dnscrypt-proxy-android/config/dnscrypt-proxy.toml

779 lines
24 KiB
TOML

##############################################
# #
# dnscrypt-proxy configuration #
# #
##############################################
## This is an example configuration file.
## You should adjust it to your needs, and save it as "dnscrypt-proxy.toml"
##
## Online documentation is available here: https://dnscrypt.info/doc
##################################
# Global settings #
##################################
## List of servers to use
##
## Servers from the "public-resolvers" source (see down below) can
## be viewed here: https://dnscrypt.info/public-servers
##
## The proxy will automatically pick working servers from this list.
## Note that the require_* filters do NOT apply when using this setting.
##
## By default, this list is empty and all registered servers matching the
## require_* filters will be used instead.
##
## Remove the leading # first to enable this; lines starting with # are ignored.
server_names = ['acsacsar-ams-ipv4', 'dnscrypt.eu-dk', 'dnscrypt.eu-nl', 'dnscrypt.uk-ipv4', 'meganerd', 'publicarray-au', 'scaleway-ams', 'scaleway-fr', 'v.dnscrypt.uk-ipv4', 'yofiji-se-ipv4']
## List of local addresses and ports to listen to. Can be IPv4 and/or IPv6.
## Example with both IPv4 and IPv6:
## listen_addresses = ['127.0.0.1:53', '[::1]:53']
listen_addresses = ['127.0.0.1:5354']
## Maximum number of simultaneous client connections to accept
max_clients = 250
## Switch to a different system user after listening sockets have been created.
## Note (1): this feature is currently unsupported on Windows.
## Note (2): this feature is not compatible with systemd socket activation.
## Note (3): when using -pidfile, the PID file directory must be writable by the new user
# user_name = 'nobody'
## Require servers (from static + remote sources) to satisfy specific properties
# Use servers reachable over IPv4
ipv4_servers = true
# Use servers reachable over IPv6 -- Do not enable if you don't have IPv6 connectivity
ipv6_servers = false
# Use servers implementing the DNSCrypt protocol
dnscrypt_servers = true
# Use servers implementing the DNS-over-HTTPS protocol
doh_servers = false
## Require servers defined by remote sources to satisfy specific properties
# Server must support DNS security extensions (DNSSEC)
require_dnssec = true
# Server must not log user queries (declarative)
require_nolog = true
# Server must not enforce its own blocklist (for parental control, ads blocking...)
require_nofilter = true
# Server names to avoid even if they match all criteria
disabled_server_names = []
## Always use TCP to connect to upstream servers.
## This can be useful if you need to route everything through Tor.
## Otherwise, leave this to `false`, as it doesn't improve security
## (dnscrypt-proxy will always encrypt everything even using UDP), and can
## only increase latency.
force_tcp = false
## SOCKS proxy
## Uncomment the following line to route all TCP connections to a local Tor node
## Tor doesn't support UDP, so set `force_tcp` to `true` as well.
# proxy = 'socks5://127.0.0.1:9050'
## HTTP/HTTPS proxy
## Only for DoH servers
# http_proxy = 'http://127.0.0.1:8888'
## How long a DNS query will wait for a response, in milliseconds.
## If you have a network with *a lot* of latency, you may need to
## increase this. Startup may be slower if you do so.
## Don't increase it too much. 10000 is the highest reasonable value.
timeout = 1500
## Keepalive for HTTP (HTTPS, HTTP/2) queries, in seconds
keepalive = 30
## Add EDNS-client-subnet information to outgoing queries
##
## Multiple networks can be listed; they will be randomly chosen.
## These networks don't have to match your actual networks.
# edns_client_subnet = ["0.0.0.0/0", "2001:db8::/32"]
## Response for blocked queries. Options are `refused`, `hinfo` (default) or
## an IP response. To give an IP response, use the format `a:<IPv4>,aaaa:<IPv6>`.
## Using the `hinfo` option means that some responses will be lies.
## Unfortunately, the `hinfo` option appears to be required for Android 8+
blocked_query_response = 'refused'
## Load-balancing strategy: 'p2' (default), 'ph', 'p<n>', 'first' or 'random'
## Randomly choose 1 of the fastest 2, half, n, 1 or all live servers by latency.
## The response quality still depends on the server itself.
# lb_strategy = 'p2'
## Set to `true` to constantly try to estimate the latency of all the resolvers
## and adjust the load-balancing parameters accordingly, or to `false` to disable.
## Default is `true` that makes 'p2' `lb_strategy` work well.
# lb_estimator = true
## Log level (0-6, default: 2 - 0 is very verbose, 6 only contains fatal errors)
# log_level = 2
## Log file for the application, as an alternative to sending logs to
## the standard system logging service (syslog/Windows event log).
##
## This file is different from other log files, and will not be
## automatically rotated by the application.
# log_file = 'dnscrypt-proxy.log'
## When using a log file, only keep logs from the most recent launch.
# log_file_latest = true
## Use the system logger (syslog on Unix, Event Log on Windows)
# use_syslog = true
## Delay, in minutes, after which certificates are reloaded
cert_refresh_delay = 240
## DNSCrypt: Create a new, unique key for every single DNS query
## This may improve privacy but can also have a significant impact on CPU usage
## Only enable if you don't have a lot of network load
dnscrypt_ephemeral_keys = true
## DoH: Disable TLS session tickets - increases privacy but also latency
# tls_disable_session_tickets = false
## DoH: Use a specific cipher suite instead of the server preference
## 49199 = TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
## 49195 = TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
## 52392 = TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305
## 52393 = TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305
## 4865 = TLS_AES_128_GCM_SHA256
## 4867 = TLS_CHACHA20_POLY1305_SHA256
##
## On non-Intel CPUs such as MIPS routers and ARM systems (Android, Raspberry Pi...),
## the following suite improves performance.
## This may also help on Intel CPUs running 32-bit operating systems.
##
## Keep tls_cipher_suite empty if you have issues fetching sources or
## connecting to some DoH servers. Google and Cloudflare are fine with it.
# tls_cipher_suite = [52392, 49199]
## Fallback resolvers
## These are normal, non-encrypted DNS resolvers, that will be only used
## for one-shot queries when retrieving the initial resolvers list, and
## only if the system DNS configuration doesn't work.
## No user application queries will ever be leaked through these resolvers,
## and they will not be used after IP addresses of resolvers URLs have been found.
## They will never be used if lists have already been cached, and if stamps
## don't include host names without IP addresses.
## They will not be used if the configured system DNS works.
## Resolvers supporting DNSSEC are recommended.
##
## People in China may need to use 114.114.114.114:53 here.
## Other popular options include 8.8.8.8 and 1.1.1.1.
##
## If more than one resolver is specified, they will be tried in sequence.
fallback_resolvers = ['91.239.100.100:53']
## Always use the fallback resolver before the system DNS settings.
ignore_system_dns = true
## Maximum time (in seconds) to wait for network connectivity before
## initializing the proxy.
## Useful if the proxy is automatically started at boot, and network
## connectivity is not guaranteed to be immediately available.
## Use 0 to not test for connectivity at all (not recommended),
## and -1 to wait as much as possible.
netprobe_timeout = -1
## Address and port to try initializing a connection to, just to check
## if the network is up. It can be any address and any port, even if
## there is nothing answering these on the other side. Just don't use
## a local address, as the goal is to check for Internet connectivity.
## On Windows, a datagram with a single, nul byte will be sent, only
## when the system starts.
## On other operating systems, the connection will be initialized
## but nothing will be sent at all.
netprobe_address = '91.239.100.100:53'
## Offline mode - Do not use any remote encrypted servers.
## The proxy will remain fully functional to respond to queries that
## plugins can handle directly (forwarding, cloaking, ...)
# offline_mode = false
## Additional data to attach to outgoing queries.
## These strings will be added as TXT records to queries.
## Do not use, except on servers explicitly asking for extra data
## to be present.
## encrypted-dns-server can be configured to use this for access control
## in the [access_control] section
# query_meta = ['key1:value1', 'key2:value2', 'token:MySecretToken']
## Automatic log files rotation
# Maximum log files size in MB - Set to 0 for unlimited.
log_files_max_size = 10
# How long to keep backup files, in days
log_files_max_age = 7
# Maximum log files backups to keep (or 0 to keep all backups)
log_files_max_backups = 1
#########################
# Filters #
#########################
## Note: if you are using dnsmasq, disable the `dnssec` option in dnsmasq if you
## configure dnscrypt-proxy to do any kind of filtering (including the filters
## below and blocklists).
## You can still choose resolvers that do DNSSEC validation.
## Immediately respond to IPv6-related queries with an empty response
## This makes things faster when there is no IPv6 connectivity, but can
## also cause reliability issues with some stub resolvers.
block_ipv6 = true
## Immediately respond to A and AAAA queries for host names without a domain name
block_unqualified = true
## Immediately respond to queries for local zones instead of leaking them to
## upstream resolvers (always causing errors or timeouts).
block_undelegated = true
## TTL for synthetic responses sent when a request has been blocked (due to
## IPv6 or blocklists).
reject_ttl = 600
##################################################################################
# Route queries for specific domains to a dedicated set of servers #
##################################################################################
## See the `example-forwarding-rules.txt` file for an example
# forwarding_rules = 'forwarding-rules.txt'
###############################
# Cloaking rules #
###############################
## Cloaking returns a predefined address for a specific name.
## In addition to acting as a HOSTS file, it can also return the IP address
## of a different name. It will also do CNAME flattening.
##
## See the `example-cloaking-rules.txt` file for an example
# cloaking_rules = 'cloaking-rules.txt'
## TTL used when serving entries in cloaking-rules.txt
# cloak_ttl = 600
###########################
# DNS cache #
###########################
## Enable a DNS cache to reduce latency and outgoing traffic
cache = true
## Cache size
cache_size = 4096
## Minimum TTL for cached entries
cache_min_ttl = 2400
## Maximum TTL for cached entries
cache_max_ttl = 86400
## Minimum TTL for negatively cached entries
cache_neg_min_ttl = 60
## Maximum TTL for negatively cached entries
cache_neg_max_ttl = 600
##################################
# Local DoH server #
##################################
[local_doh]
## dnscrypt-proxy can act as a local DoH server. By doing so, web browsers
## requiring a direct connection to a DoH server in order to enable some
## features will enable these, without bypassing your DNS proxy.
## Addresses that the local DoH server should listen to
# listen_addresses = ['127.0.0.1:3000']
## Path of the DoH URL. This is not a file, but the part after the hostname
## in the URL. By convention, `/dns-query` is frequently chosen.
## For each `listen_address` the complete URL to access the server will be:
## `https://<listen_address><path>` (ex: `https://127.0.0.1/dns-query`)
# path = '/dns-query'
## Certificate file and key - Note that the certificate has to be trusted.
## See the documentation (wiki) for more information.
# cert_file = 'localhost.pem'
# cert_key_file = 'localhost.pem'
###############################
# Query logging #
###############################
## Log client queries to a file
[query_log]
## Path to the query log file (absolute, or relative to the same directory as the config file)
## Can be set to /dev/stdout in order to log to the standard output.
# file = 'query.log'
## Query log format (currently supported: tsv and ltsv)
format = 'tsv'
## Do not log these query types, to reduce verbosity. Keep empty to log everything.
# ignored_qtypes = ['DNSKEY', 'NS']
############################################
# Suspicious queries logging #
############################################
## Log queries for nonexistent zones
## These queries can reveal the presence of malware, broken/obsolete applications,
## and devices signaling their presence to 3rd parties.
[nx_log]
## Path to the query log file (absolute, or relative to the same directory as the config file)
# file = 'nx.log'
## Query log format (currently supported: tsv and ltsv)
format = 'tsv'
######################################################
# Pattern-based blocking (blocklists) #
######################################################
## Blocklists are made of one pattern per line. Example of valid patterns:
##
## example.com
## =example.com
## *sex*
## ads.*
## ads*.example.*
## ads*.example[0-9]*.com
##
## Example blocklist files can be found at https://download.dnscrypt.info/blocklists/
## A script to build blocklists from public feeds can be found in the
## `utils/generate-domains-blocklists` directory of the dnscrypt-proxy source code.
[blocked_names]
## Path to the file of blocking rules (absolute, or relative to the same directory as the config file)
blocked_names_file = 'blocked-name.txt'
## Optional path to a file logging blocked queries
# log_file = 'blocked-names.log'
## Optional log format: tsv or ltsv (default: tsv)
# log_format = 'tsv'
###########################################################
# Pattern-based IP blocking (IP blocklists) #
###########################################################
## IP blocklists are made of one pattern per line. Example of valid patterns:
##
## 127.*
## fe80:abcd:*
## 192.168.1.4
[blocked_ips]
## Path to the file of blocking rules (absolute, or relative to the same directory as the config file)
blocked_ips_file = 'blocked-ips.txt'
## Optional path to a file logging blocked queries
# log_file = 'blocked-ips.log'
## Optional log format: tsv or ltsv (default: tsv)
# log_format = 'tsv'
######################################################
# Pattern-based allow lists (blocklists bypass) #
######################################################
## Allowlists support the same patterns as blocklists
## If a name matches an allowlist entry, the corresponding session
## will bypass names and IP filters.
##
## Time-based rules are also supported to make some websites only accessible at specific times of the day.
[allowed_names]
## Path to the file of allow list rules (absolute, or relative to the same directory as the config file)
allowed_names_file = 'allowed-names.txt'
## Optional path to a file logging allowed queries
# log_file = 'allowed_names.log'
## Optional log format: tsv or ltsv (default: tsv)
# log_format = 'tsv'
##########################################
# Time access restrictions #
##########################################
## One or more weekly schedules can be defined here.
## Patterns in the name-based blocked_names file can optionally be followed with @schedule_name
## to apply the pattern 'schedule_name' only when it matches a time range of that schedule.
##
## For example, the following rule in a blocklist file:
## *.youtube.* @time-to-sleep
## would block access to YouTube during the times defined by the 'time-to-sleep' schedule.
##
## {after='21:00', before= '7:00'} matches 0:00-7:00 and 21:00-0:00
## {after= '9:00', before='18:00'} matches 9:00-18:00
[schedules]
# [schedules.'time-to-sleep']
# mon = [{after='21:00', before='7:00'}]
# tue = [{after='21:00', before='7:00'}]
# wed = [{after='21:00', before='7:00'}]
# thu = [{after='21:00', before='7:00'}]
# fri = [{after='23:00', before='7:00'}]
# sat = [{after='23:00', before='7:00'}]
# sun = [{after='21:00', before='7:00'}]
# [schedules.'work']
# mon = [{after='9:00', before='18:00'}]
# tue = [{after='9:00', before='18:00'}]
# wed = [{after='9:00', before='18:00'}]
# thu = [{after='9:00', before='18:00'}]
# fri = [{after='9:00', before='17:00'}]
#########################
# Servers #
#########################
## Remote lists of available servers
## Multiple sources can be used simultaneously, but every source
## requires a dedicated cache file.
##
## Refer to the documentation for URLs of public sources.
##
## A prefix can be prepended to server names in order to
## avoid collisions if different sources share the same for
## different servers. In that case, names listed in `server_names`
## must include the prefixes.
##
## If the `urls` property is missing, cache files and valid signatures
## must already be present. This doesn't prevent these cache files from
## expiring after `refresh_delay` hours.
[sources]
## An example of a remote source from https://github.com/DNSCrypt/dnscrypt-resolvers
[sources.'public-resolvers']
urls = ['https://raw.githubusercontent.com/DNSCrypt/dnscrypt-resolvers/master/v3/public-resolvers.md', 'https://download.dnscrypt.info/resolvers-list/v3/public-resolvers.md']
cache_file = 'public-resolvers.md'
minisign_key = 'RWQf6LRCGA9i53mlYecO4IzT51TGPpvWucNSCh1CBM0QTaLn73Y7GFO3'
prefix = ''
## Anonymized DNS relays
[sources.'relays']
urls = ['https://raw.githubusercontent.com/DNSCrypt/dnscrypt-resolvers/master/v3/relays.md', 'https://download.dnscrypt.info/resolvers-list/v3/relays.md']
cache_file = 'relays.md'
minisign_key = 'RWQf6LRCGA9i53mlYecO4IzT51TGPpvWucNSCh1CBM0QTaLn73Y7GFO3'
refresh_delay = 72
prefix = ''
## Quad9 over DNSCrypt - https://quad9.net/
# [sources.quad9-resolvers]
# urls = ['https://www.quad9.net/quad9-resolvers.md']
# minisign_key = 'RWQBphd2+f6eiAqBsvDZEBXBGHQBJfeG6G+wJPPKxCZMoEQYpmoysKUN'
# cache_file = 'quad9-resolvers.md'
# prefix = 'quad9-'
## Another example source, with resolvers censoring some websites not appropriate for children
## This is a subset of the `public-resolvers` list, so enabling both is useless
# [sources.'parental-control']
# urls = ['https://raw.githubusercontent.com/DNSCrypt/dnscrypt-resolvers/master/v3/parental-control.md', 'https://download.dnscrypt.info/resolvers-list/v3/parental-control.md']
# cache_file = 'parental-control.md'
# minisign_key = 'RWQf6LRCGA9i53mlYecO4IzT51TGPpvWucNSCh1CBM0QTaLn73Y7GFO3'
#########################################
# Servers with known bugs #
#########################################
[broken_implementations]
# Cisco servers currently cannot handle queries larger than 1472 bytes, and don't
# truncate reponses larger than questions as expected by the DNSCrypt protocol.
# This prevents large responses from being received over UDP and over relays.
#
# The `dnsdist` server software drops client queries larger than 1500 bytes.
# They are aware of it and are working on a fix.
#
# The list below enables workarounds to make non-relayed usage more reliable
# until the servers are fixed.
fragments_blocked = ['cisco', 'cisco-ipv6', 'cisco-familyshield', 'cisco-familyshield-ipv6', 'cleanbrowsing-adult', 'cleanbrowsing-family-ipv6', 'cleanbrowsing-family', 'cleanbrowsing-security']
#################################################################
# Certificate-based client authentication for DoH #
#################################################################
# Use a X509 certificate to authenticate yourself when connecting to DoH servers.
# This is only useful if you are operating your own, private DoH server(s).
# 'creds' maps servers to certificates, and supports multiple entries.
# If you are not using the standard root CA, an optional "root_ca"
# property set to the path to a root CRT file can be added to a server entry.
[doh_client_x509_auth]
#
# creds = [
# { server_name='myserver', client_cert='client.crt', client_key='client.key' }
# ]
################################
# Anonymized DNS #
################################
[anonymized_dns]
## Routes are indirect ways to reach DNSCrypt servers.
##
## A route maps a server name ("server_name") to one or more relays that will be
## used to connect to that server.
##
## A relay can be specified as a DNS Stamp (either a relay stamp, or a
## DNSCrypt stamp), an IP:port, a hostname:port, or a server name.
##
## The following example routes "example-server-1" via `anon-example-1` or `anon-example-2`,
## and "example-server-2" via the relay whose relay DNS stamp
## is "sdns://gRIxMzcuNzQuMjIzLjIzNDo0NDM".
##
## !!! THESE ARE JUST EXAMPLES !!!
##
## Review the list of available relays from the "relays.md" file, and, for each
## server you want to use, define the relays you want connections to go through.
##
## Carefully choose relays and servers so that they are run by different entities.
##
## "server_name" can also be set to "*" to define a default route, but this is not
## recommended. If you do so, keep "server_names" short and distinct from relays.
routes = [
{ server_name='acsacsar-ams-ipv4', via=['anon-meganerd', 'anon-scaleway-ams'] },
{ server_name='dnscrypt.eu-dk', via=['anon-scaleway-ams', 'anon-yofiji-se-ipv4'] },
{ server_name='dnscrypt.eu-nl', via=['anon-meganerd', 'anon-scaleway-ams'] },
{ server_name='dnscrypt.uk-ipv4', via=['anon-kama', 'anon-scaleway'] },
{ server_name='meganerd', via=['anon-acsacsar-ams-ipv4', 'anon-scaleway-ams'] },
{ server_name='publicarray-au', via=['anon-ibksturm', 'anon-tiarap'] },
{ server_name='scaleway-ams', via=['anon-acsacsar-ams-ipv4', 'anon-scaleway-ams'] },
{ server_name='scaleway-fr', via=['anon-dnscrypt.uk-ipv4', 'anon-v.dnscrypt.uk-ipv4'] },
{ server_name='v.dnscrypt.uk-ipv4', via=['anon-meganerd', 'anon-scaleway'] },
{ server_name='yofiji-se-ipv4', via=['anon-meganerd', 'anon-scaleway-ams'] }
# { server_name='example-server-2', via=['sdns://gRIxMzcuNzQuMjIzLjIzNDo0NDM'] }
]
# skip resolvers incompatible with anonymization instead of using them directly
skip_incompatible = true
# If public server certificates for a non-conformant server cannot be
# retrieved via a relay, try getting them directly. Actual queries
# will then always go through relays.
direct_cert_fallback = false
###############################
# DNS64 #
###############################
## DNS64 is a mechanism for synthesizing AAAA records from A records.
## It is used with an IPv6/IPv4 translator to enable client-server
## communication between an IPv6-only client and an IPv4-only server,
## without requiring any changes to either the IPv6 or the IPv4 node,
## for the class of applications that work through NATs.
##
## There are two options to synthesize such records:
## Option 1: Using a set of static IPv6 prefixes;
## Option 2: By discovering the IPv6 prefix from DNS64-enabled resolver.
##
## If both options are configured - only static prefixes are used.
## (Ref. RFC6147, RFC6052, RFC7050)
##
## Do not enable unless you know what DNS64 is and why you need it, or else
## you won't be able to connect to anything at all.
[dns64]
## (Option 1) Static prefix(es) as Pref64::/n CIDRs.
# prefix = ['64:ff9b::/96']
## (Option 2) DNS64-enabled resolver(s) to discover Pref64::/n CIDRs.
## These resolvers are used to query for Well-Known IPv4-only Name (WKN) "ipv4only.arpa." to discover only.
## Set with your ISP's resolvers in case of custom prefixes (other than Well-Known Prefix 64:ff9b::/96).
## IMPORTANT: Default resolvers listed below support Well-Known Prefix 64:ff9b::/96 only.
# resolver = ['[2606:4700:4700::64]:53', '[2001:4860:4860::64]:53']
########################################
# Static entries #
########################################
## Optional, local, static list of additional servers
## Mostly useful for testing your own servers.
[static]
# [static.'myserver']
# stamp = 'sdns:AQcAAAAAAAAAAAAQMi5kbnNjcnlwdC1jZXJ0Lg'