Waybar/include/util/clara.hpp

1182 lines
34 KiB
C++
Raw Normal View History

2018-12-18 16:30:54 +00:00
// Copyright 2017 Two Blue Cubes Ltd. All rights reserved.
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See https://github.com/philsquared/Clara for more details
// Clara v1.1.5
#ifndef CLARA_HPP_INCLUDED
#define CLARA_HPP_INCLUDED
#ifndef CLARA_CONFIG_CONSOLE_WIDTH
#define CLARA_CONFIG_CONSOLE_WIDTH 80
#endif
#ifndef CLARA_TEXTFLOW_CONFIG_CONSOLE_WIDTH
#define CLARA_TEXTFLOW_CONFIG_CONSOLE_WIDTH CLARA_CONFIG_CONSOLE_WIDTH
#endif
#ifndef CLARA_CONFIG_OPTIONAL_TYPE
#ifdef __has_include
#if __has_include(<optional>) && __cplusplus >= 201703L
#include <optional>
#define CLARA_CONFIG_OPTIONAL_TYPE std::optional
#endif
#endif
#endif
// ----------- #included from clara_textflow.hpp -----------
// TextFlowCpp
//
// A single-header library for wrapping and laying out basic text, by Phil Nash
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// This project is hosted at https://github.com/philsquared/textflowcpp
#ifndef CLARA_TEXTFLOW_HPP_INCLUDED
#define CLARA_TEXTFLOW_HPP_INCLUDED
#include <cassert>
#include <ostream>
#include <sstream>
#include <vector>
#ifndef CLARA_TEXTFLOW_CONFIG_CONSOLE_WIDTH
#define CLARA_TEXTFLOW_CONFIG_CONSOLE_WIDTH 80
#endif
2022-04-06 06:37:19 +00:00
namespace clara {
namespace TextFlow {
inline auto isWhitespace(char c) -> bool {
static std::string chars = " \t\n\r";
return chars.find(c) != std::string::npos;
}
inline auto isBreakableBefore(char c) -> bool {
static std::string chars = "[({<|";
return chars.find(c) != std::string::npos;
}
inline auto isBreakableAfter(char c) -> bool {
static std::string chars = "])}>.,:;*+-=&/\\";
return chars.find(c) != std::string::npos;
}
class Columns;
class Column {
std::vector<std::string> m_strings;
size_t m_width = CLARA_TEXTFLOW_CONFIG_CONSOLE_WIDTH;
size_t m_indent = 0;
size_t m_initialIndent = std::string::npos;
public:
class iterator {
friend Column;
Column const &m_column;
size_t m_stringIndex = 0;
size_t m_pos = 0;
size_t m_len = 0;
size_t m_end = 0;
bool m_suffix = false;
iterator(Column const &column, size_t stringIndex)
: m_column(column), m_stringIndex(stringIndex) {}
auto line() const -> std::string const & { return m_column.m_strings[m_stringIndex]; }
auto isBoundary(size_t at) const -> bool {
assert(at > 0);
assert(at <= line().size());
return at == line().size() || (isWhitespace(line()[at]) && !isWhitespace(line()[at - 1])) ||
isBreakableBefore(line()[at]) || isBreakableAfter(line()[at - 1]);
2018-12-18 16:30:54 +00:00
}
2022-04-06 06:37:19 +00:00
void calcLength() {
assert(m_stringIndex < m_column.m_strings.size());
m_suffix = false;
auto width = m_column.m_width - indent();
m_end = m_pos;
while (m_end < line().size() && line()[m_end] != '\n') ++m_end;
if (m_end < m_pos + width) {
m_len = m_end - m_pos;
} else {
size_t len = width;
while (len > 0 && !isBoundary(m_pos + len)) --len;
while (len > 0 && isWhitespace(line()[m_pos + len - 1])) --len;
if (len > 0) {
m_len = len;
} else {
m_suffix = true;
m_len = width - 1;
2018-12-18 16:30:54 +00:00
}
2022-04-06 06:37:19 +00:00
}
}
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
auto indent() const -> size_t {
auto initial =
m_pos == 0 && m_stringIndex == 0 ? m_column.m_initialIndent : std::string::npos;
return initial == std::string::npos ? m_column.m_indent : initial;
}
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
auto addIndentAndSuffix(std::string const &plain) const -> std::string {
return std::string(indent(), ' ') + (m_suffix ? plain + "-" : plain);
}
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
public:
using difference_type = std::ptrdiff_t;
using value_type = std::string;
using pointer = value_type *;
using reference = value_type &;
using iterator_category = std::forward_iterator_tag;
explicit iterator(Column const &column) : m_column(column) {
assert(m_column.m_width > m_column.m_indent);
assert(m_column.m_initialIndent == std::string::npos ||
m_column.m_width > m_column.m_initialIndent);
calcLength();
if (m_len == 0) m_stringIndex++; // Empty string
}
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
auto operator*() const -> std::string {
assert(m_stringIndex < m_column.m_strings.size());
assert(m_pos <= m_end);
return addIndentAndSuffix(line().substr(m_pos, m_len));
}
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
auto operator++() -> iterator & {
m_pos += m_len;
if (m_pos < line().size() && line()[m_pos] == '\n')
m_pos += 1;
else
while (m_pos < line().size() && isWhitespace(line()[m_pos])) ++m_pos;
if (m_pos == line().size()) {
m_pos = 0;
++m_stringIndex;
}
if (m_stringIndex < m_column.m_strings.size()) calcLength();
return *this;
}
auto operator++(int) -> iterator {
iterator prev(*this);
operator++();
return prev;
}
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
auto operator==(iterator const &other) const -> bool {
return m_pos == other.m_pos && m_stringIndex == other.m_stringIndex &&
&m_column == &other.m_column;
}
auto operator!=(iterator const &other) const -> bool { return !operator==(other); }
};
using const_iterator = iterator;
explicit Column(std::string const &text) { m_strings.push_back(text); }
auto width(size_t newWidth) -> Column & {
assert(newWidth > 0);
m_width = newWidth;
return *this;
}
auto indent(size_t newIndent) -> Column & {
m_indent = newIndent;
return *this;
}
auto initialIndent(size_t newIndent) -> Column & {
m_initialIndent = newIndent;
return *this;
}
auto width() const -> size_t { return m_width; }
auto begin() const -> iterator { return iterator(*this); }
auto end() const -> iterator { return {*this, m_strings.size()}; }
inline friend std::ostream &operator<<(std::ostream &os, Column const &col) {
bool first = true;
for (auto line : col) {
if (first)
first = false;
else
os << "\n";
os << line;
}
return os;
}
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
auto operator+(Column const &other) -> Columns;
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
auto toString() const -> std::string {
std::ostringstream oss;
oss << *this;
return oss.str();
}
};
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
class Spacer : public Column {
public:
explicit Spacer(size_t spaceWidth) : Column("") { width(spaceWidth); }
};
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
class Columns {
std::vector<Column> m_columns;
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
public:
class iterator {
friend Columns;
struct EndTag {};
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
std::vector<Column> const &m_columns;
std::vector<Column::iterator> m_iterators;
size_t m_activeIterators;
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
iterator(Columns const &columns, EndTag) : m_columns(columns.m_columns), m_activeIterators(0) {
m_iterators.reserve(m_columns.size());
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
for (auto const &col : m_columns) m_iterators.push_back(col.end());
}
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
public:
using difference_type = std::ptrdiff_t;
using value_type = std::string;
using pointer = value_type *;
using reference = value_type &;
using iterator_category = std::forward_iterator_tag;
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
explicit iterator(Columns const &columns)
: m_columns(columns.m_columns), m_activeIterators(m_columns.size()) {
m_iterators.reserve(m_columns.size());
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
for (auto const &col : m_columns) m_iterators.push_back(col.begin());
}
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
auto operator==(iterator const &other) const -> bool {
return m_iterators == other.m_iterators;
}
auto operator!=(iterator const &other) const -> bool {
return m_iterators != other.m_iterators;
}
auto operator*() const -> std::string {
std::string row, padding;
for (size_t i = 0; i < m_columns.size(); ++i) {
auto width = m_columns[i].width();
if (m_iterators[i] != m_columns[i].end()) {
std::string col = *m_iterators[i];
row += padding + col;
if (col.size() < width)
padding = std::string(width - col.size(), ' ');
else
padding = "";
} else {
padding += std::string(width, ' ');
2018-12-18 16:30:54 +00:00
}
2022-04-06 06:37:19 +00:00
}
return row;
2018-12-18 16:30:54 +00:00
}
2022-04-06 06:37:19 +00:00
auto operator++() -> iterator & {
for (size_t i = 0; i < m_columns.size(); ++i) {
if (m_iterators[i] != m_columns[i].end()) ++m_iterators[i];
}
return *this;
}
auto operator++(int) -> iterator {
iterator prev(*this);
operator++();
return prev;
}
};
using const_iterator = iterator;
auto begin() const -> iterator { return iterator(*this); }
auto end() const -> iterator { return {*this, iterator::EndTag()}; }
auto operator+=(Column const &col) -> Columns & {
m_columns.push_back(col);
return *this;
}
auto operator+(Column const &col) -> Columns {
Columns combined = *this;
combined += col;
return combined;
}
inline friend std::ostream &operator<<(std::ostream &os, Columns const &cols) {
bool first = true;
for (auto line : cols) {
if (first)
first = false;
else
os << "\n";
os << line;
}
return os;
}
auto toString() const -> std::string {
std::ostringstream oss;
oss << *this;
return oss.str();
}
};
inline auto Column::operator+(Column const &other) -> Columns {
Columns cols;
cols += *this;
cols += other;
return cols;
}
} // namespace TextFlow
} // namespace clara
#endif // CLARA_TEXTFLOW_HPP_INCLUDED
2018-12-18 16:30:54 +00:00
// ----------- end of #include from clara_textflow.hpp -----------
// ........... back in clara.hpp
2022-04-06 06:37:19 +00:00
#include <algorithm>
2018-12-18 16:30:54 +00:00
#include <memory>
#include <set>
2022-04-06 06:37:19 +00:00
#if !defined(CLARA_PLATFORM_WINDOWS) && \
(defined(WIN32) || defined(__WIN32__) || defined(_WIN32) || defined(_MSC_VER))
2018-12-18 16:30:54 +00:00
#define CLARA_PLATFORM_WINDOWS
#endif
namespace clara {
namespace detail {
2022-04-06 06:37:19 +00:00
// Traits for extracting arg and return type of lambdas (for single argument lambdas)
template <typename L>
struct UnaryLambdaTraits : UnaryLambdaTraits<decltype(&L::operator())> {};
template <typename ClassT, typename ReturnT, typename... Args>
struct UnaryLambdaTraits<ReturnT (ClassT::*)(Args...) const> {
static const bool isValid = false;
};
template <typename ClassT, typename ReturnT, typename ArgT>
struct UnaryLambdaTraits<ReturnT (ClassT::*)(ArgT) const> {
static const bool isValid = true;
using ArgType = typename std::remove_const<typename std::remove_reference<ArgT>::type>::type;
using ReturnType = ReturnT;
};
class TokenStream;
// Transport for raw args (copied from main args, or supplied via init list for testing)
class Args {
friend TokenStream;
std::string m_exeName;
std::vector<std::string> m_args;
public:
Args(int argc, char const *const *argv) : m_exeName(argv[0]), m_args(argv + 1, argv + argc) {}
Args(std::initializer_list<std::string> args)
: m_exeName(*args.begin()), m_args(args.begin() + 1, args.end()) {}
auto exeName() const -> std::string { return m_exeName; }
};
// Wraps a token coming from a token stream. These may not directly correspond to strings as a
// single string may encode an option + its argument if the : or = form is used
enum class TokenType { Option, Argument };
struct Token {
TokenType type;
std::string token;
};
inline auto isOptPrefix(char c) -> bool {
return c == '-'
2018-12-18 16:30:54 +00:00
#ifdef CLARA_PLATFORM_WINDOWS
2022-04-06 06:37:19 +00:00
|| c == '/'
2018-12-18 16:30:54 +00:00
#endif
2022-04-06 06:37:19 +00:00
;
}
// Abstracts iterators into args as a stream of tokens, with option arguments uniformly handled
class TokenStream {
using Iterator = std::vector<std::string>::const_iterator;
Iterator it;
Iterator itEnd;
std::vector<Token> m_tokenBuffer;
void loadBuffer() {
m_tokenBuffer.resize(0);
// Skip any empty strings
while (it != itEnd && it->empty()) ++it;
if (it != itEnd) {
auto const &next = *it;
if (isOptPrefix(next[0])) {
auto delimiterPos = next.find_first_of(" :=");
if (delimiterPos != std::string::npos) {
m_tokenBuffer.push_back({TokenType::Option, next.substr(0, delimiterPos)});
m_tokenBuffer.push_back({TokenType::Argument, next.substr(delimiterPos + 1)});
} else {
if (next[1] != '-' && next.size() > 2) {
std::string opt = "- ";
for (size_t i = 1; i < next.size(); ++i) {
opt[1] = next[i];
m_tokenBuffer.push_back({TokenType::Option, opt});
2018-12-18 16:30:54 +00:00
}
2022-04-06 06:37:19 +00:00
} else {
m_tokenBuffer.push_back({TokenType::Option, next});
}
2018-12-18 16:30:54 +00:00
}
2022-04-06 06:37:19 +00:00
} else {
m_tokenBuffer.push_back({TokenType::Argument, next});
}
2018-12-18 16:30:54 +00:00
}
2022-04-06 06:37:19 +00:00
}
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
public:
explicit TokenStream(Args const &args) : TokenStream(args.m_args.begin(), args.m_args.end()) {}
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
TokenStream(Iterator it, Iterator itEnd) : it(it), itEnd(itEnd) { loadBuffer(); }
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
explicit operator bool() const { return !m_tokenBuffer.empty() || it != itEnd; }
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
auto count() const -> size_t { return m_tokenBuffer.size() + (itEnd - it); }
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
auto operator*() const -> Token {
assert(!m_tokenBuffer.empty());
return m_tokenBuffer.front();
}
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
auto operator->() const -> Token const * {
assert(!m_tokenBuffer.empty());
return &m_tokenBuffer.front();
}
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
auto operator++() -> TokenStream & {
if (m_tokenBuffer.size() >= 2) {
m_tokenBuffer.erase(m_tokenBuffer.begin());
} else {
if (it != itEnd) ++it;
loadBuffer();
2018-12-18 16:30:54 +00:00
}
2022-04-06 06:37:19 +00:00
return *this;
}
};
class ResultBase {
public:
enum Type { Ok, LogicError, RuntimeError };
protected:
ResultBase(Type type) : m_type(type) {}
virtual ~ResultBase() = default;
virtual void enforceOk() const = 0;
Type m_type;
};
template <typename T>
class ResultValueBase : public ResultBase {
public:
auto value() const -> T const & {
enforceOk();
return m_value;
}
protected:
ResultValueBase(Type type) : ResultBase(type) {}
ResultValueBase(ResultValueBase const &other) : ResultBase(other) {
if (m_type == ResultBase::Ok) new (&m_value) T(other.m_value);
}
ResultValueBase(Type, T const &value) : ResultBase(Ok) { new (&m_value) T(value); }
auto operator=(ResultValueBase const &other) -> ResultValueBase & {
if (m_type == ResultBase::Ok) m_value.~T();
ResultBase::operator=(other);
if (m_type == ResultBase::Ok) new (&m_value) T(other.m_value);
return *this;
}
~ResultValueBase() override {
if (m_type == Ok) m_value.~T();
}
union {
T m_value;
};
};
template <>
class ResultValueBase<void> : public ResultBase {
protected:
using ResultBase::ResultBase;
};
template <typename T = void>
class BasicResult : public ResultValueBase<T> {
public:
template <typename U>
explicit BasicResult(BasicResult<U> const &other)
: ResultValueBase<T>(other.type()), m_errorMessage(other.errorMessage()) {
assert(type() != ResultBase::Ok);
}
template <typename U>
static auto ok(U const &value) -> BasicResult {
return {ResultBase::Ok, value};
}
static auto ok() -> BasicResult { return {ResultBase::Ok}; }
static auto logicError(std::string const &message) -> BasicResult {
return {ResultBase::LogicError, message};
}
static auto runtimeError(std::string const &message) -> BasicResult {
return {ResultBase::RuntimeError, message};
}
explicit operator bool() const { return m_type == ResultBase::Ok; }
auto type() const -> ResultBase::Type { return m_type; }
auto errorMessage() const -> std::string { return m_errorMessage; }
protected:
void enforceOk() const override {
// Errors shouldn't reach this point, but if they do
// the actual error message will be in m_errorMessage
assert(m_type != ResultBase::LogicError);
assert(m_type != ResultBase::RuntimeError);
if (m_type != ResultBase::Ok) std::abort();
}
std::string m_errorMessage; // Only populated if resultType is an error
BasicResult(ResultBase::Type type, std::string const &message)
: ResultValueBase<T>(type), m_errorMessage(message) {
assert(m_type != ResultBase::Ok);
}
using ResultValueBase<T>::ResultValueBase;
using ResultBase::m_type;
};
enum class ParseResultType { Matched, NoMatch, ShortCircuitAll, ShortCircuitSame };
class ParseState {
public:
ParseState(ParseResultType type, TokenStream const &remainingTokens)
: m_type(type), m_remainingTokens(remainingTokens) {}
auto type() const -> ParseResultType { return m_type; }
auto remainingTokens() const -> TokenStream { return m_remainingTokens; }
private:
ParseResultType m_type;
TokenStream m_remainingTokens;
};
using Result = BasicResult<void>;
using ParserResult = BasicResult<ParseResultType>;
using InternalParseResult = BasicResult<ParseState>;
struct HelpColumns {
std::string left;
std::string right;
};
template <typename T>
inline auto convertInto(std::string const &source, T &target) -> ParserResult {
std::stringstream ss;
ss << source;
ss >> target;
if (ss.fail())
return ParserResult::runtimeError("Unable to convert '" + source + "' to destination type");
else
return ParserResult::ok(ParseResultType::Matched);
}
inline auto convertInto(std::string const &source, std::string &target) -> ParserResult {
target = source;
return ParserResult::ok(ParseResultType::Matched);
}
inline auto convertInto(std::string const &source, bool &target) -> ParserResult {
std::string srcLC = source;
std::transform(srcLC.begin(), srcLC.end(), srcLC.begin(),
[](char c) { return static_cast<char>(::tolower(c)); });
if (srcLC == "y" || srcLC == "1" || srcLC == "true" || srcLC == "yes" || srcLC == "on")
target = true;
else if (srcLC == "n" || srcLC == "0" || srcLC == "false" || srcLC == "no" || srcLC == "off")
target = false;
else
return ParserResult::runtimeError("Expected a boolean value but did not recognise: '" + source +
"'");
return ParserResult::ok(ParseResultType::Matched);
}
#ifdef CLARA_CONFIG_OPTIONAL_TYPE
template <typename T>
2024-06-15 23:44:46 +00:00
inline auto convertInto(std::string const &source, CLARA_CONFIG_OPTIONAL_TYPE<T> &target)
-> ParserResult {
2022-04-06 06:37:19 +00:00
T temp;
auto result = convertInto(source, temp);
if (result) target = std::move(temp);
return result;
}
#endif // CLARA_CONFIG_OPTIONAL_TYPE
struct NonCopyable {
NonCopyable() = default;
NonCopyable(NonCopyable const &) = delete;
NonCopyable(NonCopyable &&) = delete;
NonCopyable &operator=(NonCopyable const &) = delete;
NonCopyable &operator=(NonCopyable &&) = delete;
};
struct BoundRef : NonCopyable {
virtual ~BoundRef() = default;
virtual auto isContainer() const -> bool { return false; }
virtual auto isFlag() const -> bool { return false; }
};
struct BoundValueRefBase : BoundRef {
virtual auto setValue(std::string const &arg) -> ParserResult = 0;
};
struct BoundFlagRefBase : BoundRef {
virtual auto setFlag(bool flag) -> ParserResult = 0;
virtual auto isFlag() const -> bool { return true; }
};
template <typename T>
struct BoundValueRef : BoundValueRefBase {
T &m_ref;
explicit BoundValueRef(T &ref) : m_ref(ref) {}
auto setValue(std::string const &arg) -> ParserResult override { return convertInto(arg, m_ref); }
};
template <typename T>
struct BoundValueRef<std::vector<T>> : BoundValueRefBase {
std::vector<T> &m_ref;
explicit BoundValueRef(std::vector<T> &ref) : m_ref(ref) {}
auto isContainer() const -> bool override { return true; }
auto setValue(std::string const &arg) -> ParserResult override {
T temp;
auto result = convertInto(arg, temp);
if (result) m_ref.push_back(temp);
return result;
}
};
struct BoundFlagRef : BoundFlagRefBase {
bool &m_ref;
explicit BoundFlagRef(bool &ref) : m_ref(ref) {}
auto setFlag(bool flag) -> ParserResult override {
m_ref = flag;
return ParserResult::ok(ParseResultType::Matched);
}
};
template <typename ReturnType>
struct LambdaInvoker {
static_assert(std::is_same<ReturnType, ParserResult>::value,
"Lambda must return void or clara::ParserResult");
template <typename L, typename ArgType>
static auto invoke(L const &lambda, ArgType const &arg) -> ParserResult {
return lambda(arg);
}
};
template <>
struct LambdaInvoker<void> {
template <typename L, typename ArgType>
static auto invoke(L const &lambda, ArgType const &arg) -> ParserResult {
lambda(arg);
return ParserResult::ok(ParseResultType::Matched);
}
};
template <typename ArgType, typename L>
inline auto invokeLambda(L const &lambda, std::string const &arg) -> ParserResult {
ArgType temp{};
auto result = convertInto(arg, temp);
return !result ? result
: LambdaInvoker<typename UnaryLambdaTraits<L>::ReturnType>::invoke(lambda, temp);
}
template <typename L>
struct BoundLambda : BoundValueRefBase {
L m_lambda;
static_assert(UnaryLambdaTraits<L>::isValid, "Supplied lambda must take exactly one argument");
explicit BoundLambda(L const &lambda) : m_lambda(lambda) {}
auto setValue(std::string const &arg) -> ParserResult override {
return invokeLambda<typename UnaryLambdaTraits<L>::ArgType>(m_lambda, arg);
}
};
template <typename L>
struct BoundFlagLambda : BoundFlagRefBase {
L m_lambda;
static_assert(UnaryLambdaTraits<L>::isValid, "Supplied lambda must take exactly one argument");
static_assert(std::is_same<typename UnaryLambdaTraits<L>::ArgType, bool>::value,
"flags must be boolean");
explicit BoundFlagLambda(L const &lambda) : m_lambda(lambda) {}
auto setFlag(bool flag) -> ParserResult override {
return LambdaInvoker<typename UnaryLambdaTraits<L>::ReturnType>::invoke(m_lambda, flag);
}
};
enum class Optionality { Optional, Required };
struct Parser;
class ParserBase {
public:
virtual ~ParserBase() = default;
virtual auto validate() const -> Result { return Result::ok(); }
2024-06-15 23:44:46 +00:00
virtual auto parse(std::string const &exeName, TokenStream const &tokens) const
-> InternalParseResult = 0;
2022-04-06 06:37:19 +00:00
virtual auto cardinality() const -> size_t { return 1; }
auto parse(Args const &args) const -> InternalParseResult {
return parse(args.exeName(), TokenStream(args));
}
};
template <typename DerivedT>
class ComposableParserImpl : public ParserBase {
public:
template <typename T>
auto operator|(T const &other) const -> Parser;
template <typename T>
auto operator+(T const &other) const -> Parser;
};
// Common code and state for Args and Opts
template <typename DerivedT>
class ParserRefImpl : public ComposableParserImpl<DerivedT> {
protected:
Optionality m_optionality = Optionality::Optional;
std::shared_ptr<BoundRef> m_ref;
std::string m_hint;
std::string m_description;
explicit ParserRefImpl(std::shared_ptr<BoundRef> const &ref) : m_ref(ref) {}
public:
template <typename T>
ParserRefImpl(T &ref, std::string const &hint)
: m_ref(std::make_shared<BoundValueRef<T>>(ref)), m_hint(hint) {}
template <typename LambdaT>
ParserRefImpl(LambdaT const &ref, std::string const &hint)
: m_ref(std::make_shared<BoundLambda<LambdaT>>(ref)), m_hint(hint) {}
auto operator()(std::string const &description) -> DerivedT & {
m_description = description;
return static_cast<DerivedT &>(*this);
}
auto optional() -> DerivedT & {
m_optionality = Optionality::Optional;
return static_cast<DerivedT &>(*this);
};
auto required() -> DerivedT & {
m_optionality = Optionality::Required;
return static_cast<DerivedT &>(*this);
};
auto isOptional() const -> bool { return m_optionality == Optionality::Optional; }
auto cardinality() const -> size_t override {
if (m_ref->isContainer())
return 0;
else
return 1;
}
auto hint() const -> std::string { return m_hint; }
};
class ExeName : public ComposableParserImpl<ExeName> {
std::shared_ptr<std::string> m_name;
std::shared_ptr<BoundValueRefBase> m_ref;
template <typename LambdaT>
static auto makeRef(LambdaT const &lambda) -> std::shared_ptr<BoundValueRefBase> {
return std::make_shared<BoundLambda<LambdaT>>(lambda);
}
public:
ExeName() : m_name(std::make_shared<std::string>("<executable>")) {}
explicit ExeName(std::string &ref) : ExeName() {
m_ref = std::make_shared<BoundValueRef<std::string>>(ref);
}
template <typename LambdaT>
explicit ExeName(LambdaT const &lambda) : ExeName() {
m_ref = std::make_shared<BoundLambda<LambdaT>>(lambda);
}
// The exe name is not parsed out of the normal tokens, but is handled specially
auto parse(std::string const &, TokenStream const &tokens) const -> InternalParseResult override {
return InternalParseResult::ok(ParseState(ParseResultType::NoMatch, tokens));
}
auto name() const -> std::string { return *m_name; }
auto set(std::string const &newName) -> ParserResult {
auto lastSlash = newName.find_last_of("\\/");
auto filename = (lastSlash == std::string::npos) ? newName : newName.substr(lastSlash + 1);
*m_name = filename;
if (m_ref)
return m_ref->setValue(filename);
else
return ParserResult::ok(ParseResultType::Matched);
}
};
class Arg : public ParserRefImpl<Arg> {
public:
using ParserRefImpl::ParserRefImpl;
auto parse(std::string const &, TokenStream const &tokens) const -> InternalParseResult override {
auto validationResult = validate();
if (!validationResult) return InternalParseResult(validationResult);
auto remainingTokens = tokens;
auto const &token = *remainingTokens;
if (token.type != TokenType::Argument)
return InternalParseResult::ok(ParseState(ParseResultType::NoMatch, remainingTokens));
assert(!m_ref->isFlag());
auto valueRef = static_cast<detail::BoundValueRefBase *>(m_ref.get());
auto result = valueRef->setValue(remainingTokens->token);
if (!result)
return InternalParseResult(result);
else
return InternalParseResult::ok(ParseState(ParseResultType::Matched, ++remainingTokens));
}
};
inline auto normaliseOpt(std::string const &optName) -> std::string {
2018-12-18 16:30:54 +00:00
#ifdef CLARA_PLATFORM_WINDOWS
2022-04-06 06:37:19 +00:00
if (optName[0] == '/')
return "-" + optName.substr(1);
else
2018-12-18 16:30:54 +00:00
#endif
2022-04-06 06:37:19 +00:00
return optName;
}
class Opt : public ParserRefImpl<Opt> {
protected:
std::vector<std::string> m_optNames;
public:
template <typename LambdaT>
explicit Opt(LambdaT const &ref)
: ParserRefImpl(std::make_shared<BoundFlagLambda<LambdaT>>(ref)) {}
explicit Opt(bool &ref) : ParserRefImpl(std::make_shared<BoundFlagRef>(ref)) {}
template <typename LambdaT>
Opt(LambdaT const &ref, std::string const &hint) : ParserRefImpl(ref, hint) {}
template <typename T>
Opt(T &ref, std::string const &hint) : ParserRefImpl(ref, hint) {}
auto operator[](std::string const &optName) -> Opt & {
m_optNames.push_back(optName);
return *this;
}
auto getHelpColumns() const -> std::vector<HelpColumns> {
std::ostringstream oss;
bool first = true;
for (auto const &opt : m_optNames) {
if (first)
first = false;
else
oss << ", ";
oss << opt;
2018-12-18 16:30:54 +00:00
}
2022-04-06 06:37:19 +00:00
if (!m_hint.empty()) oss << " <" << m_hint << ">";
return {{oss.str(), m_description}};
}
auto isMatch(std::string const &optToken) const -> bool {
auto normalisedToken = normaliseOpt(optToken);
for (auto const &name : m_optNames) {
if (normaliseOpt(name) == normalisedToken) return true;
}
return false;
}
using ParserBase::parse;
auto parse(std::string const &, TokenStream const &tokens) const -> InternalParseResult override {
auto validationResult = validate();
if (!validationResult) return InternalParseResult(validationResult);
auto remainingTokens = tokens;
if (remainingTokens && remainingTokens->type == TokenType::Option) {
auto const &token = *remainingTokens;
if (isMatch(token.token)) {
if (m_ref->isFlag()) {
auto flagRef = static_cast<detail::BoundFlagRefBase *>(m_ref.get());
auto result = flagRef->setFlag(true);
if (!result) return InternalParseResult(result);
if (result.value() == ParseResultType::ShortCircuitAll)
return InternalParseResult::ok(ParseState(result.value(), remainingTokens));
} else {
auto valueRef = static_cast<detail::BoundValueRefBase *>(m_ref.get());
++remainingTokens;
if (!remainingTokens)
return InternalParseResult::runtimeError("Expected argument following " + token.token);
auto const &argToken = *remainingTokens;
if (argToken.type != TokenType::Argument)
return InternalParseResult::runtimeError("Expected argument following " + token.token);
auto result = valueRef->setValue(argToken.token);
if (!result) return InternalParseResult(result);
if (result.value() == ParseResultType::ShortCircuitAll)
return InternalParseResult::ok(ParseState(result.value(), remainingTokens));
2018-12-18 16:30:54 +00:00
}
2022-04-06 06:37:19 +00:00
return InternalParseResult::ok(ParseState(ParseResultType::Matched, ++remainingTokens));
}
}
return InternalParseResult::ok(ParseState(ParseResultType::NoMatch, remainingTokens));
}
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
auto validate() const -> Result override {
if (m_optNames.empty()) return Result::logicError("No options supplied to Opt");
for (auto const &name : m_optNames) {
if (name.empty()) return Result::logicError("Option name cannot be empty");
2018-12-18 16:30:54 +00:00
#ifdef CLARA_PLATFORM_WINDOWS
2022-04-06 06:37:19 +00:00
if (name[0] != '-' && name[0] != '/')
return Result::logicError("Option name must begin with '-' or '/'");
2018-12-18 16:30:54 +00:00
#else
2022-04-06 06:37:19 +00:00
if (name[0] != '-') return Result::logicError("Option name must begin with '-'");
2018-12-18 16:30:54 +00:00
#endif
2022-04-06 06:37:19 +00:00
}
return ParserRefImpl::validate();
}
};
struct Help : Opt {
Help(bool &showHelpFlag)
: Opt([&](bool flag) {
showHelpFlag = flag;
return ParserResult::ok(ParseResultType::ShortCircuitAll);
}) {
2023-04-03 07:41:24 +00:00
static_cast<Opt &>(*this)("display usage information")["-?"]["-h"]["--help"].optional();
2022-04-06 06:37:19 +00:00
}
};
struct Parser : ParserBase {
mutable ExeName m_exeName;
std::vector<Opt> m_options;
std::vector<Arg> m_args;
auto operator|=(ExeName const &exeName) -> Parser & {
m_exeName = exeName;
return *this;
}
auto operator|=(Arg const &arg) -> Parser & {
m_args.push_back(arg);
return *this;
}
auto operator|=(Opt const &opt) -> Parser & {
m_options.push_back(opt);
return *this;
}
auto operator|=(Parser const &other) -> Parser & {
m_options.insert(m_options.end(), other.m_options.begin(), other.m_options.end());
m_args.insert(m_args.end(), other.m_args.begin(), other.m_args.end());
return *this;
}
template <typename T>
auto operator|(T const &other) const -> Parser {
return Parser(*this) |= other;
}
// Forward deprecated interface with '+' instead of '|'
template <typename T>
auto operator+=(T const &other) -> Parser & {
return operator|=(other);
}
template <typename T>
auto operator+(T const &other) const -> Parser {
return operator|(other);
}
auto getHelpColumns() const -> std::vector<HelpColumns> {
std::vector<HelpColumns> cols;
for (auto const &o : m_options) {
auto childCols = o.getHelpColumns();
cols.insert(cols.end(), childCols.begin(), childCols.end());
}
return cols;
}
void writeToStream(std::ostream &os) const {
if (!m_exeName.name().empty()) {
os << "usage:\n"
<< " " << m_exeName.name() << " ";
bool required = true, first = true;
for (auto const &arg : m_args) {
if (first)
first = false;
else
os << " ";
if (arg.isOptional() && required) {
os << "[";
required = false;
2018-12-18 16:30:54 +00:00
}
2022-04-06 06:37:19 +00:00
os << "<" << arg.hint() << ">";
if (arg.cardinality() == 0) os << " ... ";
}
if (!required) os << "]";
if (!m_options.empty()) os << " options";
os << "\n\nwhere options are:" << std::endl;
}
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
auto rows = getHelpColumns();
size_t consoleWidth = CLARA_CONFIG_CONSOLE_WIDTH;
size_t optWidth = 0;
for (auto const &cols : rows) optWidth = (std::max)(optWidth, cols.left.size() + 2);
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
optWidth = (std::min)(optWidth, consoleWidth / 2);
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
for (auto const &cols : rows) {
auto row = TextFlow::Column(cols.left).width(optWidth).indent(2) + TextFlow::Spacer(4) +
TextFlow::Column(cols.right).width(consoleWidth - 7 - optWidth);
os << row << std::endl;
}
}
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
friend auto operator<<(std::ostream &os, Parser const &parser) -> std::ostream & {
parser.writeToStream(os);
return os;
}
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
auto validate() const -> Result override {
for (auto const &opt : m_options) {
auto result = opt.validate();
if (!result) return result;
}
for (auto const &arg : m_args) {
auto result = arg.validate();
if (!result) return result;
}
return Result::ok();
}
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
using ParserBase::parse;
2018-12-18 16:30:54 +00:00
2024-06-15 23:44:46 +00:00
auto parse(std::string const &exeName, TokenStream const &tokens) const
-> InternalParseResult override {
2022-04-06 06:37:19 +00:00
struct ParserInfo {
ParserBase const *parser = nullptr;
size_t count = 0;
};
const size_t totalParsers = m_options.size() + m_args.size();
assert(totalParsers < 512);
// ParserInfo parseInfos[totalParsers]; // <-- this is what we really want to do
ParserInfo parseInfos[512];
{
size_t i = 0;
for (auto const &opt : m_options) parseInfos[i++].parser = &opt;
for (auto const &arg : m_args) parseInfos[i++].parser = &arg;
}
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
m_exeName.set(exeName);
auto result = InternalParseResult::ok(ParseState(ParseResultType::NoMatch, tokens));
while (result.value().remainingTokens()) {
bool tokenParsed = false;
for (size_t i = 0; i < totalParsers; ++i) {
auto &parseInfo = parseInfos[i];
if (parseInfo.parser->cardinality() == 0 ||
parseInfo.count < parseInfo.parser->cardinality()) {
result = parseInfo.parser->parse(exeName, result.value().remainingTokens());
if (!result) return result;
if (result.value().type() != ParseResultType::NoMatch) {
tokenParsed = true;
++parseInfo.count;
break;
}
2018-12-18 16:30:54 +00:00
}
2022-04-06 06:37:19 +00:00
}
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
if (result.value().type() == ParseResultType::ShortCircuitAll) return result;
if (!tokenParsed)
return InternalParseResult::runtimeError("Unrecognised token: " +
result.value().remainingTokens()->token);
2018-12-18 16:30:54 +00:00
}
2022-04-06 06:37:19 +00:00
// !TBD Check missing required options
return result;
}
};
template <typename DerivedT>
template <typename T>
auto ComposableParserImpl<DerivedT>::operator|(T const &other) const -> Parser {
return Parser() | static_cast<DerivedT const &>(*this) | other;
}
} // namespace detail
2018-12-18 16:30:54 +00:00
// A Combined parser
using detail::Parser;
// A parser for options
using detail::Opt;
// A parser for arguments
using detail::Arg;
// Wrapper for argc, argv from main()
using detail::Args;
// Specifies the name of the executable
using detail::ExeName;
// Convenience wrapper for option parser that specifies the help option
using detail::Help;
// enum of result types from a parse
using detail::ParseResultType;
// Result type for parser operation
using detail::ParserResult;
2022-04-06 06:37:19 +00:00
} // namespace clara
2018-12-18 16:30:54 +00:00
2022-04-06 06:37:19 +00:00
#endif // CLARA_HPP_INCLUDED