676 lines
25 KiB
C++
676 lines
25 KiB
C++
#include "modules/battery.hpp"
|
|
#if defined(__FreeBSD__)
|
|
#include <sys/sysctl.h>
|
|
#endif
|
|
#include <spdlog/spdlog.h>
|
|
|
|
#include <iostream>
|
|
waybar::modules::Battery::Battery(const std::string& id, const Json::Value& config)
|
|
: ALabel(config, "battery", id, "{capacity}%", 60) {
|
|
#if defined(__linux__)
|
|
battery_watch_fd_ = inotify_init1(IN_CLOEXEC);
|
|
if (battery_watch_fd_ == -1) {
|
|
throw std::runtime_error("Unable to listen batteries.");
|
|
}
|
|
|
|
global_watch_fd_ = inotify_init1(IN_CLOEXEC);
|
|
if (global_watch_fd_ == -1) {
|
|
throw std::runtime_error("Unable to listen batteries.");
|
|
}
|
|
|
|
// Watch the directory for any added or removed batteries
|
|
global_watch = inotify_add_watch(global_watch_fd_, data_dir_.c_str(), IN_CREATE | IN_DELETE);
|
|
if (global_watch < 0) {
|
|
throw std::runtime_error("Could not watch for battery plug/unplug");
|
|
}
|
|
#endif
|
|
worker();
|
|
}
|
|
|
|
waybar::modules::Battery::~Battery() {
|
|
#if defined(__linux__)
|
|
std::lock_guard<std::mutex> guard(battery_list_mutex_);
|
|
|
|
if (global_watch >= 0) {
|
|
inotify_rm_watch(global_watch_fd_, global_watch);
|
|
}
|
|
close(global_watch_fd_);
|
|
|
|
for (auto it = batteries_.cbegin(); it != batteries_.cend(); it++) {
|
|
auto watch_id = (*it).second;
|
|
if (watch_id >= 0) {
|
|
inotify_rm_watch(battery_watch_fd_, watch_id);
|
|
}
|
|
batteries_.erase(it);
|
|
}
|
|
close(battery_watch_fd_);
|
|
#endif
|
|
}
|
|
|
|
void waybar::modules::Battery::worker() {
|
|
#if defined(__FreeBSD__)
|
|
thread_timer_ = [this] {
|
|
dp.emit();
|
|
thread_timer_.sleep_for(interval_);
|
|
};
|
|
#else
|
|
thread_timer_ = [this] {
|
|
// Make sure we eventually update the list of batteries even if we miss an
|
|
// inotify event for some reason
|
|
refreshBatteries();
|
|
dp.emit();
|
|
thread_timer_.sleep_for(interval_);
|
|
};
|
|
thread_ = [this] {
|
|
struct inotify_event event = {0};
|
|
int nbytes = read(battery_watch_fd_, &event, sizeof(event));
|
|
if (nbytes != sizeof(event) || event.mask & IN_IGNORED) {
|
|
thread_.stop();
|
|
return;
|
|
}
|
|
dp.emit();
|
|
};
|
|
thread_battery_update_ = [this] {
|
|
struct inotify_event event = {0};
|
|
int nbytes = read(global_watch_fd_, &event, sizeof(event));
|
|
if (nbytes != sizeof(event) || event.mask & IN_IGNORED) {
|
|
thread_.stop();
|
|
return;
|
|
}
|
|
refreshBatteries();
|
|
dp.emit();
|
|
};
|
|
#endif
|
|
}
|
|
|
|
void waybar::modules::Battery::refreshBatteries() {
|
|
#if defined(__linux__)
|
|
std::lock_guard<std::mutex> guard(battery_list_mutex_);
|
|
// Mark existing list of batteries as not necessarily found
|
|
std::map<fs::path, bool> check_map;
|
|
for (auto const& bat : batteries_) {
|
|
check_map[bat.first] = false;
|
|
}
|
|
|
|
try {
|
|
for (auto& node : fs::directory_iterator(data_dir_)) {
|
|
if (!fs::is_directory(node)) {
|
|
continue;
|
|
}
|
|
auto dir_name = node.path().filename();
|
|
auto bat_defined = config_["bat"].isString();
|
|
if (((bat_defined && dir_name == config_["bat"].asString()) || !bat_defined) &&
|
|
(fs::exists(node.path() / "capacity") || fs::exists(node.path() / "charge_now")) &&
|
|
fs::exists(node.path() / "uevent") && fs::exists(node.path() / "status") &&
|
|
fs::exists(node.path() / "type")) {
|
|
std::string type;
|
|
std::ifstream(node.path() / "type") >> type;
|
|
|
|
if (!type.compare("Battery")) {
|
|
// Ignore non-system power supplies unless explicitly requested
|
|
if (!bat_defined && fs::exists(node.path() / "scope")) {
|
|
std::string scope;
|
|
std::ifstream(node.path() / "scope") >> scope;
|
|
if (g_ascii_strcasecmp(scope.data(), "device") == 0) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
check_map[node.path()] = true;
|
|
auto search = batteries_.find(node.path());
|
|
if (search == batteries_.end()) {
|
|
// We've found a new battery save it and start listening for events
|
|
auto event_path = (node.path() / "uevent");
|
|
auto wd = inotify_add_watch(battery_watch_fd_, event_path.c_str(), IN_ACCESS);
|
|
if (wd < 0) {
|
|
throw std::runtime_error("Could not watch events for " + node.path().string());
|
|
}
|
|
batteries_[node.path()] = wd;
|
|
}
|
|
}
|
|
}
|
|
auto adap_defined = config_["adapter"].isString();
|
|
if (((adap_defined && dir_name == config_["adapter"].asString()) || !adap_defined) &&
|
|
(fs::exists(node.path() / "online") || fs::exists(node.path() / "status"))) {
|
|
adapter_ = node.path();
|
|
}
|
|
}
|
|
} catch (fs::filesystem_error& e) {
|
|
throw std::runtime_error(e.what());
|
|
}
|
|
if (warnFirstTime_ && batteries_.empty()) {
|
|
if (config_["bat"].isString()) {
|
|
spdlog::warn("No battery named {0}", config_["bat"].asString());
|
|
} else {
|
|
spdlog::warn("No batteries.");
|
|
}
|
|
|
|
warnFirstTime_ = false;
|
|
}
|
|
|
|
// Remove any batteries that are no longer present and unwatch them
|
|
for (auto const& check : check_map) {
|
|
if (!check.second) {
|
|
auto watch_id = batteries_[check.first];
|
|
if (watch_id >= 0) {
|
|
inotify_rm_watch(battery_watch_fd_, watch_id);
|
|
}
|
|
batteries_.erase(check.first);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Unknown > Full > Not charging > Discharging > Charging
|
|
static bool status_gt(const std::string& a, const std::string& b) {
|
|
if (a == b)
|
|
return false;
|
|
else if (a == "Unknown")
|
|
return true;
|
|
else if (a == "Full" && b != "Unknown")
|
|
return true;
|
|
else if (a == "Not charging" && b != "Unknown" && b != "Full")
|
|
return true;
|
|
else if (a == "Discharging" && b != "Unknown" && b != "Full" && b != "Not charging")
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
const std::tuple<uint8_t, float, std::string, float> waybar::modules::Battery::getInfos() {
|
|
std::lock_guard<std::mutex> guard(battery_list_mutex_);
|
|
|
|
try {
|
|
#if defined(__FreeBSD__)
|
|
/* Allocate state of battery units reported via ACPI. */
|
|
int battery_units = 0;
|
|
size_t battery_units_size = sizeof battery_units;
|
|
if (sysctlbyname("hw.acpi.battery.units", &battery_units, &battery_units_size, NULL, 0) != 0) {
|
|
throw std::runtime_error("sysctl hw.acpi.battery.units failed");
|
|
}
|
|
|
|
if (battery_units < 0) {
|
|
throw std::runtime_error("No battery units");
|
|
}
|
|
|
|
int capacity;
|
|
size_t size_capacity = sizeof capacity;
|
|
if (sysctlbyname("hw.acpi.battery.life", &capacity, &size_capacity, NULL, 0) != 0) {
|
|
throw std::runtime_error("sysctl hw.acpi.battery.life failed");
|
|
}
|
|
int time;
|
|
size_t size_time = sizeof time;
|
|
if (sysctlbyname("hw.acpi.battery.time", &time, &size_time, NULL, 0) != 0) {
|
|
throw std::runtime_error("sysctl hw.acpi.battery.time failed");
|
|
}
|
|
int rate;
|
|
size_t size_rate = sizeof rate;
|
|
if (sysctlbyname("hw.acpi.battery.rate", &rate, &size_rate, NULL, 0) != 0) {
|
|
throw std::runtime_error("sysctl hw.acpi.battery.rate failed");
|
|
}
|
|
|
|
auto status = getAdapterStatus(capacity);
|
|
// Handle full-at
|
|
if (config_["full-at"].isUInt()) {
|
|
auto full_at = config_["full-at"].asUInt();
|
|
if (full_at < 100) {
|
|
capacity = 100.f * capacity / full_at;
|
|
}
|
|
}
|
|
if (capacity > 100.f) {
|
|
// This can happen when the battery is calibrating and goes above 100%
|
|
// Handle it gracefully by clamping at 100%
|
|
capacity = 100.f;
|
|
}
|
|
uint8_t cap = round(capacity);
|
|
if (cap == 100 && status == "Plugged") {
|
|
// If we've reached 100% just mark as full as some batteries can stay
|
|
// stuck reporting they're still charging but not yet done
|
|
status = "Full";
|
|
}
|
|
|
|
// spdlog::info("{} {} {} {}", capacity,time,status,rate);
|
|
return {capacity, time / 60.0, status, rate};
|
|
|
|
#elif defined(__linux__)
|
|
uint32_t total_power = 0; // μW
|
|
bool total_power_exists = false;
|
|
uint32_t total_energy = 0; // μWh
|
|
bool total_energy_exists = false;
|
|
uint32_t total_energy_full = 0;
|
|
bool total_energy_full_exists = false;
|
|
uint32_t total_energy_full_design = 0;
|
|
bool total_energy_full_design_exists = false;
|
|
uint32_t total_capacity = 0;
|
|
bool total_capacity_exists = false;
|
|
uint32_t time_to_empty_now = 0;
|
|
bool time_to_empty_now_exists = false;
|
|
uint32_t time_to_full_now = 0;
|
|
bool time_to_full_now_exists = false;
|
|
|
|
std::string status = "Unknown";
|
|
for (auto const& item : batteries_) {
|
|
auto bat = item.first;
|
|
std::string _status;
|
|
std::getline(std::ifstream(bat / "status"), _status);
|
|
|
|
// Some battery will report current and charge in μA/μAh.
|
|
// Scale these by the voltage to get μW/μWh.
|
|
|
|
uint32_t capacity = 0;
|
|
bool capacity_exists = false;
|
|
if (fs::exists(bat / "capacity")) {
|
|
capacity_exists = true;
|
|
std::ifstream(bat / "capacity") >> capacity;
|
|
}
|
|
|
|
uint32_t current_now = 0;
|
|
bool current_now_exists = false;
|
|
if (fs::exists(bat / "current_now")) {
|
|
current_now_exists = true;
|
|
std::ifstream(bat / "current_now") >> current_now;
|
|
} else if (fs::exists(bat / "current_avg")) {
|
|
current_now_exists = true;
|
|
std::ifstream(bat / "current_avg") >> current_now;
|
|
}
|
|
|
|
if (fs::exists(bat / "time_to_empty_now")) {
|
|
time_to_empty_now_exists = true;
|
|
std::ifstream(bat / "time_to_empty_now") >> time_to_empty_now;
|
|
}
|
|
|
|
if (fs::exists(bat / "time_to_full_now")) {
|
|
time_to_full_now_exists = true;
|
|
std::ifstream(bat / "time_to_full_now") >> time_to_full_now;
|
|
}
|
|
|
|
uint32_t voltage_now = 0;
|
|
bool voltage_now_exists = false;
|
|
if (fs::exists(bat / "voltage_now")) {
|
|
voltage_now_exists = true;
|
|
std::ifstream(bat / "voltage_now") >> voltage_now;
|
|
} else if (fs::exists(bat / "voltage_avg")) {
|
|
voltage_now_exists = true;
|
|
std::ifstream(bat / "voltage_avg") >> voltage_now;
|
|
}
|
|
|
|
uint32_t charge_full = 0;
|
|
bool charge_full_exists = false;
|
|
if (fs::exists(bat / "charge_full")) {
|
|
charge_full_exists = true;
|
|
std::ifstream(bat / "charge_full") >> charge_full;
|
|
}
|
|
|
|
uint32_t charge_full_design = 0;
|
|
bool charge_full_design_exists = false;
|
|
if (fs::exists(bat / "charge_full_design")) {
|
|
charge_full_design_exists = true;
|
|
std::ifstream(bat / "charge_full_design") >> charge_full_design;
|
|
}
|
|
|
|
uint32_t charge_now = 0;
|
|
bool charge_now_exists = false;
|
|
if (fs::exists(bat / "charge_now")) {
|
|
charge_now_exists = true;
|
|
std::ifstream(bat / "charge_now") >> charge_now;
|
|
}
|
|
|
|
uint32_t power_now = 0;
|
|
bool power_now_exists = false;
|
|
if (fs::exists(bat / "power_now")) {
|
|
power_now_exists = true;
|
|
std::ifstream(bat / "power_now") >> power_now;
|
|
}
|
|
|
|
uint32_t energy_now = 0;
|
|
bool energy_now_exists = false;
|
|
if (fs::exists(bat / "energy_now")) {
|
|
energy_now_exists = true;
|
|
std::ifstream(bat / "energy_now") >> energy_now;
|
|
}
|
|
|
|
uint32_t energy_full = 0;
|
|
bool energy_full_exists = false;
|
|
if (fs::exists(bat / "energy_full")) {
|
|
energy_full_exists = true;
|
|
std::ifstream(bat / "energy_full") >> energy_full;
|
|
}
|
|
|
|
uint32_t energy_full_design = 0;
|
|
bool energy_full_design_exists = false;
|
|
if (fs::exists(bat / "energy_full_design")) {
|
|
energy_full_design_exists = true;
|
|
std::ifstream(bat / "energy_full_design") >> energy_full_design;
|
|
}
|
|
|
|
if (!voltage_now_exists) {
|
|
if (power_now_exists && current_now_exists && current_now != 0) {
|
|
voltage_now_exists = true;
|
|
voltage_now = 1000000 * (uint64_t)power_now / (uint64_t)current_now;
|
|
} else if (energy_full_design_exists && charge_full_design_exists &&
|
|
charge_full_design != 0) {
|
|
voltage_now_exists = true;
|
|
voltage_now = 1000000 * (uint64_t)energy_full_design / (uint64_t)charge_full_design;
|
|
} else if (energy_now_exists) {
|
|
if (charge_now_exists && charge_now != 0) {
|
|
voltage_now_exists = true;
|
|
voltage_now = 1000000 * (uint64_t)energy_now / (uint64_t)charge_now;
|
|
} else if (capacity_exists && charge_full_exists) {
|
|
charge_now_exists = true;
|
|
charge_now = (uint64_t)charge_full * (uint64_t)capacity / 100;
|
|
if (charge_full != 0 && capacity != 0) {
|
|
voltage_now_exists = true;
|
|
voltage_now =
|
|
1000000 * (uint64_t)energy_now * 100 / (uint64_t)charge_full / (uint64_t)capacity;
|
|
}
|
|
}
|
|
} else if (energy_full_exists) {
|
|
if (charge_full_exists && charge_full != 0) {
|
|
voltage_now_exists = true;
|
|
voltage_now = 1000000 * (uint64_t)energy_full / (uint64_t)charge_full;
|
|
} else if (charge_now_exists && capacity_exists) {
|
|
if (capacity != 0) {
|
|
charge_full_exists = true;
|
|
charge_full = 100 * (uint64_t)charge_now / (uint64_t)capacity;
|
|
}
|
|
if (charge_now != 0) {
|
|
voltage_now_exists = true;
|
|
voltage_now =
|
|
10000 * (uint64_t)energy_full * (uint64_t)capacity / (uint64_t)charge_now;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!capacity_exists) {
|
|
if (charge_now_exists && charge_full_exists && charge_full != 0) {
|
|
capacity_exists = true;
|
|
capacity = 100 * (uint64_t)charge_now / (uint64_t)charge_full;
|
|
} else if (energy_now_exists && energy_full_exists && energy_full != 0) {
|
|
capacity_exists = true;
|
|
capacity = 100 * (uint64_t)energy_now / (uint64_t)energy_full;
|
|
} else if (charge_now_exists && energy_full_exists && voltage_now_exists) {
|
|
if (!charge_full_exists && voltage_now != 0) {
|
|
charge_full_exists = true;
|
|
charge_full = 1000000 * (uint64_t)energy_full / (uint64_t)voltage_now;
|
|
}
|
|
if (energy_full != 0) {
|
|
capacity_exists = true;
|
|
capacity = (uint64_t)charge_now * (uint64_t)voltage_now / 10000 / (uint64_t)energy_full;
|
|
}
|
|
} else if (charge_full_exists && energy_now_exists && voltage_now_exists) {
|
|
if (!charge_now_exists && voltage_now != 0) {
|
|
charge_now_exists = true;
|
|
charge_now = 1000000 * (uint64_t)energy_now / (uint64_t)voltage_now;
|
|
}
|
|
if (voltage_now != 0 && charge_full != 0) {
|
|
capacity_exists = true;
|
|
capacity = 100 * 1000000 * (uint64_t)energy_now / (uint64_t)voltage_now /
|
|
(uint64_t)charge_full;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!energy_now_exists && voltage_now_exists) {
|
|
if (charge_now_exists) {
|
|
energy_now_exists = true;
|
|
energy_now = (uint64_t)charge_now * (uint64_t)voltage_now / 1000000;
|
|
} else if (capacity_exists && charge_full_exists) {
|
|
charge_now_exists = true;
|
|
charge_now = (uint64_t)capacity * (uint64_t)charge_full / 100;
|
|
energy_now_exists = true;
|
|
energy_now =
|
|
(uint64_t)voltage_now * (uint64_t)capacity * (uint64_t)charge_full / 1000000 / 100;
|
|
} else if (capacity_exists && energy_full) {
|
|
if (voltage_now != 0) {
|
|
charge_full_exists = true;
|
|
charge_full = 1000000 * (uint64_t)energy_full / (uint64_t)voltage_now;
|
|
charge_now_exists = true;
|
|
charge_now = (uint64_t)capacity * 10000 * (uint64_t)energy_full / (uint64_t)voltage_now;
|
|
}
|
|
energy_now_exists = true;
|
|
energy_now = (uint64_t)capacity * (uint64_t)energy_full / 100;
|
|
}
|
|
}
|
|
|
|
if (!energy_full_exists && voltage_now_exists) {
|
|
if (charge_full_exists) {
|
|
energy_full_exists = true;
|
|
energy_full = (uint64_t)charge_full * (uint64_t)voltage_now / 1000000;
|
|
} else if (charge_now_exists && capacity_exists && capacity != 0) {
|
|
charge_full_exists = true;
|
|
charge_full = 100 * (uint64_t)charge_now / (uint64_t)capacity;
|
|
energy_full_exists = true;
|
|
energy_full = (uint64_t)charge_now * (uint64_t)voltage_now / (uint64_t)capacity / 10000;
|
|
} else if (capacity_exists && energy_now) {
|
|
if (voltage_now != 0) {
|
|
charge_now_exists = true;
|
|
charge_now = 1000000 * (uint64_t)energy_now / (uint64_t)voltage_now;
|
|
}
|
|
if (capacity != 0) {
|
|
energy_full_exists = true;
|
|
energy_full = 100 * (uint64_t)energy_now / (uint64_t)capacity;
|
|
if (voltage_now != 0) {
|
|
charge_full_exists = true;
|
|
charge_full =
|
|
100 * 1000000 * (uint64_t)energy_now / (uint64_t)voltage_now / (uint64_t)capacity;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!power_now_exists && voltage_now_exists && current_now_exists) {
|
|
power_now_exists = true;
|
|
power_now = (uint64_t)voltage_now * (uint64_t)current_now / 1000000;
|
|
}
|
|
|
|
if (!energy_full_design_exists && voltage_now_exists && charge_full_design_exists) {
|
|
energy_full_design_exists = true;
|
|
energy_full_design = (uint64_t)voltage_now * (uint64_t)charge_full_design / 1000000;
|
|
}
|
|
|
|
// Show the "smallest" status among all batteries
|
|
if (status_gt(status, _status)) status = _status;
|
|
|
|
if (power_now_exists) {
|
|
total_power_exists = true;
|
|
total_power += power_now;
|
|
}
|
|
if (energy_now_exists) {
|
|
total_energy_exists = true;
|
|
total_energy += energy_now;
|
|
}
|
|
if (energy_full_exists) {
|
|
total_energy_full_exists = true;
|
|
total_energy_full += energy_full;
|
|
}
|
|
if (energy_full_design_exists) {
|
|
total_energy_full_design_exists = true;
|
|
total_energy_full_design += energy_full_design;
|
|
}
|
|
if (capacity_exists) {
|
|
total_capacity_exists = true;
|
|
total_capacity += capacity;
|
|
}
|
|
}
|
|
|
|
// Give `Plugged` higher priority over `Not charging`.
|
|
// So in a setting where TLP is used, `Plugged` is shown when the threshold is reached
|
|
if (!adapter_.empty() && (status == "Discharging" || status == "Not charging")) {
|
|
bool online;
|
|
std::string current_status;
|
|
std::ifstream(adapter_ / "online") >> online;
|
|
std::getline(std::ifstream(adapter_ / "status"), current_status);
|
|
if (online && current_status != "Discharging") status = "Plugged";
|
|
}
|
|
|
|
float time_remaining{0.0f};
|
|
if (status == "Discharging" && time_to_empty_now_exists) {
|
|
if (time_to_empty_now != 0) time_remaining = (float)time_to_empty_now / 3600.0f;
|
|
} else if (status == "Discharging" && total_power_exists && total_energy_exists) {
|
|
if (total_power != 0) time_remaining = (float)total_energy / total_power;
|
|
} else if (status == "Charging" && time_to_full_now_exists) {
|
|
if (time_to_full_now_exists && (time_to_full_now != 0))
|
|
time_remaining = -(float)time_to_full_now / 3600.0f;
|
|
// If we've turned positive it means the battery is past 100% and so just report that as no
|
|
// time remaining
|
|
if (time_remaining > 0.0f) time_remaining = 0.0f;
|
|
} else if (status == "Charging" && total_energy_exists && total_energy_full_exists &&
|
|
total_power_exists) {
|
|
if (total_power != 0)
|
|
time_remaining = -(float)(total_energy_full - total_energy) / total_power;
|
|
// If we've turned positive it means the battery is past 100% and so just report that as no
|
|
// time remaining
|
|
if (time_remaining > 0.0f) time_remaining = 0.0f;
|
|
}
|
|
|
|
float calculated_capacity{0.0f};
|
|
if (total_capacity_exists) {
|
|
if (total_capacity > 0.0f)
|
|
calculated_capacity = (float)total_capacity / batteries_.size();
|
|
else if (total_energy_full_exists && total_energy_exists) {
|
|
if (total_energy_full > 0.0f)
|
|
calculated_capacity = ((float)total_energy * 100.0f / (float)total_energy_full);
|
|
}
|
|
}
|
|
|
|
// Handle design-capacity
|
|
if ((config_["design-capacity"].isBool() ? config_["design-capacity"].asBool() : false) &&
|
|
total_energy_exists && total_energy_full_design_exists) {
|
|
if (total_energy_full_design > 0.0f)
|
|
calculated_capacity = ((float)total_energy * 100.0f / (float)total_energy_full_design);
|
|
}
|
|
|
|
// Handle full-at
|
|
if (config_["full-at"].isUInt()) {
|
|
auto full_at = config_["full-at"].asUInt();
|
|
if (full_at < 100) calculated_capacity = 100.f * calculated_capacity / full_at;
|
|
}
|
|
|
|
// Handle it gracefully by clamping at 100%
|
|
// This can happen when the battery is calibrating and goes above 100%
|
|
if (calculated_capacity > 100.f) calculated_capacity = 100.f;
|
|
|
|
uint8_t cap = round(calculated_capacity);
|
|
// If we've reached 100% just mark as full as some batteries can stay stuck reporting they're
|
|
// still charging but not yet done
|
|
if (cap == 100 && status == "Charging") status = "Full";
|
|
|
|
return {cap, time_remaining, status, total_power / 1e6};
|
|
#endif
|
|
} catch (const std::exception& e) {
|
|
spdlog::error("Battery: {}", e.what());
|
|
return {0, 0, "Unknown", 0};
|
|
}
|
|
}
|
|
|
|
const std::string waybar::modules::Battery::getAdapterStatus(uint8_t capacity) const {
|
|
#if defined(__FreeBSD__)
|
|
int state;
|
|
size_t size_state = sizeof state;
|
|
if (sysctlbyname("hw.acpi.battery.state", &state, &size_state, NULL, 0) != 0) {
|
|
throw std::runtime_error("sysctl hw.acpi.battery.state failed");
|
|
}
|
|
bool online = state == 2;
|
|
std::string status{"Unknown"}; // TODO: add status in FreeBSD
|
|
{
|
|
#else
|
|
if (!adapter_.empty()) {
|
|
bool online;
|
|
std::string status;
|
|
std::ifstream(adapter_ / "online") >> online;
|
|
std::getline(std::ifstream(adapter_ / "status"), status);
|
|
#endif
|
|
if (capacity == 100) {
|
|
return "Full";
|
|
}
|
|
if (online && status != "Discharging") {
|
|
return "Plugged";
|
|
}
|
|
return "Discharging";
|
|
}
|
|
return "Unknown";
|
|
}
|
|
|
|
const std::string waybar::modules::Battery::formatTimeRemaining(float hoursRemaining) {
|
|
hoursRemaining = std::fabs(hoursRemaining);
|
|
uint16_t full_hours = static_cast<uint16_t>(hoursRemaining);
|
|
uint16_t minutes = static_cast<uint16_t>(60 * (hoursRemaining - full_hours));
|
|
auto format = std::string("{H} h {M} min");
|
|
if (full_hours == 0 && minutes == 0) {
|
|
// Migh as well not show "0h 0min"
|
|
return "";
|
|
}
|
|
if (config_["format-time"].isString()) {
|
|
format = config_["format-time"].asString();
|
|
}
|
|
std::string zero_pad_minutes = fmt::format("{:02d}", minutes);
|
|
return fmt::format(fmt::runtime(format), fmt::arg("H", full_hours), fmt::arg("M", minutes),
|
|
fmt::arg("m", zero_pad_minutes));
|
|
}
|
|
|
|
auto waybar::modules::Battery::update() -> void {
|
|
#if defined(__linux__)
|
|
if (batteries_.empty()) {
|
|
event_box_.hide();
|
|
return;
|
|
}
|
|
#endif
|
|
auto [capacity, time_remaining, status, power] = getInfos();
|
|
if (status == "Unknown") {
|
|
status = getAdapterStatus(capacity);
|
|
}
|
|
auto status_pretty = status;
|
|
// Transform to lowercase and replace space with dash
|
|
std::transform(status.begin(), status.end(), status.begin(),
|
|
[](char ch) { return ch == ' ' ? '-' : std::tolower(ch); });
|
|
auto format = format_;
|
|
auto state = getState(capacity, true);
|
|
auto time_remaining_formatted = formatTimeRemaining(time_remaining);
|
|
if (tooltipEnabled()) {
|
|
std::string tooltip_text_default;
|
|
std::string tooltip_format = "{timeTo}";
|
|
if (time_remaining != 0) {
|
|
std::string time_to = std::string("Time to ") + ((time_remaining > 0) ? "empty" : "full");
|
|
tooltip_text_default = time_to + ": " + time_remaining_formatted;
|
|
} else {
|
|
tooltip_text_default = status_pretty;
|
|
}
|
|
if (!state.empty() && config_["tooltip-format-" + status + "-" + state].isString()) {
|
|
tooltip_format = config_["tooltip-format-" + status + "-" + state].asString();
|
|
} else if (config_["tooltip-format-" + status].isString()) {
|
|
tooltip_format = config_["tooltip-format-" + status].asString();
|
|
} else if (!state.empty() && config_["tooltip-format-" + state].isString()) {
|
|
tooltip_format = config_["tooltip-format-" + state].asString();
|
|
} else if (config_["tooltip-format"].isString()) {
|
|
tooltip_format = config_["tooltip-format"].asString();
|
|
}
|
|
label_.set_tooltip_text(fmt::format(fmt::runtime(tooltip_format),
|
|
fmt::arg("timeTo", tooltip_text_default),
|
|
fmt::arg("power", power), fmt::arg("capacity", capacity),
|
|
fmt::arg("time", time_remaining_formatted)));
|
|
}
|
|
if (!old_status_.empty()) {
|
|
label_.get_style_context()->remove_class(old_status_);
|
|
}
|
|
label_.get_style_context()->add_class(status);
|
|
old_status_ = status;
|
|
if (!state.empty() && config_["format-" + status + "-" + state].isString()) {
|
|
format = config_["format-" + status + "-" + state].asString();
|
|
} else if (config_["format-" + status].isString()) {
|
|
format = config_["format-" + status].asString();
|
|
} else if (!state.empty() && config_["format-" + state].isString()) {
|
|
format = config_["format-" + state].asString();
|
|
}
|
|
if (format.empty()) {
|
|
event_box_.hide();
|
|
} else {
|
|
event_box_.show();
|
|
auto icons = std::vector<std::string>{status + "-" + state, status, state};
|
|
label_.set_markup(fmt::format(
|
|
fmt::runtime(format), fmt::arg("capacity", capacity), fmt::arg("power", power),
|
|
fmt::arg("icon", getIcon(capacity, icons)), fmt::arg("time", time_remaining_formatted)));
|
|
}
|
|
// Call parent update
|
|
ALabel::update();
|
|
}
|