types.
const (
typeClientHello messageType = 1
typeServerHello messageType = 2
typeNewSessionTicket messageType = 4
typeEncryptedExtensions messageType = 8
typeCertificate messageType = 11
typeCertificateRequest messageType = 13
typeCertificateVerify messageType = 15
typeFinished messageType = 20
)
func (m messageType) String() string {
switch m {
case typeClientHello:
return "ClientHello"
case typeServerHello:
return "ServerHello"
case typeNewSessionTicket:
return "NewSessionTicket"
case typeEncryptedExtensions:
return "EncryptedExtensions"
case typeCertificate:
return "Certificate"
case typeCertificateRequest:
return "CertificateRequest"
case typeCertificateVerify:
return "CertificateVerify"
case typeFinished:
return "Finished"
default:
return fmt.Sprintf("unknown message type: %d", m)
}
}
const clientSessionStateRevision = 3
type conn struct {
localAddr, remoteAddr net.Addr
version protocol.VersionNumber
}
var _ ConnWithVersion = &conn{}
func newConn(local, remote net.Addr, version protocol.VersionNumber) ConnWithVersion {
return &conn{
localAddr: local,
remoteAddr: remote,
version: version,
}
}
var _ net.Conn = &conn{}
func (c *conn) Read([]byte) (int, error) { return 0, nil }
func (c *conn) Write([]byte) (int, error) { return 0, nil }
func (c *conn) Close() error { return nil }
func (c *conn) RemoteAddr() net.Addr { return c.remoteAddr }
func (c *conn) LocalAddr() net.Addr { return c.localAddr }
func (c *conn) SetReadDeadline(time.Time) error { return nil }
func (c *conn) SetWriteDeadline(time.Time) error { return nil }
func (c *conn) SetDeadline(time.Time) error { return nil }
func (c *conn) GetQUICVersion() protocol.VersionNumber { return c.version }
type cryptoSetup struct {
tlsConf *tls.Config
extraConf *qtls.ExtraConfig
conn *qtls.Conn
version protocol.VersionNumber
messageChan chan []byte
isReadingHandshakeMessage chan struct{}
readFirstHandshakeMessage bool
ourParams *wire.TransportParameters
peerParams *wire.TransportParameters
paramsChan <-chan []byte
runner handshakeRunner
alertChan chan uint8
// handshakeDone is closed as soon as the go routine running qtls.Handshake() returns
handshakeDone chan struct{}
// is closed when Close() is called
closeChan chan struct{}
zeroRTTParameters *wire.TransportParameters
clientHelloWritten bool
clientHelloWrittenChan chan *wire.TransportParameters
rttStats *utils.RTTStats
tracer logging.ConnectionTracer
logger utils.Logger
perspective protocol.Perspective
mutex sync.Mutex // protects all members below
handshakeCompleteTime time.Time
readEncLevel protocol.EncryptionLevel
writeEncLevel protocol.EncryptionLevel
zeroRTTOpener LongHeaderOpener // only set for the server
zeroRTTSealer LongHeaderSealer // only set for the client
initialStream io.Writer
initialOpener LongHeaderOpener
initialSealer LongHeaderSealer
handshakeStream io.Writer
handshakeOpener LongHeaderOpener
handshakeSealer LongHeaderSealer
aead *updatableAEAD
has1RTTSealer bool
has1RTTOpener bool
}
var (
_ qtls.RecordLayer = &cryptoSetup{}
_ CryptoSetup = &cryptoSetup{}
)
// NewCryptoSetupClient creates a new crypto setup for the client
func NewCryptoSetupClient(
initialStream io.Writer,
handshakeStream io.Writer,
connID protocol.ConnectionID,
localAddr net.Addr,
remoteAddr net.Addr,
tp *wire.TransportParameters,
runner handshakeRunner,
tlsConf *tls.Config,
enable0RTT bool,
rttStats *utils.RTTStats,
tracer logging.ConnectionTracer,
logger utils.Logger,
version protocol.VersionNumber,
) (CryptoSetup, <-chan *wire.TransportParameters /* ClientHello written. Receive nil for non-0-RTT */) {
cs, clientHelloWritten := newCryptoSetup(
initialStream,
handshakeStream,
connID,
tp,
runner,
tlsConf,
enable0RTT,
rttStats,
tracer,
logger,
protocol.PerspectiveClient,
version,
)
cs.conn = qtls.Client(newConn(localAddr, remoteAddr, version), cs.tlsConf, cs.extraConf)
return cs, clientHelloWritten
}
// NewCryptoSetupServer creates a new crypto setup for the server
func NewCryptoSetupServer(
initialStream io.Writer,
handshakeStream io.Writer,
connID protocol.ConnectionID,
localAddr net.Addr,
remoteAddr net.Addr,
tp *wire.TransportParameters,
runner handshakeRunner,
tlsConf *tls.Config,
enable0RTT bool,
rttStats *utils.RTTStats,
tracer logging.ConnectionTracer,
logger utils.Logger,
version protocol.VersionNumber,
) CryptoSetup {
cs, _ := newCryptoSetup(
initialStream,
handshakeStream,
connID,
tp,
runner,
tlsConf,
enable0RTT,
rttStats,
tracer,
logger,
protocol.PerspectiveServer,
version,
)
cs.conn = qtls.Server(newConn(localAddr, remoteAddr, version), cs.tlsConf, cs.extraConf)
return cs
}
func newCryptoSetup(
initialStream io.Writer,
handshakeStream io.Writer,
connID protocol.ConnectionID,
tp *wire.TransportParameters,
runner handshakeRunner,
tlsConf *tls.Config,
enable0RTT bool,
rttStats *utils.RTTStats,
tracer logging.ConnectionTracer,
logger utils.Logger,
perspective protocol.Perspective,
version protocol.VersionNumber,
) (*cryptoSetup, <-chan *wire.TransportParameters /* ClientHello written. Receive nil for non-0-RTT */) {
initialSealer, initialOpener := NewInitialAEAD(connID, perspective, version)
if tracer != nil {
tracer.UpdatedKeyFromTLS(protocol.EncryptionInitial, protocol.PerspectiveClient)
tracer.UpdatedKeyFromTLS(protocol.EncryptionInitial, protocol.PerspectiveServer)
}
extHandler := newExtensionHandler(tp.Marshal(perspective), perspective, version)
cs := &cryptoSetup{
tlsConf: tlsConf,
initialStream: initialStream,
initialSealer: initialSealer,
initialOpener: initialOpener,
handshakeStream: handshakeStream,
aead: newUpdatableAEAD(rttStats, tracer, logger),
readEncLevel: protocol.EncryptionInitial,
writeEncLevel: protocol.EncryptionInitial,
runner: runner,
ourParams: tp,
paramsChan: extHandler.TransportParameters(),
rttStats: rttStats,
tracer: tracer,
logger: logger,
perspective: perspective,
handshakeDone: make(chan struct{}),
alertChan: make(chan uint8),
clientHelloWrittenChan: make(chan *wire.TransportParameters, 1),
messageChan: make(chan []byte, 100),
isReadingHandshakeMessage: make(chan struct{}),
closeChan: make(chan struct{}),
version: version,
}
var maxEarlyData uint32
if enable0RTT {
maxEarlyData = 0xffffffff
}
cs.extraConf = &qtls.ExtraConfig{
GetExtensions: extHandler.GetExtensions,
ReceivedExtensions: extHandler.ReceivedExtensions,
AlternativeRecordLayer: cs,
EnforceNextProtoSelection: true,
MaxEarlyData: maxEarlyData,
Accept0RTT: cs.accept0RTT,
Rejected0RTT: cs.rejected0RTT,
Enable0RTT: enable0RTT,
GetAppDataForSessionState: cs.marshalDataForSessionState,
SetAppDataFromSessionState: cs.handleDataFromSessionState,
}
return cs, cs.clientHelloWrittenChan
}
func (h *cryptoSetup) ChangeConnectionID(id protocol.ConnectionID) {
initialSealer, initialOpener := NewInitialAEAD(id, h.perspective, h.version)
h.initialSealer = initialSealer
h.initialOpener = initialOpener
if h.tracer != nil {
h.tracer.UpdatedKeyFromTLS(protocol.EncryptionInitial, protocol.PerspectiveClient)
h.tracer.UpdatedKeyFromTLS(protocol.EncryptionInitial, protocol.PerspectiveServer)
}
}
func (h *cryptoSetup) SetLargest1RTTAcked(pn protocol.PacketNumber) error {
return h.aead.SetLargestAcked(pn)
}
func (h *cryptoSetup) RunHandshake() {
// Handle errors that might occur when HandleData() is called.
handshakeComplete := make(chan struct{})
handshakeErrChan := make(chan error, 1)
go func() {
defer close(h.handshakeDone)
if err := h.conn.Handshake(); err != nil {
handshakeErrChan <- err
return
}
close(handshakeComplete)
}()
select {
case <-handshakeComplete: // return when the handshake is done
h.mutex.Lock()
h.handshakeCompleteTime = time.Now()
h.mutex.Unlock()
h.runner.OnHandshakeComplete()
case <-h.closeChan:
// wait until the Handshake() go routine has returned
<-h.handshakeDone
case alert := <-h.alertChan:
handshakeErr := <-handshakeErrChan
h.onError(alert, handshakeErr.Error())
}
}
func (h *cryptoSetup) onError(alert uint8, message string) {
h.runner.OnError(qerr.NewCryptoError(alert, message))
}
// Close closes the crypto setup.
// It aborts the handshake, if it is still running.
// It must only be called once.
func (h *cryptoSetup) Close() error {
close(h.closeChan)
// wait until qtls.Handshake() actually returned
<-h.handshakeDone
return nil
}
// handleMessage handles a TLS handshake message.
// It is called by the crypto streams when a new message is available.
// It returns if it is done with messages on the same encryption level.
func (h *cryptoSetup) HandleMessage(data []byte, encLevel protocol.EncryptionLevel) bool /* stream finished */ {
msgType := messageType(data[0])
h.logger.Debugf("Received %s message (%d bytes, encryption level: %s)", msgType, len(data), encLevel)
if err := h.checkEncryptionLevel(msgType, encLevel); err != nil {
h.onError(alertUnexpectedMessage, err.Error())
return false
}
h.messageChan <- data
if encLevel == protocol.Encryption1RTT {
h.handlePostHandshakeMessage()
return false
}
readLoop:
for {
select {
case data := <-h.paramsChan:
if data == nil {
h.onError(0x6d, "missing quic_transport_parameters extension")
} else {
h.handleTransportParameters(data)
}
case <-h.isReadingHandshakeMessage:
break readLoop
case <-h.handshakeDone:
break readLoop
case <-h.closeChan:
break readLoop
}
}
// We're done with the Initial encryption level after processing a ClientHello / ServerHello,
// but only if a handshake opener and sealer was created.
// Otherwise, a HelloRetryRequest was performed.
// We're done with the Handshake encryption level after processing the Finished message.
return ((msgType == typeClientHello || msgType == typeServerHello) && h.handshakeOpener != nil && h.handshakeSealer != nil) ||
msgType == typeFinished
}
func (h *cryptoSetup) checkEncryptionLevel(msgType messageType, encLevel protocol.EncryptionLevel) error {
var expected protocol.EncryptionLevel
switch msgType {
case typeClientHello,
typeServerHello:
expected = protocol.EncryptionInitial
case typeEncryptedExtensions,
typeCertificate,
typeCertificateRequest,
typeCertificateVerify,
typeFinished:
expected = protocol.EncryptionHandshake
case typeNewSessionTicket:
expected = protocol.Encryption1RTT
default:
return fmt.Errorf("unexpected handshake message: %d", msgType)
}
if encLevel != expected {
return fmt.Errorf("expected handshake message %s to have encryption level %s, has %s", msgType, expected, encLevel)
}
return nil
}
func (h *cryptoSetup) handleTransportParameters(data []byte) {
var tp wire.TransportParameters
if err := tp.Unmarshal(data, h.perspective.Opposite()); err != nil {
h.runner.OnError(&qerr.TransportError{
ErrorCode: qerr.TransportParameterError,
ErrorMessage: err.Error(),
})
}
h.peerParams = &tp
h.runner.OnReceivedParams(h.peerParams)
}
// must be called after receiving the transport parameters
func (h *cryptoSetup) marshalDataForSessionState() []byte {
buf := &bytes.Buffer{}
quicvarint.Write(buf, clientSessionStateRevision)
quicvarint.Write(buf, uint64(h.rttStats.SmoothedRTT().Microseconds()))
h.peerParams.MarshalForSessionTicket(buf)
return buf.Bytes()
}
func (h *cryptoSetup) handleDataFromSessionState(data []byte) {
tp, err := h.handleDataFromSessionStateImpl(data)
if err != nil {
h.logger.Debugf("Restoring of transport parameters from session ticket failed: %s", err.Error())
return
}
h.zeroRTTParameters = tp
}
func (h *cryptoSetup) handleDataFromSessionStateImpl(data []byte) (*wire.TransportParameters, error) {
r := bytes.NewReader(data)
ver, err := quicvarint.Read(r)
if err != nil {
return nil, err
}
if ver != clientSessionStateRevision {
return nil, fmt.Errorf("mismatching version. Got %d, expected %d", ver, clientSessionStateRevision)
}
rtt, err := quicvarint.Read(r)
if err != nil {
return nil, err
}
h.rttStats.SetInitialRTT(time.Duration(rtt) * time.Microsecond)
var tp wire.TransportParameters
if err := tp.UnmarshalFromSessionTicket(r); err != nil {
return nil, err
}
return &tp, nil
}
// only valid for the server
func (h *cryptoSetup) GetSessionTicket() ([]byte, error) {
var appData []byte
// Save transport parameters to the session ticket if we're allowing 0-RTT.
if h.extraConf.MaxEarlyData > 0 {
appData = (&sessionTicket{
Parameters: h.ourParams,
RTT: h.rttStats.SmoothedRTT(),
}).Marshal()
}
return h.conn.GetSessionTicket(appData)
}
// accept0RTT is called for the server when receiving the client's session ticket.
// It decides whether to accept 0-RTT.
func (h *cryptoSetup) accept0RTT(sessionTicketData []byte) bool {
var t sessionTicket
if err := t.Unmarshal(sessionTicketData); err != nil {
h.logger.Debugf("Unmarshalling transport parameters from session ticket failed: %s", err.Error())
return false
}
valid := h.ourParams.ValidFor0RTT(t.Parameters)
if valid {
h.logger.Debugf("Accepting 0-RTT. Restoring RTT from session ticket: %s", t.RTT)
h.rttStats.SetInitialRTT(t.RTT)
} else {
h.logger.Debugf("Transport parameters changed. Rejecting 0-RTT.")
}
return valid
}
// rejected0RTT is called for the client when the server rejects 0-RTT.
func (h *cryptoSetup) rejected0RTT() {
h.logger.Debugf("0-RTT was rejected. Dropping 0-RTT keys.")
h.mutex.Lock()
had0RTTKeys := h.zeroRTTSealer != nil
h.zeroRTTSealer = nil
h.mutex.Unlock()
if had0RTTKeys {
h.runner.DropKeys(protocol.Encryption0RTT)
}
}
func (h *cryptoSetup) handlePostHandshakeMessage() {
// make sure the handshake has already completed
<-h.handshakeDone
done := make(chan struct{})
defer close(done)
// h.alertChan is an unbuffered channel.
// If an error occurs during conn.HandlePostHandshakeMessage,
// it will be sent on this channel.
// Read it from a go-routine so that HandlePostHandshakeMessage doesn't deadlock.
alertChan := make(chan uint8, 1)
go func() {
<-h.isReadingHandshakeMessage
select {
case alert := <-h.alertChan:
alertChan <- alert
case <-done:
}
}()
if err := h.conn.HandlePostHandshakeMessage(); err != nil {
select {
case <-h.closeChan:
case alert := <-alertChan:
h.onError(alert, err.Error())
}
}
}
// ReadHandshakeMessage is called by TLS.
// It blocks until a new handshake message is available.
func (h *cryptoSetup) ReadHandshakeMessage() ([]byte, error) {
if !h.readFirstHandshakeMessage {
h.readFirstHandshakeMessage = true
} else {
select {
case h.isReadingHandshakeMessage <- struct{}{}:
case <-h.closeChan:
return nil, errors.New("error while handling the handshake message")
}
}
select {
case msg := <-h.messageChan:
return msg, nil
case <-h.closeChan:
return nil, errors.New("error while handling the handshake message")
}
}
func (h *cryptoSetup) SetReadKey(encLevel qtls.EncryptionLevel, suite *qtls.CipherSuiteTLS13, trafficSecret []byte) {
h.mutex.Lock()
switch encLevel {
case qtls.Encryption0RTT:
if h.perspective == protocol.PerspectiveClient {
panic("Received 0-RTT read key for the client")
}
h.zeroRTTOpener = newLongHeaderOpener(
createAEAD(suite, trafficSecret),
newHeaderProtector(suite, trafficSecret, true),
)
h.mutex.Unlock()
h.logger.Debugf("Installed 0-RTT Read keys (using %s)", tls.CipherSuiteName(suite.ID))
if h.tracer != nil {
h.tracer.UpdatedKeyFromTLS(protocol.Encryption0RTT, h.perspective.Opposite())
}
return
case qtls.EncryptionHandshake:
h.readEncLevel = protocol.EncryptionHandshake
h.handshakeOpener = newHandshakeOpener(
createAEAD(suite, trafficSecret),
newHeaderProtector(suite, trafficSecret, true),
h.dropInitialKeys,
h.perspective,
)
h.logger.Debugf("Installed Handshake Read keys (using %s)", tls.CipherSuiteName(suite.ID))
case qtls.EncryptionApplication:
h.readEncLevel = protocol.Encryption1RTT
h.aead.SetReadKey(suite, trafficSecret)
h.has1RTTOpener = true
h.logger.Debugf("Installed 1-RTT Read keys (using %s)", tls.CipherSuiteName(suite.ID))
default:
panic("unexpected read encryption level")
}
h.mutex.Unlock()
if h.tracer != nil {
h.tracer.UpdatedKeyFromTLS(h.readEncLevel, h.perspective.Opposite())
}
}
func (h *cryptoSetup) SetWriteKey(encLevel qtls.EncryptionLevel, suite *qtls.CipherSuiteTLS13, trafficSecret []byte) {
h.mutex.Lock()
switch encLevel {
case qtls.Encryption0RTT:
if h.perspective == protocol.PerspectiveServer {
panic("Received 0-RTT write key for the server")
}
h.zeroRTTSealer = newLongHeaderSealer(
createAEAD(suite, trafficSecret),
newHeaderProtector(suite, trafficSecret, true),
)
h.mutex.Unlock()
h.logger.Debugf("Installed 0-RTT Write keys (using %s)", tls.CipherSuiteName(suite.ID))
if h.tracer != nil {
h.tracer.UpdatedKeyFromTLS(protocol.Encryption0RTT, h.perspective)
}
return
case qtls.EncryptionHandshake:
h.writeEncLevel = protocol.EncryptionHandshake
h.handshakeSealer = newHandshakeSealer(
createAEAD(suite, trafficSecret),
newHeaderProtector(suite, trafficSecret, true),
h.dropInitialKeys,
h.perspective,
)
h.logger.Debugf("Installed Handshake Write keys (using %s)", tls.CipherSuiteName(suite.ID))
case qtls.EncryptionApplication:
h.writeEncLevel = protocol.Encryption1RTT
h.aead.SetWriteKey(suite, trafficSecret)
h.has1RTTSealer = true
h.logger.Debugf("Installed 1-RTT Write keys (using %s)", tls.CipherSuiteName(suite.ID))
if h.zeroRTTSealer != nil {
h.zeroRTTSealer = nil
h.logger.Debugf("Dropping 0-RTT keys.")
if h.tracer != nil {
h.tracer.DroppedEncryptionLevel(protocol.Encryption0RTT)
}
}
default:
panic("unexpected write encryption level")
}
h.mutex.Unlock()
if h.tracer != nil {
h.tracer.UpdatedKeyFromTLS(h.writeEncLevel, h.perspective)
}
}
// WriteRecord is called when TLS writes data
func (h *cryptoSetup) WriteRecord(p []byte) (int, error) {
h.mutex.Lock()
defer h.mutex.Unlock()
//nolint:exhaustive // LS records can only be written for Initial and Handshake.
switch h.writeEncLevel {
case protocol.EncryptionInitial:
// assume that the first WriteRecord call contains the ClientHello
n, err := h.initialStream.Write(p)
if !h.clientHelloWritten && h.perspective == protocol.PerspectiveClient {
h.clientHelloWritten = true
if h.zeroRTTSealer != nil && h.zeroRTTParameters != nil {
h.logger.Debugf("Doing 0-RTT.")
h.clientHelloWrittenChan <- h.zeroRTTParameters
} else {
h.logger.Debugf("Not doing 0-RTT.")
h.clientHelloWrittenChan <- nil
}
}
return n, err
case protocol.EncryptionHandshake:
return h.handshakeStream.Write(p)
default:
panic(fmt.Sprintf("unexpected write encryption level: %s", h.writeEncLevel))
}
}
func (h *cryptoSetup) SendAlert(alert uint8) {
select {
case h.alertChan <- alert:
case <-h.closeChan:
// no need to send an alert when we've already closed
}
}
// used a callback in the handshakeSealer and handshakeOpener
func (h *cryptoSetup) dropInitialKeys() {
h.mutex.Lock()
h.initialOpener = nil
h.initialSealer = nil
h.mutex.Unlock()
h.runner.DropKeys(protocol.EncryptionInitial)
h.logger.Debugf("Dropping Initial keys.")
}
func (h *cryptoSetup) SetHandshakeConfirmed() {
h.aead.SetHandshakeConfirmed()
// drop Handshake keys
var dropped bool
h.mutex.Lock()
if h.handshakeOpener != nil {
h.handshakeOpener = nil
h.handshakeSealer = nil
dropped = true
}
h.mutex.Unlock()
if dropped {
h.runner.DropKeys(protocol.EncryptionHandshake)
h.logger.Debugf("Dropping Handshake keys.")
}
}
func (h *cryptoSetup) GetInitialSealer() (LongHeaderSealer, error) {
h.mutex.Lock()
defer h.mutex.Unlock()
if h.initialSealer == nil {
return nil, ErrKeysDropped
}
return h.initialSealer, nil
}
func (h *cryptoSetup) Get0RTTSealer() (LongHeaderSealer, error) {
h.mutex.Lock()
defer h.mutex.Unlock()
if h.zeroRTTSealer == nil {
return nil, ErrKeysDropped
}
return h.zeroRTTSealer, nil
}
func (h *cryptoSetup) GetHandshakeSealer() (LongHeaderSealer, error) {
h.mutex.Lock()
defer h.mutex.Unlock()
if h.handshakeSealer == nil {
if h.initialSealer == nil {
return nil, ErrKeysDropped
}
return nil, ErrKeysNotYetAvailable
}
return h.handshakeSealer, nil
}
func (h *cryptoSetup) Get1RTTSealer() (ShortHeaderSealer, error) {
h.mutex.Lock()
defer h.mutex.Unlock()
if !h.has1RTTSealer {
return nil, ErrKeysNotYetAvailable
}
return h.aead, nil
}
func (h *cryptoSetup) GetInitialOpener() (LongHeaderOpener, error) {
h.mutex.Lock()
defer h.mutex.Unlock()
if h.initialOpener == nil {
return nil, ErrKeysDropped
}
return h.initialOpener, nil
}
func (h *cryptoSetup) Get0RTTOpener() (LongHeaderOpener, error) {
h.mutex.Lock()
defer h.mutex.Unlock()
if h.zeroRTTOpener == nil {
if h.initialOpener != nil {
return nil, ErrKeysNotYetAvailable
}
// if the initial opener is also not available, the keys were already dropped
return nil, ErrKeysDropped
}
return h.zeroRTTOpener, nil
}
func (h *cryptoSetup) GetHandshakeOpener() (LongHeaderOpener, error) {
h.mutex.Lock()
defer h.mutex.Unlock()
if h.handshakeOpener == nil {
if h.initialOpener != nil {
return nil, ErrKeysNotYetAvailable
}
// if the initial opener is also not available, the keys were already dropped
return nil, ErrKeysDropped
}
return h.handshakeOpener, nil
}
func (h *cryptoSetup) Get1RTTOpener() (ShortHeaderOpener, error) {
h.mutex.Lock()
defer h.mutex.Unlock()
if h.zeroRTTOpener != nil && time.Since(h.handshakeCompleteTime) > 3*h.rttStats.PTO(true) {
h.zeroRTTOpener = nil
h.logger.Debugf("Dropping 0-RTT keys.")
if h.tracer != nil {
h.tracer.DroppedEncryptionLevel(protocol.Encryption0RTT)
}
}
if !h.has1RTTOpener {
return nil, ErrKeysNotYetAvailable
}
return h.aead, nil
}
func (h *cryptoSetup) ConnectionState() ConnectionState {
return qtls.GetConnectionState(h.conn)
}