(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 13.2' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 135097, 2843] NotebookOptionsPosition[ 126812, 2684] NotebookOutlinePosition[ 127235, 2701] CellTagsIndexPosition[ 127192, 2698] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Ondas en una dimensi\[OAcute]n", "Title", CellChangeTimes->{{3.8981911148840227`*^9, 3.898191121624124*^9}},ExpressionUUID->"3b52c642-4207-4cdf-bcb3-\ 2f6a2e20aca2"], Cell[CellGroupData[{ Cell["Cuerda infinita", "Section", CellChangeTimes->{{3.898191125464287*^9, 3.8981911354478607`*^9}},ExpressionUUID->"6408f118-07fb-4e89-bc3b-\ b3700fa14a9c"], Cell[BoxData["Quit"], "Input", CellChangeTimes->{{3.898191217383078*^9, 3.898191217862883*^9}},ExpressionUUID->"933505bf-9343-4c96-83d4-\ c02490946a66"], Cell[CellGroupData[{ Cell["Modo hacia la derecha", "Subsection", CellChangeTimes->{{3.898191153143958*^9, 3.898191187631179*^9}, { 3.898191329181638*^9, 3.898191331237507*^9}, {3.898191373295086*^9, 3.8981913787009573`*^9}},ExpressionUUID->"8f3381a1-e334-4ec0-8b8f-\ fd462b83d0f0"], Cell["En t\[EAcute]rminos de una funci\[OAcute]n cualquiera", "Text", CellChangeTimes->{{3.898191380741803*^9, 3.8981913889943533`*^9}},ExpressionUUID->"fcdefcc8-7771-458d-836e-\ 557c6d7fcef0"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"fp", "[", "u_", "]"}], ":=", RowBox[{"1", "/", RowBox[{"(", RowBox[{"1", "+", RowBox[{"u", "^", "2"}]}], ")"}]}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"fp", "[", "u", "]"}], ",", RowBox[{"{", RowBox[{"u", ",", RowBox[{"-", "10"}], ",", "10"}], "}"}], ",", RowBox[{"PlotRange", "->", "All"}]}], "]"}]}], "Input", CellChangeTimes->{{3.898178481189189*^9, 3.898178500370598*^9}, { 3.898191290942535*^9, 3.898191292239201*^9}, {3.8981913532387238`*^9, 3.898191356574024*^9}, {3.898191780898335*^9, 3.8981917842249517`*^9}}, CellLabel->"In[40]:=",ExpressionUUID->"0b822ae7-398a-485f-9c1a-0cabac4e7c3f"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJw1WWc413/Utvcmq4UfQkJIA52PhJQkSaWNJMm/VFJE40eUyB5R9t4k+/ux Za/snWx+skd4eq7reV6d677uc785L865z3WLmv5neIeGioqqg5qK6n/ry7Gz 89vbJEzqHnq1qk2GUQf+pZ6/JOwg90Xw1Fky6HMNrHxfI2Eys2t4yAUyiBx9 uPnfAgnfOSTiduoWGUrf+zANjpJw/8PyiarnZGCS69iD6//xhQn+xilk8Hty 68yrzyQcrmTUivldIIn6cTTVYRJeM8mjObLgAvR3dBSFrothLSnF5WVqN+Dt rLCO9BbFmV5n7hkpvQfDshAz6RoRXPa5aJ91nAc4UNStP/3aiw90yHOa5XlB 7rMQq7Rze3Bh1aucNVdv0Pe5KLIVvAs3Pbrg2h3tCzphRfqnpoUxzwIn/avd ATD3sfcv3agwfn1g+JPfvgAIcdpILBkQxmMPvJfSDgbA9M2jjKqtwvjuu4Om G1oB4CP2jTiQL4wLaWPsftsEQH9csgKvmzBmU2zhYysNALvMzzz9JGF8ZOP2 WNODQIitet7++KoQrg6/Y457gyBY0U4zwUgIl7Z6L5ZNBIFHmG16/1khfMv2 TkLzchDYPr7/XhcJ4fHY8URW7mBQ33v9+F4JIdwUFnRoQysY2uxQbM2sIPZ8 /LCzOSMYaCQZ7UTfCOJ2C7mcJO8QuEH229EYL4CrbOP0vj8JhQZYZrSPFMAq JleIT29DATYurYuECmBO7f25T31CQcR254CtlwCuViPfN00PheGbkfH8dgJ4 d0TSvurpULBQTVe9oSmAT2UZhTXeDQOb+drbM338+AGDJdW+u1/A6RZtKisv P47S+ii0rh0O6Y06nm1s/LjwKH9437lwGD7uYRPGwI93pjJcq74cDtq7d8jL r+/AIk9ofbOswoGjWzLdcGgHnqT70zHkGQ5fLpzODE7bgefddmdHd4YDoe2d s09vB7buFInZfBQBVAf2EpoufDiTr/XNfFEkOPJr3HBx4sMtPIwS7T8iYWXb dLPyGR/OuEe7XP4zEmZbYlVPW/HhPpr2q+UzkdBjL5drcI4Pn47ixWf2REFO uXrGdSE+/CiZy9H9dRQ8uHYt6lkKLxbm+L4qfT4axrWcTuTF8mLqcx/+et2I BnP58KH1r7zYlzaan9Y6GkxoRvY6+fBiD2HaZq530XAq/n4o+Rkvvhy9qlpX FA3iiy/8vTV48er2iELLgRjo/hD8LuknDxaf80sJEYyF1gqR5FuNPPhxSFlH iWQs1G3HNe34wYOpXkdaLSvHQvHjHKFXhTx47dNZdrfzsRB5tTXJKIoHKzPT iJz7EAtW+9mbNh/yYCte3y8O1HGwUfNK0ICNBwu+TCutW42DRTomdXoGHqy1 wWFWxhQPs8e9budvc2OnvofffwjGw2BmWKL4AjcuH7Gqpz8aD+Uh+WprXdy4 65b/jPqLePCwWrwVGfePTzSxwNvxsIvFMmHxBDc+VkL2iRdIhBvFdR5iatz4 RSSLstb+RIiwPfjQ4BA3FnGS8Fs5ngiSPesqyfu48dLDCI4vFokgn/yx3IyN Gyvx1dos5STCCf2sgZafXBgJ+yRNXk2Cez5bOzIsufCSSg5p+HsyJGubrfXf 5sKmxuiMfUMyzK5X9bJd5cKVKzohUr+TwdbMO8ryLBfeGLY+28mTAo7K4gdF FLmwWddrG/v/UmBPim/QnhVOfHrErXrgQCrcPyRD37OLE+dilWRHnAa29Hlx dpyceNf2O1f57jR48VPnNA8NJy47XTxLtZgG75/e8dId48DeW+d4qfjSIfFb uFBuBgf2vyRfmH8qHSYOCcj5a3NgE9/0F0rf0uGuCt2lcw/Z8UaV+8ZESAbY MPiuTZr+w8M8ZX0JGWDXLhrqepEdB2XOSIzkZoCrHQwVHWPH7EGKKtIdGRCb 8+K+LD07FuxV7Q7ky4TfKn+cmUPYcF91VpmYbyaYHe6PLytjxbfp5Bi6vmaB RfxhY+3vrNhfPBUU0rPASsib9kciK7454nH5M86ChxuaNxq8WTE9T31MylAW OBIJvF03WfGk8xnpSvFs8NN56jS7wYLZ6R7Z/UrNhspLbEZCyiw46OF/gSWt 3+BH9R3q0H0s2Jb54P720W9Qd5RI3bOTBbdUxtHTrn+Dlp22zOI0LHja30Au ViQHBgY6iuWamDGd774i/v9yYPVulPRJa2ZcErLjfAXXd5CxP7ZtE82EncUF Nz9a5gLu05f5FcCEJ66vXBh9lQvGmmYXL7kz4avHavtuB+fCGw6PJLBhwkde snwqq8mFrui+S1xHmPBW90TOEfk8cGt+lZ5Ry4hvdH5Qk9zOg1GZqtuL8wxY eKD0MVdRATh+6vGw/M2ApTSmra90FwDPMuV7bwcDNvJgWG1YKYDjJYIcFYUM uFXefo+GUiH4X7LK93dlwD8zlwzOJBfCSTI772FhBvyalcKvE1cEEX0Xyp9r 0OOUnsz378oIUBxRXG9Tpsf+FgUNeSMElE9yKyhI0WODncl9HLQYRlcaP49y 0OPkWxy0xeIYZHj0Hl/opcMph7et9O9hyNQ+KXbgGR2uHpIeNF3BUJ6m/Gow mRbfUGFUqpUqhYs5vDmq4bS4dPdTtmG1UhgtnJ8K8KXFDOxDjwTPlwJTTfql sy9ocSKy6xx5XgpnR2Tl83VosZWE8xpNfSm0C0r0+w7T4AfcDu8/Pi+Dsdc7 1HQEaXBnndiusplyYHmZRvFlocGtHPkm15kqQM5eN2rwLzVmvXpcYB+pAuxs XrK8GKLGmjgw6fSVCmC4+rszOZEat7PcHOmrqgBx5W9PedSpcYxBAod/aiWc kj8nfVOeGqsulx8xqasEa5mJ3iRRajzUoTpwcbISskV2n9RioMarnJOu85JV oMnuwmPfSIVlpLJ+NERWgemoUVrfbSoskPnx5NuYanAdmjWVMaLCN+osvaYq qyGx143/mTYV7sqJf+YzXg3zLYUvufZT4Ws+B42+yP4AGmfdINfxbWLzxNyf ou8/AA5ONJ9n3yYO/tnT8KW7BvL9pbTGjTcJTdVlKY1L9cB0dcyMWm2TOLnP sH3oVT0Yi8S+ERbdJKTNB+61JNbDfCIJ6039JYaDLzPFbteDNN6jmuH8l0h4 8KBdJqUBgib5Dr6I3yBaVm0CJdmaYDSt9Zzvxw2i6JG/XASpCZSf+tgk224Q J8ZQkK5qEzRucyb3q20QXssiTyXuNwHDDtZ9ms3rhPePXEe++iZ4CtS72dbX iFvF7x/uD2mGUjqsKjGwRrx3hZ9Z2c3AVeNkcrx8jYD9yokPG5sh2ehv4EPP NWLkVMgdd/oWGLm3wvNTbI3YUhDy1HzSAoZ+M0xfzqwSd2X9FNC1VlCY6FqU D1smTK73SsZe+QlP5g5IC5CXiYIHGT2Xnv+E3JXX17eslomuWOHLJ4N/ggaD TGXdkWViuSBQu7HrJxiSXgTea1siWihcl3Kvt8PT68LHoliXiAalRUnFRx2Q 32zizP9igajhCh3+9KMLtjpTszZvLRBNFzUMTf90wYlBmvERnQXCeIZd0EGo G2pnEw2ydiwQl2/5s5GtuqGXdUPUIGOe6BCK2rPJ2QPbWp/L3cf/EJrOrbta LXvhZH4P86bxHCH65kpJ/4UBSE2MOVqlOkdcPZPaZ+A+AIKf/7vnLTJHiLXe fbaXGID2FQafM20UgpqQJE3sGAQJB2OusPVZgv5MzVIleRBKXy+xIZ0Z4o/3 Wqbo/SH466nE4Do4QeyhSkScV37Bw4S0VW7eX8QZlbeUW6FjoMBh8/bE4DBx k8Fi4lrRGPyxleV4nDJMRMpdqLzaPwa2agmkNp1h4u3QQ/trIuPwtDFSP8Bx iBAQfy6BosdhYXK/7qG6AeJAl1GidOIEPMmOvxFgMUDwSE97BdVMwPJLiScr VAOErszpv5TJCVjl2vs171A/0cHwpdJg/yT8VeFZUv/aS5B+du+LSpwEhrer 4dq2XQQ5W2F/ccQUvNN7mhPH1kWMCyR1lhJTwMQ/X8sU10nwaJonePZNAUvC 1HJNTwexPVEfbys4DZyN/XrntNqJntEYAdkP0/Ap6Kpp+sBP4j/F7UXpuGng Me18xv3iJ/G9l9mvt3Qa+JaaI1tT24jbPm9KjdemQXBnxeolwVai/e+k83XT GQge0eDIy2whpCzf82GHGRBOLSYJn20htrF/ZbnfDOzWyNXvfd1MsJ+OP51U MQOaDca6Je2NxOGt5K1ksVnQvm3w5C1rI0Hj0hM2eGQWTi3qftVCDURkRLJe tP4s6AmrL/1IqCOi1aWUWu1nwdiCFNHi+IMI/VIu5Vc1C+8fPXbz+VZNhF/f +yqjaxaKHMv+M5ytIm7scrx/YWoWxH3NjrfcrCS+umW172anwOUvWRI+QRXE 60PePSd2U+BDAi27YXM54el73vm3LAXmiaie5hNlhPObVFLYaQpI1i6UejuU Eqf3XKVOu0yBK+2aieezS4gbHB1HjlhQAE//sm+WwMQtPcOVRGcKjFPuYrGi YiLuiAL2/kCBcwxMXpFyRYTM6Qt3JwMosEfplGwkdz7x/hNYTydRwEV3fF30 bS5heOWIo+83yr//w+1HxGIOAR5PGuOKKXDBTipI1OIbMfA7zVyqigL5HtUW ER1ZhPWEymm+RgqIRlkeEtXNJIR1pb9YtVPALY+JLiI/nZBXy/WU6aNA/9fz MRqXUwmmqFsmF35RIKXO+4SGahKBekQMRsYp4LDWPID2xBOiUomNvTMU0JXk eYmoY4hx/4+6avMUELhgKIxGIghDZA40yxSo3Rb/z9kzjAgYm9eUW6OA5ZWY BCejQIKj5NQGsUEBuiyJkZfC3sTdx13C3zcpgIT01NexCxGo4HOPd5sCc0HB 5n+CbYmw4Qmi7R92pPGr0D5yBbRNpxk3/mG5ELMqPhVnOJuJ1F3/4X6hjFlW Tg9QV5V5YLf1bx5KnYWuGn6QwuiSU/uXAjldl968cwiBLJoiXdd1CrDjKVK5 STioqGPL2BUKgG+Sa/mzKHisMW0hu0iBRxb3J8r9/vlop+V4wTkKRB7dr1eR kQD9HY3R96co0MY2lVrxz3eG3ns7JDFKAYbBRO7KqTTI8uJa0RmkQOiVQ8fM yBlgoIM8W7oocEjT//4vnizw2Xp6q7KFAg2yS6FmEdlATDkcFq+lABXVt22z 4u9AW9JwXzSfAsETfAdH9PLgeWh0cmk6BRRbn5ia9+SDPdGR2xxLAfNY5Qrz 1SLwVfkTqe5NgU0vv+URVwK4lp/0hbr8m7/aum/mewxOyrOfbZ7/65c0qVAU KgVx7oVVm5sUUNjJ0m87WAq6/Wxm4ef/6TnzlzPjyiBi18sxXU0KBKwJSSmp VEBUauptVgkKVNV1vVe6UA3xL8UDng7PgqV9d9XV/f/uKOnLAkvjLDCJ99CR aWugJ03tIlfBLJx26HVqy6oF6mdcyU+8Z6FOesD2KV8jtH04UT9++J9e0zal Z7IF5liP51c8mIEjwfO1FONWcHde2vIwnAEmiu0kbVkrsLq81J9VmYGEkMf7 ZD+3wfkDf06835qGyT9PIhzPtMPvPaIkO/dpsA5/5r87uQtclpMKvD5Ngdry StZBwW6gyrzXq/1wCtj07Fu0yN1wLobxXPm5KUhZsee0udYDgj7sObs4pmBW /4V7MVsfjJOtZz64TUKuU3FxmsogiHWkyXnaTcCxAyWZBoG/4Mm6JMdX7TE4 1NYeUPzjF7h26vevSPzb/w7TL2T//oLfEeFuV+jHQPKHgCbT7RH4nKF0XK18 FHjv2LQSMr+BqyJX6+uJUZgO3bkoVzwKx8b5tctP/IavbHaH2H9PgGu6ILOp 8S8Iyfog5CAwCewREhBz5BcEmERsjutOQsHGkRyWnb/AI76uojx1Eo5H2dEd HxwG+5MkY0f7KeC+t/e2gfUwGDo22U2xzkDlvIvD3Q9DQGO3o9dcaA6M5PX9 b9QPgMmtxJZc5TlIscvlUgscgMzT8IPNYA5GQpW77W4PgOneeznZrnOgiKX4 6Vb6obS68BPd4hz4DLQrvJDsh7c7zbWiG/7A5SRrz+SAXuilX1NdnfgDK8qf YvUsekF57qOiHv08fPyxp1lbpRdGyr/vXVSdh7fknbSnOnrgpA3rumbCPNCf 3F34eHcP0JVkpv56uwBYJ0RaIL8LriXpxBz+ugCiB7rOyXh1QbZ/7+cP+QtA z/hs85N5F5hbMbgr/VmA3cvWzJe4uqCC18Ts7Y1F+DXcdjn3fie4WlALko4u AX18ksqtgx3AyGbw2nR2GXLzn2gkLLbB5X0mWIV5BbKXXFYbWtsg8YT5Nov4 CrAa37Y6lNUG+s/tX2ZdWYHjo/7upbZtEDAa/pyuYgWONnkJNC22gmTJn0ex n1eBtyFqUI+uFex7N9Jf5KyCXSyX5cmxFqhZoZ/Tb16FfOI709OaFrCRE7ZZ YViDl7wphLN3C+R8PmF1ynYN1uPT9eTEWkDLztd08tQ6tJXQ6nqcbYYA77CI YrN1OH3HPmpAqRnGk+MGfZzWIfNnM8sd4Wbw+FVwQzV7HUpLz1+kG2+CNoMR E4+9G6DdunHR3aUJzPcfuiC3vAEFshuRsT6N8HawXdM2ahPON0fFvRqug/68 Mw/sCzehjF32WF9hHRzzxQFOPzch6Gy6hGNgHcxpJU68Z9yC6kHBSaezdXAj 6aVX1P0tMDtB+LkX1sIxO/GeNqVtkI611TgRWwNr9EfzdppSIV4diY/T0dUQ a7tQ/8WGCj1oKD0X4VoNRgMpw6IOVCg9TNba3bIa0nPF2KT8qFC3Mh/PvGw1 WNxnu6lcSYUcz8wMCuVWQVvTAN1ZGWpkORNSb91RCemfXQ2c5qnRUKlYod/h CqjldR3jpKJBEkbbpeO7KmD0g4tTBDsNYvB2SblPUwG7HMnJ5VI0SPlEXsjf +nJwu/aGifUmDcodUGdAd8vh1m4nHFhLgwxMBcPXIsqA6+tThYxoWiR9K7+2 +lAp7Bd4WnUikxYpDoQ3aIuUgrbXkxttBC0Svb9VMs5SCo7Ojz1WumlRTz1x LnCwBMZvPhpX56ZDdJL69IEfSwCLPAiveUmHXnXarw7PYPgv0pxrxJge6VsO jBd9IMDzeXCopxk9KlWiqqS6T0CqQYPU0Yf06MZPOfEnpwmY3Tqs4elOjxKs z6xPMhNgfZXV9kghPdrm0jfm/FAMVnyZrR6iDOioQfLrMf8isHDdDjg0zYBO ti/+/VpbAK7XlUmDqwxIrvTbm/PpBRCrfC/tPT0jsutI9ZP2L4Dfwy1VA3sY 0Wc5HV29mwVgDrGr7ucZ0fG8PDejpXwwXdUz6c9hRA0N1HUqUvlwwypk97vX TIhFd5nZOy4XNrqYG/58ZEK654Vo2LxzIUj3udO1ECZ0bfBKRvSLXGiWujxw MIsJFXJsWMvp58LJsR0RvSNMyKSUfSls+TtIm3uLK55iRkIuKffK9L7D4nW3 /X0cLKihzrhuii0HPtWv9OjsZEGpT5ljy9a+wQH1ux6Z+1jQSC93TNboN7DY pT3zDrGgyFeTdj34G3R106Yp2rIgR8E4ZW27b1B8yVnR7ee/frazt+7+zgb3 83ZHlUJZEVPM9Y3B1n93uE7GOjmBFf1aIz/gKc2CUJ2BLxLfWVFyScu+q+lZ kK5+ik6whRUZumx1HPyYBZ3Swo1/GdmQ7e+cGYpOFkjRFJtXPmZD1MVq4p4l mVCZSf/pyhl2NHMo/NLV8gxoOpBf2nKZHZXVHjeW/5YB3fE2S2cs2FHycQUN /tgMmP3SYXL8NTuS5aDc3uWWAfwfEiRI39mRqienC8PZDLhjdrZgWowDNZbU 4yPd6UDH5z/qvM6BEj9WFlygTgeeWScOHkZOFKS/LGYymQai1ZYq0bycaPxD YNu+ljQ47qjmWi3Lic7ecE7ljUyD5yO/JLhvciKPiFxGac00mM1WvBNZxono 1i1eSb9PhWmZ8Uem2lzIskOPyU0mBRYF+lyS9LiQeLhThtGOFNigawleNORC rZGVa4epUoBloKDE9SYXqnm9NqHRngz7fL24k+y5UOBjkd833yaD6YZKxkIi FxLd/bk5YSgJOmpd5sic3Gg2onE5KSUR/I6HaV3k50ZeW2QBcnAiGGZkh0js 5kZLY2Ohti6J0BDw62SlDDcaJq9f8LmeCJW3NYIZtbmRTEr6QidHIuSs/NV4 78iNLrZyZd19mgABpCe+XhPcCCs09xWcjwejgA/jN+e4Ec27C4QEigce5ih1 hRVu5HCY6nqkXDx4zjaPNdHxoDmyl3krazy45smr8YjwIPoJpTbuqjiwOzc1 4mfMg34wRqJJFAcXHUxVQsp40FNrG35TjVgICONjWPnBg7rdCxTWFGOhnaj8 eaGJB/GJX+L8Ih4LxnT7n7L3/ePxlzYupli4/HEh69UyD2IbVYoKaowBk6/k g3eleVFkHF2Z2O0YuFUWK6vsxYuKjA3SMj5GgzXrlFiDCR96eCXQy505Cqae 59Ox3uZDGjFXXxhuRYLVuPuozl0+5H53SEZiIRLuVkglljzmQ0fZndLHeiPB 1Nni4DcPPhRW9UZwMD0SriwMQWgxHzo/azDsZxIJ2j2d16zEdqCtz0eDKrIj YG9SZQDD5A6k9HxNWuZNOBh9zc2rmduBLFxnFw3sw+G9b2Kv58oONK3/6skr m3BYdPAUE6DnR/tSqe+t/fPRNXrGqftE+NGYvAmnoXI42M3+rjhlzI8CAl1f 7m/+CvUH6Zfel/Kj+yN383RTv4BDruYFzs8CKLtGsmjNLxQUrzXN3YwQQMwo ZkbUNRQmt695pscJIB2jGc+Lz0LBRMfux/lsATTLZrbUfyUUjrXHg1+9ADp8 vZHz+d5QWF1glxWiEkSKtvVBOPkz2Ml30pHuCKLdtpvFBo0h8DDWOkdFXgj1 173xVlcMhv7Gnf4cKkKoaLkgY0w8GM6u1TweVRNCv+XL9UMFgkFGT/pgwGkh ZBZW3Cq+GQQjf34nLd0RQievNvVkVAfBJfWbEdmhQmh1sTc683YQHG8776HI IoxeqFo1M34OBDaaw6Zyv4URW2Loy1mpAMh7RnthdEoY9asffLd7TwBYzDRq fpkXRp9f6dw34g0A3GkpwUG1EyUzdEd3bfrD47SQ8RnhnWj8UAabRqs/dF/b skkx2IlyefNPvnT2h/jvFQ6yhTvRxWgn4nmfH2g9MPKX8d2FerR5ZLhSfUEw b/d/WuJ7kJL+6KGCXG/wsXXzVujYi6Ion46nNnuBoeu5A2E5IkjRecMsbsID ZK6SL0a/FEVGbMWZ/jbvoX2UOdL3ohgyavZ7YbvDDRpMf2vw7CWhIBKLXJa0 KwzRxa36i5HQ4Es93VhRV1iMtUwTkiShY5o+pWFCriA0NbVL9AAJ1Z8JKA1m dgXzx/Mr8qoktCYrGlEx4QLrb7dTzl4iodfONyUnE11AMkZI2N2LhDg+iBic V3CBozo9TWy+JFSh0HmqRsoF9CZC330KIKHDSrJIR9QFHh0QWQoMI6H/0u/t PcvjAoXfJJtik0hoaoTB0G2RDIaVSq7lVSS0LULak59HhjuWS2qnaknIcq9K 9qNMMtizfF+obSChoxXbuw4kkSFM/9jt1p8k9MyR61paKBnG25Ha8C8SyqwU 1h5yJsO6Pc3CnTESKuqt2PfdngzsO8sTJiZJ6NIe/qpPj8igeFNH4M8fErri cEr5nBkZtKiZG54skVD2ZepNpWtkuBxVQ15dJSHKINvzXRfJYKXloer4l4SE qXtjmPTJ8H/5Kvr/fPV/AF0he+I= "]]}, Annotation[#, "Charting`Private`Tag$291006#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.898178518004966*^9, 3.8981785277450314`*^9}, 3.898191295206668*^9, 3.898191357300709*^9, 3.898191784974062*^9}, CellLabel->"Out[41]=",ExpressionUUID->"2409da52-2ca7-4077-bcd4-d75592298c18"] }, Open ]], Cell["Podemos animar seg\[UAcute]n", "Text", CellChangeTimes->{{3.898191315254592*^9, 3.898191337581568*^9}, { 3.898191393397159*^9, 3.898191396389042*^9}},ExpressionUUID->"f15db67b-3409-4d51-9df4-\ 639aaaf4e8fc"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"c", "=", "1"}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Animate", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"fp", "[", RowBox[{"x", "+", RowBox[{"c", " ", "t"}]}], " ", "]"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "10"}], ",", "10"}], "}"}], ",", RowBox[{"PlotRange", "->", RowBox[{"{", RowBox[{"All", ",", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}]}], "}"}]}], ",", RowBox[{"Axes", "->", " ", RowBox[{"{", RowBox[{"True", ",", "False"}], "}"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"t", ",", RowBox[{"-", "15"}], ",", "15"}], "}"}]}], "]"}]}], "Input", CellChangeTimes->{{3.898178533337009*^9, 3.89817856142127*^9}, { 3.898178611949658*^9, 3.898178676394897*^9}, {3.898191306766424*^9, 3.898191310270533*^9}, 3.8981913602862663`*^9, {3.8981917633827353`*^9, 3.898191808432724*^9}}, CellLabel->"In[44]:=",ExpressionUUID->"03ff5230-00eb-43a0-8c6f-7afc3ca92899"], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`t$$ = 13.093133926391602`, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"sin t\[IAcute]tulo\"", Typeset`specs$$ = {{ Hold[$CellContext`t$$], -15, 15}}, Typeset`size$$ = { 468., {150., 156.4998681001722}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`t$$ = -15}, "ControllerVariables" :> {}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Plot[ $CellContext`fp[$CellContext`x + $CellContext`c $CellContext`t$$], \ {$CellContext`x, -10, 10}, PlotRange -> {All, {0, 1}}, Axes -> {True, False}], "Specifications" :> {{$CellContext`t$$, -15, 15, AppearanceElements -> { "ProgressSlider", "PlayPauseButton", "FasterSlowerButtons", "DirectionButton"}}}, "Options" :> { ControlType -> Animator, AppearanceElements -> None, DefaultBaseStyle -> "Animate", DefaultLabelStyle -> "AnimateLabel", SynchronousUpdating -> True, ShrinkingDelay -> 10.}, "DefaultOptions" :> {}], ImageSizeCache->{827., {176.861328125, 184.138671875}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Animate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{ 3.898178564768065*^9, {3.898178615109125*^9, 3.898178677017771*^9}, { 3.898191344043911*^9, 3.898191361067409*^9}, {3.89819176988326*^9, 3.898191809218013*^9}}, CellLabel->"Out[45]=",ExpressionUUID->"aa4c2849-e6fa-45d4-8b58-010e2cf61fde"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Modo hacia la derecha", "Subsection", CellChangeTimes->{{3.898191404253745*^9, 3.8981914077990227`*^9}},ExpressionUUID->"38fd7ad5-6523-4fd1-9971-\ 38a68ad88be4"], Cell["En t\[EAcute]rminos de una funci\[OAcute]n cualquiera", "Text", CellChangeTimes->{{3.8981914146452713`*^9, 3.8981914209408903`*^9}, 3.898191597762928*^9},ExpressionUUID->"23b0d7be-f17f-4ccc-82c1-\ 463a84f33f03"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"fm", "[", "u_", "]"}], ":=", RowBox[{ RowBox[{"1", "/", "4"}], RowBox[{"Chop", "[", FractionBox["1", RowBox[{"1", "+", RowBox[{ SuperscriptBox["u", "2"], RowBox[{"(", RowBox[{ SuperscriptBox["u", "2"], "-", "1"}], ")"}]}]}]], "]"}]}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"fm", "[", "u", "]"}], ",", RowBox[{"{", RowBox[{"u", ",", RowBox[{"-", "10"}], ",", "10"}], "}"}], ",", RowBox[{"PlotRange", "->", "All"}]}], "]"}]}], "Input", CellChangeTimes->{{3.898178481189189*^9, 3.898178500370598*^9}, { 3.898178919640772*^9, 3.89817892694945*^9}, {3.898179002261174*^9, 3.898179008205229*^9}, {3.8981914243731728`*^9, 3.898191463341125*^9}, { 3.898191509613262*^9, 3.8981915263970737`*^9}, {3.898191556827965*^9, 3.898191571387702*^9}}, CellLabel->"In[19]:=",ExpressionUUID->"f5f4597d-d33a-4dc1-ac68-0770b8ad7943"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJw1m3c4V2/4x22y994jInuUjPsYESF7Jlt2QkZGJSGjjBAq65stQkLlnEhm fKxSZvbKyB7x87uu3++vc72v+37OeZ7zvJ/rft1/PHyOt4xdCPDw8PQI8fD+ 9xk+r//35EQAe0Olb/4v5EB1LpR5e+RIAKsg6nBojDtQNaCd2H2/L4B9rB4r j8o+UOVV9P13a1MAG3l5RU7t04Fqc1wK2eScAKZ1EOZlg3+oSibxgxv7JoBt bNAN8iQcqj4LsL96P1sA+84qxahVfqRahu//H94FAexR4XacCPuJ6kWTUpJM WQHsk/E4xXWpE9Wv//12k5YSwC4/+OpcoHWiOqltKO54TgBj0t/b9PY/UWV+ Il7XwiGAOcaETG99O1GNZF9oi8YTwKR4+l75aOCBpaztMmUnP0b7TqvGhggf iF20Zdhs+bGgAbHlvWIC6L8hbbFsxY+R33u59u8dAbyy5Aj7ZM6PxUQqm1K3 EICC3lqrgyE/1v141NtojABcZTOsSjX4MSrDQTlHekJox5+/ryTKj/FfcBis jyCEhFfRvba7fBirWHhOqj0RMAy3euUn82Fv6XsV8fRIABPLi416woctTUjX bNqQgNe9sP9c4/mwa+JKQdueJPD1rOyo6CM+TJx8kVMwgQTu3sm9WhPMh8W9 jU+R/EYCU/Shol/s+DBbnVESKmNSqNaXWpgV58MenSTrmt0kA7s8CqJ2UT7M KZ8pQDqEDCi353hKhfmw1AvFR1zxZOD64qWFDx8fVrmh4i9SSQbsy+RtO4x8 WO4u/zbRHhlExs6+Jj3ixdr1a5JXEs6AcUuW07lOXmxpSM77Xws5CA7OjLd9 5cXSbPDEm36Sw86MhLVrCy9mxCpAn7ZGDpkkLYYFH3mxtUjShkccFDCps6zC VcmLWXKR3b0TQAHeOCVWume8mCBzmlGRKCXEjo1279nyYnw/m7n5SqjAevXs lQxrXgxGGIXGP1PB+RPfFnkLXoxmO5Xo3S8q6OUlbvQz5MWmKOT7qiipgdlZ vGhFnRf7/vvypZnb1FCwFP5gUpgXex5ZXWehRgOhaypeSdM8mGpFTHrNXVp4 4XBhARnjwYr8Aj0nYmjh44CU88Z3Hqwv+o0vaxotHL8XuG7cyYM5uz+/Wl1J C5H3z+gxvuXB3iw+JY6ZpYU4uiGx5xE8mBar/nyzCR1kyXot57DxYHVtdDJH l+jhw2uXm4YMPNjVz/nZqzr0MMpiN41HxYOdOK/YrVvSA/eR0YgDHg+mYFWk yR9ED/lfLnQJzHNjk+G1z9Vq6aHEjLCsqJYbOya1yrgnzQD1QVkelde4sabG FZPYi4zA73z79fAVbmxFJzz1QJcREg2vTOKrc2PB02aLD2wZwfHcjpmpHDeG /aDQw0UyAsWIkdo+Kzc2mH1G6FYPI9xQPcOqMcWFndP9F9HrzgSExMGt3wO4 MEHF+PXdt8zgs2GAh+fDhUWS0f6+0sYMw2NCSuducmFcujSL1aPMUF43UBVq xYVR4n596ydlAXM3yRe8qlwYDZXE6GU7FijumvPzIOXC/E007dgYWMEgxYz3 OJMTU9/7U/joKRvclaHR0U7lxP5m3DHoLWKDwv7220kJnBh7P+e0PMYGx/TK Lfz3OLFYwbEQ6w02qEjld9V25sT+lB/sEJuxA2XaWlmSBCcmNv9ykYKfAzoz Hl8QaOHAmBzslmgHOWHngoa910cO7L2pPaPBOifwDx/FvnvHgdXd0l2uoOSC u6y+v7SLObCbvELe3y9zwblM83CvRA5suyzmNq6BC2KzBFreWXBgQpGD4hnF 3KD98pPBlRV2rOYsoUWYES+sJ44eEc2xY1HB2kHj9ryQFXFY+nmCHftGXt1q 7MsLK3aKpEoD7FhZZrKp31NeSOF/h4o3smN4TBxsST28MF5ULsUQy461yBB9 sTXkg8DqbPpxAXbsuPalPakTP/AWNGJZXOxYa8pxz0wAP3Sk/vSxYDnV3hN4 w9H8wHmHpQtHzo7dbj+UwCvjh+YLqQ9bNtiwqoVSsNniB+pPcVvFKBsm/O6r plW8ABS2hXz3t2HDRor5n7t3CUKmTKBGiSkb9p+EEhHxlCAkvPSrGtdnw9xs 8TXQPUHw8/eM00HYsHfrJoTJZ4VAhcdWlUeIDSsmrJSsfCgEg4FIYecqK0Yz 8ymaSPMsEJwlDeSLZMUs4w5CsseFYTuJcNo8lBV748nGErovDAuHJ9cSAlix p3i3i+4zikBP3965XVdW7Gq883/HuiKQGb401n2VFSPjXVH51iACUkPfLgcz sWJJUa5s66/OwY2oZ0y9xSzYVrdDufpjMeiBHdLgfBastbKpX6NIDODQ4oD3 BQumyBNz5N0qBrx+HBN+T0/zxX67qRKchym7/GLmQBbsSwSb8I/w8+CqVKV0 Q4MF+27LRno2XBx8/nY5/BljxrQS7m1pvpKE8Qpx0/QfzJgrXytu87MkXHN/ qgV9zNg5vXXZoVlJkJo0Fkv+woyl2gkFsLJIwd9vP7fkypixFANhXKm9FASW zMeEBTNj5H87i/v2pCDCnvANBQMzthRVqhekKgNVvdpPBimZsTExc8zFRAam VBN8XpIwYyzua+Z+bjKgxcUkKXnAhPX6OTTNpcgA9a+zVca/mTCVv2va6osy 8MpEtzqzkgljEJxQ3sqWBVQruU5YjwnjaCKwGmGXh7/vhtLXLzNhLE1yREey 8iAoxB7UAEzY8eE9ZXV9eYglLLhwVZYJK4DrTsh9eTDEaut92JmweulQeooF eZhUHG58t8CIYee9eVhRBcAT50E1HjFi4WJhUfyJFyGMWe3GowhG7LXP51z2 Nxdh98Tx39cgRkxR6IeJbu9FWO0vVNL1YMQ2v+lpGNMrwkiwRL3hNUbsVfKn GdpsRaj7ovLWlo0RY6ESev/2/SXwvn69IKiCAXMR6fQj5FOBhcsR6g2FDNhH /SDtCR0VcJbM/X2Qw4C1G84zE/qrgDXBDE9ECgNmybhELvRVBa4Ue76ICmLA 5rjibadvqYLg1t20ZLXT/DrNkB99AL/iM2PKhuixmHTLb9IeajDQyltu30uP UV8SeU0RqQbdJ0U4pg567Id+yiPqLDVo8q9ju/+RHvuN7/0uqVMN8m0GykwL 6LGnASEmSeLq4CFGhfvnS4+99zvv0HWoDoed91kNKemxeNNxhh8fNGGLiEyF mIQes89RHYn5qQmrqk8dGk/osNqeNWqfXU2YrH5ZKrhJh93vOZMwKnsZvmQ1 Ku//pMNstyoHDCovQ4LHln1+ER0GuEaNrSot4CR3K9lSp8OG5NN5Z6auwI2m 7gR+ZTqM6qUAtwOFDuT5SfsaytNhkY1Fi1JyOnB25EChXJgOayNZ5+qO1gHJ 8sQvTpR0mE/21CyplC6oG9RM9A/RYjl1G5qmqVchioC1Ba+XFpv6Wibk9Pkq tNWFFUq002K/o7aa+teugh6PlndcIy0Wr8Xx94e+HpivDx+o5dBi1fTOo2nU +uCecsz01o0WU5E6LG0tMIByLaf9cQdaTLYryNtq2ABWD9pGKW1oMTVPqv9u UF0DP6fkAjd9WixwOpi6OfgahMkJSvPK0GIBuNuEMaKGwF2R+px7lwaTimvn cKM3Ak95UeIRThrs9c2/NgiTCfgRNxQF0tBg232v49QvmMDdIW1degIarNws cyfJygTi7rg81ZmnxpTJP31myjGB0ne5bPVvqTGyugDz7+KmsCjPIpGmRY0p vm1a3rY2g3XiQpyUIjUWvXv3Dn+kGewNyfl3i1FjeJP8biUlZkAWaFxPSEeN iXXk3u3cNwORukR1vxEqTHOtoezOK3O4qUBkcc2XCjMy9pG4cWABPiSp+0uO VNh8mcKbN8KWEPid70W0GRWGqxpc9zCzhOhA+P3pEhVm/aQhQ6zaEgrr7nqe J6bCVJ5paqz7WsGswsa9M1mUGF0oPl45kQ04XRgvbmmhwBhEvVuon94A1+IL 5lrvKbBowrc1tu03wIMtmbCjlALjLAqclyWwA99DjRs9yRRY7lqeQFiQHYSh JQw/7SiwjDbzEhM5e3imfSdi9ZAck6+Tfekh6wAZ9T1it9fIMXP5TfVyUwfI Oifyc3OKHONREx5WDXSAXIoR2f0OckxkcTLOutEBKnqRRcLn5JiYytJotJYj fLWgNGWTI8dMn81+fHbLCTraXfBfCJNjuqbl3NfTnaBbEX3DzUGOJby0n4/6 5AT9HH5nBAnIsTieYIMTSmeYmPjRJIE7g23MxjXXVznD3s2Cc5peZ7Dwf09Y LChdQTT40onPf2RYyecWUxJud8DGDESn08kwypFURm5LdzDXcDKzeEyGlfeV E0+kuEMkdUIZ+JBhn1CVXhdyD/j535gF7UUyTFGJ170T3xNi++5Xve0ixZyT d8fOM3oD94W0EaEmUkxhSz2JyNobal+UkGRVkWLo+XcRlbneMHmz/3pkGin2 sW3ybLyUD1w4FjhjYkeKfYgZ5n1rfQvmRNsctv6SYB9uURfg/vhCWNJIgtss CSbOQbjAxnob6HfW3o/+IMHWLOtEF9Rvg+pnVurWjyQYd2dvCkfWbUiz8GhM iybBqjT01Fmu+YFmFBXDBXYS7Ebuf+NXh/zh1yKfahklCVZkI/tuliwAfK8p uPOcEGMFsX/iRFQCIJvdDiWdIcZwZ9+V1hQFwN+qKs/hCmIsMiOiWOzRHcgb M/kSokaMLSj+N3/eOQhkZmQOBuWIsX7/uHz3nCD4skQnJSVCjNFcYWN1GgmC ud3e7DlqYsw8Ni8xwywYROn1/E1GibDQUboVS5MQqNbS5BcPIsKEauxbjwJD QUNfwDLWgwhL+Dj6+Q4aCoMmBE+mbYmwucTnUhNkYbBjj+1nahJhPLkxvimv wkApVLmPhJ4I00mYLZsfCocvlXL3J8sJsUuL++YHSvfBrI6hTimXEPtH+tah 0u0+zH38u5yeSohpPTJlPkm7D2SdVRb6dwkxmeX6pOC/90F/5rxkozYhRtuw ScBV8wC+swqNp04RYIJneeZyzR7CTR4ixrUhAuxMaFGtTuJD2BOa1tHtIMCS hiTjP7Q+BHbZvHd4VQRYwaW+LVLFKLihz5XoHU6AdZrGEhadewTzD5iUtVkJ sPrmZU0zhRggD69cSyUnwOArU6ZMZAxIBOsUTB7hY/dKv0Vr9cZAoE84+d3f +FjGxgciUe9YILGZHS4vxcfyPo59T6x/DKLm9xL2X+Bjqh/2XL9Rx4GBERui 9RQfcyN37Ap0jYM0bf2iCX98rCfqwh0B9ngQlHt3h14FH2uptmesTU2AK5LX ztlJ4mNSirUEdDsJ4CW6OFrGh48pZj+eYLROhFpeLs3LJPhY9ZSykazwE9Cg ekQf3IuH2SxbxLd8fwqOc6aVYw54GMhHjAx0JEP071VHUVM87E2cBb4PeQqU jsYyB2nhYZI3OUnP66XA3/6P4bRieFh3nDPv+YEUILin8zx64QRV7bJ+t7aW Crp3wk94vp2g/b/KGG0uPYNkz7euDW9PUILtt8w80c+A15JNfuXuCfqGLN+3 hy8NQHqxz4jqBKVIS/LJ90iHaGEuxeWNYzSV4UdlCZYOPVxGuVHfj9FhIhkp HdYMuEHe4PM+5xh1EHrsF9CdAWHTsRRcMsfoxhOpd/d1MqExTeTygvk/1HOS T8g65wWQ2cw74Sv/Q+nnDn+60L0Ec97CSHa+fygHan791aOX8LdUANNbPkIn yTX6vwa8gnMYt9Lbe0fovqdb4psLuRD4aMyq0/kILYh8fYf9bi580X0RPK1z hCbPP6zu+5QL9kNsdUyMp+Ofe74GnTx4vsQofbf4ELURoLq/4ZsPc5UD11IT T/Uto4MnTfkgdyfFp9zvEFUxWrV+T1UAvSc05ePKh+jcZxnB7qoCIGGiENbo O0B7Vg39yChewx3A56I82EcjyruvprIWQzMRpiQ0sY8WY5y6fg+LgbYzwlr1 yz5qaat4PXK9GMpNjzJ8n+yjeEK15jf7SmDGfZd+iH8f9fkz9bqisgxkJOuk V0n30b09z6Qw8XK4vxVgSPpnD93Dz5KcqygHjnt/ExXf76HXMi/StdRVgPGz P2Svru6hzFrSbzSWKiHXqlz4vdQeSuMv6KQBVbDK7amFY9pDf28rrq7GVUFc ycJDgsldtPQ6xQMi4bfwuWn62DVgF71L9wKl968GqcWfW5Ivd1DjBC83Xcd3 ELAufo4lagfN/bMGDM3voH73ge2xxw5Kzj+qWiZQB2okol+7L+6ghlk5BS4r dWAscDfDfXAbjdT/s971rB7SRXu6DD9so+NLIztDhA0wIs2PdzF/Gx1Ns7We D2gAZ6TTjcR3G20gdTC+ZNsId2zZLxVQbKMHR48j9bU/QqOzj0/c3y2UM3wY g7aPcOzZnH/75xZ6JllF2E3nE0Tf9aBAirZQAWLiQm/TJnie0Tg6qr6FErhk 1v5Sx6Cxz/oe891NNNctkD6wrBmOh9/U/LPfRFfJnsrU/WsG9UmChRntTdSa jWOZxagFulZLDWuYNlGJsHg1+cMWGKU45DN8+xd9U/Iq/Nb1Vji5nP3l8cIG en998lunfjtoNo6c+We+jnKFL37ay+2BN6WvFduU1lErrzFhS5peYM2+5Z7M u47uCuaIqob3wvddkpSrg2uoW91zgzQxHAiFmtO+PFhFD56khQng9cGezdIt 6S+rqFrJfA9Otg+6lSN6WxNX0bnR4bOdrn0QcPz6ySrvKjp4oD7q3NkHzQ+2 KRHtP6ieVg1zXnQ/pDs+9hqk/YOS/shiYarpB3cNrm63XyuohUxMj9N4P9AS X45P9l5B+2nlfe2lB2BmdnhJ6MIKOkWkY7trOQD1X710G/FWUI9JPU6lewNg F/vszHTqMspzlSQqv20AZNxF3INsl9HVuLX22sUBINH92E4hvIy6cpmIGJEP whuKmRi5xiX0vSmrDbX2IESuBM23P1xC3XrNnQWdBsHsG4W2rf4S6sn5++BN +CAcPZEliZ5cRP/UcM4wvRkE3K02F/bSRVSPSDZotWUQCgxtWt/4L6LuZX+Y 5IYHIVB6TVBDZRF99k2DZn5pEHTpH0b9IFlEhYyexJMdDQL3JvOMJ24BPQy/ F5NFMQR/B0o18LIW0BQ/wZ4ctiH4Wqta8MxpAZ3xJvjLcXYIMtP6Cc6JL6C+ QU6XGaSHwCvQ1fHTzjx69/x8X9ylIUAsDj4bYfNohof3tVj1IWC8+IRv7vE8 aiF7m51eZwgWWPkf3DWZRxXDl85JGgzBx/13k9Rc8+jAu29E80ZD8PSXDlIw N4fOP4T3aqZD4PhhLOdC1Rx6eTqlTdtsCBRe3D7pCplDzxELixGcavJwYjt7 jTn0Q5ii0l2TIRizzWzaopxD+SWxkgbDIahSFed+/H0WVb5iG9ipNwRRPJ/D uXJn0fs8EdN12kNgiWc29tZ9FuWKr/V8rDYE538vKGvJzqJvci3f652uB685 7MWvoxnUwOpeCoXMEAzk0x75fJ1BRfCNpnEiQ1D48D8bwqQZtPJbe24R9xDc db74IcNqBmW/NduRxTAE/Gft72Ir0yjJfpQRweEg7JBs/TStm0Y14nwSE/4M Qsd8jOLivWm0RvvZ7xsTg+BbUrlHxzCNiumeu0fyeRCkqH0eqk9OoXxCP7xI qgdhw+88tX/FFPo0xf/4cf4g+CmXCAxqT6HmIuGlypGDcKc33yA97DcqZLOk KKYyCJtLYjry3ROoS1XdK/eiAQioLb6R7jqBXvE8OGJ+NgA74UIBu3gT6DZP 0Frt/QHYo+XJaZAfRxOfSfR9txqAIwX6bZWcUZTdTPu6POWpfx/u5Wr5/UR5 LW4K/wrohxi9O3VFlD/R9YUrzYmO/UDG/LeLrGgYPex8Qelj2A/kJcs7nSM/ 0Fp1XaWm8/1A0zuud+3yd1QZJCeG5/sg6bmNY9XEEDrCPtMlcdrQ0jsOB9Hd HUKZjSzdP3/tA8btvvyBN4OoCv6Pt/mFfcDK0bpnwTqACg5y3rzr3geZM2rU DdX9qO9Zr9AR6z5gf9MkwK7fjy7F4ZM/1OsDLrV6g9EHfajeRRumEqk+0Ogx 1/n8vRdVddyldz3CgZaDYcBDil7Ut3g7j3YdB1e2dHIuIz2ol9r8RdIZHOix q2x3lHSjLF+bbX9148DcVSCvP6wDNTWLSRTIx0Hcbf/YlHftaIaib7vHcxx8 Cmu5Zbzahj69zjDw7wkOBFOdVPvtvqLjx+TiZOE4sHxVI5TyvBX1+M36614A DuJLCKmM+76gHTZMDJpeOPiLFoz0qbegd9v/VFdfx8HZrs3m5NBm9Nc3EzNb MxxYfdcoNar9jFLkWR+aGuDg1FvBfUIYKqdJWyimhoOFtZsY/6cmVLvn5Bu5 Eg6ukZA9zZf4hOJ4kpAL8jjglr1yPp+uET1opZcLFsXBI52FA76H9aiy+GJb ghAOVuxiO/K26lD3nbjuVV4cmASKPOdzfYd2XpzTfsWJg8aEdte8HzVog3OP ajYrDvgK3OT5dKpRv5v872YZcRDbQEaU11iFavatVYTT4WA8x+i1muUbNJsm VcyJGgcV3cnqakplKFvXoGQ6BQ5C9/smEO5iNCWY6CPzGRzonKUPR/Bfo8mi tH0zJDhgMTFmR2by0KjKzFt4xDjoOhG8de/JSzSP9Mxzd0IcuFm9LokwzUAP lV7o8hLggKhGaCacPRmVzAmIEcTHAcKmp3KAPULDI/IMAvFwsP4803kj0w+l 1RHJZTrVYQTPWrUuWkGeNHkYwamWyHJqY1S4B4n62lPKp3qc7e0qBU0CbMpM 9H851Saywx+j1Z6BFHOvftbp++t+WkTGhGZBqwuVyafT71NhywJfrHMBmYqc EifCAaSWRX8JKoBMCfyj5dP533b1XPzyrBC2BxRydklxkK8optf6tgQSq3O7 DMlxMEi5/Ka1pxxYh4Pv71LigGSylO7rciV8qc7/uEyDgxdW8pecot6CX/qz CHEGHMhrpHlO09dAcazql4/MOOg5v/3CKa8WrmqtxmWy4wAP792JU9N7+L72 JkFJAAeZi4zSM3oNsMNL2YQnggOZgQBH55FGmDb6cJ1BHAfOhXKtznufwNj0 D8Z7EQf/nj7bmYlGoZrk120O1dP/r3yQWh2Hgc5/0a5Omqf5Z61bZdiagaS/ b+SXEQ6kOMjH/SabIfZzugK51el4msad6qIWyKaYi422x0H6PpuIrEIrRNnf L3LxxUFb9884WZN2mEFr8RpTT/cz+FebjVgHmFPvj/K+wgGZ4AhRFGEnHByt tk8W40A3dDRisKYL+kSFIjxQHHSfm/C7w9gLKXZe+Fmn59draKLy5Uov7Onr yDb9w0E04rvj6IgD02aqpgsUfSC84isbf6kP9Nyf0ooI94Gbhl/FyFI/uIU4 eMw59sHFzL9da+YDEB0sEfnKrw/I1vyWCFsGwF+D+PF/kX1QkuUvfD57EPaa EgTSCvpgaSMgL+zqd/ilN8ExvtAHXrlBaVzlP+F2AoOtxb1+UN7ZrZFm/QVj K++6GVL7gVIvuP9y1C+Isnn7/aCwHyp2g2l8ro/Aheuanpd6+2HV4O7jJsox aBlE5Gj5TvkioqmpUmESXidePfrdOgC5JcffGrwmgdSCtlrk1wDEDqqOteRP QvfzuSWt1QGwFEUPf1D/BvO1uwErTIOwP4RexJv/DWupkVInDoMwhYd3hZxr CohivEWFAwahUwyxYDSZgtw1HcbZR4OQ9QC7I4JOgTPvjav/ik55pBzvkcz2 FHDnfLTUrB8Ejx/IM2WxaRh9MDp60DYIl8Q/VxtmTIOmfOj7xNlBkB/8nt7U MQ33bFtcbv09rV+hK3fPH03DL9RrpPJ4EMT4CeyyJGZAs5c7SIt8CM52sGiQ OczAR2K7WFGmIeDzFRcOTJ0BfxczUxOeIeBk0aCYaZ0BWsFp9vrTesvaZLlm tDcD6WTknIan/MHg4jOAis6CkFH+S3rFIaCmjHovbjsLNy5e39iBUz6oyczO fjoLjz3PhG5dHgJi68p7Z5pn4cvWufcEV0/rO36rU9DWLORdea/Gdm0IDot+ ac+enYM714THJI2HYMdgXczEag7a3HNDVE95ZGObmPZz/BzIPTdXVjnlj5UX HFsSTXOQwnEmRvBUz2tID79YnwNK5oyTlVMemVrS+kguMA9vNnMznp7yzXjy 9dxgs3kwLhd7RnzKPz8v+kXNxcxDsd6ltCunfDQ4EeNm2jgPzv8ZvTTWGAJc 9Eu95pV5eB3xk5VbeQi6xGukpHgW4IWnwexr2VM+G2xnfGW0ALa/FSxnzw3B 59DxPYqoBRi17Lk8fMojH/m3RkPqFuAJlRVpKP0QvO8483l+YQGKxBgedBIN QbUvz2szjkXwiHoj/GV7ECpY5B+36C/CuJExsevpfhY36XpL318EjfN0TW8G BiGHMlCeanYRlo083GXKT/1SE88WyrIELDQxrd7pg5BunfdvQWcJbB5pDRre G4SE4u7WL2+WwOB2whGT/iDEXJsqkfm9BB3GWm//SZ/6a2c3MZdhGZRNqvWf n/o1WFPAPCx4GZrCJOP3hk/P3fLFS0uly/B63X+6vX4AfFIMuC3HliFJwi/O IWMAXCZD5mTVVyDklvonUqMBMA7DBS5T/AGmwKjMM+/7QV9gztpK9Q+0RF7Z 2U/shyudh6ptvn/A+XC1dtepH1RZhUkLhv5AH0fYymWqfhCrDc+wzlkF0kFF /JvmfUAQyDTqzLYOjrLh6zxZvWBtX9pfL7cO2R4mHTNivVCtCx2UhusQJHr9 vfCnHnDkca+rjV4H018U85nj36C5/WMS0dY6HKlXRwrzdsNDDufL//VsQKiN y/Z4dTuMEu8r7S1uAEPPHnLpSjvIrSfK6BH/hcOlbyEh420w8+U9z5bSX3Cy WRAboWoDTR+KA42Sv6C27f82JKQViD5Xv5l+uAlc1bVtr+Ob4XqZ9usLOZuQ MDYL47LNUJs2mh3fuAknQsXB/mOfwdmD5LHsxibgxA30G+Q+QyuDtdPDG1vQ +o/BN2AeBe7jVasfIVvA8WiPr0MfhcCFh4ZiaVsg9q771kBdE5z9VKEy0LUF RcJUx7tJp/2kKz6rgOI2rFQ7/1py/gDjhunUQabboDxabmQz2QgKSmLEXbe2 IT67QMz4RiPM0Zj99SvchlfNj+prHBpAq6G4u5lhB9JXe0euP3oPpJSGDxxX d8DqKHLB72ItWApbYwpndsGc9kRs72cNlKo7n5AL7gI3kVCpY3gNGIQEh9dY 7cKmeSLLl45qSJ/LDSFq3QX2JzoUrUFvYQG/rH544jRf6qzG/dP+/RLXu93y g10wcZefGBmugnGTjjtmUnuQn6frboJUwdnPG7cLs/fAZf+capv6GwgePay6 W7cHMWtVJpGNFdC5S7xu0LcH8wSFDnjyFeAjwe6zS7IPAyr7I+Qy5VCXre5x xW8f9v7lsn/TLYXLgamOS1cOIOE/bUr/5UJIT36Z1+R0APduj9URPC6EhfKi yZSIA7iJJ+0ZI1IICdMfbijVHkBFdlCHpvdrGDScsU7gOYQsbXrMm/I/OOu1 mml/6RDMrmiGRdYXQHDM3rCc2SGE/OZ5reRaAJxNlBZjcYfQEaj9J/BrPjiL yZtI7ByCzK3Ms9yZeVCnBSkEdEeAd33vPwejPCBz1On7LnYEf9US14gp8qD8 ue21ew5H8JsrPdk4Mhe2iKOv4rqPoOKHBIcjXg48nPyu4VfwD8z1/vnfcM2G 8Yar3sEf/8HXra6BLMJsuJSKpUcM/YNAq5Oxx/lZsH65dDGO9BiOrkR02M5m wo2y8KcFnscgGne0tRv+HBqj/taXRB0Dl3+gzrTwc2C6cXOq8uUxVNvdjFEb yIBuWiP5j73H8KRjjPCSRAZcChQcGZQ9AbxbMwbWW2mQfi2TaETvBNZ61rk5 StJgQ4Ra4rfLCegSjcuy2aVB8cju/T8ZJ2ARLXRU2/MMmNW6zpIcnYCYSmFr +4dU2CdWbDhdGGJLTrv0tj0ZCv02v73ywUN2GAq7qp4kg+lExRRfKB6yGPm4 ONMsGarq+SlFnuEhkVL3OVnnksDVk9JO7iseEh+aYGJKlwSMw1/93/fjIQQW k9m2H59Cs+aD2EsTeEjPYwWuQounwMW98xbZw0MsOr3zBlOewCBugkhfFB9R 0P6xPM2eCJEqWWw4BXxk70GAmy+WAFKlphImGvgIrz7+lNXNBIh/2GFhdR0f cfX8wCDWEA/qCjWlLk/wERzTf9q8XnFQlR1tGPEXH2HTz62JIo+FLoboeRo8 AkQ4t+InfIqBufhHEXlUBMjl1PscUrdjgDMsqvyLCAHyZ/+CcOZoNMRejySj sCNA5hU1/bewR1Aw+CDnhRcB8jvzY3FT2CNo0nugIHGXALFbj3ZKVXwEW8r3 nY3SCJAPqz/O69RFgT1XBJbRRYBMGN9bcP7wEELTwi3O/SRAIDjPFf/eQ0in Cl9tnCNA+BwlfaI0HkL3v1DOcXxChMK6HSfeGwkXx0OCBS8SIrx8h0G56w+A NueO1Nv/CBGOlpXyn5b3QYzlTpt6NSGSOfRchufcfdB6GnBjECVESH8p5Att 3YOwe/4Ju78IkTUpId4NpXuwYHd7QYWOCKmYd0wa+xUOGK93bmc4EcJ0ZsPF 1ygURp57XbgeT4S0hT+sliMOhR1ar54/z4mQDIIcOsLGu3Ae3/OItpYIWWNv aS4/exee/3aztFgiQtb55RNQihC4le9MO2NOjGRsdYZE4AfBk5DMF0+ciJFJ LDeSuT0Q3hj2iCj6EiO1bvuTDk8DYfX4gtqTx8RIduUncTLeQPCyofC7+JEY OS8s6KKncwc8GKsHEvhIEPbEtpLcBn+IW56zuyBBgowYc67pxvlDaTPHyu9L JIgul1L4Qxt/WPR9RHTBlAQhcboUknHiB27fLOV/R5MgtvUzU4wGfuAafZIu v0KCnI1Sj+0huA3RtnICk3skSEuohm7EiC8UyrlXxhGTIvJ972Zzan1hdqq/ bYKbFFFLGLsv4+YLzlC499iIFJnZjKD+UXwLHPf0rMfrSJHL9T9eTd/zhsje B3OxLaSIeGaKhpCqN+QX1vnJ4k7jhGgi9z8v+G3KGx+7SIooXbQLkwj3Avu3 mx9kOMmQc1HGFZGPPOGGRxZXzAMyRPzO9+u079zh8OeZno1EMsTvenr8YIQ7 PNcJibieRYbcgLeiIjru0CdiOSFdQ4ZclBzLC5xwA815przRGTLkMEtD4T69 G5xzThaUuXIGeXDscWE4yRW+DuANvTA9gyR1ltzrcnQFRw3fR6QOZxDfwR9Z cvKu8IL/2txoyBmk/6ZEoeOIC1D/piyOKTuDOFyMrCAVd4Et21ixMWpyxIB2 attoxgmSvu2OaHOQI6/8z4gTfnICcZWbCdXC5IiOgmEHU7oTuHJq/YlByJFi HEWFtY4T/PxFWCnjR47Edy9e16x1hCaLezKxQ+SIetkV84osB3hsFKgo+4IC iZPkyfbUsoOUblGv8hIKZCXohqs9qR280J54JfSeAvHvt4jaar8BVSpXiFj7 KRALL2nJTf0bMHyOvfeIlBKJ8yHdYLazBRGCJuev/pRIQcUE+L2wAZlwvwx4 QIk0x+5px7jagPLe2c76J5QI1xD/NV5pGzBcfSpZVkKJ/Pi3rz/cZg1BvxwO nk5QIo0EtoMKh1bwtZo4yeoqFUKtv60ZEGx5yg2Nzf2WVEi6yzwet64l/Cr2 2b7qSoUMOSd9kOe0hNVXP6xVH1AhC/GeOqWfLYA5vkRI4D0Vsvgs9FY0nQW4 OOl/WOGnRqZU9DHKL2ZAxJg2d++AGumWYE5m9TYB+tUIanpSGkRObi6nQc8E +NrdFP5joEGoFxP0X503AdUw5ej28zTI15e/JyT/GEPIzLQQnR0NElL0s9Xh tjGs1sq45LfQIKmab7vvPDKCf084E+VwNEjVT10gdjcCSneSd19HaZD9b0dP evSM4BzXL6LlbRqk+vJOEiWTEVQ3I/1sjLRIF30jsXCxIayILtx21KJFDh9s 5bVUXYMtlrFHZXq0yOSvh4y5EdfgkKg/c8uYFuG+2bw1oXcNyCc+fI62o0U0 psP1opcMQDj1KV1ZMC2iw71LbipqAI6HCm83S2kRc8YkW+kPevCj69F6FA0d MqTHYW/BqQvPVF9eNmOmQ3a617kbNnTA+G1tlhAXHSLL+4nUr00HetKnNb+K 0iGFvYZ4c/468NVBLZNUiw5R89t9i+KuQN3ukVpcGB2Cf8OpLi5TGwI8GDOs H9IhI/nZJSf+2iAzJrYiGkeHvNV/cRs10IY3zdbpXRl0iD1TcS0nsTYUJtYv UdbQIfqOsjOX7mhBukBA6tNFOsTVPm7Vz/EymKbHL9it0yHcTLxwWe0y0J8p UJHapUOkmTKoLHkvw5PVvnkcET1ClrfVqTyhCdENksr0vPSIZNZc5V87TQi8 tjzzzJwemU4ScX/mpQFmoY4KWS30iML2beCsVIP0l4wkux30iJnF99KqdDX4 jn4dMsHRI0nurGa3ItTAnEjsDtUYPaL0PpvUw0ANLBM3a+7v0CP4kB12dR0B 65wo6ZvnGBDylnrCQCUE7FsKz8s9ZUB+mmRKZ/xSgdxZy6OkNAYkPHPmEluN Cvwmpej+k82AHC+jNaPxKuCod8uzqJgBma7DXxFSVQGnoQul7M0MyOAj83s1 r5XBdb5dGH+bATFMFpC8dl8JvCiW+XusGZEoKvZoe3tFWA5pJKJwYEQOCirC OxFF8Fh4PKd9kxGZ+WBU7cKnCDdbRUo/+zMiSaTxjhLTF8Hxnqv0uwRG5ElN 096x20Ww2vwNL5oYkRCM/4ph+AXQGhm+7sHPhMRn+Gj5f5WHVp1i1SIRJsTy T5Gjfbk8aNYH8c5IMCEf5sIzAlLkQS2NecZWiQlxScWk6ezkQfmaqaeRKRNS SUHxnOFADmRaekMuRjMhrDnLdwkuyAFP2dd0kiUmhAhfqaqnUwZMc+obOteZ kK8f5lX1amQgLrV09MkuE6JkOpezmi0DW6FP+FmImRG1GZUvud4y0Kln/kaY lxnxfsoiXEMvA4Grs61XzJmR4QCFD+ZO0vBNmng7rpkZeboZErvAKQUEZ3dZ rnUwI92fuMajzkjBRfbFSww4ZuSVUHZf2Iok5BN8u589xow4PM96RpsrCcED zyjL95iRka0evukzkiB4R1DwmwQL8oAx6+rovDiE1muY0GSzIBIdX0hjO8VA 5jpu3S6PBZmyir1/p1wMlk6uP6kqYkGYX3C+i38iBtbagR1GtSzIOP4ZHWkT Mbj0vRiefWNBioYjD6zGRWFvk+o8Gx4r8oIogXTp8BwESg4TCbiwIh3WY6n2 xiIgMeCc7+/JijgmstCuXhSBucAN+HKbFVGIj5p4wSMCZk3koS4RrAiL4ctC 2z/CIKevslGUwYoUDapIu8YJw6ZH/tj5TlbEjvDK5ZudZ8G30KtOQZINMRdP 3BuxF4LxXo40agU2xIjershVRwj09zv955TZEBqCpAQ6GSEQ1Tsnna7LhnS3 LQu1EQrBzMZs2bYLGzJ9/+tYWbEgWKjY5dW+YEPEy/rXJPYEQHXQKEGGnB2p 9VhFusr5ofwfnic5HTvy/eZz+n/P+YFDuEpnioUdOWtTdV7nET/shVCTpgix I6k8MymSN/ihmqfrwQbCjqg727yWouMHIU/NoKogdkSJtqBjMpQPKAkuOErM siN6pLvbq4680BBEaDK3zI7oFHuHexnzguufXo1Xf9mRgfGdwWM1XsCG3YSo 8TgQNRHPQAc+XvCvzFr4w86BfEuUUVZo5oFf1499Kgw5kCKZSub4dm4oft8a ev4jB0L9dD7IZoMTzMRTvGaaOZCxSM+brEOcQFBww/ZFBweyScoxvlvPCdef 7KpS/uBAau5UpHM94AQal3MEKxsciO7wVfSYnhMC6RNjy4Q5kUTuTIs/yhxw 2ds0TTSVE2mXeWx/oZgNAlI+4N3K5ET+FldoxyWzwX/v+b1qcjiR9+Obajt3 2YCAYENduZwTySudXWI1YAMsPXFdv5UT6b2UEfhomxUuYV+v3t7lRM7GPbaZ uMIKEgyKBPU2XMhPNykPFI8FbC/meh85cCG4id8LuyvMkGBL+hNx40JEBdLe XP7JDMtFQ5UdAVyIa6ZCHm81MxQr+9mOJHIhXZfGxfqcmUHAtaz+GOVClEba XxH3MAFrA9ety4LciNkJeo68khGOnYo46MS4kSnPORfNF4wwQy3dPirNjSxE cP1NfcwIVc6afAHAjVQK1UT7OTOCNq3nQL41N2J+WzVClIMRAm/WX8BL5kZI SkRFvBMYYIjJBO/DP26kmutQLTKcHhqx0fJoIh5kPykkVtqbHnI9Xa2MKXiQ c8TfcX+v04PX55DqRVYexP3LMGmZMj0Qeec6s8rxIK8zf4auHdGB3Jc/7Xc8 eBCFRGbL2vt0kOIXmyz1gwfhDGvCpT6jhYPu8vrYMR5E16QY0YmhBUfhvonJ aR6kk8eSiPIuLciOskkkr/MgesQbWg12tLCUbza7R8SLiOJr/KsSo4UEyvkH Vty8iJN6kRRNAg30TJz5wG7Ei4R6uFn3k1KDcfQ18Zd1p/GgmtgddQootFrX aWg4jU8EKCZLUMD++WTXoY+8iAM1JR6wU0DuQH8OVQsv0m9JHzKwQQ5/eM3p I3p5kc83D9rH8sgh9sP13RsLvEjPN543LsTk0LTu/pmXnQ8pzCrzqPtJBqI2 UWb/hfMh2hSR4VdrSMDqdh090QM+ZIke4a7JI4HYmIVepyg+ZMVM+ZtYEgnM 1ujpCsTzIbrehSSG3iSQS8kE+c/5kOkArmYHERJganotklvDh5j9q4vNzCMG PL62w+xFPqQ6YW51OIcIvs+dyU8140eoA23O/mwjgK+mj180WPIjI9Nc6zON BFDXTJYxYcOPhJFYzR1WEED6K9IEMUd+hJXl5NzVZwRgZk4c2OLDj3gQhn/z diCAwVY83c0YfkS4tKqi4R8+9P+3u2HcyI8woz3dPKr40OM4q0bPI4Co/KXa Gnl/ovqbqGgvjV8AyS5JbA3IPVHdKnSrZDsrgDg/DpEQeHyiyra8zMknLoB4 FtLcxKxPVJ39/+5KKgkg9ewaY/vHx6oHD08q9C0EENVZ8WTTq8eqZ1+zsT9+ KoB8m3pfSrl5pKqoPYKjTBVATJium54fP1LVW3wRk5QugNCQ/MDd6DhSvS3O u53xUgApufxn/TDnSPXju7O4wjIBRBEvJJPR4EjV+Kts9Jc2AWT/9y2VNxWH qi5u28pXugQQCzIqdCPzUDWY/P1mV48A0pmq+1Mr+lD1pcElh4EhASR00jNB yO5QdeE7ojw1LYAskbdPV9Mdqh4EE2y6zAsg/MXqvA+OD1SpOL6ULC4JILFD Gg72yweqMnbaLBsbAsje+L1io9YD1cv4Z3oCtgWQ8wOtcU7VB6qWBZ1Re3sC iPaV4nPROQeqHpcTlMKOBBDM1Nm/IeFA9f/uKyH/f1/pfwCKLNPP "]]}, Annotation[#, "Charting`Private`Tag$117211#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.898191457005766*^9, 3.898191463786951*^9}, { 3.898191510737247*^9, 3.898191520718318*^9}, 3.898191572622909*^9}, CellLabel->"Out[20]=",ExpressionUUID->"8fdde79b-7cb2-4938-aa07-ca700dfe15bd"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"c", "=", "1"}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Animate", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"fm", "[", RowBox[{"x", "-", RowBox[{"c", " ", "t"}]}], " ", "]"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "10"}], ",", "10"}], "}"}], ",", RowBox[{"PlotRange", "->", RowBox[{"{", RowBox[{"All", ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "}"}]}], ",", RowBox[{"Axes", "->", " ", RowBox[{"{", RowBox[{"True", ",", "False"}], "}"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"t", ",", RowBox[{"-", "15"}], ",", "15"}], "}"}]}], "]"}]}], "Input", CellChangeTimes->{{3.898178533337009*^9, 3.89817856142127*^9}, { 3.898178611949658*^9, 3.898178676394897*^9}, {3.898178937216487*^9, 3.8981789549528513`*^9}, {3.898179022321972*^9, 3.898179022949939*^9}, { 3.898191583189148*^9, 3.8981915854034653`*^9}, {3.898191662756349*^9, 3.8981917444178553`*^9}, {3.898191824490272*^9, 3.898191826039283*^9}}, CellLabel->"In[46]:=",ExpressionUUID->"f813551b-a717-4883-80c7-c49eecca6d24"], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`t$$ = -3.0965795516967773`, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"sin t\[IAcute]tulo\"", Typeset`specs$$ = {{ Hold[$CellContext`t$$], -15, 15}}, Typeset`size$$ = { 468., {141., 146.59986810017216`}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`t$$ = -15}, "ControllerVariables" :> {}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Plot[ $CellContext`fm[$CellContext`x - $CellContext`c $CellContext`t$$], \ {$CellContext`x, -10, 10}, PlotRange -> {All, {-1, 1}}, Axes -> {True, False}], "Specifications" :> {{$CellContext`t$$, -15, 15, AppearanceElements -> { "ProgressSlider", "PlayPauseButton", "FasterSlowerButtons", "DirectionButton"}}}, "Options" :> { ControlType -> Animator, AppearanceElements -> None, DefaultBaseStyle -> "Animate", DefaultLabelStyle -> "AnimateLabel", SynchronousUpdating -> True, ShrinkingDelay -> 10.}, "DefaultOptions" :> {}], ImageSizeCache->{827., {167.861328125, 175.138671875}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Animate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{3.898191745221869*^9, 3.898191830468207*^9}, CellLabel->"Out[47]=",ExpressionUUID->"a5146ef2-3316-4e18-8009-2db77880d1ba"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Soluci\[OAcute]n general", "Subsection", CellChangeTimes->{{3.898191614512085*^9, 3.898191619193075*^9}},ExpressionUUID->"eba8f49a-e87f-4b5a-85c3-\ 518eb74adaad"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"c", "=", "1"}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Animate", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{ RowBox[{"fp", "[", RowBox[{"x", "+", RowBox[{"c", " ", "t"}]}], " ", "]"}], "+", RowBox[{"fm", "[", RowBox[{"x", "-", RowBox[{"c", " ", "t"}]}], " ", "]"}]}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "10"}], ",", "10"}], "}"}], ",", RowBox[{"PlotRange", "->", RowBox[{"{", RowBox[{"All", ",", RowBox[{"{", RowBox[{"0", ",", "2"}], "}"}]}], "}"}]}], ",", RowBox[{"Axes", "->", " ", RowBox[{"{", RowBox[{"True", ",", "False"}], "}"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"t", ",", RowBox[{"-", "15"}], ",", "15"}], "}"}]}], "]"}]}], "Input", CellChangeTimes->{{3.8981790467876377`*^9, 3.898179065063031*^9}, { 3.898191627090581*^9, 3.8981916464878483`*^9}, {3.898191724042563*^9, 3.8981917285539513`*^9}, {3.898191839889669*^9, 3.898191855288638*^9}, 3.898191888257699*^9}, CellLabel->"In[52]:=",ExpressionUUID->"ada0eeb3-31b6-419e-b2e6-4e79efecd8a0"], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`t$$ = -3.3113765716552734`, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"sin t\[IAcute]tulo\"", Typeset`specs$$ = {{ Hold[$CellContext`t$$], -15, 15}}, Typeset`size$$ = { 468., {150., 156.4998681001722}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`t$$ = -15}, "ControllerVariables" :> {}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Plot[$CellContext`fp[$CellContext`x + $CellContext`c $CellContext`t$$] + \ $CellContext`fm[$CellContext`x - $CellContext`c $CellContext`t$$], \ {$CellContext`x, -10, 10}, PlotRange -> {All, {0, 2}}, Axes -> {True, False}], "Specifications" :> {{$CellContext`t$$, -15, 15, AppearanceElements -> { "ProgressSlider", "PlayPauseButton", "FasterSlowerButtons", "DirectionButton"}}}, "Options" :> { ControlType -> Animator, AppearanceElements -> None, DefaultBaseStyle -> "Animate", DefaultLabelStyle -> "AnimateLabel", SynchronousUpdating -> True, ShrinkingDelay -> 10.}, "DefaultOptions" :> {}], ImageSizeCache->{827., {176.861328125, 184.138671875}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Animate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{{3.898191631636272*^9, 3.898191646793857*^9}, 3.898191729093204*^9, {3.898191846408287*^9, 3.898191855864077*^9}, 3.898191888851077*^9}, CellLabel->"Out[53]=",ExpressionUUID->"9b46934c-9ea3-4f91-90a9-051cd5169129"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Cuerda con un extremo fijo (Dirichlet)", "Section", CellChangeTimes->{{3.898191125464287*^9, 3.8981911354478607`*^9}, { 3.898191918769053*^9, 3.898191929510745*^9}},ExpressionUUID->"d8d4ceb2-775e-4b2c-9a07-\ 91203b1cb705"], Cell[BoxData["Quit"], "Input", CellChangeTimes->{{3.8981919393750973`*^9, 3.8981919398631897`*^9}}, CellLabel->"In[54]:=",ExpressionUUID->"8e51095c-9496-40dc-b1f3-9affa349b1f7"], Cell[CellGroupData[{ Cell["Modos que se mueven hacia la izquierda y hacia la derecha", "Subsection", CellChangeTimes->{{3.8981922124594803`*^9, 3.8981922250584927`*^9}},ExpressionUUID->"fa480deb-86bf-4685-876e-\ bef381c186b5"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"fp", "[", "u_", "]"}], ":=", RowBox[{"1", "/", RowBox[{"(", RowBox[{"1", "+", RowBox[{"u", "^", "2"}]}], ")"}]}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"fp", "[", "u", "]"}], ",", RowBox[{"{", RowBox[{"u", ",", RowBox[{"-", "10"}], ",", "10"}], "}"}], ",", RowBox[{"PlotRange", "->", "All"}]}], "]"}]}], "Input", CellChangeTimes->{{3.898178481189189*^9, 3.898178500370598*^9}, { 3.898191290942535*^9, 3.898191292239201*^9}, {3.8981913532387238`*^9, 3.898191356574024*^9}, {3.898191780898335*^9, 3.8981917842249517`*^9}, { 3.8981919827823353`*^9, 3.898191984009453*^9}}, CellLabel->"In[1]:=",ExpressionUUID->"7f77ffcb-aba2-4fe7-8bbd-e75510a72259"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJw1WWc413/Utvcmq4UfQkJIA52PhJQkSaWNJMm/VFJE40eUyB5R9t4k+/ux Za/snWx+skd4eq7reV6d677uc785L865z3WLmv5neIeGioqqg5qK6n/ry7Gz 89vbJEzqHnq1qk2GUQf+pZ6/JOwg90Xw1Fky6HMNrHxfI2Eys2t4yAUyiBx9 uPnfAgnfOSTiduoWGUrf+zANjpJw/8PyiarnZGCS69iD6//xhQn+xilk8Hty 68yrzyQcrmTUivldIIn6cTTVYRJeM8mjObLgAvR3dBSFrothLSnF5WVqN+Dt rLCO9BbFmV5n7hkpvQfDshAz6RoRXPa5aJ91nAc4UNStP/3aiw90yHOa5XlB 7rMQq7Rze3Bh1aucNVdv0Pe5KLIVvAs3Pbrg2h3tCzphRfqnpoUxzwIn/avd ATD3sfcv3agwfn1g+JPfvgAIcdpILBkQxmMPvJfSDgbA9M2jjKqtwvjuu4Om G1oB4CP2jTiQL4wLaWPsftsEQH9csgKvmzBmU2zhYysNALvMzzz9JGF8ZOP2 WNODQIitet7++KoQrg6/Y457gyBY0U4zwUgIl7Z6L5ZNBIFHmG16/1khfMv2 TkLzchDYPr7/XhcJ4fHY8URW7mBQ33v9+F4JIdwUFnRoQysY2uxQbM2sIPZ8 /LCzOSMYaCQZ7UTfCOJ2C7mcJO8QuEH229EYL4CrbOP0vj8JhQZYZrSPFMAq JleIT29DATYurYuECmBO7f25T31CQcR254CtlwCuViPfN00PheGbkfH8dgJ4 d0TSvurpULBQTVe9oSmAT2UZhTXeDQOb+drbM338+AGDJdW+u1/A6RZtKisv P47S+ii0rh0O6Y06nm1s/LjwKH9437lwGD7uYRPGwI93pjJcq74cDtq7d8jL r+/AIk9ofbOswoGjWzLdcGgHnqT70zHkGQ5fLpzODE7bgefddmdHd4YDoe2d s09vB7buFInZfBQBVAf2EpoufDiTr/XNfFEkOPJr3HBx4sMtPIwS7T8iYWXb dLPyGR/OuEe7XP4zEmZbYlVPW/HhPpr2q+UzkdBjL5drcI4Pn47ixWf2REFO uXrGdSE+/CiZy9H9dRQ8uHYt6lkKLxbm+L4qfT4axrWcTuTF8mLqcx/+et2I BnP58KH1r7zYlzaan9Y6GkxoRvY6+fBiD2HaZq530XAq/n4o+Rkvvhy9qlpX FA3iiy/8vTV48er2iELLgRjo/hD8LuknDxaf80sJEYyF1gqR5FuNPPhxSFlH iWQs1G3HNe34wYOpXkdaLSvHQvHjHKFXhTx47dNZdrfzsRB5tTXJKIoHKzPT iJz7EAtW+9mbNh/yYCte3y8O1HGwUfNK0ICNBwu+TCutW42DRTomdXoGHqy1 wWFWxhQPs8e9budvc2OnvofffwjGw2BmWKL4AjcuH7Gqpz8aD+Uh+WprXdy4 65b/jPqLePCwWrwVGfePTzSxwNvxsIvFMmHxBDc+VkL2iRdIhBvFdR5iatz4 RSSLstb+RIiwPfjQ4BA3FnGS8Fs5ngiSPesqyfu48dLDCI4vFokgn/yx3IyN Gyvx1dos5STCCf2sgZafXBgJ+yRNXk2Cez5bOzIsufCSSg5p+HsyJGubrfXf 5sKmxuiMfUMyzK5X9bJd5cKVKzohUr+TwdbMO8ryLBfeGLY+28mTAo7K4gdF FLmwWddrG/v/UmBPim/QnhVOfHrErXrgQCrcPyRD37OLE+dilWRHnAa29Hlx dpyceNf2O1f57jR48VPnNA8NJy47XTxLtZgG75/e8dId48DeW+d4qfjSIfFb uFBuBgf2vyRfmH8qHSYOCcj5a3NgE9/0F0rf0uGuCt2lcw/Z8UaV+8ZESAbY MPiuTZr+w8M8ZX0JGWDXLhrqepEdB2XOSIzkZoCrHQwVHWPH7EGKKtIdGRCb 8+K+LD07FuxV7Q7ky4TfKn+cmUPYcF91VpmYbyaYHe6PLytjxbfp5Bi6vmaB RfxhY+3vrNhfPBUU0rPASsib9kciK7454nH5M86ChxuaNxq8WTE9T31MylAW OBIJvF03WfGk8xnpSvFs8NN56jS7wYLZ6R7Z/UrNhspLbEZCyiw46OF/gSWt 3+BH9R3q0H0s2Jb54P720W9Qd5RI3bOTBbdUxtHTrn+Dlp22zOI0LHja30Au ViQHBgY6iuWamDGd774i/v9yYPVulPRJa2ZcErLjfAXXd5CxP7ZtE82EncUF Nz9a5gLu05f5FcCEJ66vXBh9lQvGmmYXL7kz4avHavtuB+fCGw6PJLBhwkde snwqq8mFrui+S1xHmPBW90TOEfk8cGt+lZ5Ry4hvdH5Qk9zOg1GZqtuL8wxY eKD0MVdRATh+6vGw/M2ApTSmra90FwDPMuV7bwcDNvJgWG1YKYDjJYIcFYUM uFXefo+GUiH4X7LK93dlwD8zlwzOJBfCSTI772FhBvyalcKvE1cEEX0Xyp9r 0OOUnsz378oIUBxRXG9Tpsf+FgUNeSMElE9yKyhI0WODncl9HLQYRlcaP49y 0OPkWxy0xeIYZHj0Hl/opcMph7et9O9hyNQ+KXbgGR2uHpIeNF3BUJ6m/Gow mRbfUGFUqpUqhYs5vDmq4bS4dPdTtmG1UhgtnJ8K8KXFDOxDjwTPlwJTTfql sy9ocSKy6xx5XgpnR2Tl83VosZWE8xpNfSm0C0r0+w7T4AfcDu8/Pi+Dsdc7 1HQEaXBnndiusplyYHmZRvFlocGtHPkm15kqQM5eN2rwLzVmvXpcYB+pAuxs XrK8GKLGmjgw6fSVCmC4+rszOZEat7PcHOmrqgBx5W9PedSpcYxBAod/aiWc kj8nfVOeGqsulx8xqasEa5mJ3iRRajzUoTpwcbISskV2n9RioMarnJOu85JV oMnuwmPfSIVlpLJ+NERWgemoUVrfbSoskPnx5NuYanAdmjWVMaLCN+osvaYq qyGx143/mTYV7sqJf+YzXg3zLYUvufZT4Ws+B42+yP4AGmfdINfxbWLzxNyf ou8/AA5ONJ9n3yYO/tnT8KW7BvL9pbTGjTcJTdVlKY1L9cB0dcyMWm2TOLnP sH3oVT0Yi8S+ERbdJKTNB+61JNbDfCIJ6039JYaDLzPFbteDNN6jmuH8l0h4 8KBdJqUBgib5Dr6I3yBaVm0CJdmaYDSt9Zzvxw2i6JG/XASpCZSf+tgk224Q J8ZQkK5qEzRucyb3q20QXssiTyXuNwHDDtZ9ms3rhPePXEe++iZ4CtS72dbX iFvF7x/uD2mGUjqsKjGwRrx3hZ9Z2c3AVeNkcrx8jYD9yokPG5sh2ehv4EPP NWLkVMgdd/oWGLm3wvNTbI3YUhDy1HzSAoZ+M0xfzqwSd2X9FNC1VlCY6FqU D1smTK73SsZe+QlP5g5IC5CXiYIHGT2Xnv+E3JXX17eslomuWOHLJ4N/ggaD TGXdkWViuSBQu7HrJxiSXgTea1siWihcl3Kvt8PT68LHoliXiAalRUnFRx2Q 32zizP9igajhCh3+9KMLtjpTszZvLRBNFzUMTf90wYlBmvERnQXCeIZd0EGo G2pnEw2ydiwQl2/5s5GtuqGXdUPUIGOe6BCK2rPJ2QPbWp/L3cf/EJrOrbta LXvhZH4P86bxHCH65kpJ/4UBSE2MOVqlOkdcPZPaZ+A+AIKf/7vnLTJHiLXe fbaXGID2FQafM20UgpqQJE3sGAQJB2OusPVZgv5MzVIleRBKXy+xIZ0Z4o/3 Wqbo/SH466nE4Do4QeyhSkScV37Bw4S0VW7eX8QZlbeUW6FjoMBh8/bE4DBx k8Fi4lrRGPyxleV4nDJMRMpdqLzaPwa2agmkNp1h4u3QQ/trIuPwtDFSP8Bx iBAQfy6BosdhYXK/7qG6AeJAl1GidOIEPMmOvxFgMUDwSE97BdVMwPJLiScr VAOErszpv5TJCVjl2vs171A/0cHwpdJg/yT8VeFZUv/aS5B+du+LSpwEhrer 4dq2XQQ5W2F/ccQUvNN7mhPH1kWMCyR1lhJTwMQ/X8sU10nwaJonePZNAUvC 1HJNTwexPVEfbys4DZyN/XrntNqJntEYAdkP0/Ap6Kpp+sBP4j/F7UXpuGng Me18xv3iJ/G9l9mvt3Qa+JaaI1tT24jbPm9KjdemQXBnxeolwVai/e+k83XT GQge0eDIy2whpCzf82GHGRBOLSYJn20htrF/ZbnfDOzWyNXvfd1MsJ+OP51U MQOaDca6Je2NxOGt5K1ksVnQvm3w5C1rI0Hj0hM2eGQWTi3qftVCDURkRLJe tP4s6AmrL/1IqCOi1aWUWu1nwdiCFNHi+IMI/VIu5Vc1C+8fPXbz+VZNhF/f +yqjaxaKHMv+M5ytIm7scrx/YWoWxH3NjrfcrCS+umW172anwOUvWRI+QRXE 60PePSd2U+BDAi27YXM54el73vm3LAXmiaie5hNlhPObVFLYaQpI1i6UejuU Eqf3XKVOu0yBK+2aieezS4gbHB1HjlhQAE//sm+WwMQtPcOVRGcKjFPuYrGi YiLuiAL2/kCBcwxMXpFyRYTM6Qt3JwMosEfplGwkdz7x/hNYTydRwEV3fF30 bS5heOWIo+83yr//w+1HxGIOAR5PGuOKKXDBTipI1OIbMfA7zVyqigL5HtUW ER1ZhPWEymm+RgqIRlkeEtXNJIR1pb9YtVPALY+JLiI/nZBXy/WU6aNA/9fz MRqXUwmmqFsmF35RIKXO+4SGahKBekQMRsYp4LDWPID2xBOiUomNvTMU0JXk eYmoY4hx/4+6avMUELhgKIxGIghDZA40yxSo3Rb/z9kzjAgYm9eUW6OA5ZWY BCejQIKj5NQGsUEBuiyJkZfC3sTdx13C3zcpgIT01NexCxGo4HOPd5sCc0HB 5n+CbYmw4Qmi7R92pPGr0D5yBbRNpxk3/mG5ELMqPhVnOJuJ1F3/4X6hjFlW Tg9QV5V5YLf1bx5KnYWuGn6QwuiSU/uXAjldl968cwiBLJoiXdd1CrDjKVK5 STioqGPL2BUKgG+Sa/mzKHisMW0hu0iBRxb3J8r9/vlop+V4wTkKRB7dr1eR kQD9HY3R96co0MY2lVrxz3eG3ns7JDFKAYbBRO7KqTTI8uJa0RmkQOiVQ8fM yBlgoIM8W7oocEjT//4vnizw2Xp6q7KFAg2yS6FmEdlATDkcFq+lABXVt22z 4u9AW9JwXzSfAsETfAdH9PLgeWh0cmk6BRRbn5ia9+SDPdGR2xxLAfNY5Qrz 1SLwVfkTqe5NgU0vv+URVwK4lp/0hbr8m7/aum/mewxOyrOfbZ7/65c0qVAU KgVx7oVVm5sUUNjJ0m87WAq6/Wxm4ef/6TnzlzPjyiBi18sxXU0KBKwJSSmp VEBUauptVgkKVNV1vVe6UA3xL8UDng7PgqV9d9XV/f/uKOnLAkvjLDCJ99CR aWugJ03tIlfBLJx26HVqy6oF6mdcyU+8Z6FOesD2KV8jtH04UT9++J9e0zal Z7IF5liP51c8mIEjwfO1FONWcHde2vIwnAEmiu0kbVkrsLq81J9VmYGEkMf7 ZD+3wfkDf06835qGyT9PIhzPtMPvPaIkO/dpsA5/5r87uQtclpMKvD5Ngdry StZBwW6gyrzXq/1wCtj07Fu0yN1wLobxXPm5KUhZsee0udYDgj7sObs4pmBW /4V7MVsfjJOtZz64TUKuU3FxmsogiHWkyXnaTcCxAyWZBoG/4Mm6JMdX7TE4 1NYeUPzjF7h26vevSPzb/w7TL2T//oLfEeFuV+jHQPKHgCbT7RH4nKF0XK18 FHjv2LQSMr+BqyJX6+uJUZgO3bkoVzwKx8b5tctP/IavbHaH2H9PgGu6ILOp 8S8Iyfog5CAwCewREhBz5BcEmERsjutOQsHGkRyWnb/AI76uojx1Eo5H2dEd HxwG+5MkY0f7KeC+t/e2gfUwGDo22U2xzkDlvIvD3Q9DQGO3o9dcaA6M5PX9 b9QPgMmtxJZc5TlIscvlUgscgMzT8IPNYA5GQpW77W4PgOneeznZrnOgiKX4 6Vb6obS68BPd4hz4DLQrvJDsh7c7zbWiG/7A5SRrz+SAXuilX1NdnfgDK8qf YvUsekF57qOiHv08fPyxp1lbpRdGyr/vXVSdh7fknbSnOnrgpA3rumbCPNCf 3F34eHcP0JVkpv56uwBYJ0RaIL8LriXpxBz+ugCiB7rOyXh1QbZ/7+cP+QtA z/hs85N5F5hbMbgr/VmA3cvWzJe4uqCC18Ts7Y1F+DXcdjn3fie4WlALko4u AX18ksqtgx3AyGbw2nR2GXLzn2gkLLbB5X0mWIV5BbKXXFYbWtsg8YT5Nov4 CrAa37Y6lNUG+s/tX2ZdWYHjo/7upbZtEDAa/pyuYgWONnkJNC22gmTJn0ex n1eBtyFqUI+uFex7N9Jf5KyCXSyX5cmxFqhZoZ/Tb16FfOI709OaFrCRE7ZZ YViDl7wphLN3C+R8PmF1ynYN1uPT9eTEWkDLztd08tQ6tJXQ6nqcbYYA77CI YrN1OH3HPmpAqRnGk+MGfZzWIfNnM8sd4Wbw+FVwQzV7HUpLz1+kG2+CNoMR E4+9G6DdunHR3aUJzPcfuiC3vAEFshuRsT6N8HawXdM2ahPON0fFvRqug/68 Mw/sCzehjF32WF9hHRzzxQFOPzch6Gy6hGNgHcxpJU68Z9yC6kHBSaezdXAj 6aVX1P0tMDtB+LkX1sIxO/GeNqVtkI611TgRWwNr9EfzdppSIV4diY/T0dUQ a7tQ/8WGCj1oKD0X4VoNRgMpw6IOVCg9TNba3bIa0nPF2KT8qFC3Mh/PvGw1 WNxnu6lcSYUcz8wMCuVWQVvTAN1ZGWpkORNSb91RCemfXQ2c5qnRUKlYod/h CqjldR3jpKJBEkbbpeO7KmD0g4tTBDsNYvB2SblPUwG7HMnJ5VI0SPlEXsjf +nJwu/aGifUmDcodUGdAd8vh1m4nHFhLgwxMBcPXIsqA6+tThYxoWiR9K7+2 +lAp7Bd4WnUikxYpDoQ3aIuUgrbXkxttBC0Svb9VMs5SCo7Ojz1WumlRTz1x LnCwBMZvPhpX56ZDdJL69IEfSwCLPAiveUmHXnXarw7PYPgv0pxrxJge6VsO jBd9IMDzeXCopxk9KlWiqqS6T0CqQYPU0Yf06MZPOfEnpwmY3Tqs4elOjxKs z6xPMhNgfZXV9kghPdrm0jfm/FAMVnyZrR6iDOioQfLrMf8isHDdDjg0zYBO ti/+/VpbAK7XlUmDqwxIrvTbm/PpBRCrfC/tPT0jsutI9ZP2L4Dfwy1VA3sY 0Wc5HV29mwVgDrGr7ucZ0fG8PDejpXwwXdUz6c9hRA0N1HUqUvlwwypk97vX TIhFd5nZOy4XNrqYG/58ZEK654Vo2LxzIUj3udO1ECZ0bfBKRvSLXGiWujxw MIsJFXJsWMvp58LJsR0RvSNMyKSUfSls+TtIm3uLK55iRkIuKffK9L7D4nW3 /X0cLKihzrhuii0HPtWv9OjsZEGpT5ljy9a+wQH1ux6Z+1jQSC93TNboN7DY pT3zDrGgyFeTdj34G3R106Yp2rIgR8E4ZW27b1B8yVnR7ee/frazt+7+zgb3 83ZHlUJZEVPM9Y3B1n93uE7GOjmBFf1aIz/gKc2CUJ2BLxLfWVFyScu+q+lZ kK5+ik6whRUZumx1HPyYBZ3Swo1/GdmQ7e+cGYpOFkjRFJtXPmZD1MVq4p4l mVCZSf/pyhl2NHMo/NLV8gxoOpBf2nKZHZXVHjeW/5YB3fE2S2cs2FHycQUN /tgMmP3SYXL8NTuS5aDc3uWWAfwfEiRI39mRqienC8PZDLhjdrZgWowDNZbU 4yPd6UDH5z/qvM6BEj9WFlygTgeeWScOHkZOFKS/LGYymQai1ZYq0bycaPxD YNu+ljQ47qjmWi3Lic7ecE7ljUyD5yO/JLhvciKPiFxGac00mM1WvBNZxono 1i1eSb9PhWmZ8Uem2lzIskOPyU0mBRYF+lyS9LiQeLhThtGOFNigawleNORC rZGVa4epUoBloKDE9SYXqnm9NqHRngz7fL24k+y5UOBjkd833yaD6YZKxkIi FxLd/bk5YSgJOmpd5sic3Gg2onE5KSUR/I6HaV3k50ZeW2QBcnAiGGZkh0js 5kZLY2Ohti6J0BDw62SlDDcaJq9f8LmeCJW3NYIZtbmRTEr6QidHIuSs/NV4 78iNLrZyZd19mgABpCe+XhPcCCs09xWcjwejgA/jN+e4Ec27C4QEigce5ih1 hRVu5HCY6nqkXDx4zjaPNdHxoDmyl3krazy45smr8YjwIPoJpTbuqjiwOzc1 4mfMg34wRqJJFAcXHUxVQsp40FNrG35TjVgICONjWPnBg7rdCxTWFGOhnaj8 eaGJB/GJX+L8Ih4LxnT7n7L3/ePxlzYupli4/HEh69UyD2IbVYoKaowBk6/k g3eleVFkHF2Z2O0YuFUWK6vsxYuKjA3SMj5GgzXrlFiDCR96eCXQy505Cqae 59Ox3uZDGjFXXxhuRYLVuPuozl0+5H53SEZiIRLuVkglljzmQ0fZndLHeiPB 1Nni4DcPPhRW9UZwMD0SriwMQWgxHzo/azDsZxIJ2j2d16zEdqCtz0eDKrIj YG9SZQDD5A6k9HxNWuZNOBh9zc2rmduBLFxnFw3sw+G9b2Kv58oONK3/6skr m3BYdPAUE6DnR/tSqe+t/fPRNXrGqftE+NGYvAmnoXI42M3+rjhlzI8CAl1f 7m/+CvUH6Zfel/Kj+yN383RTv4BDruYFzs8CKLtGsmjNLxQUrzXN3YwQQMwo ZkbUNRQmt695pscJIB2jGc+Lz0LBRMfux/lsATTLZrbUfyUUjrXHg1+9ADp8 vZHz+d5QWF1glxWiEkSKtvVBOPkz2Ml30pHuCKLdtpvFBo0h8DDWOkdFXgj1 173xVlcMhv7Gnf4cKkKoaLkgY0w8GM6u1TweVRNCv+XL9UMFgkFGT/pgwGkh ZBZW3Cq+GQQjf34nLd0RQievNvVkVAfBJfWbEdmhQmh1sTc683YQHG8776HI IoxeqFo1M34OBDaaw6Zyv4URW2Loy1mpAMh7RnthdEoY9asffLd7TwBYzDRq fpkXRp9f6dw34g0A3GkpwUG1EyUzdEd3bfrD47SQ8RnhnWj8UAabRqs/dF/b skkx2IlyefNPvnT2h/jvFQ6yhTvRxWgn4nmfH2g9MPKX8d2FerR5ZLhSfUEw b/d/WuJ7kJL+6KGCXG/wsXXzVujYi6Ion46nNnuBoeu5A2E5IkjRecMsbsID ZK6SL0a/FEVGbMWZ/jbvoX2UOdL3ohgyavZ7YbvDDRpMf2vw7CWhIBKLXJa0 KwzRxa36i5HQ4Es93VhRV1iMtUwTkiShY5o+pWFCriA0NbVL9AAJ1Z8JKA1m dgXzx/Mr8qoktCYrGlEx4QLrb7dTzl4iodfONyUnE11AMkZI2N2LhDg+iBic V3CBozo9TWy+JFSh0HmqRsoF9CZC330KIKHDSrJIR9QFHh0QWQoMI6H/0u/t PcvjAoXfJJtik0hoaoTB0G2RDIaVSq7lVSS0LULak59HhjuWS2qnaknIcq9K 9qNMMtizfF+obSChoxXbuw4kkSFM/9jt1p8k9MyR61paKBnG25Ha8C8SyqwU 1h5yJsO6Pc3CnTESKuqt2PfdngzsO8sTJiZJ6NIe/qpPj8igeFNH4M8fErri cEr5nBkZtKiZG54skVD2ZepNpWtkuBxVQ15dJSHKINvzXRfJYKXloer4l4SE qXtjmPTJ8H/5Kvr/fPV/AF0he+I= "]]}, Annotation[#, "Charting`Private`Tag$3516#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.898192034299303*^9}, CellLabel->"Out[2]=",ExpressionUUID->"855ed7b1-986b-4073-a0f4-10103ad78ef2"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"fm", "[", "u_", "]"}], ":=", RowBox[{"-", RowBox[{"fp", "[", RowBox[{"-", "u"}], "]"}]}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"fm", "[", "u", "]"}], ",", RowBox[{"{", RowBox[{"u", ",", RowBox[{"-", "10"}], ",", "10"}], "}"}], ",", RowBox[{"PlotRange", "->", "All"}]}], "]"}]}], "Input", CellChangeTimes->{{3.898178481189189*^9, 3.898178500370598*^9}, { 3.898178919640772*^9, 3.89817892694945*^9}, {3.898179002261174*^9, 3.898179008205229*^9}, {3.8981914243731728`*^9, 3.898191463341125*^9}, { 3.898191509613262*^9, 3.8981915263970737`*^9}, {3.898191556827965*^9, 3.898191571387702*^9}, {3.898191965103423*^9, 3.89819199225441*^9}}, CellLabel->"In[3]:=",ExpressionUUID->"badeb665-1b7d-47ba-bc02-c071e3bf6be6"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJw1WWc013/Ytvcmq4UfQkJIA30/ElKSJJU2JUn+pZIiGj9CIntE2XuT7Ptj y17ZO9n8ZI/w9JzzPK/uc53rut5cL+77XOcWNf3P8C4NFRVVBzUV1f/OV2Nn 57e3SZjUPfR6VZsMo/b8Sz1/Sdhe7ovgqbNk0OcaWPm+RsJkZpfwkAtkEDn6 aPO/BRK+e0jE9dQtMpS6+zANjpJw/6PyiaoXZGCS69iD6//xhQn+xilk8Ht6 68zrzyQcrmTUivmdIYn6STTVYRJeM8mjObLgDPR3dRSFrothLSnF5WVqV+Dt rLCK9BbFmV5n7hspuYNhWYiZdI0ILvtctM8qzgPsKepWn37txQc65DnN8rwg 93mIZdq5Pbiw6nXOmos36PtcFNkK3oWbHl9w6Y72BZ2wIv1T08KYZ4GT/vXu AJj72PuXblQYvzkw/MlvXwCEOG4klgwI47GH3ktpBwNg+uZRRtVWYXzv/UHT Da0A8BH7BgfyhXEhbYztb+sA6I9LVuB1FcZsii18bKUBYJv5maefJIyPbNwe a3oYCLFVL9qfXBXC1eF37+DeIAhWtNVMMBLCpa3ei2UTQeARZpPef1YI37K5 m9C8HAQ2Tx646yIhPB47nsjKHQzqe68f3yshhJvCgg5taAVDmy2KrZkVxJ5P HnU2ZwQDjSSjrehbQdxuLpeT5B0CN8h+OxrjBXCVTZze96eh0EAsM9pFCmAV kyvw6V0oEBuX1kVCBTCn9v7cZz6hIGKzc8DGSwBXq5EfmKaHwvDNyHh+WwG8 OyJpX/V0KJirpqve0BTAp7KMwhrvhYH1fO3tmT5+/JDBgmrfvS/geIs2lZWX H0dpfRRa1w6H9EYdzzY2flx4lD+871w4DB/3sA5j4Mc7UxmuVV8OB+3dO+Tl 13dgkae0vlmW4cDRLZluOLQDT9L96RjyDIcvF05nBqftwPOuu7OjO8MBtL1z 9untwFadIjGbjyOA6sBe0HTmw5l8rW/niyLBgV/jhrMjH27hYZRo/xEJK9um m5XP+XDGfdrl8p+RMNsSq3rakg/30bRfLZ+JhB47uVyDc3z4dBQvPrMnCnLK 1TOuC/Hhx8lcDm5vouDhtWtRz1N4sTDH91Xp89EwruV4Ii+WF1Of+/DX60Y0 3JEPH1r/yot9aaP5aa2iwYRmZK+jDy/2EKZt5nofDafiH4SSn/Piy9GrqnVF 0SC++NLfW4MXr26PKLQciIHuD8Hvk37yYPE5v5QQwVhorRBJvtXIg5+ElHWU SMZC3XZc044fPJjqTaTlsnIsFD/JEXpdyIPXPp1ldz0fC5FXW5OMoniwMjON yLkPsWC5n71p8xEPtuT1/WJPHQcbNa8FDdh4sOCrtNK61ThYpGNSp2fgwVob HGZlTPEwe9zrdv42N3bse/T9h2A8DGaGJYovcOPyEct6+qPxUB6Sr7bWxY27 bvnPqL+MBw/LxVuRcf/4RBNzvB0Pu1gsEhZPcONjJWSfeIFEuFFc5yGmxo1f RrIoa+1PhAibg48MDnFjEUcJv5XjiSDZs66SvI8bLz2K4PhingjyyR/Lzdi4 sRJfrfVSTiKc0M8aaPnJhZGwT9Lk1SS477O1I8OCCy+p5JCGvydDsrbZWv9t LmxqjM7YNSTD7HpVL9tVLly5ohMi9TsZbMy8oyzOcuGNYauznTwp4KAsflBE kQubdb2xtvsvBfak+AbtWeHEp0dcqwcOpMKDQzL0Pbs4cS5WSXbAaWBDnxdn y8mJd22/d5HvToOXP3VO89Bw4rLTxbNUi2ng/uyul+4YB/beOsdLxZcOid/C hXIzOLD/JfnC/FPpMHFIQM5fmwOb+Ka/VPqWDvdU6C6de8SON6rcNiZCMsCa wXdt0vQfHuYp60vIANt20VCXi+w4KHNGYiQ3A1xsiaGiY+yYPUhRRbojA2Jz Xj6QpWfHgr2q3YF8mfBb5Y8Tcwgb7qvOKhPzzQSzw/3xZWWs+DadHEPX1yww jz9srP2dFfuLpxIK6VlgKeRN+yORFd8c8bj8GWfBow3NGw3erJiepz4mZSgL HCCBt+smK550OiNdKZ4NfjrPHGc3WDA73WPbX6nZUHmJzUhImQUHPfovsKT1 G/yovksduo8F2zAf3N8++g3qjkLqnp0suKUyjp52/Ru07LRhFqdhwdP+BnKx IjkwMNBRLNfEjOl89xXx/5cDq/eipE9aMeOSkB3nK7i+g4zdsW3raCbsJC64 +dEiF3CfvsyvACY8cX3lwujrXDDWNLt4yY0JXz1W23c7OBfecngkEdZM+Mgr lk9lNbnQFd13iesIE97qnsg5Ip8Hrs2v0zNqGfGNzg9qktt5MCpTdXtxngEL D5Q+4SoqAIdPPR4WvxmwlMa01ZXuAuBZpnzv7WDARh4Mqw0rBXC8RJCjopAB t8rb7dFQKgT/S5b5/i4M+GfmksGZ5EI4SWbnPSzMgN+wUvh14oogou9C+QsN epzSk+n+vgxAcURxvU2ZHvubFzTkjQCUT3IrKEjRY4OdyX0ctBhGVxo/j3LQ 4+RbHLTF4hhkePSeXOilwymHty3172PI1D4pduA5Ha4ekh40XcFQnqb8ejCZ Ft9QYVSqlSqFizm8OarhtLh09zO2YbVSGC2cnwrwpcUM7EOPBc+XAlNN+qWz L2lxIrLtHHlRCmdHZOXzdWixpYTTGk19KbQLSvT7DtPgh9z27h9flMHYmx1q OoI0uLNObFfZTDmwvEqj+LLQ4FaOfJPrTBUgZ6cbNfiXGrNePS6wj1QBttav WF4OUWNNHJh0+koFMFz93ZmcSI3bWW6O9FVVgLjyt2c86tQ4xiCBwz+1Ek7J n5O+KU+NVZfLj5jUVYKVzERvkig1HupQHbg4WQnZIrtPajFQ41XOSZd5ySrQ ZHfmsWukwjJSWT8aIqvAdNQore82FRbI/HjyXUw1uAzNmsoYUeEbdRZeU5XV kNjryv9cmwp35cQ/9xmvhvmWwldc+6nwNZ+DRl9kfwCNk26Qy/g2bJ6Y+1P0 /QcQByeaz7Nvw8E/exq+dNdAvr+U1rjxJmiqLktpXKoHpqtjZtRqm3Byn2H7 0Ot6MBaJfSssugnSdwbutyTWw3wiCetN/YXh4MtMsdv1II33qGY4/YWEhw/b ZVIaIGiS7+DL+A1oWbUOlGRrgtG01nO+Hzeg6LG/XASpCZSf+Vgn22zAiTEU pKvaBI3bnMn9ahvgtSzyTOJBEzDsYN2n2bwO3j9yHfjqm+AZQb2bbX0NbhW7 P9of0gyldFhVYmAN3F2In1nZzcBV42hyvHwNiP3KiY8amyHZ6G/gI881GDkV cteNvgVG7q/w/BRbgy0FIU/Npy1g6DfD9OXMKtyT9VNA11pBYaJrUT5sGUyu 90rGXvkJT+cOSAuQl6HgYUbPpRc/IXflzfUty2XoihW+fDL4J2gwyFTWHVmG 5YJA7caun2BIehl4v20JWihcl3Kvt8Oz68LHoliXoEFpUVLxcQfkN5s48b9c gBqu0OFPP7pgqzM1a/PWAjRd1DA0/dMFJwZpxkd0FsB4hl3QXqgbamcTDbJ2 LMDlW/5sZMtu6GXdEDXImIcOoag9m5w9sK31udxt/A9oOrXuarXohZP5Pcyb xnMg+vZKSf+FAUhNjDlapToHV8+k9hm4DYDg5//ue4vMgVjrved7YQDaVxh8 zrRRgBokSRM7BkHC3pgrbH0W6M/ULFWSB6H0zRIb0pmBP95rmaIPhuCvpxKD y+AE7KFKRJxXfsGjhLRVbt5fcEblHeVW6BgocFi/OzE4DDcZzCeuFY3BHxtZ jicpwxApd6Hyav8Y2KglkNp0huHd0CO7ayLj8KwxUj/AYQgExF9IoOhxWJjc r3uobgAOdBklSidOwNPs+BsB5gPAIz3tFVQzAcuvJJ6uUA2Arszpv5TJCVjl 2vs171A/dDB8qTTYPwl/VXiW1L/2Auln976oxElgeLcarm3TBeRshf3FEVPw Xu9ZThxbF4wLJHWWwhQw8c/XMsV1Ao/mnQTPvilgSZharunpgO2J+ngbwWng bOzXO6fVDj2jMQKyH6bhU9BV0/SBn/Cf4vaidNw08Jh2Pud++RO+9zL79ZZO A99Sc2Rrahvc9nlbarw2DYI7K1YvCbZC+99Jp+umMxA8osGRl9kCUhbufNh+ BoRTi0nCZ1tgG/tXlvvNwG6NXP3eN83Afjr+dFLFDGg2GOuWtDfC4a3krWSx WdC+bfD0HWsj0Dj3hA0emYVTi7pftVADREYk60Xrz4KesPrSj4Q6iFaXUmq1 mwVjc1JEi8MPCP1SLuVXNQvuj5+4+nyrhvDre19ndM1CkUPZf4azVXBjl8OD C1OzIO5rdrzlZiV8dc1q381OgctfsiR8girgzSHvnhO7KfAhgZbdsLkcPH3P O/2WpcA8RPU0nygDp7eppLDTFJCsXSj1ti+F03uuUqddpsCVds3E89klcIOj 48gRcwrg6V92zRIYbukZriQ6UWCccg+LFRVD3BEF7P2BAucYmLwi5YpA5vSF e5MBFNijdEo2kjsf3D8RVtNJFHDWHV8XfZcLhleOOPh+o/zrH64/IhZzgPB4 2hhXTIELtlJBoubfYOB32h2pKgrke1SbR3RkgdWEymm+RgqIRlkcEtXNBGFd 6S+W7RRwzWOii8hPB3m1XE+ZPgr0fz0fo3E5FZiibplc+EWBlDrvExqqSYB6 RAxGxilgv9Y8gPbEg6hUYmPvDAV0JXleIeoYGPf/qKs2TwGBC4bCaCQCDNEd gmaZArXb4v85eYZBwNi8ptwaBSyuxCQ4GgUCR8mpDdigAF2WxMgrYW+496RL +PsmBZCQnvo6doZABZ/7vNsUmAsKvvMn2AbChieg7R92oPGr0D5yhdA2nWbc +IflQsyq+FSciLOZSN3lH+4Xyphl5fQg1FVlHtpu/ctDqbPQRcOPSGF0zqn9 S4Gcrktv39uHEFk0Rbou6xRgx1OkcpNwQkUdW8SuUIDwTXIpfx5FPNGYNpdd pMBj8wcT5X6xhKXjcrzgHAUij+7Xq8hIIPo7GqMfTFGgjW0qtaIhmQi9/25I YpQCDIOJ3JVTaUSWF9eKziAFQq8cOmZGziAMdJBnSxcFDmn6P/jFk0X4bD27 VdlCgQbZpVCziGwCpuwPi9dSgIrq27ZZ8XeCtqThgWg+BYIn+A6O6OURL0Kj k0vTKaDY+tT0Tk8+YQcduc2xFLgTq1xxZ7WI8FX5E6nuTYFNL7/lERcguJaf 9oU6/8tfbd030x0Tjsqzn61f/NNLmlQoCpUS4twLq9Y3KaCwk6XfZrCU0O1n Mws//8/Pmb+cGVdGROx6NaarSYGANSEpJZUKIio19TarBAWq6rrclS5UE/Gv xAOeDc+ChV131dX9PwiC9GWBpXEWmMR76Mi0NURPmtpFroJZOG3f69iWVUtQ P+dKfuo9C3XSAzbP+BqJtg8n6scP//Nr2qT0TLYQc6zH8ysezsCR4PlainEr 4ea0tOVhOANMFJtJ2rJWgtX5lf6sygwkhDzZJ/u5jTh/4M8J961pmPzzNMLh TDvxe48oydZtGqzCn/vvTu4inJeTCrw+TYHa8krWQcFugirzfq/2oylg07Nr 0SJ3E+diGM+Vn5uClBU7TutrPYSgD3vOLo4pmNV/6VbM1keMk61mPrhOQq5j cXGayiAh1pEm52k7AccOlGQaBP4inq5LcnzVHoNDbe0BxT9+ES6d+v0rEv/2 v/30S9m/v4jfEeGuV+jHQPKHgCbT7RHic4bScbXyUeC9a90KMr8Jropcra8n RmE6dOeiXPEocWycX7v8xG/4ymZ7iP33BOGSLshsavwLQrI+CNkLTBLsERJE zJFfEGASsTmuO0kUbBzJYdn5Czzi6yrKUyeJ41G2dMf/3R27kyRjB7spgvv+ 3tsGVsNg6NBkO8U6Q1TOO9vf+zAENLY7eu8IzRFG8vr+N+oHwORWYkuu8hyR YpvLpRY4AJmniR9sBnPESKhyt+3tATDdez8n22WOUMRS/HQr/VBaXfiJbnGO 8BloV3gp2Q/vdt7Rim74Q1xOsvJMDuiFXvo11dWJP8SK8qdYPfNeUJ77qKhH P098/LGnWVulF0bKv+9dVJ0n3pF30p7q6IGT1qzrmgnzBP3J3YVPdvcAXUlm 6q93CwTWCZEWyO+Ca0k6MYe/LhCiB7rOyXh1QbZ/7+cP+QsEPePzzU93uuCO JYOb0p8FYveyFfMlri6o4DUxe3djkfg13HY590EnuJhTC5KOLhH08Ukqtw52 ACObwRvT2WUiN/+pRsJiG1zeZ4JVmFeI7CXn1YbWNkg8cWebRXyFYDW+bXko qw30X9i9yrqyQhwf9XcrtWmDgNHwF3QVK8TRJi+BpsVWkCz58zj28yrB2xA1 qEfXCna9G+kvc1YJ21gui5NjLVCzQj+n37xK5MN3pmc1LWAtJ2y9wrBGvOJN ASfvFsj5fMLylM0asR6fricn1gJatr6mk6fWibYSWl2Ps80Q4B0WUWy2Tpy+ axc1oNQM48lxgz6O60Tmz2aWu8LN4PGr4IZq9jpRWnr+It14E7QZjJh47N0g tFs3Lro5N8Gd/YcuyC1vEAWyG5GxPo3wbrBd0yZqkzjfHBX3ergO+vPOPLQr 3CTK2GWP9RXWwTFfHOD4c5MIOpsu4RBYB3NaiRPujFtE9aDgpOPZOriR9Mor 6sEWYXYC/NwKa+GYrXhPm9I2IR1ro3EitgbW6I/m7TSlQrw6Eh+no6sh1mah /os1FXrYUHouwqUajAZShkXtqVB6mKyVm0U1pOeKsUn5UaFuZT6eedlqMH/A dlO5kgo5nJkZFMqtgramAbqzMtTIYiak3qqjEtI/uxg4zlOjoVKxQr/DFVDL 6zLGSUWDJIy2S8d3VcDoB2fHCHYaxODtnPKApgJ2OZCTy6VokPKJvJC/9eXg eu0tE+tNGpQ7oM6A7pXDrd2OOLCWBhmYCoavRZQB19dnChnRtEj6Vn5t9aFS 2C/wrOpEJi1SHAhv0BYpBW2vpzfagBaJPtgqGWcpBQenJx4r3bSopx7OBQ6W wPjNx+Pq3HSITlKfPvBjCWCRh+E1r+jQ60671eEZDP9F3uEaMaZH+hYD40Uf ADxfBId6mtGjUiWqSqoHAKkGDVJHH9GjGz/lxJ+eBpjdOqzh6UaPEqzOrE8y A1hdZbU5UkiPtrn0jTk/FIMlX2arhygDOmqQ/GbMvwjMXbYDDk0zoJPti3+/ 1haAy3Vl0uAqA5Ir/fb2fHoBxCrfT3OnZ0S2Hal+0v4F8Hu4pWpgDyP6LKej q3ezAO4Qsatu5xnR8bw8V6OlfDBd1TPpz2FEDQ3UdSpS+XDDMmT3+zdMiEV3 mdk7Lhc2upgb/nxkQrrnhWjYvHMhSPeF47UQJnRt8EpG9MtcaJa6PHAwiwkV cmxYyennwsmxHRG9I0zIpJR9KWz5+78e5S2ueIoZCTmn3C/T+w6L113393Gw oIY647opthz4VL/So7OTBaU+Y44tW/sGB9TveWTuY0EjvdwxWaPfwHyX9sx7 xIIiX0/a9uBv0NVNm6Zow4IcBOOUtW2/QfElJ0XXn//0bGdv3fudDW7nbY8q hbIippjrG4OtWeBTJ2OVnMCKfq2RH/KUZkGozsAXie+sKLmkZd/V9CxIVz9F J9jCigydtzoOfsyCTmnhxr+MbMjmd84MRScLpGiK71Q+YUPUxWriniWZUJlJ /+nKGXY0cyj80tXyDGg6kF/acpkdldUeN5b/lgHd8dZLZ8zZUfJxBQ3+2AyY /dJhcvwNO5LloNze5ZoB/B8SJEjf2ZGqJ6czw9kMuGt2tmBajAM1ltTjI93p QMfnP+q0zoESP1YWXKBOB55ZRw4eRk4UpL8sZjKZBqLVFirRvJxo/ENg276W NDjuoOZSLcuJzt5wSuWNTIMXI78kuG9yIo+IXEZpzTSYzVa8G1nGiejWzV9L u6fCtMz4Y1NtLmTRocfkKpMCiwJ9zkl6XEg83DHDaEcKbNC1BC8acqHWyMq1 w1QpwDJQUOJykwvVvFmb0GhPhn2+XtxJdlwo8InI75vvksF0QyVjIZELie7+ 3JwwlAQdtc5zZE5uNBvRuJyUkgh+x8O0LvJzI68tsgA5OBEMM7JDJHZzo6Wx sVAb50RoCPh1slKGGw2T1y/4XE+EytsawYza3EgmJX2hkyMRclb+arg7cKOL rVxZ954lQADpqa/XBDfCCs19BefjwSjgw/jNOW5E8/4CSKB44GGOUldY4Ub2 h6muR8rFg+ds81gTHQ+aI3vdaWWNB5c8eTUeER5EP6HUxl0VB7bnpkb8jHnQ D8ZINIni4KK9qUpIGQ96ZmXNb6oRCwFhfAwrP3hQt1uBwppiLLRD5c8LTTyI T/wS5xfxWDCm2/+Mve8fj7+0cTHFwuWPC1mvl3kQ26hSVFBjDJh8JR+8J82L IuPoysRux8CtslhZZS9eVGRskJbxMRqsWKfEGkz40KMrgV5uzFEw9SKfjvU2 H9KIufrScCsSLMfdRnXu8SG3e0MyEguRcK9CKrHkCR86yu6YPtYbCaZO5ge/ efChsKq3goPpkXBlYYgILeZD52cNhv1MIkG7p/OapdgOtPX5aFBFdgTsTaoM YJjcgZRerEnLvA0Ho6+5eTVzO5C5y+yigV04uPsm9nqu7EDT+q+fvrYOh0V7 TzEBen60L5X6/ppJONToGafuE+FHY/ImnIbK4WA7+7vilDE/Cgh0ebW/+SvU H6Rfci/lRw9G7uXppn4B+1zNC5yfBVB2jWTRml8oKF5rmrsZIYCYUcyMqEso TG5f80yPE0A6RjOeF5+HgomO7Y/z2QJols1sqf9KKBxrjyf86gXQ4euNnC/2 hsLqArusEJUgUrSpD8LJn8FWvpOOdFcQ7bbZLDZoDIFHsVY5KvJCqL/urbe6 YjD0N+7051ARQkXLBRlj4sFwdq3myaiaEPotX64fKhAMMnrSBwNOCyGzsOJW 8c0gGPnzO2nprhA6ebWpJ6M6CC6p34zIDhVCq4u90Zm3g+B423kPRRZh9FLV spnxcyCw0Rw2lfstjNgSQ1/NSgVA3nPaC6NTwqhf/eD73XsCwHymUfPLvDD6 /FrngRFvAOBOCwkOqp0omaE7umvTH56khYzPCO9E44cy2DRa/aH72pZ1isFO lMubf/KVkz/Ef6+wly3ciS5GO8KLPj/QemjkL+O7C/Vo88hwpfqCYN7u/7TE 9yAl/dFDBbne4GPj6q3QsRdFUT4dT232AkOXcwfCckSQotOGWdyEB8hcJV+M fiWKjNiKM/2t3aF9lDnS96IYMmr2e2mzwxUaTH9r8OwloSASi1yWtAsM0cWt +ouR0OArPd1YURdYjLVIE5IkoWOaPqVhQi4gNDW1S/QACdWfCSgNZnaBO0/m V+RVSWhNVjSiYsIZ1t9tp5y9REJvnG5KTiY6g2SMkLCbFwlxfBAxOK/gDEd1 eprYfEmoQqHzVI2UM+hNhL7/FEBCh5VkkY6oMzw+ILIUGEZC/6Xf33uWxxkK v0k2xSaR0NQIg6HrIhkMK5VcyqtIaFuEtCc/jwx3LZbUTtWSkMVelezHmWSw Y/m+UNtAQkcrtncdSCJDmP6x260/Sei5A9e1tFAyjLcjteFfJJRZKaw95ESG dTuahbtjJFTUW7Hvux0Z2HeWJ0xMktClPfxVnx6TQfGmjsCfPyR0xf6U8jkz MmhRMzc8XSKh7MvUm0rXyHA5qoa8ukpClEG2F7suksFSy0PV4S8JCVP3xjDp k+H//qvo//+r/wP7XWdx "]]}, Annotation[#, "Charting`Private`Tag$4211#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.898192035744974*^9}, CellLabel->"Out[4]=",ExpressionUUID->"2e6b4832-feeb-46f0-ac22-0b945bf66557"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Animaci\[OAcute]n", "Subsection", CellChangeTimes->{{3.898192229785335*^9, 3.898192231543243*^9}},ExpressionUUID->"da922d42-93fc-4b70-a9ce-\ b282b65993b3"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"c", "=", "1"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Animate", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{ RowBox[{"fp", "[", RowBox[{"x", "+", RowBox[{"c", " ", "t"}]}], " ", "]"}], "+", RowBox[{"fm", "[", RowBox[{"x", "-", RowBox[{"c", " ", "t"}]}], " ", "]"}]}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "20"}], "}"}], ",", RowBox[{"PlotRange", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "}"}]}], ",", RowBox[{"Axes", "->", " ", RowBox[{"{", RowBox[{"True", ",", "False"}], "}"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"t", ",", RowBox[{"-", "25"}], ",", "25"}], "}"}]}], "]"}]}], "Input", CellChangeTimes->{{3.898178973693942*^9, 3.89817897918531*^9}, { 3.898179032473754*^9, 3.8981790330343733`*^9}, {3.8981790703170977`*^9, 3.898179071723257*^9}, {3.8981794463865957`*^9, 3.898179468000723*^9}, { 3.8981920043821383`*^9, 3.898192023632134*^9}, {3.898192069391204*^9, 3.898192133857958*^9}}, CellLabel->"In[15]:=",ExpressionUUID->"cf2a2431-90a5-4c83-a072-3a8bb305f782"], Cell[BoxData["1"], "Output", CellChangeTimes->{ 3.898178979956296*^9, 3.898179034211294*^9, {3.898179067188308*^9, 3.898179072260508*^9}, {3.8981794391495953`*^9, 3.898179468590567*^9}, 3.89819203740875*^9, {3.8981920705481167`*^9, 3.898192134749393*^9}}, CellLabel->"Out[15]=",ExpressionUUID->"40ae767d-9515-4926-9884-e0c00e809657"], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`t$$ = -21.17128849029541, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"sin t\[IAcute]tulo\"", Typeset`specs$$ = {{ Hold[$CellContext`t$$], -25, 25}}, Typeset`size$$ = { 468., {138., 144.66726011631175`}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`t$$ = -25}, "ControllerVariables" :> {}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Plot[$CellContext`fp[$CellContext`x + $CellContext`c $CellContext`t$$] + \ $CellContext`fm[$CellContext`x - $CellContext`c $CellContext`t$$], \ {$CellContext`x, 0, 20}, PlotRange -> {{0, 20}, {-1, 1}}, Axes -> {True, False}], "Specifications" :> {{$CellContext`t$$, -25, 25, AppearanceElements -> { "ProgressSlider", "PlayPauseButton", "FasterSlowerButtons", "DirectionButton"}}}, "Options" :> { ControlType -> Animator, AppearanceElements -> None, DefaultBaseStyle -> "Animate", DefaultLabelStyle -> "AnimateLabel", SynchronousUpdating -> True, ShrinkingDelay -> 10.}, "DefaultOptions" :> {}], ImageSizeCache->{827., {164.861328125, 172.138671875}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Animate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{ 3.898178979956296*^9, 3.898179034211294*^9, {3.898179067188308*^9, 3.898179072260508*^9}, {3.8981794391495953`*^9, 3.898179468590567*^9}, 3.89819203740875*^9, {3.8981920705481167`*^9, 3.8981921347656717`*^9}}, CellLabel->"Out[16]=",ExpressionUUID->"5f2282d1-439e-4191-9111-a278b56b1b11"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Cuerda con un extremo libre (Neumann)", "Section", CellChangeTimes->{{3.898192171421978*^9, 3.898192184160554*^9}},ExpressionUUID->"3ecbab6f-3c69-4080-9e75-\ a3c44ffbd2a9"], Cell[BoxData["Quit"], "Input", CellChangeTimes->{{3.8981919393750973`*^9, 3.8981919398631897`*^9}}, CellLabel->"In[17]:=",ExpressionUUID->"c01d6a4e-ebbe-4763-b976-8a59c89818e2"], Cell[CellGroupData[{ Cell["Modos que se mueven hacia la izquierda y hacia la derecha", "Subsection", CellChangeTimes->{{3.8981922124594803`*^9, 3.8981922250584927`*^9}},ExpressionUUID->"0b562953-4f64-4d2b-969d-\ e8ea6b7ddf98"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"fp", "[", "u_", "]"}], ":=", RowBox[{"1", "/", RowBox[{"(", RowBox[{"1", "+", RowBox[{"u", "^", "2"}]}], ")"}]}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"fp", "[", "u", "]"}], ",", RowBox[{"{", RowBox[{"u", ",", RowBox[{"-", "10"}], ",", "10"}], "}"}], ",", RowBox[{"PlotRange", "->", "All"}]}], "]"}]}], "Input", CellChangeTimes->{{3.898178481189189*^9, 3.898178500370598*^9}, { 3.898191290942535*^9, 3.898191292239201*^9}, {3.8981913532387238`*^9, 3.898191356574024*^9}, {3.898191780898335*^9, 3.8981917842249517`*^9}, { 3.8981919827823353`*^9, 3.898191984009453*^9}}, CellLabel->"In[1]:=",ExpressionUUID->"f6a80da5-3470-4e41-b056-29dc2551d4f0"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJw1WWc413/Utvcmq4UfQkJIA52PhJQkSaWNJMm/VFJE40eUyB5R9t4k+/ux Za/snWx+skd4eq7reV6d677uc785L865z3WLmv5neIeGioqqg5qK6n/ry7Gz 89vbJEzqHnq1qk2GUQf+pZ6/JOwg90Xw1Fky6HMNrHxfI2Eys2t4yAUyiBx9 uPnfAgnfOSTiduoWGUrf+zANjpJw/8PyiarnZGCS69iD6//xhQn+xilk8Hty 68yrzyQcrmTUivldIIn6cTTVYRJeM8mjObLgAvR3dBSFrothLSnF5WVqN+Dt rLCO9BbFmV5n7hkpvQfDshAz6RoRXPa5aJ91nAc4UNStP/3aiw90yHOa5XlB 7rMQq7Rze3Bh1aucNVdv0Pe5KLIVvAs3Pbrg2h3tCzphRfqnpoUxzwIn/avd ATD3sfcv3agwfn1g+JPfvgAIcdpILBkQxmMPvJfSDgbA9M2jjKqtwvjuu4Om G1oB4CP2jTiQL4wLaWPsftsEQH9csgKvmzBmU2zhYysNALvMzzz9JGF8ZOP2 WNODQIitet7++KoQrg6/Y457gyBY0U4zwUgIl7Z6L5ZNBIFHmG16/1khfMv2 TkLzchDYPr7/XhcJ4fHY8URW7mBQ33v9+F4JIdwUFnRoQysY2uxQbM2sIPZ8 /LCzOSMYaCQZ7UTfCOJ2C7mcJO8QuEH229EYL4CrbOP0vj8JhQZYZrSPFMAq JleIT29DATYurYuECmBO7f25T31CQcR254CtlwCuViPfN00PheGbkfH8dgJ4 d0TSvurpULBQTVe9oSmAT2UZhTXeDQOb+drbM338+AGDJdW+u1/A6RZtKisv P47S+ii0rh0O6Y06nm1s/LjwKH9437lwGD7uYRPGwI93pjJcq74cDtq7d8jL r+/AIk9ofbOswoGjWzLdcGgHnqT70zHkGQ5fLpzODE7bgefddmdHd4YDoe2d s09vB7buFInZfBQBVAf2EpoufDiTr/XNfFEkOPJr3HBx4sMtPIwS7T8iYWXb dLPyGR/OuEe7XP4zEmZbYlVPW/HhPpr2q+UzkdBjL5drcI4Pn47ixWf2REFO uXrGdSE+/CiZy9H9dRQ8uHYt6lkKLxbm+L4qfT4axrWcTuTF8mLqcx/+et2I BnP58KH1r7zYlzaan9Y6GkxoRvY6+fBiD2HaZq530XAq/n4o+Rkvvhy9qlpX FA3iiy/8vTV48er2iELLgRjo/hD8LuknDxaf80sJEYyF1gqR5FuNPPhxSFlH iWQs1G3HNe34wYOpXkdaLSvHQvHjHKFXhTx47dNZdrfzsRB5tTXJKIoHKzPT iJz7EAtW+9mbNh/yYCte3y8O1HGwUfNK0ICNBwu+TCutW42DRTomdXoGHqy1 wWFWxhQPs8e9budvc2OnvofffwjGw2BmWKL4AjcuH7Gqpz8aD+Uh+WprXdy4 65b/jPqLePCwWrwVGfePTzSxwNvxsIvFMmHxBDc+VkL2iRdIhBvFdR5iatz4 RSSLstb+RIiwPfjQ4BA3FnGS8Fs5ngiSPesqyfu48dLDCI4vFokgn/yx3IyN Gyvx1dos5STCCf2sgZafXBgJ+yRNXk2Cez5bOzIsufCSSg5p+HsyJGubrfXf 5sKmxuiMfUMyzK5X9bJd5cKVKzohUr+TwdbMO8ryLBfeGLY+28mTAo7K4gdF FLmwWddrG/v/UmBPim/QnhVOfHrErXrgQCrcPyRD37OLE+dilWRHnAa29Hlx dpyceNf2O1f57jR48VPnNA8NJy47XTxLtZgG75/e8dId48DeW+d4qfjSIfFb uFBuBgf2vyRfmH8qHSYOCcj5a3NgE9/0F0rf0uGuCt2lcw/Z8UaV+8ZESAbY MPiuTZr+w8M8ZX0JGWDXLhrqepEdB2XOSIzkZoCrHQwVHWPH7EGKKtIdGRCb 8+K+LD07FuxV7Q7ky4TfKn+cmUPYcF91VpmYbyaYHe6PLytjxbfp5Bi6vmaB RfxhY+3vrNhfPBUU0rPASsib9kciK7454nH5M86ChxuaNxq8WTE9T31MylAW OBIJvF03WfGk8xnpSvFs8NN56jS7wYLZ6R7Z/UrNhspLbEZCyiw46OF/gSWt 3+BH9R3q0H0s2Jb54P720W9Qd5RI3bOTBbdUxtHTrn+Dlp22zOI0LHja30Au ViQHBgY6iuWamDGd774i/v9yYPVulPRJa2ZcErLjfAXXd5CxP7ZtE82EncUF Nz9a5gLu05f5FcCEJ66vXBh9lQvGmmYXL7kz4avHavtuB+fCGw6PJLBhwkde snwqq8mFrui+S1xHmPBW90TOEfk8cGt+lZ5Ry4hvdH5Qk9zOg1GZqtuL8wxY eKD0MVdRATh+6vGw/M2ApTSmra90FwDPMuV7bwcDNvJgWG1YKYDjJYIcFYUM uFXefo+GUiH4X7LK93dlwD8zlwzOJBfCSTI772FhBvyalcKvE1cEEX0Xyp9r 0OOUnsz378oIUBxRXG9Tpsf+FgUNeSMElE9yKyhI0WODncl9HLQYRlcaP49y 0OPkWxy0xeIYZHj0Hl/opcMph7et9O9hyNQ+KXbgGR2uHpIeNF3BUJ6m/Gow mRbfUGFUqpUqhYs5vDmq4bS4dPdTtmG1UhgtnJ8K8KXFDOxDjwTPlwJTTfql sy9ocSKy6xx5XgpnR2Tl83VosZWE8xpNfSm0C0r0+w7T4AfcDu8/Pi+Dsdc7 1HQEaXBnndiusplyYHmZRvFlocGtHPkm15kqQM5eN2rwLzVmvXpcYB+pAuxs XrK8GKLGmjgw6fSVCmC4+rszOZEat7PcHOmrqgBx5W9PedSpcYxBAod/aiWc kj8nfVOeGqsulx8xqasEa5mJ3iRRajzUoTpwcbISskV2n9RioMarnJOu85JV oMnuwmPfSIVlpLJ+NERWgemoUVrfbSoskPnx5NuYanAdmjWVMaLCN+osvaYq qyGx143/mTYV7sqJf+YzXg3zLYUvufZT4Ws+B42+yP4AGmfdINfxbWLzxNyf ou8/AA5ONJ9n3yYO/tnT8KW7BvL9pbTGjTcJTdVlKY1L9cB0dcyMWm2TOLnP sH3oVT0Yi8S+ERbdJKTNB+61JNbDfCIJ6039JYaDLzPFbteDNN6jmuH8l0h4 8KBdJqUBgib5Dr6I3yBaVm0CJdmaYDSt9Zzvxw2i6JG/XASpCZSf+tgk224Q J8ZQkK5qEzRucyb3q20QXssiTyXuNwHDDtZ9ms3rhPePXEe++iZ4CtS72dbX iFvF7x/uD2mGUjqsKjGwRrx3hZ9Z2c3AVeNkcrx8jYD9yokPG5sh2ehv4EPP NWLkVMgdd/oWGLm3wvNTbI3YUhDy1HzSAoZ+M0xfzqwSd2X9FNC1VlCY6FqU D1smTK73SsZe+QlP5g5IC5CXiYIHGT2Xnv+E3JXX17eslomuWOHLJ4N/ggaD TGXdkWViuSBQu7HrJxiSXgTea1siWihcl3Kvt8PT68LHoliXiAalRUnFRx2Q 32zizP9igajhCh3+9KMLtjpTszZvLRBNFzUMTf90wYlBmvERnQXCeIZd0EGo G2pnEw2ydiwQl2/5s5GtuqGXdUPUIGOe6BCK2rPJ2QPbWp/L3cf/EJrOrbta LXvhZH4P86bxHCH65kpJ/4UBSE2MOVqlOkdcPZPaZ+A+AIKf/7vnLTJHiLXe fbaXGID2FQafM20UgpqQJE3sGAQJB2OusPVZgv5MzVIleRBKXy+xIZ0Z4o/3 Wqbo/SH466nE4Do4QeyhSkScV37Bw4S0VW7eX8QZlbeUW6FjoMBh8/bE4DBx k8Fi4lrRGPyxleV4nDJMRMpdqLzaPwa2agmkNp1h4u3QQ/trIuPwtDFSP8Bx iBAQfy6BosdhYXK/7qG6AeJAl1GidOIEPMmOvxFgMUDwSE97BdVMwPJLiScr VAOErszpv5TJCVjl2vs171A/0cHwpdJg/yT8VeFZUv/aS5B+du+LSpwEhrer 4dq2XQQ5W2F/ccQUvNN7mhPH1kWMCyR1lhJTwMQ/X8sU10nwaJonePZNAUvC 1HJNTwexPVEfbys4DZyN/XrntNqJntEYAdkP0/Ap6Kpp+sBP4j/F7UXpuGng Me18xv3iJ/G9l9mvt3Qa+JaaI1tT24jbPm9KjdemQXBnxeolwVai/e+k83XT GQge0eDIy2whpCzf82GHGRBOLSYJn20htrF/ZbnfDOzWyNXvfd1MsJ+OP51U MQOaDca6Je2NxOGt5K1ksVnQvm3w5C1rI0Hj0hM2eGQWTi3qftVCDURkRLJe tP4s6AmrL/1IqCOi1aWUWu1nwdiCFNHi+IMI/VIu5Vc1C+8fPXbz+VZNhF/f +yqjaxaKHMv+M5ytIm7scrx/YWoWxH3NjrfcrCS+umW172anwOUvWRI+QRXE 60PePSd2U+BDAi27YXM54el73vm3LAXmiaie5hNlhPObVFLYaQpI1i6UejuU Eqf3XKVOu0yBK+2aieezS4gbHB1HjlhQAE//sm+WwMQtPcOVRGcKjFPuYrGi YiLuiAL2/kCBcwxMXpFyRYTM6Qt3JwMosEfplGwkdz7x/hNYTydRwEV3fF30 bS5heOWIo+83yr//w+1HxGIOAR5PGuOKKXDBTipI1OIbMfA7zVyqigL5HtUW ER1ZhPWEymm+RgqIRlkeEtXNJIR1pb9YtVPALY+JLiI/nZBXy/WU6aNA/9fz MRqXUwmmqFsmF35RIKXO+4SGahKBekQMRsYp4LDWPID2xBOiUomNvTMU0JXk eYmoY4hx/4+6avMUELhgKIxGIghDZA40yxSo3Rb/z9kzjAgYm9eUW6OA5ZWY BCejQIKj5NQGsUEBuiyJkZfC3sTdx13C3zcpgIT01NexCxGo4HOPd5sCc0HB 5n+CbYmw4Qmi7R92pPGr0D5yBbRNpxk3/mG5ELMqPhVnOJuJ1F3/4X6hjFlW Tg9QV5V5YLf1bx5KnYWuGn6QwuiSU/uXAjldl968cwiBLJoiXdd1CrDjKVK5 STioqGPL2BUKgG+Sa/mzKHisMW0hu0iBRxb3J8r9/vlop+V4wTkKRB7dr1eR kQD9HY3R96co0MY2lVrxz3eG3ns7JDFKAYbBRO7KqTTI8uJa0RmkQOiVQ8fM yBlgoIM8W7oocEjT//4vnizw2Xp6q7KFAg2yS6FmEdlATDkcFq+lABXVt22z 4u9AW9JwXzSfAsETfAdH9PLgeWh0cmk6BRRbn5ia9+SDPdGR2xxLAfNY5Qrz 1SLwVfkTqe5NgU0vv+URVwK4lp/0hbr8m7/aum/mewxOyrOfbZ7/65c0qVAU KgVx7oVVm5sUUNjJ0m87WAq6/Wxm4ef/6TnzlzPjyiBi18sxXU0KBKwJSSmp VEBUauptVgkKVNV1vVe6UA3xL8UDng7PgqV9d9XV/f/uKOnLAkvjLDCJ99CR aWugJ03tIlfBLJx26HVqy6oF6mdcyU+8Z6FOesD2KV8jtH04UT9++J9e0zal Z7IF5liP51c8mIEjwfO1FONWcHde2vIwnAEmiu0kbVkrsLq81J9VmYGEkMf7 ZD+3wfkDf06835qGyT9PIhzPtMPvPaIkO/dpsA5/5r87uQtclpMKvD5Ngdry StZBwW6gyrzXq/1wCtj07Fu0yN1wLobxXPm5KUhZsee0udYDgj7sObs4pmBW /4V7MVsfjJOtZz64TUKuU3FxmsogiHWkyXnaTcCxAyWZBoG/4Mm6JMdX7TE4 1NYeUPzjF7h26vevSPzb/w7TL2T//oLfEeFuV+jHQPKHgCbT7RH4nKF0XK18 FHjv2LQSMr+BqyJX6+uJUZgO3bkoVzwKx8b5tctP/IavbHaH2H9PgGu6ILOp 8S8Iyfog5CAwCewREhBz5BcEmERsjutOQsHGkRyWnb/AI76uojx1Eo5H2dEd HxwG+5MkY0f7KeC+t/e2gfUwGDo22U2xzkDlvIvD3Q9DQGO3o9dcaA6M5PX9 b9QPgMmtxJZc5TlIscvlUgscgMzT8IPNYA5GQpW77W4PgOneeznZrnOgiKX4 6Vb6obS68BPd4hz4DLQrvJDsh7c7zbWiG/7A5SRrz+SAXuilX1NdnfgDK8qf YvUsekF57qOiHv08fPyxp1lbpRdGyr/vXVSdh7fknbSnOnrgpA3rumbCPNCf 3F34eHcP0JVkpv56uwBYJ0RaIL8LriXpxBz+ugCiB7rOyXh1QbZ/7+cP+QtA z/hs85N5F5hbMbgr/VmA3cvWzJe4uqCC18Ts7Y1F+DXcdjn3fie4WlALko4u AX18ksqtgx3AyGbw2nR2GXLzn2gkLLbB5X0mWIV5BbKXXFYbWtsg8YT5Nov4 CrAa37Y6lNUG+s/tX2ZdWYHjo/7upbZtEDAa/pyuYgWONnkJNC22gmTJn0ex n1eBtyFqUI+uFex7N9Jf5KyCXSyX5cmxFqhZoZ/Tb16FfOI709OaFrCRE7ZZ YViDl7wphLN3C+R8PmF1ynYN1uPT9eTEWkDLztd08tQ6tJXQ6nqcbYYA77CI YrN1OH3HPmpAqRnGk+MGfZzWIfNnM8sd4Wbw+FVwQzV7HUpLz1+kG2+CNoMR E4+9G6DdunHR3aUJzPcfuiC3vAEFshuRsT6N8HawXdM2ahPON0fFvRqug/68 Mw/sCzehjF32WF9hHRzzxQFOPzch6Gy6hGNgHcxpJU68Z9yC6kHBSaezdXAj 6aVX1P0tMDtB+LkX1sIxO/GeNqVtkI611TgRWwNr9EfzdppSIV4diY/T0dUQ a7tQ/8WGCj1oKD0X4VoNRgMpw6IOVCg9TNba3bIa0nPF2KT8qFC3Mh/PvGw1 WNxnu6lcSYUcz8wMCuVWQVvTAN1ZGWpkORNSb91RCemfXQ2c5qnRUKlYod/h CqjldR3jpKJBEkbbpeO7KmD0g4tTBDsNYvB2SblPUwG7HMnJ5VI0SPlEXsjf +nJwu/aGifUmDcodUGdAd8vh1m4nHFhLgwxMBcPXIsqA6+tThYxoWiR9K7+2 +lAp7Bd4WnUikxYpDoQ3aIuUgrbXkxttBC0Svb9VMs5SCo7Ojz1WumlRTz1x LnCwBMZvPhpX56ZDdJL69IEfSwCLPAiveUmHXnXarw7PYPgv0pxrxJge6VsO jBd9IMDzeXCopxk9KlWiqqS6T0CqQYPU0Yf06MZPOfEnpwmY3Tqs4elOjxKs z6xPMhNgfZXV9kghPdrm0jfm/FAMVnyZrR6iDOioQfLrMf8isHDdDjg0zYBO ti/+/VpbAK7XlUmDqwxIrvTbm/PpBRCrfC/tPT0jsutI9ZP2L4Dfwy1VA3sY 0Wc5HV29mwVgDrGr7ucZ0fG8PDejpXwwXdUz6c9hRA0N1HUqUvlwwypk97vX TIhFd5nZOy4XNrqYG/58ZEK654Vo2LxzIUj3udO1ECZ0bfBKRvSLXGiWujxw MIsJFXJsWMvp58LJsR0RvSNMyKSUfSls+TtIm3uLK55iRkIuKffK9L7D4nW3 /X0cLKihzrhuii0HPtWv9OjsZEGpT5ljy9a+wQH1ux6Z+1jQSC93TNboN7DY pT3zDrGgyFeTdj34G3R106Yp2rIgR8E4ZW27b1B8yVnR7ee/frazt+7+zgb3 83ZHlUJZEVPM9Y3B1n93uE7GOjmBFf1aIz/gKc2CUJ2BLxLfWVFyScu+q+lZ kK5+ik6whRUZumx1HPyYBZ3Swo1/GdmQ7e+cGYpOFkjRFJtXPmZD1MVq4p4l mVCZSf/pyhl2NHMo/NLV8gxoOpBf2nKZHZXVHjeW/5YB3fE2S2cs2FHycQUN /tgMmP3SYXL8NTuS5aDc3uWWAfwfEiRI39mRqienC8PZDLhjdrZgWowDNZbU 4yPd6UDH5z/qvM6BEj9WFlygTgeeWScOHkZOFKS/LGYymQai1ZYq0bycaPxD YNu+ljQ47qjmWi3Lic7ecE7ljUyD5yO/JLhvciKPiFxGac00mM1WvBNZxono 1i1eSb9PhWmZ8Uem2lzIskOPyU0mBRYF+lyS9LiQeLhThtGOFNigawleNORC rZGVa4epUoBloKDE9SYXqnm9NqHRngz7fL24k+y5UOBjkd833yaD6YZKxkIi FxLd/bk5YSgJOmpd5sic3Gg2onE5KSUR/I6HaV3k50ZeW2QBcnAiGGZkh0js 5kZLY2Ohti6J0BDw62SlDDcaJq9f8LmeCJW3NYIZtbmRTEr6QidHIuSs/NV4 78iNLrZyZd19mgABpCe+XhPcCCs09xWcjwejgA/jN+e4Ec27C4QEigce5ih1 hRVu5HCY6nqkXDx4zjaPNdHxoDmyl3krazy45smr8YjwIPoJpTbuqjiwOzc1 4mfMg34wRqJJFAcXHUxVQsp40FNrG35TjVgICONjWPnBg7rdCxTWFGOhnaj8 eaGJB/GJX+L8Ih4LxnT7n7L3/ePxlzYupli4/HEh69UyD2IbVYoKaowBk6/k g3eleVFkHF2Z2O0YuFUWK6vsxYuKjA3SMj5GgzXrlFiDCR96eCXQy505Cqae 59Ox3uZDGjFXXxhuRYLVuPuozl0+5H53SEZiIRLuVkglljzmQ0fZndLHeiPB 1Nni4DcPPhRW9UZwMD0SriwMQWgxHzo/azDsZxIJ2j2d16zEdqCtz0eDKrIj YG9SZQDD5A6k9HxNWuZNOBh9zc2rmduBLFxnFw3sw+G9b2Kv58oONK3/6skr m3BYdPAUE6DnR/tSqe+t/fPRNXrGqftE+NGYvAmnoXI42M3+rjhlzI8CAl1f 7m/+CvUH6Zfel/Kj+yN383RTv4BDruYFzs8CKLtGsmjNLxQUrzXN3YwQQMwo ZkbUNRQmt695pscJIB2jGc+Lz0LBRMfux/lsATTLZrbUfyUUjrXHg1+9ADp8 vZHz+d5QWF1glxWiEkSKtvVBOPkz2Ml30pHuCKLdtpvFBo0h8DDWOkdFXgj1 173xVlcMhv7Gnf4cKkKoaLkgY0w8GM6u1TweVRNCv+XL9UMFgkFGT/pgwGkh ZBZW3Cq+GQQjf34nLd0RQievNvVkVAfBJfWbEdmhQmh1sTc683YQHG8776HI IoxeqFo1M34OBDaaw6Zyv4URW2Loy1mpAMh7RnthdEoY9asffLd7TwBYzDRq fpkXRp9f6dw34g0A3GkpwUG1EyUzdEd3bfrD47SQ8RnhnWj8UAabRqs/dF/b skkx2IlyefNPvnT2h/jvFQ6yhTvRxWgn4nmfH2g9MPKX8d2FerR5ZLhSfUEw b/d/WuJ7kJL+6KGCXG/wsXXzVujYi6Ion46nNnuBoeu5A2E5IkjRecMsbsID ZK6SL0a/FEVGbMWZ/jbvoX2UOdL3ohgyavZ7YbvDDRpMf2vw7CWhIBKLXJa0 KwzRxa36i5HQ4Es93VhRV1iMtUwTkiShY5o+pWFCriA0NbVL9AAJ1Z8JKA1m dgXzx/Mr8qoktCYrGlEx4QLrb7dTzl4iodfONyUnE11AMkZI2N2LhDg+iBic V3CBozo9TWy+JFSh0HmqRsoF9CZC330KIKHDSrJIR9QFHh0QWQoMI6H/0u/t PcvjAoXfJJtik0hoaoTB0G2RDIaVSq7lVSS0LULak59HhjuWS2qnaknIcq9K 9qNMMtizfF+obSChoxXbuw4kkSFM/9jt1p8k9MyR61paKBnG25Ha8C8SyqwU 1h5yJsO6Pc3CnTESKuqt2PfdngzsO8sTJiZJ6NIe/qpPj8igeFNH4M8fErri cEr5nBkZtKiZG54skVD2ZepNpWtkuBxVQ15dJSHKINvzXRfJYKXloer4l4SE qXtjmPTJ8H/5Kvr/fPV/AF0he+I= "]]}, Annotation[#, "Charting`Private`Tag$1930#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.898192034299303*^9, 3.89819226647221*^9}, CellLabel->"Out[2]=",ExpressionUUID->"290b01d4-18e2-45f4-8d41-2dbdbca178c9"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"fm", "[", "u_", "]"}], ":=", RowBox[{"fp", "[", RowBox[{"-", "u"}], "]"}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"fm", "[", "u", "]"}], ",", RowBox[{"{", RowBox[{"u", ",", RowBox[{"-", "10"}], ",", "10"}], "}"}], ",", RowBox[{"PlotRange", "->", "All"}]}], "]"}]}], "Input", CellChangeTimes->{{3.898178481189189*^9, 3.898178500370598*^9}, { 3.898178919640772*^9, 3.89817892694945*^9}, {3.898179002261174*^9, 3.898179008205229*^9}, {3.8981914243731728`*^9, 3.898191463341125*^9}, { 3.898191509613262*^9, 3.8981915263970737`*^9}, {3.898191556827965*^9, 3.898191571387702*^9}, {3.898191965103423*^9, 3.89819199225441*^9}, 3.898192257827187*^9}, CellLabel->"In[3]:=",ExpressionUUID->"3800b10b-2c97-436f-a271-4ff3d597907a"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJw1WWc413/Utvcmq4UfQkJIA52PhJQkSaWNJMm/VFJE40eUyB5R9t4k+/ux Za/snWx+skd4eq7reV6d677uc785L865z3WLmv5neIeGioqqg5qK6n/ry7Gz 89vbJEzqHnq1qk2GUQf+pZ6/JOwg90Xw1Fky6HMNrHxfI2Eys2t4yAUyiBx9 uPnfAgnfOSTiduoWGUrf+zANjpJw/8PyiarnZGCS69iD6//xhQn+xilk8Hty 68yrzyQcrmTUivldIIn6cTTVYRJeM8mjObLgAvR3dBSFrothLSnF5WVqN+Dt rLCO9BbFmV5n7hkpvQfDshAz6RoRXPa5aJ91nAc4UNStP/3aiw90yHOa5XlB 7rMQq7Rze3Bh1aucNVdv0Pe5KLIVvAs3Pbrg2h3tCzphRfqnpoUxzwIn/avd ATD3sfcv3agwfn1g+JPfvgAIcdpILBkQxmMPvJfSDgbA9M2jjKqtwvjuu4Om G1oB4CP2jTiQL4wLaWPsftsEQH9csgKvmzBmU2zhYysNALvMzzz9JGF8ZOP2 WNODQIitet7++KoQrg6/Y457gyBY0U4zwUgIl7Z6L5ZNBIFHmG16/1khfMv2 TkLzchDYPr7/XhcJ4fHY8URW7mBQ33v9+F4JIdwUFnRoQysY2uxQbM2sIPZ8 /LCzOSMYaCQZ7UTfCOJ2C7mcJO8QuEH229EYL4CrbOP0vj8JhQZYZrSPFMAq JleIT29DATYurYuECmBO7f25T31CQcR254CtlwCuViPfN00PheGbkfH8dgJ4 d0TSvurpULBQTVe9oSmAT2UZhTXeDQOb+drbM338+AGDJdW+u1/A6RZtKisv P47S+ii0rh0O6Y06nm1s/LjwKH9437lwGD7uYRPGwI93pjJcq74cDtq7d8jL r+/AIk9ofbOswoGjWzLdcGgHnqT70zHkGQ5fLpzODE7bgefddmdHd4YDoe2d s09vB7buFInZfBQBVAf2EpoufDiTr/XNfFEkOPJr3HBx4sMtPIwS7T8iYWXb dLPyGR/OuEe7XP4zEmZbYlVPW/HhPpr2q+UzkdBjL5drcI4Pn47ixWf2REFO uXrGdSE+/CiZy9H9dRQ8uHYt6lkKLxbm+L4qfT4axrWcTuTF8mLqcx/+et2I BnP58KH1r7zYlzaan9Y6GkxoRvY6+fBiD2HaZq530XAq/n4o+Rkvvhy9qlpX FA3iiy/8vTV48er2iELLgRjo/hD8LuknDxaf80sJEYyF1gqR5FuNPPhxSFlH iWQs1G3HNe34wYOpXkdaLSvHQvHjHKFXhTx47dNZdrfzsRB5tTXJKIoHKzPT iJz7EAtW+9mbNh/yYCte3y8O1HGwUfNK0ICNBwu+TCutW42DRTomdXoGHqy1 wWFWxhQPs8e9budvc2OnvofffwjGw2BmWKL4AjcuH7Gqpz8aD+Uh+WprXdy4 65b/jPqLePCwWrwVGfePTzSxwNvxsIvFMmHxBDc+VkL2iRdIhBvFdR5iatz4 RSSLstb+RIiwPfjQ4BA3FnGS8Fs5ngiSPesqyfu48dLDCI4vFokgn/yx3IyN Gyvx1dos5STCCf2sgZafXBgJ+yRNXk2Cez5bOzIsufCSSg5p+HsyJGubrfXf 5sKmxuiMfUMyzK5X9bJd5cKVKzohUr+TwdbMO8ryLBfeGLY+28mTAo7K4gdF FLmwWddrG/v/UmBPim/QnhVOfHrErXrgQCrcPyRD37OLE+dilWRHnAa29Hlx dpyceNf2O1f57jR48VPnNA8NJy47XTxLtZgG75/e8dId48DeW+d4qfjSIfFb uFBuBgf2vyRfmH8qHSYOCcj5a3NgE9/0F0rf0uGuCt2lcw/Z8UaV+8ZESAbY MPiuTZr+w8M8ZX0JGWDXLhrqepEdB2XOSIzkZoCrHQwVHWPH7EGKKtIdGRCb 8+K+LD07FuxV7Q7ky4TfKn+cmUPYcF91VpmYbyaYHe6PLytjxbfp5Bi6vmaB RfxhY+3vrNhfPBUU0rPASsib9kciK7454nH5M86ChxuaNxq8WTE9T31MylAW OBIJvF03WfGk8xnpSvFs8NN56jS7wYLZ6R7Z/UrNhspLbEZCyiw46OF/gSWt 3+BH9R3q0H0s2Jb54P720W9Qd5RI3bOTBbdUxtHTrn+Dlp22zOI0LHja30Au ViQHBgY6iuWamDGd774i/v9yYPVulPRJa2ZcErLjfAXXd5CxP7ZtE82EncUF Nz9a5gLu05f5FcCEJ66vXBh9lQvGmmYXL7kz4avHavtuB+fCGw6PJLBhwkde snwqq8mFrui+S1xHmPBW90TOEfk8cGt+lZ5Ry4hvdH5Qk9zOg1GZqtuL8wxY eKD0MVdRATh+6vGw/M2ApTSmra90FwDPMuV7bwcDNvJgWG1YKYDjJYIcFYUM uFXefo+GUiH4X7LK93dlwD8zlwzOJBfCSTI772FhBvyalcKvE1cEEX0Xyp9r 0OOUnsz378oIUBxRXG9Tpsf+FgUNeSMElE9yKyhI0WODncl9HLQYRlcaP49y 0OPkWxy0xeIYZHj0Hl/opcMph7et9O9hyNQ+KXbgGR2uHpIeNF3BUJ6m/Gow mRbfUGFUqpUqhYs5vDmq4bS4dPdTtmG1UhgtnJ8K8KXFDOxDjwTPlwJTTfql sy9ocSKy6xx5XgpnR2Tl83VosZWE8xpNfSm0C0r0+w7T4AfcDu8/Pi+Dsdc7 1HQEaXBnndiusplyYHmZRvFlocGtHPkm15kqQM5eN2rwLzVmvXpcYB+pAuxs XrK8GKLGmjgw6fSVCmC4+rszOZEat7PcHOmrqgBx5W9PedSpcYxBAod/aiWc kj8nfVOeGqsulx8xqasEa5mJ3iRRajzUoTpwcbISskV2n9RioMarnJOu85JV oMnuwmPfSIVlpLJ+NERWgemoUVrfbSoskPnx5NuYanAdmjWVMaLCN+osvaYq qyGx143/mTYV7sqJf+YzXg3zLYUvufZT4Ws+B42+yP4AGmfdINfxbWLzxNyf ou8/AA5ONJ9n3yYO/tnT8KW7BvL9pbTGjTcJTdVlKY1L9cB0dcyMWm2TOLnP sH3oVT0Yi8S+ERbdJKTNB+61JNbDfCIJ6039JYaDLzPFbteDNN6jmuH8l0h4 8KBdJqUBgib5Dr6I3yBaVm0CJdmaYDSt9Zzvxw2i6JG/XASpCZSf+tgk224Q J8ZQkK5qEzRucyb3q20QXssiTyXuNwHDDtZ9ms3rhPePXEe++iZ4CtS72dbX iFvF7x/uD2mGUjqsKjGwRrx3hZ9Z2c3AVeNkcrx8jYD9yokPG5sh2ehv4EPP NWLkVMgdd/oWGLm3wvNTbI3YUhDy1HzSAoZ+M0xfzqwSd2X9FNC1VlCY6FqU D1smTK73SsZe+QlP5g5IC5CXiYIHGT2Xnv+E3JXX17eslomuWOHLJ4N/ggaD TGXdkWViuSBQu7HrJxiSXgTea1siWihcl3Kvt8PT68LHoliXiAalRUnFRx2Q 32zizP9igajhCh3+9KMLtjpTszZvLRBNFzUMTf90wYlBmvERnQXCeIZd0EGo G2pnEw2ydiwQl2/5s5GtuqGXdUPUIGOe6BCK2rPJ2QPbWp/L3cf/EJrOrbta LXvhZH4P86bxHCH65kpJ/4UBSE2MOVqlOkdcPZPaZ+A+AIKf/7vnLTJHiLXe fbaXGID2FQafM20UgpqQJE3sGAQJB2OusPVZgv5MzVIleRBKXy+xIZ0Z4o/3 Wqbo/SH466nE4Do4QeyhSkScV37Bw4S0VW7eX8QZlbeUW6FjoMBh8/bE4DBx k8Fi4lrRGPyxleV4nDJMRMpdqLzaPwa2agmkNp1h4u3QQ/trIuPwtDFSP8Bx iBAQfy6BosdhYXK/7qG6AeJAl1GidOIEPMmOvxFgMUDwSE97BdVMwPJLiScr VAOErszpv5TJCVjl2vs171A/0cHwpdJg/yT8VeFZUv/aS5B+du+LSpwEhrer 4dq2XQQ5W2F/ccQUvNN7mhPH1kWMCyR1lhJTwMQ/X8sU10nwaJonePZNAUvC 1HJNTwexPVEfbys4DZyN/XrntNqJntEYAdkP0/Ap6Kpp+sBP4j/F7UXpuGng Me18xv3iJ/G9l9mvt3Qa+JaaI1tT24jbPm9KjdemQXBnxeolwVai/e+k83XT GQge0eDIy2whpCzf82GHGRBOLSYJn20htrF/ZbnfDOzWyNXvfd1MsJ+OP51U MQOaDca6Je2NxOGt5K1ksVnQvm3w5C1rI0Hj0hM2eGQWTi3qftVCDURkRLJe tP4s6AmrL/1IqCOi1aWUWu1nwdiCFNHi+IMI/VIu5Vc1C+8fPXbz+VZNhF/f +yqjaxaKHMv+M5ytIm7scrx/YWoWxH3NjrfcrCS+umW172anwOUvWRI+QRXE 60PePSd2U+BDAi27YXM54el73vm3LAXmiaie5hNlhPObVFLYaQpI1i6UejuU Eqf3XKVOu0yBK+2aieezS4gbHB1HjlhQAE//sm+WwMQtPcOVRGcKjFPuYrGi YiLuiAL2/kCBcwxMXpFyRYTM6Qt3JwMosEfplGwkdz7x/hNYTydRwEV3fF30 bS5heOWIo+83yr//w+1HxGIOAR5PGuOKKXDBTipI1OIbMfA7zVyqigL5HtUW ER1ZhPWEymm+RgqIRlkeEtXNJIR1pb9YtVPALY+JLiI/nZBXy/WU6aNA/9fz MRqXUwmmqFsmF35RIKXO+4SGahKBekQMRsYp4LDWPID2xBOiUomNvTMU0JXk eYmoY4hx/4+6avMUELhgKIxGIghDZA40yxSo3Rb/z9kzjAgYm9eUW6OA5ZWY BCejQIKj5NQGsUEBuiyJkZfC3sTdx13C3zcpgIT01NexCxGo4HOPd5sCc0HB 5n+CbYmw4Qmi7R92pPGr0D5yBbRNpxk3/mG5ELMqPhVnOJuJ1F3/4X6hjFlW Tg9QV5V5YLf1bx5KnYWuGn6QwuiSU/uXAjldl968cwiBLJoiXdd1CrDjKVK5 STioqGPL2BUKgG+Sa/mzKHisMW0hu0iBRxb3J8r9/vlop+V4wTkKRB7dr1eR kQD9HY3R96co0MY2lVrxz3eG3ns7JDFKAYbBRO7KqTTI8uJa0RmkQOiVQ8fM yBlgoIM8W7oocEjT//4vnizw2Xp6q7KFAg2yS6FmEdlATDkcFq+lABXVt22z 4u9AW9JwXzSfAsETfAdH9PLgeWh0cmk6BRRbn5ia9+SDPdGR2xxLAfNY5Qrz 1SLwVfkTqe5NgU0vv+URVwK4lp/0hbr8m7/aum/mewxOyrOfbZ7/65c0qVAU KgVx7oVVm5sUUNjJ0m87WAq6/Wxm4ef/6TnzlzPjyiBi18sxXU0KBKwJSSmp VEBUauptVgkKVNV1vVe6UA3xL8UDng7PgqV9d9XV/f/uKOnLAkvjLDCJ99CR aWugJ03tIlfBLJx26HVqy6oF6mdcyU+8Z6FOesD2KV8jtH04UT9++J9e0zal Z7IF5liP51c8mIEjwfO1FONWcHde2vIwnAEmiu0kbVkrsLq81J9VmYGEkMf7 ZD+3wfkDf06835qGyT9PIhzPtMPvPaIkO/dpsA5/5r87uQtclpMKvD5Ngdry StZBwW6gyrzXq/1wCtj07Fu0yN1wLobxXPm5KUhZsee0udYDgj7sObs4pmBW /4V7MVsfjJOtZz64TUKuU3FxmsogiHWkyXnaTcCxAyWZBoG/4Mm6JMdX7TE4 1NYeUPzjF7h26vevSPzb/w7TL2T//oLfEeFuV+jHQPKHgCbT7RH4nKF0XK18 FHjv2LQSMr+BqyJX6+uJUZgO3bkoVzwKx8b5tctP/IavbHaH2H9PgGu6ILOp 8S8Iyfog5CAwCewREhBz5BcEmERsjutOQsHGkRyWnb/AI76uojx1Eo5H2dEd HxwG+5MkY0f7KeC+t/e2gfUwGDo22U2xzkDlvIvD3Q9DQGO3o9dcaA6M5PX9 b9QPgMmtxJZc5TlIscvlUgscgMzT8IPNYA5GQpW77W4PgOneeznZrnOgiKX4 6Vb6obS68BPd4hz4DLQrvJDsh7c7zbWiG/7A5SRrz+SAXuilX1NdnfgDK8qf YvUsekF57qOiHv08fPyxp1lbpRdGyr/vXVSdh7fknbSnOnrgpA3rumbCPNCf 3F34eHcP0JVkpv56uwBYJ0RaIL8LriXpxBz+ugCiB7rOyXh1QbZ/7+cP+QtA z/hs85N5F5hbMbgr/VmA3cvWzJe4uqCC18Ts7Y1F+DXcdjn3fie4WlALko4u AX18ksqtgx3AyGbw2nR2GXLzn2gkLLbB5X0mWIV5BbKXXFYbWtsg8YT5Nov4 CrAa37Y6lNUG+s/tX2ZdWYHjo/7upbZtEDAa/pyuYgWONnkJNC22gmTJn0ex n1eBtyFqUI+uFex7N9Jf5KyCXSyX5cmxFqhZoZ/Tb16FfOI709OaFrCRE7ZZ YViDl7wphLN3C+R8PmF1ynYN1uPT9eTEWkDLztd08tQ6tJXQ6nqcbYYA77CI YrN1OH3HPmpAqRnGk+MGfZzWIfNnM8sd4Wbw+FVwQzV7HUpLz1+kG2+CNoMR E4+9G6DdunHR3aUJzPcfuiC3vAEFshuRsT6N8HawXdM2ahPON0fFvRqug/68 Mw/sCzehjF32WF9hHRzzxQFOPzch6Gy6hGNgHcxpJU68Z9yC6kHBSaezdXAj 6aVX1P0tMDtB+LkX1sIxO/GeNqVtkI611TgRWwNr9EfzdppSIV4diY/T0dUQ a7tQ/8WGCj1oKD0X4VoNRgMpw6IOVCg9TNba3bIa0nPF2KT8qFC3Mh/PvGw1 WNxnu6lcSYUcz8wMCuVWQVvTAN1ZGWpkORNSb91RCemfXQ2c5qnRUKlYod/h CqjldR3jpKJBEkbbpeO7KmD0g4tTBDsNYvB2SblPUwG7HMnJ5VI0SPlEXsjf +nJwu/aGifUmDcodUGdAd8vh1m4nHFhLgwxMBcPXIsqA6+tThYxoWiR9K7+2 +lAp7Bd4WnUikxYpDoQ3aIuUgrbXkxttBC0Svb9VMs5SCo7Ojz1WumlRTz1x LnCwBMZvPhpX56ZDdJL69IEfSwCLPAiveUmHXnXarw7PYPgv0pxrxJge6VsO jBd9IMDzeXCopxk9KlWiqqS6T0CqQYPU0Yf06MZPOfEnpwmY3Tqs4elOjxKs z6xPMhNgfZXV9kghPdrm0jfm/FAMVnyZrR6iDOioQfLrMf8isHDdDjg0zYBO ti/+/VpbAK7XlUmDqwxIrvTbm/PpBRCrfC/tPT0jsutI9ZP2L4Dfwy1VA3sY 0Wc5HV29mwVgDrGr7ucZ0fG8PDejpXwwXdUz6c9hRA0N1HUqUvlwwypk97vX TIhFd5nZOy4XNrqYG/58ZEK654Vo2LxzIUj3udO1ECZ0bfBKRvSLXGiWujxw MIsJFXJsWMvp58LJsR0RvSNMyKSUfSls+TtIm3uLK55iRkIuKffK9L7D4nW3 /X0cLKihzrhuii0HPtWv9OjsZEGpT5ljy9a+wQH1ux6Z+1jQSC93TNboN7DY pT3zDrGgyFeTdj34G3R106Yp2rIgR8E4ZW27b1B8yVnR7ee/frazt+7+zgb3 83ZHlUJZEVPM9Y3B1n93uE7GOjmBFf1aIz/gKc2CUJ2BLxLfWVFyScu+q+lZ kK5+ik6whRUZumx1HPyYBZ3Swo1/GdmQ7e+cGYpOFkjRFJtXPmZD1MVq4p4l mVCZSf/pyhl2NHMo/NLV8gxoOpBf2nKZHZXVHjeW/5YB3fE2S2cs2FHycQUN /tgMmP3SYXL8NTuS5aDc3uWWAfwfEiRI39mRqienC8PZDLhjdrZgWowDNZbU 4yPd6UDH5z/qvM6BEj9WFlygTgeeWScOHkZOFKS/LGYymQai1ZYq0bycaPxD YNu+ljQ47qjmWi3Lic7ecE7ljUyD5yO/JLhvciKPiFxGac00mM1WvBNZxono 1i1eSb9PhWmZ8Uem2lzIskOPyU0mBRYF+lyS9LiQeLhThtGOFNigawleNORC rZGVa4epUoBloKDE9SYXqnm9NqHRngz7fL24k+y5UOBjkd833yaD6YZKxkIi FxLd/bk5YSgJOmpd5sic3Gg2onE5KSUR/I6HaV3k50ZeW2QBcnAiGGZkh0js 5kZLY2Ohti6J0BDw62SlDDcaJq9f8LmeCJW3NYIZtbmRTEr6QidHIuSs/NV4 78iNLrZyZd19mgABpCe+XhPcCCs09xWcjwejgA/jN+e4Ec27C4QEigce5ih1 hRVu5HCY6nqkXDx4zjaPNdHxoDmyl3krazy45smr8YjwIPoJpTbuqjiwOzc1 4mfMg34wRqJJFAcXHUxVQsp40FNrG35TjVgICONjWPnBg7rdCxTWFGOhnaj8 eaGJB/GJX+L8Ih4LxnT7n7L3/ePxlzYupli4/HEh69UyD2IbVYoKaowBk6/k g3eleVFkHF2Z2O0YuFUWK6vsxYuKjA3SMj5GgzXrlFiDCR96eCXQy505Cqae 59Ox3uZDGjFXXxhuRYLVuPuozl0+5H53SEZiIRLuVkglljzmQ0fZndLHeiPB 1Nni4DcPPhRW9UZwMD0SriwMQWgxHzo/azDsZxIJ2j2d16zEdqCtz0eDKrIj YG9SZQDD5A6k9HxNWuZNOBh9zc2rmduBLFxnFw3sw+G9b2Kv58oONK3/6skr m3BYdPAUE6DnR/tSqe+t/fPRNXrGqftE+NGYvAmnoXI42M3+rjhlzI8CAl1f 7m/+CvUH6Zfel/Kj+yN383RTv4BDruYFzs8CKLtGsmjNLxQUrzXN3YwQQMwo ZkbUNRQmt695pscJIB2jGc+Lz0LBRMfux/lsATTLZrbUfyUUjrXHg1+9ADp8 vZHz+d5QWF1glxWiEkSKtvVBOPkz2Ml30pHuCKLdtpvFBo0h8DDWOkdFXgj1 173xVlcMhv7Gnf4cKkKoaLkgY0w8GM6u1TweVRNCv+XL9UMFgkFGT/pgwGkh ZBZW3Cq+GQQjf34nLd0RQievNvVkVAfBJfWbEdmhQmh1sTc683YQHG8776HI IoxeqFo1M34OBDaaw6Zyv4URW2Loy1mpAMh7RnthdEoY9asffLd7TwBYzDRq fpkXRp9f6dw34g0A3GkpwUG1EyUzdEd3bfrD47SQ8RnhnWj8UAabRqs/dF/b skkx2IlyefNPvnT2h/jvFQ6yhTvRxWgn4nmfH2g9MPKX8d2FerR5ZLhSfUEw b/d/WuJ7kJL+6KGCXG/wsXXzVujYi6Ion46nNnuBoeu5A2E5IkjRecMsbsID ZK6SL0a/FEVGbMWZ/jbvoX2UOdL3ohgyavZ7YbvDDRpMf2vw7CWhIBKLXJa0 KwzRxa36i5HQ4Es93VhRV1iMtUwTkiShY5o+pWFCriA0NbVL9AAJ1Z8JKA1m dgXzx/Mr8qoktCYrGlEx4QLrb7dTzl4iodfONyUnE11AMkZI2N2LhDg+iBic V3CBozo9TWy+JFSh0HmqRsoF9CZC330KIKHDSrJIR9QFHh0QWQoMI6H/0u/t PcvjAoXfJJtik0hoaoTB0G2RDIaVSq7lVSS0LULak59HhjuWS2qnaknIcq9K 9qNMMtizfF+obSChoxXbuw4kkSFM/9jt1p8k9MyR61paKBnG25Ha8C8SyqwU 1h5yJsO6Pc3CnTESKuqt2PfdngzsO8sTJiZJ6NIe/qpPj8igeFNH4M8fErri cEr5nBkZtKiZG54skVD2ZepNpWtkuBxVQ15dJSHKINvzXRfJYKXloer4l4SE qXtjmPTJ8H/5Kvr/fPV/AF0he+I= "]]}, Annotation[#, "Charting`Private`Tag$4506#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.898192035744974*^9, 3.898192269563216*^9}, CellLabel->"Out[4]=",ExpressionUUID->"a1ae8954-fbf6-4da3-af68-6b671bd3498f"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Animaci\[OAcute]n", "Subsection", CellChangeTimes->{{3.898192229785335*^9, 3.898192231543243*^9}},ExpressionUUID->"eea862ba-efbb-459a-9164-\ 61060f5ee9b8"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"c", "=", "1"}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Animate", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{ RowBox[{"fp", "[", RowBox[{"x", "+", RowBox[{"c", " ", "t"}]}], " ", "]"}], "+", RowBox[{"fm", "[", RowBox[{"x", "-", RowBox[{"c", " ", "t"}]}], " ", "]"}]}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "20"}], "}"}], ",", RowBox[{"PlotRange", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "2.5"}], "}"}]}], "}"}]}], ",", RowBox[{"Axes", "->", " ", RowBox[{"{", RowBox[{"True", ",", "False"}], "}"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"t", ",", RowBox[{"-", "25"}], ",", "25"}], "}"}]}], "]"}]}], "Input", CellChangeTimes->{{3.898178973693942*^9, 3.89817897918531*^9}, { 3.898179032473754*^9, 3.8981790330343733`*^9}, {3.8981790703170977`*^9, 3.898179071723257*^9}, {3.8981794463865957`*^9, 3.898179468000723*^9}, { 3.8981920043821383`*^9, 3.898192023632134*^9}, {3.898192069391204*^9, 3.898192133857958*^9}, {3.898192285099327*^9, 3.89819231095504*^9}}, CellLabel->"In[11]:=",ExpressionUUID->"abbf03f6-0fda-49ec-a27a-f6ce4665a2d5"], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`t$$ = -6.1370134353637695`, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"sin t\[IAcute]tulo\"", Typeset`specs$$ = {{ Hold[$CellContext`t$$], -25, 25}}, Typeset`size$$ = { 468., {148., 153.5672601163118}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`t$$ = -25}, "ControllerVariables" :> {}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Plot[$CellContext`fp[$CellContext`x + $CellContext`c $CellContext`t$$] + \ $CellContext`fm[$CellContext`x - $CellContext`c $CellContext`t$$], \ {$CellContext`x, 0, 20}, PlotRange -> {{0, 20}, {0, 2.5}}, Axes -> {True, False}], "Specifications" :> {{$CellContext`t$$, -25, 25, AppearanceElements -> { "ProgressSlider", "PlayPauseButton", "FasterSlowerButtons", "DirectionButton"}}}, "Options" :> { ControlType -> Animator, AppearanceElements -> None, DefaultBaseStyle -> "Animate", DefaultLabelStyle -> "AnimateLabel", SynchronousUpdating -> True, ShrinkingDelay -> 10.}, "DefaultOptions" :> {}], ImageSizeCache->{827., {174.861328125, 182.138671875}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Animate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{ 3.898178979956296*^9, 3.898179034211294*^9, {3.898179067188308*^9, 3.898179072260508*^9}, {3.8981794391495953`*^9, 3.898179468590567*^9}, 3.89819203740875*^9, {3.8981920705481167`*^9, 3.898192134749393*^9}, { 3.8981922877394743`*^9, 3.898192311213628*^9}}, CellLabel->"Out[12]=",ExpressionUUID->"5ef14612-0c45-4c0a-bb1d-ce2104b024bd"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Cuerda ambos extremos fijos (Dirichlet)", "Section", CellChangeTimes->{{3.898192335899827*^9, 3.898192353089321*^9}},ExpressionUUID->"2869d40a-0b8a-4da8-973f-\ 5cc0315b0e04"], Cell[BoxData["Quit"], "Input", CellChangeTimes->{{3.8981924225230722`*^9, 3.898192423056665*^9}}, CellLabel->"In[13]:=",ExpressionUUID->"950a4713-1227-431a-96f1-234e4232ea21"], Cell[CellGroupData[{ Cell["Soluci\[OAcute]n", "Subsection", CellChangeTimes->{{3.8981923783135757`*^9, 3.898192384557886*^9}},ExpressionUUID->"b8677823-dd2e-48ef-8f85-\ 54ed01948e67"], Cell[BoxData[ RowBox[{ RowBox[{"\[Phi]", "[", RowBox[{"x_", ",", "t_"}], "]"}], ":=", RowBox[{"Ap", " ", RowBox[{"Sin", "[", RowBox[{ RowBox[{"\[Pi]", "/", "L"}], " ", "p", " ", "x"}], "]"}], RowBox[{"Sin", "[", RowBox[{ RowBox[{ RowBox[{"\[Pi]", "/", "L"}], " ", "p", " ", "c", " ", "t"}], "+", "\[Delta]"}], "]"}]}]}]], "Input", CellChangeTimes->{{3.89818044234851*^9, 3.898180506464436*^9}, { 3.898181794691731*^9, 3.898181819230462*^9}, {3.898181907221609*^9, 3.898181919489126*^9}, {3.898181974293263*^9, 3.898181976865163*^9}, { 3.898182844477331*^9, 3.898182859860426*^9}, {3.898192393818509*^9, 3.898192406681209*^9}}, CellLabel->"In[1]:=",ExpressionUUID->"e668ce4d-853d-4371-8ba9-5a37f6da7c8f"] }, Closed]], Cell[CellGroupData[{ Cell["Animaci\[OAcute]n", "Subsection", CellChangeTimes->{{3.8981923879533167`*^9, 3.898192417000469*^9}},ExpressionUUID->"91ccfbf0-8b30-46b1-a5b4-\ b48e8bc0443c"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"L", "=", "10"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"c", "=", "1"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Delta]", "=", "0"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Ap", "=", "1"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"p", "=", "1"}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Animate", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"\[Phi]", "[", RowBox[{"x", ",", "t"}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "L"}], "}"}], ",", RowBox[{"PlotRange", "->", " ", RowBox[{"{", RowBox[{"All", ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "}"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"t", ",", RowBox[{"-", "10"}], ",", "10"}], "}"}]}], "]"}]}], "Input", CellChangeTimes->{{3.8981805142923937`*^9, 3.898180537465892*^9}, { 3.898180645557987*^9, 3.898180661868188*^9}, {3.898181852865807*^9, 3.898181875930192*^9}, {3.898181923529931*^9, 3.898181928093925*^9}, { 3.898182064471676*^9, 3.8981820671620417`*^9}, {3.8981924289969997`*^9, 3.898192457848226*^9}, 3.898192503145162*^9, {3.898192563944908*^9, 3.898192564448118*^9}}, CellLabel->"In[30]:=",ExpressionUUID->"8a08043a-8d2c-4138-b46d-df5cf857daea"], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`t$$ = 6.484752655029297, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"sin t\[IAcute]tulo\"", Typeset`specs$$ = {{ Hold[$CellContext`t$$], -10, 10}}, Typeset`size$$ = { 468., {146., 151.47858336568055`}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`t$$ = -10}, "ControllerVariables" :> {}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Plot[ $CellContext`\[Phi][$CellContext`x, $CellContext`t$$], \ {$CellContext`x, 0, $CellContext`L}, PlotRange -> {All, {-2, 2}}], "Specifications" :> {{$CellContext`t$$, -10, 10, AppearanceElements -> { "ProgressSlider", "PlayPauseButton", "FasterSlowerButtons", "DirectionButton"}}}, "Options" :> { ControlType -> Animator, AppearanceElements -> None, DefaultBaseStyle -> "Animate", DefaultLabelStyle -> "AnimateLabel", SynchronousUpdating -> True, ShrinkingDelay -> 10.}, "DefaultOptions" :> {}], ImageSizeCache->{827., {172.861328125, 180.138671875}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Animate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{3.898192565674349*^9}, CellLabel->"Out[35]=",ExpressionUUID->"14770923-c700-433e-8768-719f8783bc27"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Cuerda ambos extremos libres (Neumann)", "Section", CellChangeTimes->{{3.898192335899827*^9, 3.898192353089321*^9}, { 3.898192529882348*^9, 3.898192533303226*^9}},ExpressionUUID->"74040bef-70f6-48d5-8592-\ d30ff61ae8c7"], Cell[BoxData["Quit"], "Input", CellChangeTimes->{{3.898192602542685*^9, 3.8981926030939083`*^9}}, CellLabel->"In[41]:=",ExpressionUUID->"d779f2d7-dd0d-4aaa-af27-39c2a5c8f995"], Cell[CellGroupData[{ Cell["Soluci\[OAcute]n", "Subsection", CellChangeTimes->{{3.8981923783135757`*^9, 3.898192384557886*^9}},ExpressionUUID->"2231e42c-a352-4fc4-80da-\ 43d9da3670d9"], Cell[BoxData[ RowBox[{ RowBox[{"\[Phi]", "[", RowBox[{"x_", ",", "t_"}], "]"}], ":=", RowBox[{ RowBox[{"Cos", "[", RowBox[{ RowBox[{"\[Pi]", "/", "L"}], " ", "p", " ", "x"}], "]"}], RowBox[{"Cos", "[", RowBox[{ RowBox[{ RowBox[{"\[Pi]", "/", "L"}], " ", "p", " ", "c", " ", "t"}], "+", "\[Delta]"}], "]"}]}]}]], "Input", CellChangeTimes->{{3.89818044234851*^9, 3.898180506464436*^9}, { 3.898180692713339*^9, 3.898180716903131*^9}}, CellLabel->"In[1]:=",ExpressionUUID->"ec4c3719-a53b-425e-9ec5-7340734b1178"] }, Closed]], Cell[CellGroupData[{ Cell["Animaci\[OAcute]n", "Subsection", CellChangeTimes->{{3.898192582349769*^9, 3.898192586398913*^9}},ExpressionUUID->"24690a23-28c1-4ff7-b6d1-\ 890864e10f7a"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"L", "=", "10"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"c", "=", RowBox[{"1", "/", "2"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Delta]", "=", "0"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"p", "=", "3"}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Animate", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"\[Phi]", "[", RowBox[{"x", ",", "t"}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "L"}], "}"}], ",", RowBox[{"PlotRange", "->", " ", RowBox[{"{", RowBox[{"All", ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "}"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"t", ",", RowBox[{"-", "30"}], ",", "30"}], "}"}]}], "]"}]}], "Input", CellChangeTimes->{{3.8981805142923937`*^9, 3.898180537465892*^9}, { 3.898180645557987*^9, 3.898180661868188*^9}, {3.89818072858652*^9, 3.8981807476452303`*^9}, {3.898192593558537*^9, 3.898192593991366*^9}}, CellLabel->"In[2]:=",ExpressionUUID->"f5fd9de1-9fdc-4681-89c8-159ff2ee5966"], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`t$$ = -22.420909881591797`, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"sin t\[IAcute]tulo\"", Typeset`specs$$ = {{ Hold[$CellContext`t$$], -30, 30}}, Typeset`size$$ = { 468., {142., 148.77549629860283`}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`t$$ = -30}, "ControllerVariables" :> {}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Plot[ $CellContext`\[Phi][$CellContext`x, $CellContext`t$$], \ {$CellContext`x, 0, $CellContext`L}, PlotRange -> {All, {-1, 1}}], "Specifications" :> {{$CellContext`t$$, -30, 30, AppearanceElements -> { "ProgressSlider", "PlayPauseButton", "FasterSlowerButtons", "DirectionButton"}}}, "Options" :> { ControlType -> Animator, AppearanceElements -> None, DefaultBaseStyle -> "Animate", DefaultLabelStyle -> "AnimateLabel", SynchronousUpdating -> True, ShrinkingDelay -> 10.}, "DefaultOptions" :> {}], ImageSizeCache->{827., {168.861328125, 176.138671875}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Animate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{{3.898192598062817*^9, 3.898192609214459*^9}}, CellLabel->"Out[6]=",ExpressionUUID->"e51222f8-2608-425f-a2aa-bac4b48f5b5f"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Cuerda un extremos libre (Neumann) y uno fijo (Dirichlet)", "Section", CellChangeTimes->{{3.898192335899827*^9, 3.898192353089321*^9}, { 3.898192529882348*^9, 3.898192533303226*^9}, {3.898192654197616*^9, 3.898192661629095*^9}},ExpressionUUID->"1a313421-9826-4125-9eb9-\ cefa598ab583"], Cell[BoxData["Quit"], "Input", CellChangeTimes->{{3.8981926331104393`*^9, 3.898192633629643*^9}}, CellLabel->"In[7]:=",ExpressionUUID->"4cd22503-f7f7-479b-9990-b5fe187e0c5c"], Cell[CellGroupData[{ Cell["Soluci\[OAcute]n", "Subsection", CellChangeTimes->{{3.8981923783135757`*^9, 3.898192384557886*^9}},ExpressionUUID->"22b73a1c-5df2-4d86-bc08-\ cdc4753541b0"], Cell[BoxData[ RowBox[{ RowBox[{"\[Phi]", "[", RowBox[{"x_", ",", "t_"}], "]"}], ":=", RowBox[{ RowBox[{"Sin", "[", RowBox[{ RowBox[{"\[Pi]", "/", "L"}], " ", RowBox[{"(", RowBox[{"p", "+", RowBox[{"1", "/", "2"}]}], ")"}], " ", "x"}], "]"}], RowBox[{"Sin", "[", RowBox[{ RowBox[{ RowBox[{"\[Pi]", "/", "L"}], " ", RowBox[{"(", RowBox[{"p", "+", RowBox[{"1", "/", "2"}]}], ")"}], " ", "c", " ", "t"}], "+", "\[Delta]"}], "]"}]}]}]], "Input", CellChangeTimes->{{3.89818044234851*^9, 3.898180506464436*^9}, { 3.898180692713339*^9, 3.898180716903131*^9}, {3.898180997503902*^9, 3.898181015732379*^9}}, CellLabel->"In[1]:=",ExpressionUUID->"5ce7ac40-671c-4b61-8f60-90f5b856b11c"] }, Open ]], Cell[CellGroupData[{ Cell["Soluci\[OAcute]n", "Subsection", CellChangeTimes->{{3.8981923783135757`*^9, 3.898192384557886*^9}},ExpressionUUID->"307170b2-cd5c-4604-a882-\ 3adeea0ba1a3"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"L", "=", "10"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"c", "=", RowBox[{"1", "/", "2"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Delta]", "=", "0"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"p", "=", "2"}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Animate", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"\[Phi]", "[", RowBox[{"x", ",", "t"}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "L"}], "}"}], ",", RowBox[{"PlotRange", "->", " ", RowBox[{"{", RowBox[{"All", ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "}"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"t", ",", RowBox[{"-", "30"}], ",", "30"}], "}"}]}], "]"}]}], "Input", CellChangeTimes->{{3.8981805142923937`*^9, 3.898180537465892*^9}, { 3.898180645557987*^9, 3.898180661868188*^9}, {3.89818072858652*^9, 3.8981807476452303`*^9}, {3.898181020818433*^9, 3.8981810334052057`*^9}, { 3.898181189573732*^9, 3.898181198365382*^9}, {3.898192672733438*^9, 3.898192678045958*^9}}, CellLabel->"In[2]:=",ExpressionUUID->"825c216f-7518-433e-bba3-cc9d768fecab"], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`t$$ = 18.302947998046875`, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"sin t\[IAcute]tulo\"", Typeset`specs$$ = {{ Hold[$CellContext`t$$], -30, 30}}, Typeset`size$$ = { 468., {142., 148.77549629860283`}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`t$$ = -30}, "ControllerVariables" :> {}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Plot[ $CellContext`\[Phi][$CellContext`x, $CellContext`t$$], \ {$CellContext`x, 0, $CellContext`L}, PlotRange -> {All, {-1, 1}}], "Specifications" :> {{$CellContext`t$$, -30, 30, AppearanceElements -> { "ProgressSlider", "PlayPauseButton", "FasterSlowerButtons", "DirectionButton"}}}, "Options" :> { ControlType -> Animator, AppearanceElements -> None, DefaultBaseStyle -> "Animate", DefaultLabelStyle -> "AnimateLabel", SynchronousUpdating -> True, ShrinkingDelay -> 10.}, "DefaultOptions" :> {}], ImageSizeCache->{827., {168.861328125, 176.138671875}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Animate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{3.898192678824436*^9}, CellLabel->"Out[6]=",ExpressionUUID->"73d31706-7b2a-4b96-b36f-2d07eacc745e"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Soluci\[OAcute]n general y timbre", "Section", CellChangeTimes->{{3.898192701976215*^9, 3.898192714415106*^9}},ExpressionUUID->"0da64a8f-8f6a-4f95-81e7-\ 6a97a48124fc"], Cell["\<\ Analicemos el caso con ambos extremos fijos, se puede repetir casi sin \ cambios para los otros dos casos\ \>", "Text", CellChangeTimes->{{3.89819273520498*^9, 3.898192754467928*^9}},ExpressionUUID->"e2c7942d-5677-44f7-8c45-\ d32622561de0"], Cell[BoxData["Quit"], "Input", CellChangeTimes->{{3.8981924225230722`*^9, 3.898192423056665*^9}}, CellLabel->"In[13]:=",ExpressionUUID->"04afbd4b-010b-44c0-90e2-b7be69120ef7"], Cell[CellGroupData[{ Cell["Soluci\[OAcute]n", "Subsection", CellChangeTimes->{{3.8981923783135757`*^9, 3.898192384557886*^9}},ExpressionUUID->"7ebffa90-6cf8-4be7-b6f0-\ fbf59bd1088a"], Cell[BoxData[ RowBox[{ RowBox[{"\[Phi]", "[", RowBox[{"x_", ",", "t_"}], "]"}], ":=", RowBox[{"Sum", "[", RowBox[{ RowBox[{ RowBox[{"A", "[", "p", "]"}], " ", RowBox[{"Sin", "[", RowBox[{ RowBox[{"\[Pi]", "/", "L"}], " ", "p", " ", "x"}], "]"}], RowBox[{"Sin", "[", RowBox[{ RowBox[{ RowBox[{"\[Pi]", "/", "L"}], " ", "p", " ", "c", " ", "t"}], "+", "\[Delta]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"p", ",", "1", ",", "5"}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.89818044234851*^9, 3.898180506464436*^9}, { 3.898181794691731*^9, 3.898181819230462*^9}, {3.898181907221609*^9, 3.898181919489126*^9}, {3.898181974293263*^9, 3.898181976865163*^9}, { 3.898182844477331*^9, 3.898182859860426*^9}, {3.898192393818509*^9, 3.898192406681209*^9}, {3.898192766444613*^9, 3.898192780020356*^9}}, CellLabel->"In[7]:=",ExpressionUUID->"27355c6d-593b-4261-9737-666e1860be82"] }, Closed]], Cell[CellGroupData[{ Cell["Animaci\[OAcute]n", "Subsection", CellChangeTimes->{{3.8981923879533167`*^9, 3.898192417000469*^9}},ExpressionUUID->"ed0a74de-596f-4a04-8ad1-\ b874ed6d31a1"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"A", "[", "1", "]"}], "=", "1"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"A", "[", "2", "]"}], "=", RowBox[{"1", "/", "2"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"A", "[", "3", "]"}], "=", RowBox[{"1", "/", "3"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"A", "[", "4", "]"}], "=", RowBox[{"1", "/", "4"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"A", "[", "5", "]"}], "=", RowBox[{"1", "/", "5"}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"L", "=", "10"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"c", "=", "1"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Delta]", "=", "0"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"p", "=", "1"}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Animate", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"\[Phi]", "[", RowBox[{"x", ",", "t"}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "L"}], "}"}], ",", RowBox[{"PlotRange", "->", " ", RowBox[{"{", RowBox[{"All", ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "}"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"t", ",", RowBox[{"-", "10"}], ",", "10"}], "}"}]}], "]"}]}], "Input", CellChangeTimes->{{3.8981805142923937`*^9, 3.898180537465892*^9}, { 3.898180645557987*^9, 3.898180661868188*^9}, {3.898181852865807*^9, 3.898181875930192*^9}, {3.898181923529931*^9, 3.898181928093925*^9}, { 3.898182064471676*^9, 3.8981820671620417`*^9}, {3.8981924289969997`*^9, 3.898192457848226*^9}, 3.898192503145162*^9, {3.898192563944908*^9, 3.898192564448118*^9}, {3.898192802174564*^9, 3.898192863396657*^9}}, CellLabel->"In[19]:=",ExpressionUUID->"9772e236-e7c7-4796-8975-f302308dd7d2"], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`t$$ = -3.844005584716797, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"sin t\[IAcute]tulo\"", Typeset`specs$$ = {{ Hold[$CellContext`t$$], -10, 10}}, Typeset`size$$ = { 468., {146., 151.47858336568055`}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`t$$ = -10}, "ControllerVariables" :> {}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Plot[ $CellContext`\[Phi][$CellContext`x, $CellContext`t$$], \ {$CellContext`x, 0, $CellContext`L}, PlotRange -> {All, {-2, 2}}], "Specifications" :> {{$CellContext`t$$, -10, 10, AppearanceElements -> { "ProgressSlider", "PlayPauseButton", "FasterSlowerButtons", "DirectionButton"}}}, "Options" :> { ControlType -> Animator, AppearanceElements -> None, DefaultBaseStyle -> "Animate", DefaultLabelStyle -> "AnimateLabel", SynchronousUpdating -> True, ShrinkingDelay -> 10.}, "DefaultOptions" :> {}], ImageSizeCache->{827., {172.861328125, 180.138671875}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Animate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{ 3.898192565674349*^9, {3.898192851467334*^9, 3.8981928637048683`*^9}}, CellLabel->"Out[28]=",ExpressionUUID->"be9ac52e-6921-463c-8143-5c66b280cf70"] }, Open ]] }, Closed]] }, Closed]] }, Closed]] }, WindowSize->{1200, 627}, WindowMargins->{{0, Automatic}, {Automatic, 0}}, Magnification:>1.3 Inherited, FrontEndVersion->"13.2 para Linux x86 (64-bit) (January 30, 2023)", StyleDefinitions->"Default.nb", ExpressionUUID->"4725cb30-3148-4091-8f43-a3d45709ef42" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 175, 3, 127, "Title",ExpressionUUID->"3b52c642-4207-4cdf-bcb3-2f6a2e20aca2"], Cell[CellGroupData[{ Cell[780, 29, 162, 3, 87, "Section",ExpressionUUID->"6408f118-07fb-4e89-bc3b-b3700fa14a9c"], Cell[945, 34, 156, 3, 60, "Input",ExpressionUUID->"933505bf-9343-4c96-83d4-c02490946a66"], Cell[CellGroupData[{ Cell[1126, 41, 266, 4, 70, "Subsection",ExpressionUUID->"8f3381a1-e334-4ec0-8b8f-fd462b83d0f0"], Cell[1395, 47, 197, 3, 45, "Text",ExpressionUUID->"fcdefcc8-7771-458d-836e-557c6d7fcef0"], Cell[CellGroupData[{ Cell[1617, 54, 779, 20, 112, "Input",ExpressionUUID->"0b822ae7-398a-485f-9c1a-0cabac4e7c3f"], Cell[2399, 76, 11724, 211, 314, "Output",ExpressionUUID->"2409da52-2ca7-4077-bcd4-d75592298c18"] }, Open ]], Cell[14138, 290, 219, 4, 45, "Text",ExpressionUUID->"f15db67b-3409-4d51-9df4-639aaaf4e8fc"], Cell[CellGroupData[{ Cell[14382, 298, 1100, 30, 115, "Input",ExpressionUUID->"03ff5230-00eb-43a0-8c6f-7afc3ca92899"], Cell[15485, 330, 2225, 43, 385, "Output",ExpressionUUID->"aa4c2849-e6fa-45d4-8b58-010e2cf61fde"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[17759, 379, 171, 3, 48, "Subsection",ExpressionUUID->"38fd7ad5-6523-4fd1-9971-38a68ad88be4"], Cell[17933, 384, 222, 3, 45, "Text",ExpressionUUID->"23b0d7be-f17f-4ccc-82c1-463a84f33f03"], Cell[CellGroupData[{ Cell[18180, 391, 1052, 28, 169, "Input",ExpressionUUID->"f5f4597d-d33a-4dc1-ac68-0770b8ad7943"], Cell[19235, 421, 19556, 339, 320, "Output",ExpressionUUID->"8fdde79b-7cb2-4938-aa07-ca700dfe15bd"] }, Open ]], Cell[CellGroupData[{ Cell[38828, 765, 1244, 32, 115, "Input",ExpressionUUID->"f813551b-a717-4883-80c7-c49eecca6d24"], Cell[40075, 799, 2112, 41, 367, "Output",ExpressionUUID->"a5146ef2-3316-4e18-8009-2db77880d1ba"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[42236, 846, 172, 3, 48, "Subsection",ExpressionUUID->"eba8f49a-e87f-4b5a-85c3-518eb74adaad"], Cell[CellGroupData[{ Cell[42433, 853, 1227, 34, 147, "Input",ExpressionUUID->"ada0eeb3-31b6-419e-b2e6-4e79efecd8a0"], Cell[43663, 889, 2268, 43, 385, "Output",ExpressionUUID->"9b46934c-9ea3-4f91-90a9-051cd5169129"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[45992, 939, 234, 4, 67, "Section",ExpressionUUID->"d8d4ceb2-775e-4b2c-9a07-91203b1cb705"], Cell[46229, 945, 179, 2, 60, "Input",ExpressionUUID->"8e51095c-9496-40dc-b1f3-9affa349b1f7"], Cell[CellGroupData[{ Cell[46433, 951, 209, 3, 70, "Subsection",ExpressionUUID->"fa480deb-86bf-4685-876e-bef381c186b5"], Cell[CellGroupData[{ Cell[46667, 958, 829, 21, 112, "Input",ExpressionUUID->"7f77ffcb-aba2-4fe7-8bbd-e75510a72259"], Cell[47499, 981, 11625, 210, 314, "Output",ExpressionUUID->"855ed7b1-986b-4073-a0f4-10103ad78ef2"] }, Open ]], Cell[CellGroupData[{ Cell[59161, 1196, 888, 21, 112, "Input",ExpressionUUID->"badeb665-1b7d-47ba-bc02-c071e3bf6be6"], Cell[60052, 1219, 11617, 210, 310, "Output",ExpressionUUID->"2e6b4832-feeb-46f0-ac22-0b945bf66557"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[71718, 1435, 165, 3, 48, "Subsection",ExpressionUUID->"da922d42-93fc-4b70-a9ce-b282b65993b3"], Cell[CellGroupData[{ Cell[71908, 1442, 1336, 35, 147, "Input",ExpressionUUID->"cf2a2431-90a5-4c83-a072-3a8bb305f782"], Cell[73247, 1479, 345, 5, 43, "Output",ExpressionUUID->"40ae767d-9515-4926-9884-e0c00e809657"], Cell[73595, 1486, 2356, 45, 361, "Output",ExpressionUUID->"5f2282d1-439e-4191-9111-a278b56b1b11"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[76012, 1538, 182, 3, 67, "Section",ExpressionUUID->"3ecbab6f-3c69-4080-9e75-a3c44ffbd2a9"], Cell[76197, 1543, 179, 2, 60, "Input",ExpressionUUID->"c01d6a4e-ebbe-4763-b976-8a59c89818e2"], Cell[CellGroupData[{ Cell[76401, 1549, 209, 3, 70, "Subsection",ExpressionUUID->"0b562953-4f64-4d2b-969d-e8ea6b7ddf98"], Cell[CellGroupData[{ Cell[76635, 1556, 829, 21, 112, "Input",ExpressionUUID->"f6a80da5-3470-4e41-b056-29dc2551d4f0"], Cell[77467, 1579, 11646, 210, 314, "Output",ExpressionUUID->"290b01d4-18e2-45f4-8d41-2dbdbca178c9"] }, Open ]], Cell[CellGroupData[{ Cell[89150, 1794, 896, 21, 112, "Input",ExpressionUUID->"3800b10b-2c97-436f-a271-4ff3d597907a"], Cell[90049, 1817, 11647, 210, 314, "Output",ExpressionUUID->"a1ae8954-fbf6-4da3-af68-6b671bd3498f"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[101745, 2033, 165, 3, 48, "Subsection",ExpressionUUID->"eea862ba-efbb-459a-9164-61060f5ee9b8"], Cell[CellGroupData[{ Cell[101935, 2040, 1379, 36, 147, "Input",ExpressionUUID->"abbf03f6-0fda-49ec-a27a-f6ce4665a2d5"], Cell[103317, 2078, 2407, 46, 381, "Output",ExpressionUUID->"5ef14612-0c45-4c0a-bb1d-ce2104b024bd"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[105785, 2131, 184, 3, 67, "Section",ExpressionUUID->"2869d40a-0b8a-4da8-973f-5cc0315b0e04"], Cell[105972, 2136, 177, 2, 60, "Input",ExpressionUUID->"950a4713-1227-431a-96f1-234e4232ea21"], Cell[CellGroupData[{ Cell[106174, 2142, 166, 3, 70, "Subsection",ExpressionUUID->"b8677823-dd2e-48ef-8f85-54ed01948e67"], Cell[106343, 2147, 767, 18, 64, "Input",ExpressionUUID->"e668ce4d-853d-4371-8ba9-5a37f6da7c8f"] }, Closed]], Cell[CellGroupData[{ Cell[107147, 2170, 167, 3, 48, "Subsection",ExpressionUUID->"91ccfbf0-8b30-46b1-a5b4-b48e8bc0443c"], Cell[CellGroupData[{ Cell[107339, 2177, 1400, 36, 220, "Input",ExpressionUUID->"8a08043a-8d2c-4138-b46d-df5cf857daea"], Cell[108742, 2215, 2053, 40, 377, "Output",ExpressionUUID->"14770923-c700-433e-8768-719f8783bc27"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[110856, 2262, 232, 4, 67, "Section",ExpressionUUID->"74040bef-70f6-48d5-8592-d30ff61ae8c7"], Cell[111091, 2268, 177, 2, 60, "Input",ExpressionUUID->"d779f2d7-dd0d-4aaa-af27-39c2a5c8f995"], Cell[CellGroupData[{ Cell[111293, 2274, 166, 3, 70, "Subsection",ExpressionUUID->"2231e42c-a352-4fc4-80da-43d9da3670d9"], Cell[111462, 2279, 561, 15, 64, "Input",ExpressionUUID->"ec4c3719-a53b-425e-9ec5-7340734b1178"] }, Closed]], Cell[CellGroupData[{ Cell[112060, 2299, 165, 3, 48, "Subsection",ExpressionUUID->"24690a23-28c1-4ff7-b6d1-890864e10f7a"], Cell[CellGroupData[{ Cell[112250, 2306, 1177, 32, 194, "Input",ExpressionUUID->"f5fd9de1-9fdc-4681-89c8-159ff2ee5966"], Cell[113430, 2340, 2079, 40, 369, "Output",ExpressionUUID->"e51222f8-2608-425f-a2aa-bac4b48f5b5f"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[115570, 2387, 297, 4, 67, "Section",ExpressionUUID->"1a313421-9826-4125-9eb9-cefa598ab583"], Cell[115870, 2393, 176, 2, 60, "Input",ExpressionUUID->"4cd22503-f7f7-479b-9990-b5fe187e0c5c"], Cell[CellGroupData[{ Cell[116071, 2399, 166, 3, 70, "Subsection",ExpressionUUID->"22b73a1c-5df2-4d86-bc08-cdc4753541b0"], Cell[116240, 2404, 775, 22, 64, "Input",ExpressionUUID->"5ce7ac40-671c-4b61-8f60-90f5b856b11c"] }, Open ]], Cell[CellGroupData[{ Cell[117052, 2431, 166, 3, 70, "Subsection",ExpressionUUID->"307170b2-cd5c-4604-a882-3adeea0ba1a3"], Cell[CellGroupData[{ Cell[117243, 2438, 1277, 34, 194, "Input",ExpressionUUID->"825c216f-7518-433e-bba3-cc9d768fecab"], Cell[118523, 2474, 2054, 40, 369, "Output",ExpressionUUID->"73d31706-7b2a-4b96-b36f-2d07eacc745e"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[120638, 2521, 178, 3, 67, "Section",ExpressionUUID->"0da64a8f-8f6a-4f95-81e7-6a97a48124fc"], Cell[120819, 2526, 254, 6, 45, "Text",ExpressionUUID->"e2c7942d-5677-44f7-8c45-d32622561de0"], Cell[121076, 2534, 177, 2, 60, "Input",ExpressionUUID->"04afbd4b-010b-44c0-90e2-b7be69120ef7"], Cell[CellGroupData[{ Cell[121278, 2540, 166, 3, 70, "Subsection",ExpressionUUID->"7ebffa90-6cf8-4be7-b6f0-fbf59bd1088a"], Cell[121447, 2545, 976, 23, 64, "Input",ExpressionUUID->"27355c6d-593b-4261-9737-666e1860be82"] }, Closed]], Cell[CellGroupData[{ Cell[122460, 2573, 167, 3, 48, "Subsection",ExpressionUUID->"ed0a74de-596f-4a04-8ad1-b874ed6d31a1"], Cell[CellGroupData[{ Cell[122652, 2580, 2000, 55, 352, "Input",ExpressionUUID->"9772e236-e7c7-4796-8975-f302308dd7d2"], Cell[124655, 2637, 2105, 41, 377, "Output",ExpressionUUID->"be9ac52e-6921-463c-8143-5c66b280cf70"] }, Open ]] }, Closed]] }, Closed]] }, Closed]] } ] *)