wlroots/render/vulkan/texture.c

716 lines
22 KiB
C
Raw Normal View History

#define _POSIX_C_SOURCE 200809L
#include <assert.h>
#include <fcntl.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <unistd.h>
#include <wlr/render/wlr_texture.h>
#include <wlr/util/log.h>
#include "render/pixel_format.h"
#include "render/vulkan.h"
static const struct wlr_texture_impl texture_impl;
struct wlr_vk_texture *vulkan_get_texture(struct wlr_texture *wlr_texture) {
assert(wlr_texture->impl == &texture_impl);
return (struct wlr_vk_texture *)wlr_texture;
}
static VkImageAspectFlagBits mem_plane_aspect(unsigned i) {
switch (i) {
case 0: return VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT;
case 1: return VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT;
case 2: return VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT;
case 3: return VK_IMAGE_ASPECT_MEMORY_PLANE_3_BIT_EXT;
default: abort(); // unreachable
}
}
static bool vulkan_texture_is_opaque(struct wlr_texture *wlr_texture) {
struct wlr_vk_texture *texture = vulkan_get_texture(wlr_texture);
const struct wlr_pixel_format_info *format_info = drm_get_pixel_format_info(
texture->format->drm_format);
assert(format_info);
return !format_info->has_alpha;
}
// Will transition the texture to shaderReadOnlyOptimal layout for reading
// from fragment shader later on
static bool write_pixels(struct wlr_texture *wlr_texture,
uint32_t stride, uint32_t width, uint32_t height, uint32_t src_x,
uint32_t src_y, uint32_t dst_x, uint32_t dst_y, const void *vdata,
VkImageLayout old_layout, VkPipelineStageFlags src_stage,
VkAccessFlags src_access) {
VkResult res;
struct wlr_vk_texture *texture = vulkan_get_texture(wlr_texture);
struct wlr_vk_renderer *renderer = texture->renderer;
VkDevice dev = texture->renderer->dev->dev;
// make sure assumptions are met
assert(src_x + width <= texture->wlr_texture.width);
assert(src_y + height <= texture->wlr_texture.height);
assert(dst_x + width <= texture->wlr_texture.width);
assert(dst_y + height <= texture->wlr_texture.height);
const struct wlr_pixel_format_info *format_info = drm_get_pixel_format_info(
texture->format->drm_format);
assert(format_info);
// deferred upload by transfer; using staging buffer
// calculate maximum side needed
uint32_t bsize = 0;
unsigned bytespb = format_info->bpp / 8;
bsize += height * bytespb * width;
// get staging buffer
struct wlr_vk_buffer_span span = vulkan_get_stage_span(renderer, bsize);
if (!span.buffer || span.alloc.size != bsize) {
wlr_log(WLR_ERROR, "Failed to retrieve staging buffer");
return false;
}
void *vmap;
res = vkMapMemory(dev, span.buffer->memory, span.alloc.start,
bsize, 0, &vmap);
if (res != VK_SUCCESS) {
wlr_vk_error("vkMapMemory", res);
return false;
}
char *map = (char *)vmap;
// record staging cb
// will be executed before next frame
VkCommandBuffer cb = vulkan_record_stage_cb(renderer);
vulkan_change_layout(cb, texture->image,
old_layout, src_stage, src_access,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT);
// upload data
const char *pdata = vdata; // data iterator
uint32_t packed_stride = bytespb * width;
uint32_t buf_off = span.alloc.start + (map - (char *)vmap);
// write data into staging buffer span
pdata += stride * src_y;
pdata += bytespb * src_x;
if (src_x == 0 && width == texture->wlr_texture.width &&
stride == packed_stride) {
memcpy(map, pdata, packed_stride * height);
map += packed_stride * height;
} else {
for (unsigned i = 0u; i < height; ++i) {
memcpy(map, pdata, packed_stride);
pdata += stride;
map += packed_stride;
}
}
VkBufferImageCopy copy;
copy.imageExtent.width = width;
copy.imageExtent.height = height;
copy.imageExtent.depth = 1;
copy.imageOffset.x = dst_x;
copy.imageOffset.y = dst_y;
copy.imageOffset.z = 0;
copy.bufferOffset = buf_off;
copy.bufferRowLength = width;
copy.bufferImageHeight = height;
copy.imageSubresource.mipLevel = 0;
copy.imageSubresource.baseArrayLayer = 0;
copy.imageSubresource.layerCount = 1;
copy.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
assert((uint32_t)(map - (char *)vmap) == bsize);
vkUnmapMemory(dev, span.buffer->memory);
vkCmdCopyBufferToImage(cb, span.buffer->buffer, texture->image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &copy);
vulkan_change_layout(cb, texture->image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_ACCESS_SHADER_READ_BIT);
texture->last_used = renderer->frame;
return true;
}
static bool vulkan_texture_write_pixels(struct wlr_texture *wlr_texture,
uint32_t stride, uint32_t width, uint32_t height, uint32_t src_x,
uint32_t src_y, uint32_t dst_x, uint32_t dst_y, const void *vdata) {
return write_pixels(wlr_texture, stride, width, height, src_x, src_y,
dst_x, dst_y, vdata, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, VK_ACCESS_SHADER_READ_BIT);
}
void vulkan_texture_destroy(struct wlr_vk_texture *texture) {
if (!texture->renderer) {
free(texture);
return;
}
// when we recorded a command to fill this image _this_ frame,
// it has to be executed before the texture can be destroyed.
// Add it to the renderer->destroy_textures list, destroying
// _after_ the stage command buffer has exectued
if (texture->last_used == texture->renderer->frame) {
assert(texture->destroy_link.next == NULL); // not already inserted
wl_list_insert(&texture->renderer->destroy_textures,
&texture->destroy_link);
return;
}
wl_list_remove(&texture->link);
wl_list_remove(&texture->buffer_destroy.link);
VkDevice dev = texture->renderer->dev->dev;
if (texture->ds && texture->ds_pool) {
vulkan_free_ds(texture->renderer, texture->ds_pool, texture->ds);
}
vkDestroyImageView(dev, texture->image_view, NULL);
vkDestroyImage(dev, texture->image, NULL);
for (unsigned i = 0u; i < texture->mem_count; ++i) {
vkFreeMemory(dev, texture->memories[i], NULL);
}
free(texture);
}
static void vulkan_texture_unref(struct wlr_texture *wlr_texture) {
struct wlr_vk_texture *texture = vulkan_get_texture(wlr_texture);
if (texture->buffer != NULL) {
// Keep the texture around, in case the buffer is re-used later. We're
// still listening to the buffer's destroy event.
wlr_buffer_unlock(texture->buffer);
} else {
vulkan_texture_destroy(texture);
}
}
static const struct wlr_texture_impl texture_impl = {
.is_opaque = vulkan_texture_is_opaque,
.write_pixels = vulkan_texture_write_pixels,
.destroy = vulkan_texture_unref,
};
static struct wlr_vk_texture *vulkan_texture_create(
struct wlr_vk_renderer *renderer, uint32_t width, uint32_t height) {
struct wlr_vk_texture *texture =
calloc(1, sizeof(struct wlr_vk_texture));
if (texture == NULL) {
wlr_log_errno(WLR_ERROR, "Allocation failed");
return NULL;
}
wlr_texture_init(&texture->wlr_texture, &texture_impl, width, height);
texture->renderer = renderer;
wl_list_insert(&renderer->textures, &texture->link);
wl_list_init(&texture->buffer_destroy.link);
return texture;
}
static struct wlr_texture *vulkan_texture_from_pixels(struct wlr_renderer *wlr_renderer,
uint32_t drm_fmt, uint32_t stride, uint32_t width,
uint32_t height, const void *data) {
struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer);
VkResult res;
VkDevice dev = renderer->dev->dev;
wlr_log(WLR_DEBUG, "vulkan_texture_from_pixels: %.4s, %dx%d",
(const char*) &drm_fmt, width, height);
const struct wlr_vk_format_props *fmt =
vulkan_format_props_from_drm(renderer->dev, drm_fmt);
if (fmt == NULL) {
wlr_log(WLR_ERROR, "Unsupported pixel format %"PRIx32 " (%.4s)",
drm_fmt, (const char*) &drm_fmt);
return NULL;
}
struct wlr_vk_texture *texture = vulkan_texture_create(renderer, width, height);
if (texture == NULL) {
return NULL;
}
texture->format = &fmt->format;
// create image
unsigned mem_bits = 0xFFFFFFFF;
VkImageCreateInfo img_info = {0};
img_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
img_info.imageType = VK_IMAGE_TYPE_2D;
img_info.format = texture->format->vk_format;
img_info.mipLevels = 1;
img_info.arrayLayers = 1;
img_info.samples = VK_SAMPLE_COUNT_1_BIT;
img_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
img_info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
img_info.extent = (VkExtent3D) { width, height, 1 };
img_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
img_info.tiling = VK_IMAGE_TILING_OPTIMAL;
img_info.usage |= VK_IMAGE_USAGE_TRANSFER_DST_BIT;
mem_bits = vulkan_find_mem_type(renderer->dev,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, mem_bits);
VkImageLayout layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
res = vkCreateImage(dev, &img_info, NULL, &texture->image);
if (res != VK_SUCCESS) {
wlr_vk_error("vkCreateImage failed", res);
goto error;
}
// memory
VkMemoryRequirements mem_reqs;
vkGetImageMemoryRequirements(dev, texture->image, &mem_reqs);
VkMemoryAllocateInfo mem_info = {0};
mem_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
mem_info.allocationSize = mem_reqs.size;
mem_info.memoryTypeIndex = mem_bits & mem_reqs.memoryTypeBits;
res = vkAllocateMemory(dev, &mem_info, NULL, &texture->memories[0]);
if (res != VK_SUCCESS) {
wlr_vk_error("vkAllocatorMemory failed", res);
goto error;
}
texture->mem_count = 1;
res = vkBindImageMemory(dev, texture->image, texture->memories[0], 0);
if (res != VK_SUCCESS) {
wlr_vk_error("vkBindMemory failed", res);
goto error;
}
const struct wlr_pixel_format_info *format_info = drm_get_pixel_format_info(drm_fmt);
assert(format_info);
// view
VkImageViewCreateInfo view_info = {0};
view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
view_info.format = texture->format->vk_format;
view_info.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
view_info.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
view_info.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
view_info.components.a = format_info->has_alpha
? VK_COMPONENT_SWIZZLE_IDENTITY
: VK_COMPONENT_SWIZZLE_ONE;
view_info.subresourceRange = (VkImageSubresourceRange) {
VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1
};
view_info.image = texture->image;
res = vkCreateImageView(dev, &view_info, NULL,
&texture->image_view);
if (res != VK_SUCCESS) {
wlr_vk_error("vkCreateImageView failed", res);
goto error;
}
// descriptor
texture->ds_pool = vulkan_alloc_texture_ds(renderer, &texture->ds);
if (!texture->ds_pool) {
wlr_log(WLR_ERROR, "failed to allocate descriptor");
goto error;
}
VkDescriptorImageInfo ds_img_info = {0};
ds_img_info.imageView = texture->image_view;
ds_img_info.imageLayout = layout;
VkWriteDescriptorSet ds_write = {0};
ds_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
ds_write.descriptorCount = 1;
ds_write.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
ds_write.dstSet = texture->ds;
ds_write.pImageInfo = &ds_img_info;
vkUpdateDescriptorSets(dev, 1, &ds_write, 0, NULL);
// write data
if (!write_pixels(&texture->wlr_texture, stride,
width, height, 0, 0, 0, 0, data, VK_IMAGE_LAYOUT_UNDEFINED,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0)) {
goto error;
}
return &texture->wlr_texture;
error:
vulkan_texture_destroy(texture);
return NULL;
}
static bool is_dmabuf_disjoint(const struct wlr_dmabuf_attributes *attribs) {
if (attribs->n_planes == 1) {
return false;
}
struct stat first_stat;
if (fstat(attribs->fd[0], &first_stat) != 0) {
wlr_log_errno(WLR_ERROR, "fstat failed");
return true;
}
for (int i = 1; i < attribs->n_planes; i++) {
struct stat plane_stat;
if (fstat(attribs->fd[i], &plane_stat) != 0) {
wlr_log_errno(WLR_ERROR, "fstat failed");
return true;
}
if (first_stat.st_ino != plane_stat.st_ino) {
return true;
}
}
return false;
}
VkImage vulkan_import_dmabuf(struct wlr_vk_renderer *renderer,
const struct wlr_dmabuf_attributes *attribs,
VkDeviceMemory mems[static WLR_DMABUF_MAX_PLANES], uint32_t *n_mems,
bool for_render) {
VkResult res;
VkDevice dev = renderer->dev->dev;
*n_mems = 0u;
wlr_log(WLR_DEBUG, "vulkan_import_dmabuf: %.4s (mod %"PRIx64"), %dx%d, %d planes",
(const char *)&attribs->format, attribs->modifier,
attribs->width, attribs->height, attribs->n_planes);
struct wlr_vk_format_props *fmt = vulkan_format_props_from_drm(renderer->dev,
attribs->format);
if (fmt == NULL) {
wlr_log(WLR_ERROR, "Unsupported pixel format %"PRIx32 " (%.4s)",
attribs->format, (const char*) &attribs->format);
return VK_NULL_HANDLE;
}
uint32_t plane_count = attribs->n_planes;
assert(plane_count < WLR_DMABUF_MAX_PLANES);
struct wlr_vk_format_modifier_props *mod =
vulkan_format_props_find_modifier(fmt, attribs->modifier, for_render);
if (!mod || !(mod->dmabuf_flags & VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT)) {
wlr_log(WLR_ERROR, "Format %"PRIx32" (%.4s) can't be used with modifier "
"%"PRIx64, attribs->format, (const char*) &attribs->format,
attribs->modifier);
return VK_NULL_HANDLE;
}
if ((uint32_t) attribs->width > mod->max_extent.width ||
(uint32_t) attribs->height > mod->max_extent.height) {
wlr_log(WLR_ERROR, "dmabuf is too large to import");
return VK_NULL_HANDLE;
}
if (mod->props.drmFormatModifierPlaneCount != plane_count) {
wlr_log(WLR_ERROR, "Number of planes (%d) does not match format (%d)",
plane_count, mod->props.drmFormatModifierPlaneCount);
return VK_NULL_HANDLE;
}
// check if we have to create the image disjoint
bool disjoint = is_dmabuf_disjoint(attribs);
if (disjoint && !(mod->props.drmFormatModifierTilingFeatures
& VK_FORMAT_FEATURE_DISJOINT_BIT)) {
wlr_log(WLR_ERROR, "Format/Modifier does not support disjoint images");
return VK_NULL_HANDLE;
}
// image
VkExternalMemoryHandleTypeFlagBits htype =
VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT;
VkImageCreateInfo img_info = {0};
img_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
img_info.imageType = VK_IMAGE_TYPE_2D;
img_info.format = fmt->format.vk_format;
img_info.mipLevels = 1;
img_info.arrayLayers = 1;
img_info.samples = VK_SAMPLE_COUNT_1_BIT;
img_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
img_info.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
img_info.extent = (VkExtent3D) { attribs->width, attribs->height, 1 };
img_info.usage = for_render ?
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT :
VK_IMAGE_USAGE_SAMPLED_BIT;
if (disjoint) {
img_info.flags = VK_IMAGE_CREATE_DISJOINT_BIT;
}
VkExternalMemoryImageCreateInfo eimg = {0};
eimg.sType = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO;
eimg.handleTypes = VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT;
img_info.pNext = &eimg;
VkSubresourceLayout plane_layouts[WLR_DMABUF_MAX_PLANES] = {0};
VkImageDrmFormatModifierExplicitCreateInfoEXT mod_info = {0};
img_info.tiling = VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT;
for (unsigned i = 0u; i < plane_count; ++i) {
plane_layouts[i].offset = attribs->offset[i];
plane_layouts[i].rowPitch = attribs->stride[i];
plane_layouts[i].size = 0;
}
mod_info.sType = VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT;
mod_info.drmFormatModifierPlaneCount = plane_count;
mod_info.drmFormatModifier = mod->props.drmFormatModifier;
mod_info.pPlaneLayouts = plane_layouts;
eimg.pNext = &mod_info;
VkImage image;
res = vkCreateImage(dev, &img_info, NULL, &image);
if (res != VK_SUCCESS) {
wlr_vk_error("vkCreateImage", res);
return VK_NULL_HANDLE;
}
unsigned mem_count = disjoint ? plane_count : 1u;
VkBindImageMemoryInfo bindi[WLR_DMABUF_MAX_PLANES] = {0};
VkBindImagePlaneMemoryInfo planei[WLR_DMABUF_MAX_PLANES] = {0};
for (unsigned i = 0u; i < mem_count; ++i) {
struct VkMemoryFdPropertiesKHR fdp = {0};
fdp.sType = VK_STRUCTURE_TYPE_MEMORY_FD_PROPERTIES_KHR;
res = renderer->dev->api.getMemoryFdPropertiesKHR(dev, htype,
attribs->fd[i], &fdp);
if (res != VK_SUCCESS) {
wlr_vk_error("getMemoryFdPropertiesKHR", res);
goto error_image;
}
VkImageMemoryRequirementsInfo2 memri = {0};
memri.image = image;
memri.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2;
VkImagePlaneMemoryRequirementsInfo planeri = {0};
if (disjoint) {
planeri.sType = VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO;
planeri.planeAspect = mem_plane_aspect(i);
memri.pNext = &planeri;
}
VkMemoryRequirements2 memr = {0};
memr.sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2;
vkGetImageMemoryRequirements2(dev, &memri, &memr);
int mem = vulkan_find_mem_type(renderer->dev, 0,
memr.memoryRequirements.memoryTypeBits & fdp.memoryTypeBits);
if (mem < 0) {
wlr_log(WLR_ERROR, "no valid memory type index");
goto error_image;
}
// Since importing transfers ownership of the FD to Vulkan, we have
// to duplicate it since this operation does not transfer ownership
// of the attribs to this texture. Will be closed by Vulkan on
// vkFreeMemory.
int dfd = fcntl(attribs->fd[i], F_DUPFD_CLOEXEC, 0);
if (dfd < 0) {
wlr_log_errno(WLR_ERROR, "fcntl(F_DUPFD_CLOEXEC) failed");
goto error_image;
}
VkMemoryAllocateInfo memi = {0};
memi.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memi.allocationSize = memr.memoryRequirements.size;
memi.memoryTypeIndex = mem;
VkImportMemoryFdInfoKHR importi = {0};
importi.sType = VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR;
importi.fd = dfd;
importi.handleType = htype;
memi.pNext = &importi;
VkMemoryDedicatedAllocateInfo dedi = {0};
dedi.sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO;
dedi.image = image;
importi.pNext = &dedi;
res = vkAllocateMemory(dev, &memi, NULL, &mems[i]);
if (res != VK_SUCCESS) {
close(dfd);
wlr_vk_error("vkAllocateMemory failed", res);
goto error_image;
}
++(*n_mems);
// fill bind info
bindi[i].image = image;
bindi[i].memory = mems[i];
bindi[i].memoryOffset = 0;
bindi[i].sType = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO;
if (disjoint) {
planei[i].sType = VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO;
planei[i].planeAspect = planeri.planeAspect;
bindi[i].pNext = &planei[i];
}
}
res = vkBindImageMemory2(dev, mem_count, bindi);
if (res != VK_SUCCESS) {
wlr_vk_error("vkBindMemory failed", res);
goto error_image;
}
return image;
error_image:
vkDestroyImage(dev, image, NULL);
for (size_t i = 0u; i < *n_mems; ++i) {
vkFreeMemory(dev, mems[i], NULL);
mems[i] = VK_NULL_HANDLE;
}
return VK_NULL_HANDLE;
}
static struct wlr_texture *vulkan_texture_from_dmabuf(struct wlr_renderer *wlr_renderer,
struct wlr_dmabuf_attributes *attribs) {
struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer);
VkResult res;
VkDevice dev = renderer->dev->dev;
const struct wlr_vk_format_props *fmt = vulkan_format_props_from_drm(
renderer->dev, attribs->format);
if (fmt == NULL) {
wlr_log(WLR_ERROR, "Unsupported pixel format %"PRIx32 " (%.4s)",
attribs->format, (const char*) &attribs->format);
return NULL;
}
struct wlr_vk_texture *texture = vulkan_texture_create(renderer,
attribs->width, attribs->height);
if (texture == NULL) {
return NULL;
}
texture->format = &fmt->format;
texture->image = vulkan_import_dmabuf(renderer, attribs,
texture->memories, &texture->mem_count, false);
if (!texture->image) {
goto error;
}
const struct wlr_pixel_format_info *format_info = drm_get_pixel_format_info(attribs->format);
assert(format_info);
// view
VkImageViewCreateInfo view_info = {0};
view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
view_info.format = texture->format->vk_format;
view_info.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
view_info.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
view_info.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
view_info.components.a = format_info->has_alpha
? VK_COMPONENT_SWIZZLE_IDENTITY
: VK_COMPONENT_SWIZZLE_ONE;
view_info.subresourceRange = (VkImageSubresourceRange) {
VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1
};
view_info.image = texture->image;
res = vkCreateImageView(dev, &view_info, NULL, &texture->image_view);
if (res != VK_SUCCESS) {
wlr_vk_error("vkCreateImageView failed", res);
goto error;
}
// descriptor
texture->ds_pool = vulkan_alloc_texture_ds(renderer, &texture->ds);
if (!texture->ds_pool) {
wlr_log(WLR_ERROR, "failed to allocate descriptor");
goto error;
}
VkDescriptorImageInfo ds_img_info = {0};
ds_img_info.imageView = texture->image_view;
ds_img_info.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
VkWriteDescriptorSet ds_write = {0};
ds_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
ds_write.descriptorCount = 1;
ds_write.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
ds_write.dstSet = texture->ds;
ds_write.pImageInfo = &ds_img_info;
vkUpdateDescriptorSets(dev, 1, &ds_write, 0, NULL);
texture->dmabuf_imported = true;
return &texture->wlr_texture;
error:
vulkan_texture_destroy(texture);
return NULL;
}
static void texture_handle_buffer_destroy(struct wl_listener *listener,
void *data) {
struct wlr_vk_texture *texture =
wl_container_of(listener, texture, buffer_destroy);
vulkan_texture_destroy(texture);
}
static struct wlr_texture *vulkan_texture_from_dmabuf_buffer(
struct wlr_vk_renderer *renderer, struct wlr_buffer *buffer,
struct wlr_dmabuf_attributes *dmabuf) {
struct wlr_vk_texture *texture;
wl_list_for_each(texture, &renderer->textures, link) {
if (texture->buffer == buffer) {
wlr_buffer_lock(texture->buffer);
return &texture->wlr_texture;
}
}
struct wlr_texture *wlr_texture =
vulkan_texture_from_dmabuf(&renderer->wlr_renderer, dmabuf);
if (wlr_texture == NULL) {
return false;
}
texture = vulkan_get_texture(wlr_texture);
texture->buffer = wlr_buffer_lock(buffer);
texture->buffer_destroy.notify = texture_handle_buffer_destroy;
wl_signal_add(&buffer->events.destroy, &texture->buffer_destroy);
return &texture->wlr_texture;
}
struct wlr_texture *vulkan_texture_from_buffer(
struct wlr_renderer *wlr_renderer,
struct wlr_buffer *buffer) {
struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer);
void *data;
uint32_t format;
size_t stride;
struct wlr_dmabuf_attributes dmabuf;
if (wlr_buffer_get_dmabuf(buffer, &dmabuf)) {
return vulkan_texture_from_dmabuf_buffer(renderer, buffer, &dmabuf);
} else if (wlr_buffer_begin_data_ptr_access(buffer,
WLR_BUFFER_DATA_PTR_ACCESS_READ, &data, &format, &stride)) {
struct wlr_texture *tex = vulkan_texture_from_pixels(wlr_renderer,
format, stride, buffer->width, buffer->height, data);
wlr_buffer_end_data_ptr_access(buffer);
return tex;
} else {
return NULL;
}
}