RTG-1339 Support post-quantum hybrid key exchange

Func spec: https://wiki.cfops.it/x/ZcBKHw
This commit is contained in:
Bas Westerbaan 2022-08-24 14:33:10 +02:00 committed by Devin Carr
parent 3e0ff3a771
commit 11cbff4ff7
171 changed files with 15270 additions and 196 deletions

View File

@ -4,6 +4,7 @@ import (
"crypto/tls"
"fmt"
"io/ioutil"
mathRand "math/rand"
"os"
"path/filepath"
"strings"
@ -220,6 +221,19 @@ func prepareTunnelConfig(
)
transportProtocol := c.String("protocol")
needPQ := c.Bool("post-quantum")
if needPQ {
if FipsEnabled {
return nil, nil, fmt.Errorf("post-quantum not supported in FIPS mode")
}
// Error if the user tries to force a non-quic transport protocol
if transportProtocol != connection.AutoSelectFlag && transportProtocol != connection.QUIC.String() {
return nil, nil, fmt.Errorf("post-quantum is only supported with the quic transport")
}
transportProtocol = connection.QUIC.String()
}
protocolFetcher := edgediscovery.ProtocolPercentage
cfg := config.GetConfiguration()
@ -230,6 +244,9 @@ func prepareTunnelConfig(
}
log.Info().Msgf("Generated Connector ID: %s", clientUUID)
features := append(c.StringSlice("features"), defaultFeatures...)
if needPQ {
features = append(features, supervisor.FeaturePostQuantum)
}
if c.IsSet(TunnelTokenFlag) {
if transportProtocol == connection.AutoSelectFlag {
protocolFetcher = func() (edgediscovery.ProtocolPercents, error) {
@ -291,7 +308,7 @@ func prepareTunnelConfig(
}
warpRoutingEnabled := isWarpRoutingEnabled(cfg.WarpRouting, isNamedTunnel)
protocolSelector, err := connection.NewProtocolSelector(transportProtocol, warpRoutingEnabled, namedTunnel, protocolFetcher, supervisor.ResolveTTL, log)
protocolSelector, err := connection.NewProtocolSelector(transportProtocol, warpRoutingEnabled, namedTunnel, protocolFetcher, supervisor.ResolveTTL, log, c.Bool("post-quantum"))
if err != nil {
return nil, nil, err
}
@ -330,6 +347,15 @@ func prepareTunnelConfig(
return nil, nil, err
}
var pqKexIdx int
if needPQ {
pqKexIdx = mathRand.Intn(len(supervisor.PQKexes))
log.Info().Msgf(
"Using experimental hybrid post-quantum key agreement %s",
supervisor.PQKexNames[supervisor.PQKexes[pqKexIdx]],
)
}
tunnelConfig := &supervisor.TunnelConfig{
GracePeriod: gracePeriod,
ReplaceExisting: c.Bool("force"),
@ -355,6 +381,8 @@ func prepareTunnelConfig(
MuxerConfig: muxerConfig,
ProtocolSelector: protocolSelector,
EdgeTLSConfigs: edgeTLSConfigs,
NeedPQ: needPQ,
PQKexIdx: pqKexIdx,
}
orchestratorConfig := &orchestration.Config{
Ingress: &ingressRules,

View File

@ -0,0 +1,3 @@
package tunnel
var FipsEnabled bool

View File

@ -140,6 +140,13 @@ var (
EnvVars: []string{"TUNNEL_TRANSPORT_PROTOCOL"},
Hidden: true,
})
postQuantumFlag = altsrc.NewBoolFlag(&cli.BoolFlag{
Name: "post-quantum",
Usage: "When given creates an experimental post-quantum secure tunnel",
Aliases: []string{"pq"},
EnvVars: []string{"TUNNEL_POST_QUANTUM"},
Hidden: FipsEnabled,
})
sortInfoByFlag = &cli.StringFlag{
Name: "sort-by",
Value: "createdAt",
@ -602,6 +609,7 @@ func buildRunCommand() *cli.Command {
forceFlag,
credentialsFileFlag,
credentialsContentsFlag,
postQuantumFlag,
selectProtocolFlag,
featuresFlag,
tunnelTokenFlag,

View File

@ -1,6 +1,7 @@
package connection
import (
"errors"
"fmt"
"hash/fnv"
"sync"
@ -130,6 +131,7 @@ type autoProtocolSelector struct {
refreshAfter time.Time
ttl time.Duration
log *zerolog.Logger
needPQ bool
}
func newAutoProtocolSelector(
@ -139,6 +141,7 @@ func newAutoProtocolSelector(
fetchFunc PercentageFetcher,
ttl time.Duration,
log *zerolog.Logger,
needPQ bool,
) *autoProtocolSelector {
return &autoProtocolSelector{
current: current,
@ -148,6 +151,7 @@ func newAutoProtocolSelector(
refreshAfter: time.Now().Add(ttl),
ttl: ttl,
log: log,
needPQ: needPQ,
}
}
@ -187,6 +191,9 @@ func getProtocol(protocolPool []Protocol, fetchFunc PercentageFetcher, switchThr
func (s *autoProtocolSelector) Fallback() (Protocol, bool) {
s.lock.RLock()
defer s.lock.RUnlock()
if s.needPQ {
return 0, false
}
return s.current.fallback()
}
@ -199,9 +206,14 @@ func NewProtocolSelector(
fetchFunc PercentageFetcher,
ttl time.Duration,
log *zerolog.Logger,
needPQ bool,
) (ProtocolSelector, error) {
// Classic tunnel is only supported with h2mux
if namedTunnel == nil {
if needPQ {
return nil, errors.New("Classic tunnel does not support post-quantum")
}
return &staticProtocolSelector{
current: H2mux,
}, nil
@ -211,6 +223,9 @@ func NewProtocolSelector(
fetchedProtocol, err := getProtocol([]Protocol{QUIC, HTTP2}, fetchFunc, threshold)
if err != nil && protocolFlag == "auto" {
log.Err(err).Msg("Unable to lookup protocol. Defaulting to `http2`. If this fails, you can attempt `--protocol quic` instead.")
if needPQ {
return nil, errors.New("http2 does not support post-quantum")
}
return &staticProtocolSelector{
current: HTTP2,
}, nil
@ -221,10 +236,10 @@ func NewProtocolSelector(
protocolFlag = HTTP2.String()
fetchedProtocol = HTTP2Warp
}
return selectWarpRoutingProtocols(protocolFlag, fetchFunc, ttl, log, threshold, fetchedProtocol)
return selectWarpRoutingProtocols(protocolFlag, fetchFunc, ttl, log, threshold, fetchedProtocol, needPQ)
}
return selectNamedTunnelProtocols(protocolFlag, fetchFunc, ttl, log, threshold, fetchedProtocol)
return selectNamedTunnelProtocols(protocolFlag, fetchFunc, ttl, log, threshold, fetchedProtocol, needPQ)
}
func selectNamedTunnelProtocols(
@ -234,6 +249,7 @@ func selectNamedTunnelProtocols(
log *zerolog.Logger,
threshold int32,
protocol Protocol,
needPQ bool,
) (ProtocolSelector, error) {
// If the user picks a protocol, then we stick to it no matter what.
switch protocolFlag {
@ -248,7 +264,7 @@ func selectNamedTunnelProtocols(
// If the user does not pick (hopefully the majority) then we use the one derived from the TXT DNS record and
// fallback on failures.
if protocolFlag == AutoSelectFlag {
return newAutoProtocolSelector(protocol, []Protocol{QUIC, HTTP2, H2mux}, threshold, fetchFunc, ttl, log), nil
return newAutoProtocolSelector(protocol, []Protocol{QUIC, HTTP2, H2mux}, threshold, fetchFunc, ttl, log, needPQ), nil
}
return nil, fmt.Errorf("Unknown protocol %s, %s", protocolFlag, AvailableProtocolFlagMessage)
@ -261,6 +277,7 @@ func selectWarpRoutingProtocols(
log *zerolog.Logger,
threshold int32,
protocol Protocol,
needPQ bool,
) (ProtocolSelector, error) {
// If the user picks a protocol, then we stick to it no matter what.
switch protocolFlag {
@ -273,7 +290,7 @@ func selectWarpRoutingProtocols(
// If the user does not pick (hopefully the majority) then we use the one derived from the TXT DNS record and
// fallback on failures.
if protocolFlag == AutoSelectFlag {
return newAutoProtocolSelector(protocol, []Protocol{QUICWarp, HTTP2Warp}, threshold, fetchFunc, ttl, log), nil
return newAutoProtocolSelector(protocol, []Protocol{QUICWarp, HTTP2Warp}, threshold, fetchFunc, ttl, log, needPQ), nil
}
return nil, fmt.Errorf("Unknown protocol %s, %s", protocolFlag, AvailableProtocolFlagMessage)

View File

@ -219,7 +219,7 @@ func TestNewProtocolSelector(t *testing.T) {
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
selector, err := NewProtocolSelector(test.protocol, test.warpRoutingEnabled, test.namedTunnelConfig, test.fetchFunc, testNoTTL, &log)
selector, err := NewProtocolSelector(test.protocol, test.warpRoutingEnabled, test.namedTunnelConfig, test.fetchFunc, testNoTTL, &log, false)
if test.wantErr {
assert.Error(t, err, fmt.Sprintf("test %s failed", test.name))
} else {
@ -237,7 +237,7 @@ func TestNewProtocolSelector(t *testing.T) {
func TestAutoProtocolSelectorRefresh(t *testing.T) {
fetcher := dynamicMockFetcher{}
selector, err := NewProtocolSelector(AutoSelectFlag, noWarpRoutingEnabled, testNamedTunnelProperties, fetcher.fetch(), testNoTTL, &log)
selector, err := NewProtocolSelector(AutoSelectFlag, noWarpRoutingEnabled, testNamedTunnelProperties, fetcher.fetch(), testNoTTL, &log, false)
assert.NoError(t, err)
assert.Equal(t, H2mux, selector.Current())
@ -267,7 +267,7 @@ func TestAutoProtocolSelectorRefresh(t *testing.T) {
func TestHTTP2ProtocolSelectorRefresh(t *testing.T) {
fetcher := dynamicMockFetcher{}
// Since the user chooses http2 on purpose, we always stick to it.
selector, err := NewProtocolSelector("http2", noWarpRoutingEnabled, testNamedTunnelProperties, fetcher.fetch(), testNoTTL, &log)
selector, err := NewProtocolSelector("http2", noWarpRoutingEnabled, testNamedTunnelProperties, fetcher.fetch(), testNoTTL, &log, false)
assert.NoError(t, err)
assert.Equal(t, HTTP2, selector.Current())
@ -297,7 +297,7 @@ func TestHTTP2ProtocolSelectorRefresh(t *testing.T) {
func TestProtocolSelectorRefreshTTL(t *testing.T) {
fetcher := dynamicMockFetcher{}
fetcher.protocolPercents = edgediscovery.ProtocolPercents{edgediscovery.ProtocolPercent{Protocol: "quic", Percentage: 100}}
selector, err := NewProtocolSelector(AutoSelectFlag, noWarpRoutingEnabled, testNamedTunnelProperties, fetcher.fetch(), time.Hour, &log)
selector, err := NewProtocolSelector(AutoSelectFlag, noWarpRoutingEnabled, testNamedTunnelProperties, fetcher.fetch(), time.Hour, &log, false)
assert.NoError(t, err)
assert.Equal(t, QUIC, selector.Current())

View File

@ -2,4 +2,11 @@
package main
import _ "crypto/tls/fipsonly"
import (
_ "crypto/tls/fipsonly"
"github.com/cloudflare/cloudflared/cmd/cloudflared/tunnel"
)
func init () {
tunnel.FipsEnabled = true
}

16
go.mod
View File

@ -12,6 +12,7 @@ require (
github.com/getsentry/raven-go v0.0.0-20180517221441-ed7bcb39ff10
github.com/gobwas/ws v1.0.4
github.com/golang-collections/collections v0.0.0-20130729185459-604e922904d3
github.com/google/gopacket v1.1.19
github.com/google/uuid v1.3.0
github.com/gorilla/mux v1.8.0
github.com/gorilla/websocket v1.4.2
@ -33,10 +34,10 @@ require (
go.opentelemetry.io/otel/trace v1.6.3
go.opentelemetry.io/proto/otlp v0.15.0
go.uber.org/automaxprocs v1.4.0
golang.org/x/crypto v0.0.0-20220427172511-eb4f295cb31f
golang.org/x/crypto v0.0.0-20220722155217-630584e8d5aa
golang.org/x/net v0.0.0-20220812174116-3211cb980234
golang.org/x/sync v0.0.0-20210220032951-036812b2e83c
golang.org/x/sys v0.0.0-20220728004956-3c1f35247d10
golang.org/x/sys v0.0.0-20220808155132-1c4a2a72c664
golang.org/x/term v0.0.0-20210927222741-03fcf44c2211
google.golang.org/protobuf v1.28.0
gopkg.in/coreos/go-oidc.v2 v2.2.1
@ -53,6 +54,7 @@ require (
github.com/certifi/gocertifi v0.0.0-20200211180108-c7c1fbc02894 // indirect
github.com/cespare/xxhash/v2 v2.1.2 // indirect
github.com/cheekybits/genny v1.0.0 // indirect
github.com/cloudflare/circl v1.2.1-0.20220809205628-0a9554f37a47 // indirect
github.com/coredns/caddy v1.1.1 // indirect
github.com/cpuguy83/go-md2man/v2 v2.0.0 // indirect
github.com/davecgh/go-spew v1.1.1 // indirect
@ -67,7 +69,6 @@ require (
github.com/gobwas/httphead v0.0.0-20200921212729-da3d93bc3c58 // indirect
github.com/gobwas/pool v0.2.1 // indirect
github.com/golang/protobuf v1.5.2 // indirect
github.com/google/gopacket v1.1.19 // indirect
github.com/grpc-ecosystem/grpc-gateway/v2 v2.7.0 // indirect
github.com/grpc-ecosystem/grpc-opentracing v0.0.0-20180507213350-8e809c8a8645 // indirect
github.com/kylelemons/godebug v1.1.0 // indirect
@ -107,3 +108,12 @@ replace github.com/lucas-clemente/quic-go => github.com/chungthuang/quic-go v0.2
replace github.com/prometheus/golang_client => github.com/prometheus/golang_client v1.12.1
replace gopkg.in/yaml.v3 => gopkg.in/yaml.v3 v3.0.1
// Post-quantum tunnel RTG-1339
replace (
// branch go1.18
github.com/marten-seemann/qtls-go1-18 => github.com/cloudflare/qtls-pq v0.0.0-20220824105406-fb955667e0af
// branch go1.19
github.com/marten-seemann/qtls-go1-19 => github.com/cloudflare/qtls-pq v0.0.0-20220824104809-96561a41e0af
)

22
go.sum
View File

@ -99,6 +99,7 @@ github.com/beorn7/perks v1.0.1 h1:VlbKKnNfV8bJzeqoa4cOKqO6bYr3WgKZxO8Z16+hsOM=
github.com/beorn7/perks v1.0.1/go.mod h1:G2ZrVWU2WbWT9wwq4/hrbKbnv/1ERSJQ0ibhJ6rlkpw=
github.com/bradfitz/go-smtpd v0.0.0-20170404230938-deb6d6237625/go.mod h1:HYsPBTaaSFSlLx/70C2HPIMNZpVV8+vt/A+FMnYP11g=
github.com/buger/jsonparser v0.0.0-20181115193947-bf1c66bbce23/go.mod h1:bbYlZJ7hK1yFx9hf58LP0zeX7UjIGs20ufpu3evjr+s=
github.com/bwesterb/go-ristretto v1.2.2/go.mod h1:fUIoIZaG73pV5biE2Blr2xEzDoMj7NFEuV9ekS419A0=
github.com/cenkalti/backoff/v4 v4.1.2/go.mod h1:scbssz8iZGpm3xbr14ovlUdkxfGXNInqkPWOWmG2CLw=
github.com/census-instrumentation/opencensus-proto v0.2.1/go.mod h1:f6KPmirojxKA12rnyqOA5BBL4O983OfeGPqjHWSTneU=
github.com/certifi/gocertifi v0.0.0-20200211180108-c7c1fbc02894 h1:JLaf/iINcLyjwbtTsCJjc6rtlASgHeIJPrB6QmwURnA=
@ -117,8 +118,14 @@ github.com/chzyer/test v0.0.0-20180213035817-a1ea475d72b1/go.mod h1:Q3SI9o4m/ZMn
github.com/client9/misspell v0.3.4/go.mod h1:qj6jICC3Q7zFZvVWo7KLAzC3yx5G7kyvSDkc90ppPyw=
github.com/cloudflare/brotli-go v0.0.0-20191101163834-d34379f7ff93 h1:QrGfkZDnMxcWHaYDdB7CmqS9i26OAnUj/xcus/abYkY=
github.com/cloudflare/brotli-go v0.0.0-20191101163834-d34379f7ff93/go.mod h1:QiTe66jFdP7cUKMCCf/WrvDyYdtdmdZfVcdoLbzaKVY=
github.com/cloudflare/circl v1.2.1-0.20220809205628-0a9554f37a47 h1:YzpECHxZ9TzO7LpnKmPxItSd79lLgrR5heIlnqU4dTU=
github.com/cloudflare/circl v1.2.1-0.20220809205628-0a9554f37a47/go.mod h1:qhx8gBILsYlbam7h09SvHDSkjpe3TfLA7b/z4rxJvkE=
github.com/cloudflare/golibs v0.0.0-20170913112048-333127dbecfc h1:Dvk3ySBsOm5EviLx6VCyILnafPcQinXGP5jbTdHUJgE=
github.com/cloudflare/golibs v0.0.0-20170913112048-333127dbecfc/go.mod h1:HlgKKR8V5a1wroIDDIz3/A+T+9Janfq+7n1P5sEFdi0=
github.com/cloudflare/qtls-pq v0.0.0-20220824104809-96561a41e0af h1:JMpOQAaXjRRBkUX73fTNe9mConJLFl6FsIp9fHdLm7Y=
github.com/cloudflare/qtls-pq v0.0.0-20220824104809-96561a41e0af/go.mod h1:aIsWqC0WXyUiUxBl/RfxAjDyWE9CCLqvSMnCMTd/+bc=
github.com/cloudflare/qtls-pq v0.0.0-20220824105406-fb955667e0af h1:bhCmedjwrOSyzLtHVeQ+KhimcNTSfs0P5T7kbRQS+gA=
github.com/cloudflare/qtls-pq v0.0.0-20220824105406-fb955667e0af/go.mod h1:mW0BgKFFDAiSmOdUwoORtjo0V2vqw5QzVYRtKQqw/Jg=
github.com/cncf/udpa/go v0.0.0-20191209042840-269d4d468f6f/go.mod h1:M8M6+tZqaGXZJjfX53e64911xZQV5JYwmTeXPW+k8Sc=
github.com/cncf/udpa/go v0.0.0-20200629203442-efcf912fb354/go.mod h1:WmhPx2Nbnhtbo57+VJT5O0JRkEi1Wbu0z5j0R8u5Hbk=
github.com/cncf/udpa/go v0.0.0-20201120205902-5459f2c99403/go.mod h1:WmhPx2Nbnhtbo57+VJT5O0JRkEi1Wbu0z5j0R8u5Hbk=
@ -401,10 +408,6 @@ github.com/marten-seemann/qtls-go1-16 v0.1.5 h1:o9JrYPPco/Nukd/HpOHMHZoBDXQqoNtU
github.com/marten-seemann/qtls-go1-16 v0.1.5/go.mod h1:gNpI2Ol+lRS3WwSOtIUUtRwZEQMXjYK+dQSBFbethAk=
github.com/marten-seemann/qtls-go1-17 v0.1.2 h1:JADBlm0LYiVbuSySCHeY863dNkcpMmDR7s0bLKJeYlQ=
github.com/marten-seemann/qtls-go1-17 v0.1.2/go.mod h1:C2ekUKcDdz9SDWxec1N/MvcXBpaX9l3Nx67XaR84L5s=
github.com/marten-seemann/qtls-go1-18 v0.1.2 h1:JH6jmzbduz0ITVQ7ShevK10Av5+jBEKAHMntXmIV7kM=
github.com/marten-seemann/qtls-go1-18 v0.1.2/go.mod h1:mJttiymBAByA49mhlNZZGrH5u1uXYZJ+RW28Py7f4m4=
github.com/marten-seemann/qtls-go1-19 v0.1.0-beta.1 h1:7m/WlWcSROrcK5NxuXaxYD32BZqe/LEEnBrWcH/cOqQ=
github.com/marten-seemann/qtls-go1-19 v0.1.0-beta.1/go.mod h1:5HTDWtVudo/WFsHKRNuOhWlbdjrfs5JHrYb0wIJqGpI=
github.com/mattn/go-colorable v0.1.8 h1:c1ghPdyEDarC70ftn0y+A/Ee++9zz8ljHG1b13eJ0s8=
github.com/mattn/go-colorable v0.1.8/go.mod h1:u6P/XSegPjTcexA+o6vUJrdnUu04hMope9wVRipJSqc=
github.com/mattn/go-isatty v0.0.12 h1:wuysRhFDzyxgEmMf5xjvJ2M9dZoWAXNNr5LSBS7uHXY=
@ -621,8 +624,8 @@ golang.org/x/crypto v0.0.0-20201112155050-0c6587e931a9/go.mod h1:LzIPMQfyMNhhGPh
golang.org/x/crypto v0.0.0-20210817164053-32db794688a5/go.mod h1:GvvjBRRGRdwPK5ydBHafDWAxML/pGHZbMvKqRZ5+Abc=
golang.org/x/crypto v0.0.0-20210920023735-84f357641f63/go.mod h1:GvvjBRRGRdwPK5ydBHafDWAxML/pGHZbMvKqRZ5+Abc=
golang.org/x/crypto v0.0.0-20210921155107-089bfa567519/go.mod h1:GvvjBRRGRdwPK5ydBHafDWAxML/pGHZbMvKqRZ5+Abc=
golang.org/x/crypto v0.0.0-20220427172511-eb4f295cb31f h1:OeJjE6G4dgCY4PIXvIRQbE8+RX+uXZyGhUy/ksMGJoc=
golang.org/x/crypto v0.0.0-20220427172511-eb4f295cb31f/go.mod h1:IxCIyHEi3zRg3s0A5j5BB6A9Jmi73HwBIUl50j+osU4=
golang.org/x/crypto v0.0.0-20220722155217-630584e8d5aa h1:zuSxTR4o9y82ebqCUJYNGJbGPo6sKVl54f/TVDObg1c=
golang.org/x/crypto v0.0.0-20220722155217-630584e8d5aa/go.mod h1:IxCIyHEi3zRg3s0A5j5BB6A9Jmi73HwBIUl50j+osU4=
golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20190306152737-a1d7652674e8/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20190510132918-efd6b22b2522/go.mod h1:ZjyILWgesfNpC6sMxTJOJm9Kp84zZh5NQWvqDGG3Qr8=
@ -708,9 +711,9 @@ golang.org/x/net v0.0.0-20210503060351-7fd8e65b6420/go.mod h1:9nx3DQGgdP8bBQD5qx
golang.org/x/net v0.0.0-20210525063256-abc453219eb5/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
golang.org/x/net v0.0.0-20210726213435-c6fcb2dbf985/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
golang.org/x/net v0.0.0-20210917221730-978cfadd31cf/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
golang.org/x/net v0.0.0-20211112202133-69e39bad7dc2/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
golang.org/x/net v0.0.0-20211209124913-491a49abca63/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
golang.org/x/net v0.0.0-20211216030914-fe4d6282115f/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
golang.org/x/net v0.0.0-20220624214902-1bab6f366d9e h1:TsQ7F31D3bUCLeqPT0u+yjp1guoArKaNKmCr22PYgTQ=
golang.org/x/net v0.0.0-20220624214902-1bab6f366d9e/go.mod h1:XRhObCWvk6IyKnWLug+ECip1KBveYUHfp+8e9klMJ9c=
golang.org/x/net v0.0.0-20220812174116-3211cb980234 h1:RDqmgfe7SvlMWoqC3xwQ2blLO3fcWcxMa3eBLRdRW7E=
golang.org/x/net v0.0.0-20220812174116-3211cb980234/go.mod h1:YDH+HFinaLZZlnHAfSS6ZXJJ9M9t4Dl22yv3iI2vPwk=
@ -818,10 +821,9 @@ golang.org/x/sys v0.0.0-20210908233432-aa78b53d3365/go.mod h1:oPkhp1MJrh7nUepCBc
golang.org/x/sys v0.0.0-20211124211545-fe61309f8881/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20211216021012-1d35b9e2eb4e/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220114195835-da31bd327af9/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220520151302-bc2c85ada10a h1:dGzPydgVsqGcTRVwiLJ1jVbufYwmzD3LfVPLKsKg+0k=
golang.org/x/sys v0.0.0-20220520151302-bc2c85ada10a/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220728004956-3c1f35247d10 h1:WIoqL4EROvwiPdUtaip4VcDdpZ4kha7wBWZrbVKCIZg=
golang.org/x/sys v0.0.0-20220728004956-3c1f35247d10/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220808155132-1c4a2a72c664 h1:v1W7bwXHsnLLloWYTVEdvGvA7BHMeBYsPcF0GLDxIRs=
golang.org/x/sys v0.0.0-20220808155132-1c4a2a72c664/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
golang.org/x/term v0.0.0-20210615171337-6886f2dfbf5b/go.mod h1:jbD1KX2456YbFQfuXm/mYQcufACuNUgVhRMnK/tPxf8=
golang.org/x/term v0.0.0-20210927222741-03fcf44c2211 h1:JGgROgKl9N8DuW20oFS5gxc+lE67/N3FcwmBPMe7ArY=

100
supervisor/pqtunnels.go Normal file
View File

@ -0,0 +1,100 @@
package supervisor
import (
"bytes"
"crypto/tls"
"encoding/json"
"net/http"
"sync"
)
// When experimental post-quantum tunnels are enabled, and we're hitting an
// issue creating the tunnel, we'll report the first error
// to https://pqtunnels.cloudflareresearch.com.
var (
PQKexes = [...]tls.CurveID{
tls.CurveID(0xfe30), // X25519Kyber512Draft00
tls.CurveID(0xfe31), // X25519Kyber768Draft00
}
PQKexNames map[tls.CurveID]string = map[tls.CurveID]string{
tls.CurveID(0xfe30): "X25519Kyber512Draft00",
tls.CurveID(0xfe31): "X25519Kyber768Draft00",
}
pqtMux sync.Mutex // protects pqtSubmitted and pqtWaitForMessage
pqtSubmitted bool // whether an error has already been submitted
// Number of errors to ignore before printing elaborate instructions.
pqtWaitForMessage int
)
func handlePQTunnelError(rep error, config *TunnelConfig) {
needToMessage := false
pqtMux.Lock()
needToSubmit := !pqtSubmitted
if needToSubmit {
pqtSubmitted = true
}
pqtWaitForMessage--
if pqtWaitForMessage < 0 {
pqtWaitForMessage = 5
needToMessage = true
}
pqtMux.Unlock()
if needToMessage {
config.Log.Info().Msgf(
"\n\n" +
"===================================================================================\n" +
"You are hitting an error while using the experimental post-quantum tunnels feature.\n" +
"\n" +
"Please check:\n" +
"\n" +
" https://pqtunnels.cloudflareresearch.com\n" +
"\n" +
"for known problems.\n" +
"===================================================================================\n\n",
)
}
if needToSubmit {
go submitPQTunnelError(rep, config)
}
}
func submitPQTunnelError(rep error, config *TunnelConfig) {
body, err := json.Marshal(struct {
Group int `json:"g"`
Message string `json:"m"`
Version string `json:"v"`
}{
Group: int(PQKexes[config.PQKexIdx]),
Message: rep.Error(),
Version: config.ReportedVersion,
})
if err != nil {
config.Log.Err(err).Msg("Failed to create error report")
return
}
resp, err := http.Post(
"https://pqtunnels.cloudflareresearch.com",
"application/json",
bytes.NewBuffer(body),
)
if err != nil {
config.Log.Err(err).Msg(
"Failed to submit post-quantum tunnel error report",
)
return
}
if resp.StatusCode != 200 {
config.Log.Error().Msgf(
"Failed to submit post-quantum tunnel error report: status %d",
resp.StatusCode,
)
}
resp.Body.Close()
}

View File

@ -36,6 +36,7 @@ const (
FeatureQuickReconnects = "quick_reconnects"
FeatureAllowRemoteConfig = "allow_remote_config"
FeatureDatagramV2 = "support_datagram_v2"
FeaturePostQuantum = "postquantum"
)
type TunnelConfig struct {
@ -59,6 +60,11 @@ type TunnelConfig struct {
Retries uint
RunFromTerminal bool
NeedPQ bool
// Index into PQKexes of post-quantum kex to use if NeedPQ is set.
PQKexIdx int
NamedTunnel *connection.NamedTunnelProperties
ClassicTunnel *connection.ClassicTunnelProperties
MuxerConfig *connection.MuxerConfig
@ -524,6 +530,9 @@ func (e *EdgeTunnelServer) serveH2mux(
connIndex uint8,
connectedFuse *connectedFuse,
) error {
if e.config.NeedPQ {
return unrecoverableError{errors.New("H2Mux transport does not support post-quantum")}
}
connLog.Logger().Debug().Msgf("Connecting via h2mux")
// Returns error from parsing the origin URL or handshake errors
handler, err, recoverable := connection.NewH2muxConnection(
@ -575,6 +584,10 @@ func (e *EdgeTunnelServer) serveHTTP2(
controlStreamHandler connection.ControlStreamHandler,
connIndex uint8,
) error {
if e.config.NeedPQ {
return unrecoverableError{errors.New("HTTP/2 transport does not support post-quantum")}
}
connLog.Logger().Debug().Msgf("Connecting via http2")
h2conn := connection.NewHTTP2Connection(
tlsServerConn,
@ -613,6 +626,22 @@ func (e *EdgeTunnelServer) serveQUIC(
connIndex uint8,
) (err error, recoverable bool) {
tlsConfig := e.config.EdgeTLSConfigs[connection.QUIC]
if e.config.NeedPQ {
// If the user passes the -post-quantum flag, we override
// CurvePreferences to only support hybrid post-quantum key agreements.
cs := make([]tls.CurveID, len(PQKexes))
copy(cs, PQKexes[:])
// It is unclear whether Kyber512 or Kyber768 will become the standard.
// Kyber768 is a bit bigger (and doesn't fit in one initial
// datagram anymore). We're enabling both, but pick randomly which
// one to put first. (TLS will use the first one in the list
// and allows a fallback to the second.)
cs[0], cs[e.config.PQKexIdx] = cs[e.config.PQKexIdx], cs[0]
tlsConfig.CurvePreferences = cs
}
quicConfig := &quic.Config{
HandshakeIdleTimeout: quicpogs.HandshakeIdleTimeout,
MaxIdleTimeout: quicpogs.MaxIdleTimeout,
@ -634,6 +663,10 @@ func (e *EdgeTunnelServer) serveQUIC(
connLogger.Logger(),
e.icmpProxy)
if err != nil {
if e.config.NeedPQ {
handlePQTunnelError(err, e.config)
}
connLogger.ConnAwareLogger().Err(err).Msgf("Failed to create new quic connection")
return err, true
}

View File

@ -44,6 +44,7 @@ func TestWaitForBackoffFallback(t *testing.T) {
mockFetcher.fetch(),
resolveTTL,
&log,
false,
)
assert.NoError(t, err)
@ -104,6 +105,7 @@ func TestWaitForBackoffFallback(t *testing.T) {
mockFetcher.fetch(),
resolveTTL,
&log,
false,
)
assert.NoError(t, err)
protoFallback = &protocolFallback{backoff, protocolSelector.Current(), false}

57
vendor/github.com/cloudflare/circl/LICENSE generated vendored Normal file
View File

@ -0,0 +1,57 @@
Copyright (c) 2019 Cloudflare. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Cloudflare nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
========================================================================
Copyright (c) 2009 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

96
vendor/github.com/cloudflare/circl/dh/x25519/curve.go generated vendored Normal file
View File

@ -0,0 +1,96 @@
package x25519
import (
fp "github.com/cloudflare/circl/math/fp25519"
)
// ladderJoye calculates a fixed-point multiplication with the generator point.
// The algorithm is the right-to-left Joye's ladder as described
// in "How to precompute a ladder" in SAC'2017.
func ladderJoye(k *Key) {
w := [5]fp.Elt{} // [mu,x1,z1,x2,z2] order must be preserved.
fp.SetOne(&w[1]) // x1 = 1
fp.SetOne(&w[2]) // z1 = 1
w[3] = fp.Elt{ // x2 = G-S
0xbd, 0xaa, 0x2f, 0xc8, 0xfe, 0xe1, 0x94, 0x7e,
0xf8, 0xed, 0xb2, 0x14, 0xae, 0x95, 0xf0, 0xbb,
0xe2, 0x48, 0x5d, 0x23, 0xb9, 0xa0, 0xc7, 0xad,
0x34, 0xab, 0x7c, 0xe2, 0xee, 0xcd, 0xae, 0x1e,
}
fp.SetOne(&w[4]) // z2 = 1
const n = 255
const h = 3
swap := uint(1)
for s := 0; s < n-h; s++ {
i := (s + h) / 8
j := (s + h) % 8
bit := uint((k[i] >> uint(j)) & 1)
copy(w[0][:], tableGenerator[s*Size:(s+1)*Size])
diffAdd(&w, swap^bit)
swap = bit
}
for s := 0; s < h; s++ {
double(&w[1], &w[2])
}
toAffine((*[fp.Size]byte)(k), &w[1], &w[2])
}
// ladderMontgomery calculates a generic scalar point multiplication
// The algorithm implemented is the left-to-right Montgomery's ladder.
func ladderMontgomery(k, xP *Key) {
w := [5]fp.Elt{} // [x1, x2, z2, x3, z3] order must be preserved.
w[0] = *(*fp.Elt)(xP) // x1 = xP
fp.SetOne(&w[1]) // x2 = 1
w[3] = *(*fp.Elt)(xP) // x3 = xP
fp.SetOne(&w[4]) // z3 = 1
move := uint(0)
for s := 255 - 1; s >= 0; s-- {
i := s / 8
j := s % 8
bit := uint((k[i] >> uint(j)) & 1)
ladderStep(&w, move^bit)
move = bit
}
toAffine((*[fp.Size]byte)(k), &w[1], &w[2])
}
func toAffine(k *[fp.Size]byte, x, z *fp.Elt) {
fp.Inv(z, z)
fp.Mul(x, x, z)
_ = fp.ToBytes(k[:], x)
}
var lowOrderPoints = [5]fp.Elt{
{ /* (0,_,1) point of order 2 on Curve25519 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
},
{ /* (1,_,1) point of order 4 on Curve25519 */
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
},
{ /* (x,_,1) first point of order 8 on Curve25519 */
0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae,
0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a,
0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd,
0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00,
},
{ /* (x,_,1) second point of order 8 on Curve25519 */
0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24,
0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b,
0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86,
0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57,
},
{ /* (-1,_,1) a point of order 4 on the twist of Curve25519 */
0xec, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f,
},
}

View File

@ -0,0 +1,30 @@
//go:build amd64 && !purego
// +build amd64,!purego
package x25519
import (
fp "github.com/cloudflare/circl/math/fp25519"
"golang.org/x/sys/cpu"
)
var hasBmi2Adx = cpu.X86.HasBMI2 && cpu.X86.HasADX
var _ = hasBmi2Adx
func double(x, z *fp.Elt) { doubleAmd64(x, z) }
func diffAdd(w *[5]fp.Elt, b uint) { diffAddAmd64(w, b) }
func ladderStep(w *[5]fp.Elt, b uint) { ladderStepAmd64(w, b) }
func mulA24(z, x *fp.Elt) { mulA24Amd64(z, x) }
//go:noescape
func ladderStepAmd64(w *[5]fp.Elt, b uint)
//go:noescape
func diffAddAmd64(w *[5]fp.Elt, b uint)
//go:noescape
func doubleAmd64(x, z *fp.Elt)
//go:noescape
func mulA24Amd64(z, x *fp.Elt)

View File

@ -0,0 +1,111 @@
#define ladderStepLeg \
addSub(x2,z2) \
addSub(x3,z3) \
integerMulLeg(b0,x2,z3) \
integerMulLeg(b1,x3,z2) \
reduceFromDoubleLeg(t0,b0) \
reduceFromDoubleLeg(t1,b1) \
addSub(t0,t1) \
cselect(x2,x3,regMove) \
cselect(z2,z3,regMove) \
integerSqrLeg(b0,t0) \
integerSqrLeg(b1,t1) \
reduceFromDoubleLeg(x3,b0) \
reduceFromDoubleLeg(z3,b1) \
integerMulLeg(b0,x1,z3) \
reduceFromDoubleLeg(z3,b0) \
integerSqrLeg(b0,x2) \
integerSqrLeg(b1,z2) \
reduceFromDoubleLeg(x2,b0) \
reduceFromDoubleLeg(z2,b1) \
subtraction(t0,x2,z2) \
multiplyA24Leg(t1,t0) \
additionLeg(t1,t1,z2) \
integerMulLeg(b0,x2,z2) \
integerMulLeg(b1,t0,t1) \
reduceFromDoubleLeg(x2,b0) \
reduceFromDoubleLeg(z2,b1)
#define ladderStepBmi2Adx \
addSub(x2,z2) \
addSub(x3,z3) \
integerMulAdx(b0,x2,z3) \
integerMulAdx(b1,x3,z2) \
reduceFromDoubleAdx(t0,b0) \
reduceFromDoubleAdx(t1,b1) \
addSub(t0,t1) \
cselect(x2,x3,regMove) \
cselect(z2,z3,regMove) \
integerSqrAdx(b0,t0) \
integerSqrAdx(b1,t1) \
reduceFromDoubleAdx(x3,b0) \
reduceFromDoubleAdx(z3,b1) \
integerMulAdx(b0,x1,z3) \
reduceFromDoubleAdx(z3,b0) \
integerSqrAdx(b0,x2) \
integerSqrAdx(b1,z2) \
reduceFromDoubleAdx(x2,b0) \
reduceFromDoubleAdx(z2,b1) \
subtraction(t0,x2,z2) \
multiplyA24Adx(t1,t0) \
additionAdx(t1,t1,z2) \
integerMulAdx(b0,x2,z2) \
integerMulAdx(b1,t0,t1) \
reduceFromDoubleAdx(x2,b0) \
reduceFromDoubleAdx(z2,b1)
#define difAddLeg \
addSub(x1,z1) \
integerMulLeg(b0,z1,ui) \
reduceFromDoubleLeg(z1,b0) \
addSub(x1,z1) \
integerSqrLeg(b0,x1) \
integerSqrLeg(b1,z1) \
reduceFromDoubleLeg(x1,b0) \
reduceFromDoubleLeg(z1,b1) \
integerMulLeg(b0,x1,z2) \
integerMulLeg(b1,z1,x2) \
reduceFromDoubleLeg(x1,b0) \
reduceFromDoubleLeg(z1,b1)
#define difAddBmi2Adx \
addSub(x1,z1) \
integerMulAdx(b0,z1,ui) \
reduceFromDoubleAdx(z1,b0) \
addSub(x1,z1) \
integerSqrAdx(b0,x1) \
integerSqrAdx(b1,z1) \
reduceFromDoubleAdx(x1,b0) \
reduceFromDoubleAdx(z1,b1) \
integerMulAdx(b0,x1,z2) \
integerMulAdx(b1,z1,x2) \
reduceFromDoubleAdx(x1,b0) \
reduceFromDoubleAdx(z1,b1)
#define doubleLeg \
addSub(x1,z1) \
integerSqrLeg(b0,x1) \
integerSqrLeg(b1,z1) \
reduceFromDoubleLeg(x1,b0) \
reduceFromDoubleLeg(z1,b1) \
subtraction(t0,x1,z1) \
multiplyA24Leg(t1,t0) \
additionLeg(t1,t1,z1) \
integerMulLeg(b0,x1,z1) \
integerMulLeg(b1,t0,t1) \
reduceFromDoubleLeg(x1,b0) \
reduceFromDoubleLeg(z1,b1)
#define doubleBmi2Adx \
addSub(x1,z1) \
integerSqrAdx(b0,x1) \
integerSqrAdx(b1,z1) \
reduceFromDoubleAdx(x1,b0) \
reduceFromDoubleAdx(z1,b1) \
subtraction(t0,x1,z1) \
multiplyA24Adx(t1,t0) \
additionAdx(t1,t1,z1) \
integerMulAdx(b0,x1,z1) \
integerMulAdx(b1,t0,t1) \
reduceFromDoubleAdx(x1,b0) \
reduceFromDoubleAdx(z1,b1)

View File

@ -0,0 +1,156 @@
// +build amd64
#include "textflag.h"
// Depends on circl/math/fp25519 package
#include "../../math/fp25519/fp_amd64.h"
#include "curve_amd64.h"
// CTE_A24 is (A+2)/4 from Curve25519
#define CTE_A24 121666
#define Size 32
// multiplyA24Leg multiplies x times CTE_A24 and stores in z
// Uses: AX, DX, R8-R13, FLAGS
// Instr: x86_64, cmov
#define multiplyA24Leg(z,x) \
MOVL $CTE_A24, AX; MULQ 0+x; MOVQ AX, R8; MOVQ DX, R9; \
MOVL $CTE_A24, AX; MULQ 8+x; MOVQ AX, R12; MOVQ DX, R10; \
MOVL $CTE_A24, AX; MULQ 16+x; MOVQ AX, R13; MOVQ DX, R11; \
MOVL $CTE_A24, AX; MULQ 24+x; \
ADDQ R12, R9; \
ADCQ R13, R10; \
ADCQ AX, R11; \
ADCQ $0, DX; \
MOVL $38, AX; /* 2*C = 38 = 2^256 MOD 2^255-19*/ \
IMULQ AX, DX; \
ADDQ DX, R8; \
ADCQ $0, R9; MOVQ R9, 8+z; \
ADCQ $0, R10; MOVQ R10, 16+z; \
ADCQ $0, R11; MOVQ R11, 24+z; \
MOVQ $0, DX; \
CMOVQCS AX, DX; \
ADDQ DX, R8; MOVQ R8, 0+z;
// multiplyA24Adx multiplies x times CTE_A24 and stores in z
// Uses: AX, DX, R8-R12, FLAGS
// Instr: x86_64, cmov, bmi2
#define multiplyA24Adx(z,x) \
MOVQ $CTE_A24, DX; \
MULXQ 0+x, R8, R10; \
MULXQ 8+x, R9, R11; ADDQ R10, R9; \
MULXQ 16+x, R10, AX; ADCQ R11, R10; \
MULXQ 24+x, R11, R12; ADCQ AX, R11; \
;;;;;;;;;;;;;;;;;;;;; ADCQ $0, R12; \
MOVL $38, DX; /* 2*C = 38 = 2^256 MOD 2^255-19*/ \
IMULQ DX, R12; \
ADDQ R12, R8; \
ADCQ $0, R9; MOVQ R9, 8+z; \
ADCQ $0, R10; MOVQ R10, 16+z; \
ADCQ $0, R11; MOVQ R11, 24+z; \
MOVQ $0, R12; \
CMOVQCS DX, R12; \
ADDQ R12, R8; MOVQ R8, 0+z;
#define mulA24Legacy \
multiplyA24Leg(0(DI),0(SI))
#define mulA24Bmi2Adx \
multiplyA24Adx(0(DI),0(SI))
// func mulA24Amd64(z, x *fp255.Elt)
TEXT ·mulA24Amd64(SB),NOSPLIT,$0-16
MOVQ z+0(FP), DI
MOVQ x+8(FP), SI
CHECK_BMI2ADX(LMA24, mulA24Legacy, mulA24Bmi2Adx)
// func ladderStepAmd64(w *[5]fp255.Elt, b uint)
// ladderStepAmd64 calculates a point addition and doubling as follows:
// (x2,z2) = 2*(x2,z2) and (x3,z3) = (x2,z2)+(x3,z3) using as a difference (x1,-).
// work = (x1,x2,z2,x3,z3) are five fp255.Elt of 32 bytes.
// stack = (t0,t1) are two fp.Elt of fp.Size bytes, and
// (b0,b1) are two-double precision fp.Elt of 2*fp.Size bytes.
TEXT ·ladderStepAmd64(SB),NOSPLIT,$192-16
// Parameters
#define regWork DI
#define regMove SI
#define x1 0*Size(regWork)
#define x2 1*Size(regWork)
#define z2 2*Size(regWork)
#define x3 3*Size(regWork)
#define z3 4*Size(regWork)
// Local variables
#define t0 0*Size(SP)
#define t1 1*Size(SP)
#define b0 2*Size(SP)
#define b1 4*Size(SP)
MOVQ w+0(FP), regWork
MOVQ b+8(FP), regMove
CHECK_BMI2ADX(LLADSTEP, ladderStepLeg, ladderStepBmi2Adx)
#undef regWork
#undef regMove
#undef x1
#undef x2
#undef z2
#undef x3
#undef z3
#undef t0
#undef t1
#undef b0
#undef b1
// func diffAddAmd64(w *[5]fp255.Elt, b uint)
// diffAddAmd64 calculates a differential point addition using a precomputed point.
// (x1,z1) = (x1,z1)+(mu) using a difference point (x2,z2)
// w = (mu,x1,z1,x2,z2) are five fp.Elt, and
// stack = (b0,b1) are two-double precision fp.Elt of 2*fp.Size bytes.
TEXT ·diffAddAmd64(SB),NOSPLIT,$128-16
// Parameters
#define regWork DI
#define regSwap SI
#define ui 0*Size(regWork)
#define x1 1*Size(regWork)
#define z1 2*Size(regWork)
#define x2 3*Size(regWork)
#define z2 4*Size(regWork)
// Local variables
#define b0 0*Size(SP)
#define b1 2*Size(SP)
MOVQ w+0(FP), regWork
MOVQ b+8(FP), regSwap
cswap(x1,x2,regSwap)
cswap(z1,z2,regSwap)
CHECK_BMI2ADX(LDIFADD, difAddLeg, difAddBmi2Adx)
#undef regWork
#undef regSwap
#undef ui
#undef x1
#undef z1
#undef x2
#undef z2
#undef b0
#undef b1
// func doubleAmd64(x, z *fp255.Elt)
// doubleAmd64 calculates a point doubling (x1,z1) = 2*(x1,z1).
// stack = (t0,t1) are two fp.Elt of fp.Size bytes, and
// (b0,b1) are two-double precision fp.Elt of 2*fp.Size bytes.
TEXT ·doubleAmd64(SB),NOSPLIT,$192-16
// Parameters
#define x1 0(DI)
#define z1 0(SI)
// Local variables
#define t0 0*Size(SP)
#define t1 1*Size(SP)
#define b0 2*Size(SP)
#define b1 4*Size(SP)
MOVQ x+0(FP), DI
MOVQ z+8(FP), SI
CHECK_BMI2ADX(LDOUB,doubleLeg,doubleBmi2Adx)
#undef x1
#undef z1
#undef t0
#undef t1
#undef b0
#undef b1

View File

@ -0,0 +1,85 @@
package x25519
import (
"encoding/binary"
"math/bits"
fp "github.com/cloudflare/circl/math/fp25519"
)
func doubleGeneric(x, z *fp.Elt) {
t0, t1 := &fp.Elt{}, &fp.Elt{}
fp.AddSub(x, z)
fp.Sqr(x, x)
fp.Sqr(z, z)
fp.Sub(t0, x, z)
mulA24Generic(t1, t0)
fp.Add(t1, t1, z)
fp.Mul(x, x, z)
fp.Mul(z, t0, t1)
}
func diffAddGeneric(w *[5]fp.Elt, b uint) {
mu, x1, z1, x2, z2 := &w[0], &w[1], &w[2], &w[3], &w[4]
fp.Cswap(x1, x2, b)
fp.Cswap(z1, z2, b)
fp.AddSub(x1, z1)
fp.Mul(z1, z1, mu)
fp.AddSub(x1, z1)
fp.Sqr(x1, x1)
fp.Sqr(z1, z1)
fp.Mul(x1, x1, z2)
fp.Mul(z1, z1, x2)
}
func ladderStepGeneric(w *[5]fp.Elt, b uint) {
x1, x2, z2, x3, z3 := &w[0], &w[1], &w[2], &w[3], &w[4]
t0 := &fp.Elt{}
t1 := &fp.Elt{}
fp.AddSub(x2, z2)
fp.AddSub(x3, z3)
fp.Mul(t0, x2, z3)
fp.Mul(t1, x3, z2)
fp.AddSub(t0, t1)
fp.Cmov(x2, x3, b)
fp.Cmov(z2, z3, b)
fp.Sqr(x3, t0)
fp.Sqr(z3, t1)
fp.Mul(z3, x1, z3)
fp.Sqr(x2, x2)
fp.Sqr(z2, z2)
fp.Sub(t0, x2, z2)
mulA24Generic(t1, t0)
fp.Add(t1, t1, z2)
fp.Mul(x2, x2, z2)
fp.Mul(z2, t0, t1)
}
func mulA24Generic(z, x *fp.Elt) {
const A24 = 121666
const n = 8
var xx [4]uint64
for i := range xx {
xx[i] = binary.LittleEndian.Uint64(x[i*n : (i+1)*n])
}
h0, l0 := bits.Mul64(xx[0], A24)
h1, l1 := bits.Mul64(xx[1], A24)
h2, l2 := bits.Mul64(xx[2], A24)
h3, l3 := bits.Mul64(xx[3], A24)
var c3 uint64
l1, c0 := bits.Add64(h0, l1, 0)
l2, c1 := bits.Add64(h1, l2, c0)
l3, c2 := bits.Add64(h2, l3, c1)
l4, _ := bits.Add64(h3, 0, c2)
_, l4 = bits.Mul64(l4, 38)
l0, c0 = bits.Add64(l0, l4, 0)
xx[1], c1 = bits.Add64(l1, 0, c0)
xx[2], c2 = bits.Add64(l2, 0, c1)
xx[3], c3 = bits.Add64(l3, 0, c2)
xx[0], _ = bits.Add64(l0, (-c3)&38, 0)
for i := range xx {
binary.LittleEndian.PutUint64(z[i*n:(i+1)*n], xx[i])
}
}

View File

@ -0,0 +1,11 @@
//go:build !amd64 || purego
// +build !amd64 purego
package x25519
import fp "github.com/cloudflare/circl/math/fp25519"
func double(x, z *fp.Elt) { doubleGeneric(x, z) }
func diffAdd(w *[5]fp.Elt, b uint) { diffAddGeneric(w, b) }
func ladderStep(w *[5]fp.Elt, b uint) { ladderStepGeneric(w, b) }
func mulA24(z, x *fp.Elt) { mulA24Generic(z, x) }

19
vendor/github.com/cloudflare/circl/dh/x25519/doc.go generated vendored Normal file
View File

@ -0,0 +1,19 @@
/*
Package x25519 provides Diffie-Hellman functions as specified in RFC-7748.
Validation of public keys.
The Diffie-Hellman function, as described in RFC-7748 [1], works for any
public key. However, if a different protocol requires contributory
behaviour [2,3], then the public keys must be validated against low-order
points [3,4]. To do that, the Shared function performs this validation
internally and returns false when the public key is invalid (i.e., it
is a low-order point).
References:
- [1] RFC7748 by Langley, Hamburg, Turner (https://rfc-editor.org/rfc/rfc7748.txt)
- [2] Curve25519 by Bernstein (https://cr.yp.to/ecdh.html)
- [3] Bernstein (https://cr.yp.to/ecdh.html#validate)
- [4] Cremers&Jackson (https://eprint.iacr.org/2019/526)
*/
package x25519

47
vendor/github.com/cloudflare/circl/dh/x25519/key.go generated vendored Normal file
View File

@ -0,0 +1,47 @@
package x25519
import (
"crypto/subtle"
fp "github.com/cloudflare/circl/math/fp25519"
)
// Size is the length in bytes of a X25519 key.
const Size = 32
// Key represents a X25519 key.
type Key [Size]byte
func (k *Key) clamp(in *Key) *Key {
*k = *in
k[0] &= 248
k[31] = (k[31] & 127) | 64
return k
}
// isValidPubKey verifies if the public key is not a low-order point.
func (k *Key) isValidPubKey() bool {
fp.Modp((*fp.Elt)(k))
isLowOrder := false
for _, P := range lowOrderPoints {
isLowOrder = isLowOrder || subtle.ConstantTimeCompare(P[:], k[:]) != 0
}
return !isLowOrder
}
// KeyGen obtains a public key given a secret key.
func KeyGen(public, secret *Key) {
ladderJoye(public.clamp(secret))
}
// Shared calculates Alice's shared key from Alice's secret key and Bob's
// public key returning true on success. A failure case happens when the public
// key is a low-order point, thus the shared key is all-zeros and the function
// returns false.
func Shared(shared, secret, public *Key) bool {
validPk := *public
validPk[31] &= (1 << (255 % 8)) - 1
ok := validPk.isValidPubKey()
ladderMontgomery(shared.clamp(secret), &validPk)
return ok
}

268
vendor/github.com/cloudflare/circl/dh/x25519/table.go generated vendored Normal file
View File

@ -0,0 +1,268 @@
package x25519
import "github.com/cloudflare/circl/math/fp25519"
// tableGenerator contains the set of points:
//
// t[i] = (xi+1)/(xi-1),
//
// where (xi,yi) = 2^iG and G is the generator point
// Size = (256)*(256/8) = 8192 bytes.
var tableGenerator = [256 * fp25519.Size]byte{
/* (2^ 0)P */ 0xf3, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x5f,
/* (2^ 1)P */ 0x96, 0xfe, 0xaa, 0x16, 0xf4, 0x20, 0x82, 0x6b, 0x34, 0x6a, 0x56, 0x4f, 0x2b, 0xeb, 0xeb, 0x82, 0x0f, 0x95, 0xa5, 0x75, 0xb0, 0xa5, 0xa9, 0xd5, 0xf4, 0x88, 0x24, 0x4b, 0xcf, 0xb2, 0x42, 0x51,
/* (2^ 2)P */ 0x0c, 0x68, 0x69, 0x00, 0x75, 0xbc, 0xae, 0x6a, 0x41, 0x9c, 0xf9, 0xa0, 0x20, 0x78, 0xcf, 0x89, 0xf4, 0xd0, 0x56, 0x3b, 0x18, 0xd9, 0x58, 0x2a, 0xa4, 0x11, 0x60, 0xe3, 0x80, 0xca, 0x5a, 0x4b,
/* (2^ 3)P */ 0x5d, 0x74, 0x29, 0x8c, 0x34, 0x32, 0x91, 0x32, 0xd7, 0x2f, 0x64, 0xe1, 0x16, 0xe6, 0xa2, 0xf4, 0x34, 0xbc, 0x67, 0xff, 0x03, 0xbb, 0x45, 0x1e, 0x4a, 0x9b, 0x2a, 0xf4, 0xd0, 0x12, 0x69, 0x30,
/* (2^ 4)P */ 0x54, 0x71, 0xaf, 0xe6, 0x07, 0x65, 0x88, 0xff, 0x2f, 0xc8, 0xee, 0xdf, 0x13, 0x0e, 0xf5, 0x04, 0xce, 0xb5, 0xba, 0x2a, 0xe8, 0x2f, 0x51, 0xaa, 0x22, 0xf2, 0xd5, 0x68, 0x1a, 0x25, 0x4e, 0x17,
/* (2^ 5)P */ 0x98, 0x88, 0x02, 0x82, 0x0d, 0x70, 0x96, 0xcf, 0xc5, 0x02, 0x2c, 0x0a, 0x37, 0xe3, 0x43, 0x17, 0xaa, 0x6e, 0xe8, 0xb4, 0x98, 0xec, 0x9e, 0x37, 0x2e, 0x48, 0xe0, 0x51, 0x8a, 0x88, 0x59, 0x0c,
/* (2^ 6)P */ 0x89, 0xd1, 0xb5, 0x99, 0xd6, 0xf1, 0xcb, 0xfb, 0x84, 0xdc, 0x9f, 0x8e, 0xd5, 0xf0, 0xae, 0xac, 0x14, 0x76, 0x1f, 0x23, 0x06, 0x0d, 0xc2, 0xc1, 0x72, 0xf9, 0x74, 0xa2, 0x8d, 0x21, 0x38, 0x29,
/* (2^ 7)P */ 0x18, 0x7f, 0x1d, 0xff, 0xbe, 0x49, 0xaf, 0xf6, 0xc2, 0xc9, 0x7a, 0x38, 0x22, 0x1c, 0x54, 0xcc, 0x6b, 0xc5, 0x15, 0x40, 0xef, 0xc9, 0xfc, 0x96, 0xa9, 0x13, 0x09, 0x69, 0x7c, 0x62, 0xc1, 0x69,
/* (2^ 8)P */ 0x0e, 0xdb, 0x33, 0x47, 0x2f, 0xfd, 0x86, 0x7a, 0xe9, 0x7d, 0x08, 0x9e, 0xf2, 0xc4, 0xb8, 0xfd, 0x29, 0xa2, 0xa2, 0x8e, 0x1a, 0x4b, 0x5e, 0x09, 0x79, 0x7a, 0xb3, 0x29, 0xc8, 0xa7, 0xd7, 0x1a,
/* (2^ 9)P */ 0xc0, 0xa0, 0x7e, 0xd1, 0xca, 0x89, 0x2d, 0x34, 0x51, 0x20, 0xed, 0xcc, 0xa6, 0xdd, 0xbe, 0x67, 0x74, 0x2f, 0xb4, 0x2b, 0xbf, 0x31, 0xca, 0x19, 0xbb, 0xac, 0x80, 0x49, 0xc8, 0xb4, 0xf7, 0x3d,
/* (2^ 10)P */ 0x83, 0xd8, 0x0a, 0xc8, 0x4d, 0x44, 0xc6, 0xa8, 0x85, 0xab, 0xe3, 0x66, 0x03, 0x44, 0x1e, 0xb9, 0xd8, 0xf6, 0x64, 0x01, 0xa0, 0xcd, 0x15, 0xc2, 0x68, 0xe6, 0x47, 0xf2, 0x6e, 0x7c, 0x86, 0x3d,
/* (2^ 11)P */ 0x8c, 0x65, 0x3e, 0xcc, 0x2b, 0x58, 0xdd, 0xc7, 0x28, 0x55, 0x0e, 0xee, 0x48, 0x47, 0x2c, 0xfd, 0x71, 0x4f, 0x9f, 0xcc, 0x95, 0x9b, 0xfd, 0xa0, 0xdf, 0x5d, 0x67, 0xb0, 0x71, 0xd8, 0x29, 0x75,
/* (2^ 12)P */ 0x78, 0xbd, 0x3c, 0x2d, 0xb4, 0x68, 0xf5, 0xb8, 0x82, 0xda, 0xf3, 0x91, 0x1b, 0x01, 0x33, 0x12, 0x62, 0x3b, 0x7c, 0x4a, 0xcd, 0x6c, 0xce, 0x2d, 0x03, 0x86, 0x49, 0x9e, 0x8e, 0xfc, 0xe7, 0x75,
/* (2^ 13)P */ 0xec, 0xb6, 0xd0, 0xfc, 0xf1, 0x13, 0x4f, 0x2f, 0x45, 0x7a, 0xff, 0x29, 0x1f, 0xca, 0xa8, 0xf1, 0x9b, 0xe2, 0x81, 0x29, 0xa7, 0xc1, 0x49, 0xc2, 0x6a, 0xb5, 0x83, 0x8c, 0xbb, 0x0d, 0xbe, 0x6e,
/* (2^ 14)P */ 0x22, 0xb2, 0x0b, 0x17, 0x8d, 0xfa, 0x14, 0x71, 0x5f, 0x93, 0x93, 0xbf, 0xd5, 0xdc, 0xa2, 0x65, 0x9a, 0x97, 0x9c, 0xb5, 0x68, 0x1f, 0xc4, 0xbd, 0x89, 0x92, 0xce, 0xa2, 0x79, 0xef, 0x0e, 0x2f,
/* (2^ 15)P */ 0xce, 0x37, 0x3c, 0x08, 0x0c, 0xbf, 0xec, 0x42, 0x22, 0x63, 0x49, 0xec, 0x09, 0xbc, 0x30, 0x29, 0x0d, 0xac, 0xfe, 0x9c, 0xc1, 0xb0, 0x94, 0xf2, 0x80, 0xbb, 0xfa, 0xed, 0x4b, 0xaa, 0x80, 0x37,
/* (2^ 16)P */ 0x29, 0xd9, 0xea, 0x7c, 0x3e, 0x7d, 0xc1, 0x56, 0xc5, 0x22, 0x57, 0x2e, 0xeb, 0x4b, 0xcb, 0xe7, 0x5a, 0xe1, 0xbf, 0x2d, 0x73, 0x31, 0xe9, 0x0c, 0xf8, 0x52, 0x10, 0x62, 0xc7, 0x83, 0xb8, 0x41,
/* (2^ 17)P */ 0x50, 0x53, 0xd2, 0xc3, 0xa0, 0x5c, 0xf7, 0xdb, 0x51, 0xe3, 0xb1, 0x6e, 0x08, 0xbe, 0x36, 0x29, 0x12, 0xb2, 0xa9, 0xb4, 0x3c, 0xe0, 0x36, 0xc9, 0xaa, 0x25, 0x22, 0x32, 0x82, 0xbf, 0x45, 0x1d,
/* (2^ 18)P */ 0xc5, 0x4c, 0x02, 0x6a, 0x03, 0xb1, 0x1a, 0xe8, 0x72, 0x9a, 0x4c, 0x30, 0x1c, 0x20, 0x12, 0xe2, 0xfc, 0xb1, 0x32, 0x68, 0xba, 0x3f, 0xd7, 0xc5, 0x81, 0x95, 0x83, 0x4d, 0x5a, 0xdb, 0xff, 0x20,
/* (2^ 19)P */ 0xad, 0x0f, 0x5d, 0xbe, 0x67, 0xd3, 0x83, 0xa2, 0x75, 0x44, 0x16, 0x8b, 0xca, 0x25, 0x2b, 0x6c, 0x2e, 0xf2, 0xaa, 0x7c, 0x46, 0x35, 0x49, 0x9d, 0x49, 0xff, 0x85, 0xee, 0x8e, 0x40, 0x66, 0x51,
/* (2^ 20)P */ 0x61, 0xe3, 0xb4, 0xfa, 0xa2, 0xba, 0x67, 0x3c, 0xef, 0x5c, 0xf3, 0x7e, 0xc6, 0x33, 0xe4, 0xb3, 0x1c, 0x9b, 0x15, 0x41, 0x92, 0x72, 0x59, 0x52, 0x33, 0xab, 0xb0, 0xd5, 0x92, 0x18, 0x62, 0x6a,
/* (2^ 21)P */ 0xcb, 0xcd, 0x55, 0x75, 0x38, 0x4a, 0xb7, 0x20, 0x3f, 0x92, 0x08, 0x12, 0x0e, 0xa1, 0x2a, 0x53, 0xd1, 0x1d, 0x28, 0x62, 0x77, 0x7b, 0xa1, 0xea, 0xbf, 0x44, 0x5c, 0xf0, 0x43, 0x34, 0xab, 0x61,
/* (2^ 22)P */ 0xf8, 0xde, 0x24, 0x23, 0x42, 0x6c, 0x7a, 0x25, 0x7f, 0xcf, 0xe3, 0x17, 0x10, 0x6c, 0x1c, 0x13, 0x57, 0xa2, 0x30, 0xf6, 0x39, 0x87, 0x75, 0x23, 0x80, 0x85, 0xa7, 0x01, 0x7a, 0x40, 0x5a, 0x29,
/* (2^ 23)P */ 0xd9, 0xa8, 0x5d, 0x6d, 0x24, 0x43, 0xc4, 0xf8, 0x5d, 0xfa, 0x52, 0x0c, 0x45, 0x75, 0xd7, 0x19, 0x3d, 0xf8, 0x1b, 0x73, 0x92, 0xfc, 0xfc, 0x2a, 0x00, 0x47, 0x2b, 0x1b, 0xe8, 0xc8, 0x10, 0x7d,
/* (2^ 24)P */ 0x0b, 0xa2, 0xba, 0x70, 0x1f, 0x27, 0xe0, 0xc8, 0x57, 0x39, 0xa6, 0x7c, 0x86, 0x48, 0x37, 0x99, 0xbb, 0xd4, 0x7e, 0xcb, 0xb3, 0xef, 0x12, 0x54, 0x75, 0x29, 0xe6, 0x73, 0x61, 0xd3, 0x96, 0x31,
/* (2^ 25)P */ 0xfc, 0xdf, 0xc7, 0x41, 0xd1, 0xca, 0x5b, 0xde, 0x48, 0xc8, 0x95, 0xb3, 0xd2, 0x8c, 0xcc, 0x47, 0xcb, 0xf3, 0x1a, 0xe1, 0x42, 0xd9, 0x4c, 0xa3, 0xc2, 0xce, 0x4e, 0xd0, 0xf2, 0xdb, 0x56, 0x02,
/* (2^ 26)P */ 0x7f, 0x66, 0x0e, 0x4b, 0xe9, 0xb7, 0x5a, 0x87, 0x10, 0x0d, 0x85, 0xc0, 0x83, 0xdd, 0xd4, 0xca, 0x9f, 0xc7, 0x72, 0x4e, 0x8f, 0x2e, 0xf1, 0x47, 0x9b, 0xb1, 0x85, 0x8c, 0xbb, 0x87, 0x1a, 0x5f,
/* (2^ 27)P */ 0xb8, 0x51, 0x7f, 0x43, 0xb6, 0xd0, 0xe9, 0x7a, 0x65, 0x90, 0x87, 0x18, 0x55, 0xce, 0xc7, 0x12, 0xee, 0x7a, 0xf7, 0x5c, 0xfe, 0x09, 0xde, 0x2a, 0x27, 0x56, 0x2c, 0x7d, 0x2f, 0x5a, 0xa0, 0x23,
/* (2^ 28)P */ 0x9a, 0x16, 0x7c, 0xf1, 0x28, 0xe1, 0x08, 0x59, 0x2d, 0x85, 0xd0, 0x8a, 0xdd, 0x98, 0x74, 0xf7, 0x64, 0x2f, 0x10, 0xab, 0xce, 0xc4, 0xb4, 0x74, 0x45, 0x98, 0x13, 0x10, 0xdd, 0xba, 0x3a, 0x18,
/* (2^ 29)P */ 0xac, 0xaa, 0x92, 0xaa, 0x8d, 0xba, 0x65, 0xb1, 0x05, 0x67, 0x38, 0x99, 0x95, 0xef, 0xc5, 0xd5, 0xd1, 0x40, 0xfc, 0xf8, 0x0c, 0x8f, 0x2f, 0xbe, 0x14, 0x45, 0x20, 0xee, 0x35, 0xe6, 0x01, 0x27,
/* (2^ 30)P */ 0x14, 0x65, 0x15, 0x20, 0x00, 0xa8, 0x9f, 0x62, 0xce, 0xc1, 0xa8, 0x64, 0x87, 0x86, 0x23, 0xf2, 0x0e, 0x06, 0x3f, 0x0b, 0xff, 0x4f, 0x89, 0x5b, 0xfa, 0xa3, 0x08, 0xf7, 0x4c, 0x94, 0xd9, 0x60,
/* (2^ 31)P */ 0x1f, 0x20, 0x7a, 0x1c, 0x1a, 0x00, 0xea, 0xae, 0x63, 0xce, 0xe2, 0x3e, 0x63, 0x6a, 0xf1, 0xeb, 0xe1, 0x07, 0x7a, 0x4c, 0x59, 0x09, 0x77, 0x6f, 0xcb, 0x08, 0x02, 0x0d, 0x15, 0x58, 0xb9, 0x79,
/* (2^ 32)P */ 0xe7, 0x10, 0xd4, 0x01, 0x53, 0x5e, 0xb5, 0x24, 0x4d, 0xc8, 0xfd, 0xf3, 0xdf, 0x4e, 0xa3, 0xe3, 0xd8, 0x32, 0x40, 0x90, 0xe4, 0x68, 0x87, 0xd8, 0xec, 0xae, 0x3a, 0x7b, 0x42, 0x84, 0x13, 0x13,
/* (2^ 33)P */ 0x14, 0x4f, 0x23, 0x86, 0x12, 0xe5, 0x05, 0x84, 0x29, 0xc5, 0xb4, 0xad, 0x39, 0x47, 0xdc, 0x14, 0xfd, 0x4f, 0x63, 0x50, 0xb2, 0xb5, 0xa2, 0xb8, 0x93, 0xff, 0xa7, 0xd8, 0x4a, 0xa9, 0xe2, 0x2f,
/* (2^ 34)P */ 0xdd, 0xfa, 0x43, 0xe8, 0xef, 0x57, 0x5c, 0xec, 0x18, 0x99, 0xbb, 0xf0, 0x40, 0xce, 0x43, 0x28, 0x05, 0x63, 0x3d, 0xcf, 0xd6, 0x61, 0xb5, 0xa4, 0x7e, 0x77, 0xfb, 0xe8, 0xbd, 0x29, 0x36, 0x74,
/* (2^ 35)P */ 0x8f, 0x73, 0xaf, 0xbb, 0x46, 0xdd, 0x3e, 0x34, 0x51, 0xa6, 0x01, 0xb1, 0x28, 0x18, 0x98, 0xed, 0x7a, 0x79, 0x2c, 0x88, 0x0b, 0x76, 0x01, 0xa4, 0x30, 0x87, 0xc8, 0x8d, 0xe2, 0x23, 0xc2, 0x1f,
/* (2^ 36)P */ 0x0e, 0xba, 0x0f, 0xfc, 0x91, 0x4e, 0x60, 0x48, 0xa4, 0x6f, 0x2c, 0x05, 0x8f, 0xf7, 0x37, 0xb6, 0x9c, 0x23, 0xe9, 0x09, 0x3d, 0xac, 0xcc, 0x91, 0x7c, 0x68, 0x7a, 0x43, 0xd4, 0xee, 0xf7, 0x23,
/* (2^ 37)P */ 0x00, 0xd8, 0x9b, 0x8d, 0x11, 0xb1, 0x73, 0x51, 0xa7, 0xd4, 0x89, 0x31, 0xb6, 0x41, 0xd6, 0x29, 0x86, 0xc5, 0xbb, 0x88, 0x79, 0x17, 0xbf, 0xfd, 0xf5, 0x1d, 0xd8, 0xca, 0x4f, 0x89, 0x59, 0x29,
/* (2^ 38)P */ 0x99, 0xc8, 0xbb, 0xb4, 0xf3, 0x8e, 0xbc, 0xae, 0xb9, 0x92, 0x69, 0xb2, 0x5a, 0x99, 0x48, 0x41, 0xfb, 0x2c, 0xf9, 0x34, 0x01, 0x0b, 0xe2, 0x24, 0xe8, 0xde, 0x05, 0x4a, 0x89, 0x58, 0xd1, 0x40,
/* (2^ 39)P */ 0xf6, 0x76, 0xaf, 0x85, 0x11, 0x0b, 0xb0, 0x46, 0x79, 0x7a, 0x18, 0x73, 0x78, 0xc7, 0xba, 0x26, 0x5f, 0xff, 0x8f, 0xab, 0x95, 0xbf, 0xc0, 0x3d, 0xd7, 0x24, 0x55, 0x94, 0xd8, 0x8b, 0x60, 0x2a,
/* (2^ 40)P */ 0x02, 0x63, 0x44, 0xbd, 0x88, 0x95, 0x44, 0x26, 0x9c, 0x43, 0x88, 0x03, 0x1c, 0xc2, 0x4b, 0x7c, 0xb2, 0x11, 0xbd, 0x83, 0xf3, 0xa4, 0x98, 0x8e, 0xb9, 0x76, 0xd8, 0xc9, 0x7b, 0x8d, 0x21, 0x26,
/* (2^ 41)P */ 0x8a, 0x17, 0x7c, 0x99, 0x42, 0x15, 0x08, 0xe3, 0x6f, 0x60, 0xb6, 0x6f, 0xa8, 0x29, 0x2d, 0x3c, 0x74, 0x93, 0x27, 0xfa, 0x36, 0x77, 0x21, 0x5c, 0xfa, 0xb1, 0xfe, 0x4a, 0x73, 0x05, 0xde, 0x7d,
/* (2^ 42)P */ 0xab, 0x2b, 0xd4, 0x06, 0x39, 0x0e, 0xf1, 0x3b, 0x9c, 0x64, 0x80, 0x19, 0x3e, 0x80, 0xf7, 0xe4, 0x7a, 0xbf, 0x95, 0x95, 0xf8, 0x3b, 0x05, 0xe6, 0x30, 0x55, 0x24, 0xda, 0x38, 0xaf, 0x4f, 0x39,
/* (2^ 43)P */ 0xf4, 0x28, 0x69, 0x89, 0x58, 0xfb, 0x8e, 0x7a, 0x3c, 0x11, 0x6a, 0xcc, 0xe9, 0x78, 0xc7, 0xfb, 0x6f, 0x59, 0xaf, 0x30, 0xe3, 0x0c, 0x67, 0x72, 0xf7, 0x6c, 0x3d, 0x1d, 0xa8, 0x22, 0xf2, 0x48,
/* (2^ 44)P */ 0xa7, 0xca, 0x72, 0x0d, 0x41, 0xce, 0x1f, 0xf0, 0x95, 0x55, 0x3b, 0x21, 0xc7, 0xec, 0x20, 0x5a, 0x83, 0x14, 0xfa, 0xc1, 0x65, 0x11, 0xc2, 0x7b, 0x41, 0xa7, 0xa8, 0x1d, 0xe3, 0x9a, 0xf8, 0x07,
/* (2^ 45)P */ 0xf9, 0x0f, 0x83, 0xc6, 0xb4, 0xc2, 0xd2, 0x05, 0x93, 0x62, 0x31, 0xc6, 0x0f, 0x33, 0x3e, 0xd4, 0x04, 0xa9, 0xd3, 0x96, 0x0a, 0x59, 0xa5, 0xa5, 0xb6, 0x33, 0x53, 0xa6, 0x91, 0xdb, 0x5e, 0x70,
/* (2^ 46)P */ 0xf7, 0xa5, 0xb9, 0x0b, 0x5e, 0xe1, 0x8e, 0x04, 0x5d, 0xaf, 0x0a, 0x9e, 0xca, 0xcf, 0x40, 0x32, 0x0b, 0xa4, 0xc4, 0xed, 0xce, 0x71, 0x4b, 0x8f, 0x6d, 0x4a, 0x54, 0xde, 0xa3, 0x0d, 0x1c, 0x62,
/* (2^ 47)P */ 0x91, 0x40, 0x8c, 0xa0, 0x36, 0x28, 0x87, 0x92, 0x45, 0x14, 0xc9, 0x10, 0xb0, 0x75, 0x83, 0xce, 0x94, 0x63, 0x27, 0x4f, 0x52, 0xeb, 0x72, 0x8a, 0x35, 0x36, 0xc8, 0x7e, 0xfa, 0xfc, 0x67, 0x26,
/* (2^ 48)P */ 0x2a, 0x75, 0xe8, 0x45, 0x33, 0x17, 0x4c, 0x7f, 0xa5, 0x79, 0x70, 0xee, 0xfe, 0x47, 0x1b, 0x06, 0x34, 0xff, 0x86, 0x9f, 0xfa, 0x9a, 0xdd, 0x25, 0x9c, 0xc8, 0x5d, 0x42, 0xf5, 0xce, 0x80, 0x37,
/* (2^ 49)P */ 0xe9, 0xb4, 0x3b, 0x51, 0x5a, 0x03, 0x46, 0x1a, 0xda, 0x5a, 0x57, 0xac, 0x79, 0xf3, 0x1e, 0x3e, 0x50, 0x4b, 0xa2, 0x5f, 0x1c, 0x5f, 0x8c, 0xc7, 0x22, 0x9f, 0xfd, 0x34, 0x76, 0x96, 0x1a, 0x32,
/* (2^ 50)P */ 0xfa, 0x27, 0x6e, 0x82, 0xb8, 0x07, 0x67, 0x94, 0xd0, 0x6f, 0x50, 0x4c, 0xd6, 0x84, 0xca, 0x3d, 0x36, 0x14, 0xe9, 0x75, 0x80, 0x21, 0x89, 0xc1, 0x84, 0x84, 0x3b, 0x9b, 0x16, 0x84, 0x92, 0x6d,
/* (2^ 51)P */ 0xdf, 0x2d, 0x3f, 0x38, 0x40, 0xe8, 0x67, 0x3a, 0x75, 0x9b, 0x4f, 0x0c, 0xa3, 0xc9, 0xee, 0x33, 0x47, 0xef, 0x83, 0xa7, 0x6f, 0xc8, 0xc7, 0x3e, 0xc4, 0xfb, 0xc9, 0xba, 0x9f, 0x44, 0xec, 0x26,
/* (2^ 52)P */ 0x7d, 0x9e, 0x9b, 0xa0, 0xcb, 0x38, 0x0f, 0x5c, 0x8c, 0x47, 0xa3, 0x62, 0xc7, 0x8c, 0x16, 0x81, 0x1c, 0x12, 0xfc, 0x06, 0xd3, 0xb0, 0x23, 0x3e, 0xdd, 0xdc, 0xef, 0xa5, 0xa0, 0x8a, 0x23, 0x5a,
/* (2^ 53)P */ 0xff, 0x43, 0xea, 0xc4, 0x21, 0x61, 0xa2, 0x1b, 0xb5, 0x32, 0x88, 0x7c, 0x7f, 0xc7, 0xf8, 0x36, 0x9a, 0xf9, 0xdc, 0x0a, 0x0b, 0xea, 0xfb, 0x88, 0xf9, 0xeb, 0x5b, 0xc2, 0x8e, 0x93, 0xa9, 0x5c,
/* (2^ 54)P */ 0xa0, 0xcd, 0xfc, 0x51, 0x5e, 0x6a, 0x43, 0xd5, 0x3b, 0x89, 0xcd, 0xc2, 0x97, 0x47, 0xbc, 0x1d, 0x08, 0x4a, 0x22, 0xd3, 0x65, 0x6a, 0x34, 0x19, 0x66, 0xf4, 0x9a, 0x9b, 0xe4, 0x34, 0x50, 0x0f,
/* (2^ 55)P */ 0x6e, 0xb9, 0xe0, 0xa1, 0x67, 0x39, 0x3c, 0xf2, 0x88, 0x4d, 0x7a, 0x86, 0xfa, 0x08, 0x8b, 0xe5, 0x79, 0x16, 0x34, 0xa7, 0xc6, 0xab, 0x2f, 0xfb, 0x46, 0x69, 0x02, 0xb6, 0x1e, 0x38, 0x75, 0x2a,
/* (2^ 56)P */ 0xac, 0x20, 0x94, 0xc1, 0xe4, 0x3b, 0x0a, 0xc8, 0xdc, 0xb6, 0xf2, 0x81, 0xc6, 0xf6, 0xb1, 0x66, 0x88, 0x33, 0xe9, 0x61, 0x67, 0x03, 0xf7, 0x7c, 0xc4, 0xa4, 0x60, 0xa6, 0xd8, 0xbb, 0xab, 0x25,
/* (2^ 57)P */ 0x98, 0x51, 0xfd, 0x14, 0xba, 0x12, 0xea, 0x91, 0xa9, 0xff, 0x3c, 0x4a, 0xfc, 0x50, 0x49, 0x68, 0x28, 0xad, 0xf5, 0x30, 0x21, 0x84, 0x26, 0xf8, 0x41, 0xa4, 0x01, 0x53, 0xf7, 0x88, 0xa9, 0x3e,
/* (2^ 58)P */ 0x6f, 0x8c, 0x5f, 0x69, 0x9a, 0x10, 0x78, 0xc9, 0xf3, 0xc3, 0x30, 0x05, 0x4a, 0xeb, 0x46, 0x17, 0x95, 0x99, 0x45, 0xb4, 0x77, 0x6d, 0x4d, 0x44, 0xc7, 0x5c, 0x4e, 0x05, 0x8c, 0x2b, 0x95, 0x75,
/* (2^ 59)P */ 0xaa, 0xd6, 0xf4, 0x15, 0x79, 0x3f, 0x70, 0xa3, 0xd8, 0x47, 0x26, 0x2f, 0x20, 0x46, 0xc3, 0x66, 0x4b, 0x64, 0x1d, 0x81, 0xdf, 0x69, 0x14, 0xd0, 0x1f, 0xd7, 0xa5, 0x81, 0x7d, 0xa4, 0xfe, 0x77,
/* (2^ 60)P */ 0x81, 0xa3, 0x7c, 0xf5, 0x9e, 0x52, 0xe9, 0xc5, 0x1a, 0x88, 0x2f, 0xce, 0xb9, 0xb4, 0xee, 0x6e, 0xd6, 0x9b, 0x00, 0xe8, 0x28, 0x1a, 0xe9, 0xb6, 0xec, 0x3f, 0xfc, 0x9a, 0x3e, 0xbe, 0x80, 0x4b,
/* (2^ 61)P */ 0xc5, 0xd2, 0xae, 0x26, 0xc5, 0x73, 0x37, 0x7e, 0x9d, 0xa4, 0xc9, 0x53, 0xb4, 0xfc, 0x4a, 0x1b, 0x4d, 0xb2, 0xff, 0xba, 0xd7, 0xbd, 0x20, 0xa9, 0x0e, 0x40, 0x2d, 0x12, 0x9f, 0x69, 0x54, 0x7c,
/* (2^ 62)P */ 0xc8, 0x4b, 0xa9, 0x4f, 0xe1, 0xc8, 0x46, 0xef, 0x5e, 0xed, 0x52, 0x29, 0xce, 0x74, 0xb0, 0xe0, 0xd5, 0x85, 0xd8, 0xdb, 0xe1, 0x50, 0xa4, 0xbe, 0x2c, 0x71, 0x0f, 0x32, 0x49, 0x86, 0xb6, 0x61,
/* (2^ 63)P */ 0xd1, 0xbd, 0xcc, 0x09, 0x73, 0x5f, 0x48, 0x8a, 0x2d, 0x1a, 0x4d, 0x7d, 0x0d, 0x32, 0x06, 0xbd, 0xf4, 0xbe, 0x2d, 0x32, 0x73, 0x29, 0x23, 0x25, 0x70, 0xf7, 0x17, 0x8c, 0x75, 0xc4, 0x5d, 0x44,
/* (2^ 64)P */ 0x3c, 0x93, 0xc8, 0x7c, 0x17, 0x34, 0x04, 0xdb, 0x9f, 0x05, 0xea, 0x75, 0x21, 0xe8, 0x6f, 0xed, 0x34, 0xdb, 0x53, 0xc0, 0xfd, 0xbe, 0xfe, 0x1e, 0x99, 0xaf, 0x5d, 0xc6, 0x67, 0xe8, 0xdb, 0x4a,
/* (2^ 65)P */ 0xdf, 0x09, 0x06, 0xa9, 0xa2, 0x71, 0xcd, 0x3a, 0x50, 0x40, 0xd0, 0x6d, 0x85, 0x91, 0xe9, 0xe5, 0x3c, 0xc2, 0x57, 0x81, 0x68, 0x9b, 0xc6, 0x1e, 0x4d, 0xfe, 0x5c, 0x88, 0xf6, 0x27, 0x74, 0x69,
/* (2^ 66)P */ 0x51, 0xa8, 0xe1, 0x65, 0x9b, 0x7b, 0xbe, 0xd7, 0xdd, 0x36, 0xc5, 0x22, 0xd5, 0x28, 0x3d, 0xa0, 0x45, 0xb6, 0xd2, 0x8f, 0x65, 0x9d, 0x39, 0x28, 0xe1, 0x41, 0x26, 0x7c, 0xe1, 0xb7, 0xe5, 0x49,
/* (2^ 67)P */ 0xa4, 0x57, 0x04, 0x70, 0x98, 0x3a, 0x8c, 0x6f, 0x78, 0x67, 0xbb, 0x5e, 0xa2, 0xf0, 0x78, 0x50, 0x0f, 0x96, 0x82, 0xc3, 0xcb, 0x3c, 0x3c, 0xd1, 0xb1, 0x84, 0xdf, 0xa7, 0x58, 0x32, 0x00, 0x2e,
/* (2^ 68)P */ 0x1c, 0x6a, 0x29, 0xe6, 0x9b, 0xf3, 0xd1, 0x8a, 0xb2, 0xbf, 0x5f, 0x2a, 0x65, 0xaa, 0xee, 0xc1, 0xcb, 0xf3, 0x26, 0xfd, 0x73, 0x06, 0xee, 0x33, 0xcc, 0x2c, 0x9d, 0xa6, 0x73, 0x61, 0x25, 0x59,
/* (2^ 69)P */ 0x41, 0xfc, 0x18, 0x4e, 0xaa, 0x07, 0xea, 0x41, 0x1e, 0xa5, 0x87, 0x7c, 0x52, 0x19, 0xfc, 0xd9, 0x6f, 0xca, 0x31, 0x58, 0x80, 0xcb, 0xaa, 0xbd, 0x4f, 0x69, 0x16, 0xc9, 0x2d, 0x65, 0x5b, 0x44,
/* (2^ 70)P */ 0x15, 0x23, 0x17, 0xf2, 0xa7, 0xa3, 0x92, 0xce, 0x64, 0x99, 0x1b, 0xe1, 0x2d, 0x28, 0xdc, 0x1e, 0x4a, 0x31, 0x4c, 0xe0, 0xaf, 0x3a, 0x82, 0xa1, 0x86, 0xf5, 0x7c, 0x43, 0x94, 0x2d, 0x0a, 0x79,
/* (2^ 71)P */ 0x09, 0xe0, 0xf6, 0x93, 0xfb, 0x47, 0xc4, 0x71, 0x76, 0x52, 0x84, 0x22, 0x67, 0xa5, 0x22, 0x89, 0x69, 0x51, 0x4f, 0x20, 0x3b, 0x90, 0x70, 0xbf, 0xfe, 0x19, 0xa3, 0x1b, 0x89, 0x89, 0x7a, 0x2f,
/* (2^ 72)P */ 0x0c, 0x14, 0xe2, 0x77, 0xb5, 0x8e, 0xa0, 0x02, 0xf4, 0xdc, 0x7b, 0x42, 0xd4, 0x4e, 0x9a, 0xed, 0xd1, 0x3c, 0x32, 0xe4, 0x44, 0xec, 0x53, 0x52, 0x5b, 0x35, 0xe9, 0x14, 0x3c, 0x36, 0x88, 0x3e,
/* (2^ 73)P */ 0x8c, 0x0b, 0x11, 0x77, 0x42, 0xc1, 0x66, 0xaa, 0x90, 0x33, 0xa2, 0x10, 0x16, 0x39, 0xe0, 0x1a, 0xa2, 0xc2, 0x3f, 0xc9, 0x12, 0xbd, 0x30, 0x20, 0xab, 0xc7, 0x55, 0x95, 0x57, 0x41, 0xe1, 0x3e,
/* (2^ 74)P */ 0x41, 0x7d, 0x6e, 0x6d, 0x3a, 0xde, 0x14, 0x92, 0xfe, 0x7e, 0xf1, 0x07, 0x86, 0xd8, 0xcd, 0x3c, 0x17, 0x12, 0xe1, 0xf8, 0x88, 0x12, 0x4f, 0x67, 0xd0, 0x93, 0x9f, 0x32, 0x0f, 0x25, 0x82, 0x56,
/* (2^ 75)P */ 0x6e, 0x39, 0x2e, 0x6d, 0x13, 0x0b, 0xf0, 0x6c, 0xbf, 0xde, 0x14, 0x10, 0x6f, 0xf8, 0x4c, 0x6e, 0x83, 0x4e, 0xcc, 0xbf, 0xb5, 0xb1, 0x30, 0x59, 0xb6, 0x16, 0xba, 0x8a, 0xb4, 0x69, 0x70, 0x04,
/* (2^ 76)P */ 0x93, 0x07, 0xb2, 0x69, 0xab, 0xe4, 0x4c, 0x0d, 0x9e, 0xfb, 0xd0, 0x97, 0x1a, 0xb9, 0x4d, 0xb2, 0x1d, 0xd0, 0x00, 0x4e, 0xf5, 0x50, 0xfa, 0xcd, 0xb5, 0xdd, 0x8b, 0x36, 0x85, 0x10, 0x1b, 0x22,
/* (2^ 77)P */ 0xd2, 0xd8, 0xe3, 0xb1, 0x68, 0x94, 0xe5, 0xe7, 0x93, 0x2f, 0x12, 0xbd, 0x63, 0x65, 0xc5, 0x53, 0x09, 0x3f, 0x66, 0xe0, 0x03, 0xa9, 0xe8, 0xee, 0x42, 0x3d, 0xbe, 0xcb, 0x62, 0xa6, 0xef, 0x61,
/* (2^ 78)P */ 0x2a, 0xab, 0x6e, 0xde, 0xdd, 0xdd, 0xf8, 0x2c, 0x31, 0xf2, 0x35, 0x14, 0xd5, 0x0a, 0xf8, 0x9b, 0x73, 0x49, 0xf0, 0xc9, 0xce, 0xda, 0xea, 0x5d, 0x27, 0x9b, 0xd2, 0x41, 0x5d, 0x5b, 0x27, 0x29,
/* (2^ 79)P */ 0x4f, 0xf1, 0xeb, 0x95, 0x08, 0x0f, 0xde, 0xcf, 0xa7, 0x05, 0x49, 0x05, 0x6b, 0xb9, 0xaa, 0xb9, 0xfd, 0x20, 0xc4, 0xa1, 0xd9, 0x0d, 0xe8, 0xca, 0xc7, 0xbb, 0x73, 0x16, 0x2f, 0xbf, 0x63, 0x0a,
/* (2^ 80)P */ 0x8c, 0xbc, 0x8f, 0x95, 0x11, 0x6e, 0x2f, 0x09, 0xad, 0x2f, 0x82, 0x04, 0xe8, 0x81, 0x2a, 0x67, 0x17, 0x25, 0xd5, 0x60, 0x15, 0x35, 0xc8, 0xca, 0xf8, 0x92, 0xf1, 0xc8, 0x22, 0x77, 0x3f, 0x6f,
/* (2^ 81)P */ 0xb7, 0x94, 0xe8, 0xc2, 0xcc, 0x90, 0xba, 0xf8, 0x0d, 0x9f, 0xff, 0x38, 0xa4, 0x57, 0x75, 0x2c, 0x59, 0x23, 0xe5, 0x5a, 0x85, 0x1d, 0x4d, 0x89, 0x69, 0x3d, 0x74, 0x7b, 0x15, 0x22, 0xe1, 0x68,
/* (2^ 82)P */ 0xf3, 0x19, 0xb9, 0xcf, 0x70, 0x55, 0x7e, 0xd8, 0xb9, 0x8d, 0x79, 0x95, 0xcd, 0xde, 0x2c, 0x3f, 0xce, 0xa2, 0xc0, 0x10, 0x47, 0x15, 0x21, 0x21, 0xb2, 0xc5, 0x6d, 0x24, 0x15, 0xa1, 0x66, 0x3c,
/* (2^ 83)P */ 0x72, 0xcb, 0x4e, 0x29, 0x62, 0xc5, 0xed, 0xcb, 0x16, 0x0b, 0x28, 0x6a, 0xc3, 0x43, 0x71, 0xba, 0x67, 0x8b, 0x07, 0xd4, 0xef, 0xc2, 0x10, 0x96, 0x1e, 0x4b, 0x6a, 0x94, 0x5d, 0x73, 0x44, 0x61,
/* (2^ 84)P */ 0x50, 0x33, 0x5b, 0xd7, 0x1e, 0x11, 0x6f, 0x53, 0x1b, 0xd8, 0x41, 0x20, 0x8c, 0xdb, 0x11, 0x02, 0x3c, 0x41, 0x10, 0x0e, 0x00, 0xb1, 0x3c, 0xf9, 0x76, 0x88, 0x9e, 0x03, 0x3c, 0xfd, 0x9d, 0x14,
/* (2^ 85)P */ 0x5b, 0x15, 0x63, 0x6b, 0xe4, 0xdd, 0x79, 0xd4, 0x76, 0x79, 0x83, 0x3c, 0xe9, 0x15, 0x6e, 0xb6, 0x38, 0xe0, 0x13, 0x1f, 0x3b, 0xe4, 0xfd, 0xda, 0x35, 0x0b, 0x4b, 0x2e, 0x1a, 0xda, 0xaf, 0x5f,
/* (2^ 86)P */ 0x81, 0x75, 0x19, 0x17, 0xdf, 0xbb, 0x00, 0x36, 0xc2, 0xd2, 0x3c, 0xbe, 0x0b, 0x05, 0x72, 0x39, 0x86, 0xbe, 0xd5, 0xbd, 0x6d, 0x90, 0x38, 0x59, 0x0f, 0x86, 0x9b, 0x3f, 0xe4, 0xe5, 0xfc, 0x34,
/* (2^ 87)P */ 0x02, 0x4d, 0xd1, 0x42, 0xcd, 0xa4, 0xa8, 0x75, 0x65, 0xdf, 0x41, 0x34, 0xc5, 0xab, 0x8d, 0x82, 0xd3, 0x31, 0xe1, 0xd2, 0xed, 0xab, 0xdc, 0x33, 0x5f, 0xd2, 0x14, 0xb8, 0x6f, 0xd7, 0xba, 0x3e,
/* (2^ 88)P */ 0x0f, 0xe1, 0x70, 0x6f, 0x56, 0x6f, 0x90, 0xd4, 0x5a, 0x0f, 0x69, 0x51, 0xaa, 0xf7, 0x12, 0x5d, 0xf2, 0xfc, 0xce, 0x76, 0x6e, 0xb1, 0xad, 0x45, 0x99, 0x29, 0x23, 0xad, 0xae, 0x68, 0xf7, 0x01,
/* (2^ 89)P */ 0xbd, 0xfe, 0x48, 0x62, 0x7b, 0xc7, 0x6c, 0x2b, 0xfd, 0xaf, 0x3a, 0xec, 0x28, 0x06, 0xd3, 0x3c, 0x6a, 0x48, 0xef, 0xd4, 0x80, 0x0b, 0x1c, 0xce, 0x23, 0x6c, 0xf6, 0xa6, 0x2e, 0xff, 0x3b, 0x4c,
/* (2^ 90)P */ 0x5f, 0xeb, 0xea, 0x4a, 0x09, 0xc4, 0x2e, 0x3f, 0xa7, 0x2c, 0x37, 0x6e, 0x28, 0x9b, 0xb1, 0x61, 0x1d, 0x70, 0x2a, 0xde, 0x66, 0xa9, 0xef, 0x5e, 0xef, 0xe3, 0x55, 0xde, 0x65, 0x05, 0xb2, 0x23,
/* (2^ 91)P */ 0x57, 0x85, 0xd5, 0x79, 0x52, 0xca, 0x01, 0xe3, 0x4f, 0x87, 0xc2, 0x27, 0xce, 0xd4, 0xb2, 0x07, 0x67, 0x1d, 0xcf, 0x9d, 0x8a, 0xcd, 0x32, 0xa5, 0x56, 0xff, 0x2b, 0x3f, 0xe2, 0xfe, 0x52, 0x2a,
/* (2^ 92)P */ 0x3d, 0x66, 0xd8, 0x7c, 0xb3, 0xef, 0x24, 0x86, 0x94, 0x75, 0xbd, 0xff, 0x20, 0xac, 0xc7, 0xbb, 0x45, 0x74, 0xd3, 0x82, 0x9c, 0x5e, 0xb8, 0x57, 0x66, 0xec, 0xa6, 0x86, 0xcb, 0x52, 0x30, 0x7b,
/* (2^ 93)P */ 0x1e, 0xe9, 0x25, 0x25, 0xad, 0xf0, 0x82, 0x34, 0xa0, 0xdc, 0x8e, 0xd2, 0x43, 0x80, 0xb6, 0x2c, 0x3a, 0x00, 0x1b, 0x2e, 0x05, 0x6d, 0x4f, 0xaf, 0x0a, 0x1b, 0x78, 0x29, 0x25, 0x8c, 0x5f, 0x18,
/* (2^ 94)P */ 0xd6, 0xe0, 0x0c, 0xd8, 0x5b, 0xde, 0x41, 0xaa, 0xd6, 0xe9, 0x53, 0x68, 0x41, 0xb2, 0x07, 0x94, 0x3a, 0x4c, 0x7f, 0x35, 0x6e, 0xc3, 0x3e, 0x56, 0xce, 0x7b, 0x29, 0x0e, 0xdd, 0xb8, 0xc4, 0x4c,
/* (2^ 95)P */ 0x0e, 0x73, 0xb8, 0xff, 0x52, 0x1a, 0xfc, 0xa2, 0x37, 0x8e, 0x05, 0x67, 0x6e, 0xf1, 0x11, 0x18, 0xe1, 0x4e, 0xdf, 0xcd, 0x66, 0xa3, 0xf9, 0x10, 0x99, 0xf0, 0xb9, 0xa0, 0xc4, 0xa0, 0xf4, 0x72,
/* (2^ 96)P */ 0xa7, 0x4e, 0x3f, 0x66, 0x6f, 0xc0, 0x16, 0x8c, 0xba, 0x0f, 0x97, 0x4e, 0xf7, 0x3a, 0x3b, 0x69, 0x45, 0xc3, 0x9e, 0xd6, 0xf1, 0xe7, 0x02, 0x21, 0x89, 0x80, 0x8a, 0x96, 0xbc, 0x3c, 0xa5, 0x0b,
/* (2^ 97)P */ 0x37, 0x55, 0xa1, 0xfe, 0xc7, 0x9d, 0x3d, 0xca, 0x93, 0x64, 0x53, 0x51, 0xbb, 0x24, 0x68, 0x4c, 0xb1, 0x06, 0x40, 0x84, 0x14, 0x63, 0x88, 0xb9, 0x60, 0xcc, 0x54, 0xb4, 0x2a, 0xa7, 0xd2, 0x40,
/* (2^ 98)P */ 0x75, 0x09, 0x57, 0x12, 0xb7, 0xa1, 0x36, 0x59, 0x57, 0xa6, 0xbd, 0xde, 0x48, 0xd6, 0xb9, 0x91, 0xea, 0x30, 0x43, 0xb6, 0x4b, 0x09, 0x44, 0x33, 0xd0, 0x51, 0xee, 0x12, 0x0d, 0xa1, 0x6b, 0x00,
/* (2^ 99)P */ 0x58, 0x5d, 0xde, 0xf5, 0x68, 0x84, 0x22, 0x19, 0xb0, 0x05, 0xcc, 0x38, 0x4c, 0x2f, 0xb1, 0x0e, 0x90, 0x19, 0x60, 0xd5, 0x9d, 0x9f, 0x03, 0xa1, 0x0b, 0x0e, 0xff, 0x4f, 0xce, 0xd4, 0x02, 0x45,
/* (2^100)P */ 0x89, 0xc1, 0x37, 0x68, 0x10, 0x54, 0x20, 0xeb, 0x3c, 0xb9, 0xd3, 0x6d, 0x4c, 0x54, 0xf6, 0xd0, 0x4f, 0xd7, 0x16, 0xc4, 0x64, 0x70, 0x72, 0x40, 0xf0, 0x2e, 0x50, 0x4b, 0x11, 0xc6, 0x15, 0x6e,
/* (2^101)P */ 0x6b, 0xa7, 0xb1, 0xcf, 0x98, 0xa3, 0xf2, 0x4d, 0xb1, 0xf6, 0xf2, 0x19, 0x74, 0x6c, 0x25, 0x11, 0x43, 0x60, 0x6e, 0x06, 0x62, 0x79, 0x49, 0x4a, 0x44, 0x5b, 0x35, 0x41, 0xab, 0x3a, 0x5b, 0x70,
/* (2^102)P */ 0xd8, 0xb1, 0x97, 0xd7, 0x36, 0xf5, 0x5e, 0x36, 0xdb, 0xf0, 0xdd, 0x22, 0xd6, 0x6b, 0x07, 0x00, 0x88, 0x5a, 0x57, 0xe0, 0xb0, 0x33, 0xbf, 0x3b, 0x4d, 0xca, 0xe4, 0xc8, 0x05, 0xaa, 0x77, 0x37,
/* (2^103)P */ 0x5f, 0xdb, 0x78, 0x55, 0xc8, 0x45, 0x27, 0x39, 0xe2, 0x5a, 0xae, 0xdb, 0x49, 0x41, 0xda, 0x6f, 0x67, 0x98, 0xdc, 0x8a, 0x0b, 0xb0, 0xf0, 0xb1, 0xa3, 0x1d, 0x6f, 0xd3, 0x37, 0x34, 0x96, 0x09,
/* (2^104)P */ 0x53, 0x38, 0xdc, 0xa5, 0x90, 0x4e, 0x82, 0x7e, 0xbd, 0x5c, 0x13, 0x1f, 0x64, 0xf6, 0xb5, 0xcc, 0xcc, 0x8f, 0xce, 0x87, 0x6c, 0xd8, 0x36, 0x67, 0x9f, 0x24, 0x04, 0x66, 0xe2, 0x3c, 0x5f, 0x62,
/* (2^105)P */ 0x3f, 0xf6, 0x02, 0x95, 0x05, 0xc8, 0x8a, 0xaf, 0x69, 0x14, 0x35, 0x2e, 0x0a, 0xe7, 0x05, 0x0c, 0x05, 0x63, 0x4b, 0x76, 0x9c, 0x2e, 0x29, 0x35, 0xc3, 0x3a, 0xe2, 0xc7, 0x60, 0x43, 0x39, 0x1a,
/* (2^106)P */ 0x64, 0x32, 0x18, 0x51, 0x32, 0xd5, 0xc6, 0xd5, 0x4f, 0xb7, 0xc2, 0x43, 0xbd, 0x5a, 0x06, 0x62, 0x9b, 0x3f, 0x97, 0x3b, 0xd0, 0xf5, 0xfb, 0xb5, 0x5e, 0x6e, 0x20, 0x61, 0x36, 0xda, 0xa3, 0x13,
/* (2^107)P */ 0xe5, 0x94, 0x5d, 0x72, 0x37, 0x58, 0xbd, 0xc6, 0xc5, 0x16, 0x50, 0x20, 0x12, 0x09, 0xe3, 0x18, 0x68, 0x3c, 0x03, 0x70, 0x15, 0xce, 0x88, 0x20, 0x87, 0x79, 0x83, 0x5c, 0x49, 0x1f, 0xba, 0x7f,
/* (2^108)P */ 0x9d, 0x07, 0xf9, 0xf2, 0x23, 0x74, 0x8c, 0x5a, 0xc5, 0x3f, 0x02, 0x34, 0x7b, 0x15, 0x35, 0x17, 0x51, 0xb3, 0xfa, 0xd2, 0x9a, 0xb4, 0xf9, 0xe4, 0x3c, 0xe3, 0x78, 0xc8, 0x72, 0xff, 0x91, 0x66,
/* (2^109)P */ 0x3e, 0xff, 0x5e, 0xdc, 0xde, 0x2a, 0x2c, 0x12, 0xf4, 0x6c, 0x95, 0xd8, 0xf1, 0x4b, 0xdd, 0xf8, 0xda, 0x5b, 0x9e, 0x9e, 0x5d, 0x20, 0x86, 0xeb, 0x43, 0xc7, 0x75, 0xd9, 0xb9, 0x92, 0x9b, 0x04,
/* (2^110)P */ 0x5a, 0xc0, 0xf6, 0xb0, 0x30, 0x97, 0x37, 0xa5, 0x53, 0xa5, 0xf3, 0xc6, 0xac, 0xff, 0xa0, 0x72, 0x6d, 0xcd, 0x0d, 0xb2, 0x34, 0x2c, 0x03, 0xb0, 0x4a, 0x16, 0xd5, 0x88, 0xbc, 0x9d, 0x0e, 0x47,
/* (2^111)P */ 0x47, 0xc0, 0x37, 0xa2, 0x0c, 0xf1, 0x9c, 0xb1, 0xa2, 0x81, 0x6c, 0x1f, 0x71, 0x66, 0x54, 0xb6, 0x43, 0x0b, 0xd8, 0x6d, 0xd1, 0x1b, 0x32, 0xb3, 0x8e, 0xbe, 0x5f, 0x0c, 0x60, 0x4f, 0xc1, 0x48,
/* (2^112)P */ 0x03, 0xc8, 0xa6, 0x4a, 0x26, 0x1c, 0x45, 0x66, 0xa6, 0x7d, 0xfa, 0xa4, 0x04, 0x39, 0x6e, 0xb6, 0x95, 0x83, 0x12, 0xb3, 0xb0, 0x19, 0x5f, 0xd4, 0x10, 0xbc, 0xc9, 0xc3, 0x27, 0x26, 0x60, 0x31,
/* (2^113)P */ 0x0d, 0xe1, 0xe4, 0x32, 0x48, 0xdc, 0x20, 0x31, 0xf7, 0x17, 0xc7, 0x56, 0x67, 0xc4, 0x20, 0xeb, 0x94, 0x02, 0x28, 0x67, 0x3f, 0x2e, 0xf5, 0x00, 0x09, 0xc5, 0x30, 0x47, 0xc1, 0x4f, 0x6d, 0x56,
/* (2^114)P */ 0x06, 0x72, 0x83, 0xfd, 0x40, 0x5d, 0x3a, 0x7e, 0x7a, 0x54, 0x59, 0x71, 0xdc, 0x26, 0xe9, 0xc1, 0x95, 0x60, 0x8d, 0xa6, 0xfb, 0x30, 0x67, 0x21, 0xa7, 0xce, 0x69, 0x3f, 0x84, 0xc3, 0xe8, 0x22,
/* (2^115)P */ 0x2b, 0x4b, 0x0e, 0x93, 0xe8, 0x74, 0xd0, 0x33, 0x16, 0x58, 0xd1, 0x84, 0x0e, 0x35, 0xe4, 0xb6, 0x65, 0x23, 0xba, 0xd6, 0x6a, 0xc2, 0x34, 0x55, 0xf3, 0xf3, 0xf1, 0x89, 0x2f, 0xc1, 0x73, 0x77,
/* (2^116)P */ 0xaa, 0x62, 0x79, 0xa5, 0x4d, 0x40, 0xba, 0x8c, 0x56, 0xce, 0x99, 0x19, 0xa8, 0x97, 0x98, 0x5b, 0xfc, 0x92, 0x16, 0x12, 0x2f, 0x86, 0x8e, 0x50, 0x91, 0xc2, 0x93, 0xa0, 0x7f, 0x90, 0x81, 0x3a,
/* (2^117)P */ 0x10, 0xa5, 0x25, 0x47, 0xff, 0xd0, 0xde, 0x0d, 0x03, 0xc5, 0x3f, 0x67, 0x10, 0xcc, 0xd8, 0x10, 0x89, 0x4e, 0x1f, 0x9f, 0x1c, 0x15, 0x9d, 0x5b, 0x4c, 0xa4, 0x09, 0xcb, 0xd5, 0xc1, 0xa5, 0x32,
/* (2^118)P */ 0xfb, 0x41, 0x05, 0xb9, 0x42, 0xa4, 0x0a, 0x1e, 0xdb, 0x85, 0xb4, 0xc1, 0x7c, 0xeb, 0x85, 0x5f, 0xe5, 0xf2, 0x9d, 0x8a, 0xce, 0x95, 0xe5, 0xbe, 0x36, 0x22, 0x42, 0x22, 0xc7, 0x96, 0xe4, 0x25,
/* (2^119)P */ 0xb9, 0xe5, 0x0f, 0xcd, 0x46, 0x3c, 0xdf, 0x5e, 0x88, 0x33, 0xa4, 0xd2, 0x7e, 0x5a, 0xe7, 0x34, 0x52, 0xe3, 0x61, 0xd7, 0x11, 0xde, 0x88, 0xe4, 0x5c, 0x54, 0x85, 0xa0, 0x01, 0x8a, 0x87, 0x0e,
/* (2^120)P */ 0x04, 0xbb, 0x21, 0xe0, 0x77, 0x3c, 0x49, 0xba, 0x9a, 0x89, 0xdf, 0xc7, 0x43, 0x18, 0x4d, 0x2b, 0x67, 0x0d, 0xe8, 0x7a, 0x48, 0x7a, 0xa3, 0x9e, 0x94, 0x17, 0xe4, 0x11, 0x80, 0x95, 0xa9, 0x67,
/* (2^121)P */ 0x65, 0xb0, 0x97, 0x66, 0x1a, 0x05, 0x58, 0x4b, 0xd4, 0xa6, 0x6b, 0x8d, 0x7d, 0x3f, 0xe3, 0x47, 0xc1, 0x46, 0xca, 0x83, 0xd4, 0xa8, 0x4d, 0xbb, 0x0d, 0xdb, 0xc2, 0x81, 0xa1, 0xca, 0xbe, 0x68,
/* (2^122)P */ 0xa5, 0x9a, 0x98, 0x0b, 0xe9, 0x80, 0x89, 0x8d, 0x9b, 0xc9, 0x93, 0x2c, 0x4a, 0xb1, 0x5e, 0xf9, 0xa2, 0x73, 0x6e, 0x79, 0xc4, 0xc7, 0xc6, 0x51, 0x69, 0xb5, 0xef, 0xb5, 0x63, 0x83, 0x22, 0x6e,
/* (2^123)P */ 0xc8, 0x24, 0xd6, 0x2d, 0xb0, 0xc0, 0xbb, 0xc6, 0xee, 0x70, 0x81, 0xec, 0x7d, 0xb4, 0x7e, 0x77, 0xa9, 0xaf, 0xcf, 0x04, 0xa0, 0x15, 0xde, 0x3c, 0x9b, 0xbf, 0x60, 0x71, 0x08, 0xbc, 0xc6, 0x1d,
/* (2^124)P */ 0x02, 0x40, 0xc3, 0xee, 0x43, 0xe0, 0x07, 0x2e, 0x7f, 0xdc, 0x68, 0x7a, 0x67, 0xfc, 0xe9, 0x18, 0x9a, 0x5b, 0xd1, 0x8b, 0x18, 0x03, 0xda, 0xd8, 0x53, 0x82, 0x56, 0x00, 0xbb, 0xc3, 0xfb, 0x48,
/* (2^125)P */ 0xe1, 0x4c, 0x65, 0xfb, 0x4c, 0x7d, 0x54, 0x57, 0xad, 0xe2, 0x58, 0xa0, 0x82, 0x5b, 0x56, 0xd3, 0x78, 0x44, 0x15, 0xbf, 0x0b, 0xaf, 0x3e, 0xf6, 0x18, 0xbb, 0xdf, 0x14, 0xf1, 0x1e, 0x53, 0x47,
/* (2^126)P */ 0x87, 0xc5, 0x78, 0x42, 0x0a, 0x63, 0xec, 0xe1, 0xf3, 0x83, 0x8e, 0xca, 0x46, 0xd5, 0x07, 0x55, 0x2b, 0x0c, 0xdc, 0x3a, 0xc6, 0x35, 0xe1, 0x85, 0x4e, 0x84, 0x82, 0x56, 0xa8, 0xef, 0xa7, 0x0a,
/* (2^127)P */ 0x15, 0xf6, 0xe1, 0xb3, 0xa8, 0x1b, 0x69, 0x72, 0xfa, 0x3f, 0xbe, 0x1f, 0x70, 0xe9, 0xb4, 0x32, 0x68, 0x78, 0xbb, 0x39, 0x2e, 0xd9, 0xb6, 0x97, 0xe8, 0x39, 0x2e, 0xa0, 0xde, 0x53, 0xfe, 0x2c,
/* (2^128)P */ 0xb0, 0x52, 0xcd, 0x85, 0xcd, 0x92, 0x73, 0x68, 0x31, 0x98, 0xe2, 0x10, 0xc9, 0x66, 0xff, 0x27, 0x06, 0x2d, 0x83, 0xa9, 0x56, 0x45, 0x13, 0x97, 0xa0, 0xf8, 0x84, 0x0a, 0x36, 0xb0, 0x9b, 0x26,
/* (2^129)P */ 0x5c, 0xf8, 0x43, 0x76, 0x45, 0x55, 0x6e, 0x70, 0x1b, 0x7d, 0x59, 0x9b, 0x8c, 0xa4, 0x34, 0x37, 0x72, 0xa4, 0xef, 0xc6, 0xe8, 0x91, 0xee, 0x7a, 0xe0, 0xd9, 0xa9, 0x98, 0xc1, 0xab, 0xd6, 0x5c,
/* (2^130)P */ 0x1a, 0xe4, 0x3c, 0xcb, 0x06, 0xde, 0x04, 0x0e, 0x38, 0xe1, 0x02, 0x34, 0x89, 0xeb, 0xc6, 0xd8, 0x72, 0x37, 0x6e, 0x68, 0xbb, 0x59, 0x46, 0x90, 0xc8, 0xa8, 0x6b, 0x74, 0x71, 0xc3, 0x15, 0x72,
/* (2^131)P */ 0xd9, 0xa2, 0xe4, 0xea, 0x7e, 0xa9, 0x12, 0xfd, 0xc5, 0xf2, 0x94, 0x63, 0x51, 0xb7, 0x14, 0x95, 0x94, 0xf2, 0x08, 0x92, 0x80, 0xd5, 0x6f, 0x26, 0xb9, 0x26, 0x9a, 0x61, 0x85, 0x70, 0x84, 0x5c,
/* (2^132)P */ 0xea, 0x94, 0xd6, 0xfe, 0x10, 0x54, 0x98, 0x52, 0x54, 0xd2, 0x2e, 0x4a, 0x93, 0x5b, 0x90, 0x3c, 0x67, 0xe4, 0x3b, 0x2d, 0x69, 0x47, 0xbb, 0x10, 0xe1, 0xe9, 0xe5, 0x69, 0x2d, 0x3d, 0x3b, 0x06,
/* (2^133)P */ 0xeb, 0x7d, 0xa5, 0xdd, 0xee, 0x26, 0x27, 0x47, 0x91, 0x18, 0xf4, 0x10, 0xae, 0xc4, 0xb6, 0xef, 0x14, 0x76, 0x30, 0x7b, 0x91, 0x41, 0x16, 0x2b, 0x7c, 0x5b, 0xf4, 0xc4, 0x4f, 0x55, 0x7c, 0x11,
/* (2^134)P */ 0x12, 0x88, 0x9d, 0x8f, 0x11, 0xf3, 0x7c, 0xc0, 0x39, 0x79, 0x01, 0x50, 0x20, 0xd8, 0xdb, 0x01, 0x27, 0x28, 0x1b, 0x17, 0xf4, 0x03, 0xe8, 0xd7, 0xea, 0x25, 0xd2, 0x87, 0x74, 0xe8, 0x15, 0x10,
/* (2^135)P */ 0x4d, 0xcc, 0x3a, 0xd2, 0xfe, 0xe3, 0x8d, 0xc5, 0x2d, 0xbe, 0xa7, 0x94, 0xc2, 0x91, 0xdb, 0x50, 0x57, 0xf4, 0x9c, 0x1c, 0x3d, 0xd4, 0x94, 0x0b, 0x4a, 0x52, 0x37, 0x6e, 0xfa, 0x40, 0x16, 0x6b,
/* (2^136)P */ 0x09, 0x0d, 0xda, 0x5f, 0x6c, 0x34, 0x2f, 0x69, 0x51, 0x31, 0x4d, 0xfa, 0x59, 0x1c, 0x0b, 0x20, 0x96, 0xa2, 0x77, 0x07, 0x76, 0x6f, 0xc4, 0xb8, 0xcf, 0xfb, 0xfd, 0x3f, 0x5f, 0x39, 0x38, 0x4b,
/* (2^137)P */ 0x71, 0xd6, 0x54, 0xbe, 0x00, 0x5e, 0xd2, 0x18, 0xa6, 0xab, 0xc8, 0xbe, 0x82, 0x05, 0xd5, 0x60, 0x82, 0xb9, 0x78, 0x3b, 0x26, 0x8f, 0xad, 0x87, 0x32, 0x04, 0xda, 0x9c, 0x4e, 0xf6, 0xfd, 0x50,
/* (2^138)P */ 0xf0, 0xdc, 0x78, 0xc5, 0xaa, 0x67, 0xf5, 0x90, 0x3b, 0x13, 0xa3, 0xf2, 0x0e, 0x9b, 0x1e, 0xef, 0x71, 0xde, 0xd9, 0x42, 0x92, 0xba, 0xeb, 0x0e, 0xc7, 0x01, 0x31, 0xf0, 0x9b, 0x3c, 0x47, 0x15,
/* (2^139)P */ 0x95, 0x80, 0xb7, 0x56, 0xae, 0xe8, 0x77, 0x7c, 0x8e, 0x07, 0x6f, 0x6e, 0x66, 0xe7, 0x78, 0xb6, 0x1f, 0xba, 0x48, 0x53, 0x61, 0xb9, 0xa0, 0x2d, 0x0b, 0x3f, 0x73, 0xff, 0xc1, 0x31, 0xf9, 0x7c,
/* (2^140)P */ 0x6c, 0x36, 0x0a, 0x0a, 0xf5, 0x57, 0xb3, 0x26, 0x32, 0xd7, 0x87, 0x2b, 0xf4, 0x8c, 0x70, 0xe9, 0xc0, 0xb2, 0x1c, 0xf9, 0xa5, 0xee, 0x3a, 0xc1, 0x4c, 0xbb, 0x43, 0x11, 0x99, 0x0c, 0xd9, 0x35,
/* (2^141)P */ 0xdc, 0xd9, 0xa0, 0xa9, 0x04, 0xc4, 0xc1, 0x47, 0x51, 0xd2, 0x72, 0x19, 0x45, 0x58, 0x9e, 0x65, 0x31, 0x8c, 0xb3, 0x73, 0xc4, 0xa8, 0x75, 0x38, 0x24, 0x1f, 0x56, 0x79, 0xd3, 0x9e, 0xbd, 0x1f,
/* (2^142)P */ 0x8d, 0xc2, 0x1e, 0xd4, 0x6f, 0xbc, 0xfa, 0x11, 0xca, 0x2d, 0x2a, 0xcd, 0xe3, 0xdf, 0xf8, 0x7e, 0x95, 0x45, 0x40, 0x8c, 0x5d, 0x3b, 0xe7, 0x72, 0x27, 0x2f, 0xb7, 0x54, 0x49, 0xfa, 0x35, 0x61,
/* (2^143)P */ 0x9c, 0xb6, 0x24, 0xde, 0xa2, 0x32, 0xfc, 0xcc, 0x88, 0x5d, 0x09, 0x1f, 0x8c, 0x69, 0x55, 0x3f, 0x29, 0xf9, 0xc3, 0x5a, 0xed, 0x50, 0x33, 0xbe, 0xeb, 0x7e, 0x47, 0xca, 0x06, 0xf8, 0x9b, 0x5e,
/* (2^144)P */ 0x68, 0x9f, 0x30, 0x3c, 0xb6, 0x8f, 0xce, 0xe9, 0xf4, 0xf9, 0xe1, 0x65, 0x35, 0xf6, 0x76, 0x53, 0xf1, 0x93, 0x63, 0x5a, 0xb3, 0xcf, 0xaf, 0xd1, 0x06, 0x35, 0x62, 0xe5, 0xed, 0xa1, 0x32, 0x66,
/* (2^145)P */ 0x4c, 0xed, 0x2d, 0x0c, 0x39, 0x6c, 0x7d, 0x0b, 0x1f, 0xcb, 0x04, 0xdf, 0x81, 0x32, 0xcb, 0x56, 0xc7, 0xc3, 0xec, 0x49, 0x12, 0x5a, 0x30, 0x66, 0x2a, 0xa7, 0x8c, 0xa3, 0x60, 0x8b, 0x58, 0x5d,
/* (2^146)P */ 0x2d, 0xf4, 0xe5, 0xe8, 0x78, 0xbf, 0xec, 0xa6, 0xec, 0x3e, 0x8a, 0x3c, 0x4b, 0xb4, 0xee, 0x86, 0x04, 0x16, 0xd2, 0xfb, 0x48, 0x9c, 0x21, 0xec, 0x31, 0x67, 0xc3, 0x17, 0xf5, 0x1a, 0xaf, 0x1a,
/* (2^147)P */ 0xe7, 0xbd, 0x69, 0x67, 0x83, 0xa2, 0x06, 0xc3, 0xdb, 0x2a, 0x1e, 0x2b, 0x62, 0x80, 0x82, 0x20, 0xa6, 0x94, 0xff, 0xfb, 0x1f, 0xf5, 0x27, 0x80, 0x6b, 0xf2, 0x24, 0x11, 0xce, 0xa1, 0xcf, 0x76,
/* (2^148)P */ 0xb6, 0xab, 0x22, 0x24, 0x56, 0x00, 0xeb, 0x18, 0xc3, 0x29, 0x8c, 0x8f, 0xd5, 0xc4, 0x77, 0xf3, 0x1a, 0x56, 0x31, 0xf5, 0x07, 0xc2, 0xbb, 0x4d, 0x27, 0x8a, 0x12, 0x82, 0xf0, 0xb7, 0x53, 0x02,
/* (2^149)P */ 0xe0, 0x17, 0x2c, 0xb6, 0x1c, 0x09, 0x1f, 0x3d, 0xa9, 0x28, 0x46, 0xd6, 0xab, 0xe1, 0x60, 0x48, 0x53, 0x42, 0x9d, 0x30, 0x36, 0x74, 0xd1, 0x52, 0x76, 0xe5, 0xfa, 0x3e, 0xe1, 0x97, 0x6f, 0x35,
/* (2^150)P */ 0x5b, 0x53, 0x50, 0xa1, 0x1a, 0xe1, 0x51, 0xd3, 0xcc, 0x78, 0xd8, 0x1d, 0xbb, 0x45, 0x6b, 0x3e, 0x98, 0x2c, 0xd9, 0xbe, 0x28, 0x61, 0x77, 0x0c, 0xb8, 0x85, 0x28, 0x03, 0x93, 0xae, 0x34, 0x1d,
/* (2^151)P */ 0xc3, 0xa4, 0x5b, 0xa8, 0x8c, 0x48, 0xa0, 0x4b, 0xce, 0xe6, 0x9c, 0x3c, 0xc3, 0x48, 0x53, 0x98, 0x70, 0xa7, 0xbd, 0x97, 0x6f, 0x4c, 0x12, 0x66, 0x4a, 0x12, 0x54, 0x06, 0x29, 0xa0, 0x81, 0x0f,
/* (2^152)P */ 0xfd, 0x86, 0x9b, 0x56, 0xa6, 0x9c, 0xd0, 0x9e, 0x2d, 0x9a, 0xaf, 0x18, 0xfd, 0x09, 0x10, 0x81, 0x0a, 0xc2, 0xd8, 0x93, 0x3f, 0xd0, 0x08, 0xff, 0x6b, 0xf2, 0xae, 0x9f, 0x19, 0x48, 0xa1, 0x52,
/* (2^153)P */ 0x73, 0x1b, 0x8d, 0x2d, 0xdc, 0xf9, 0x03, 0x3e, 0x70, 0x1a, 0x96, 0x73, 0x18, 0x80, 0x05, 0x42, 0x70, 0x59, 0xa3, 0x41, 0xf0, 0x87, 0xd9, 0xc0, 0x49, 0xd5, 0xc0, 0xa1, 0x15, 0x1f, 0xaa, 0x07,
/* (2^154)P */ 0x24, 0x72, 0xd2, 0x8c, 0xe0, 0x6c, 0xd4, 0xdf, 0x39, 0x42, 0x4e, 0x93, 0x4f, 0x02, 0x0a, 0x6d, 0x59, 0x7b, 0x89, 0x99, 0x63, 0x7a, 0x8a, 0x80, 0xa2, 0x95, 0x3d, 0xe1, 0xe9, 0x56, 0x45, 0x0a,
/* (2^155)P */ 0x45, 0x30, 0xc1, 0xe9, 0x1f, 0x99, 0x1a, 0xd2, 0xb8, 0x51, 0x77, 0xfe, 0x48, 0x85, 0x0e, 0x9b, 0x35, 0x00, 0xf3, 0x4b, 0xcb, 0x43, 0xa6, 0x5d, 0x21, 0xf7, 0x40, 0x39, 0xd6, 0x28, 0xdb, 0x77,
/* (2^156)P */ 0x11, 0x90, 0xdc, 0x4a, 0x61, 0xeb, 0x5e, 0xfc, 0xeb, 0x11, 0xc4, 0xe8, 0x9a, 0x41, 0x29, 0x52, 0x74, 0xcf, 0x1d, 0x7d, 0x78, 0xe7, 0xc3, 0x9e, 0xb5, 0x4c, 0x6e, 0x21, 0x3e, 0x05, 0x0d, 0x34,
/* (2^157)P */ 0xb4, 0xf2, 0x8d, 0xb4, 0x39, 0xaf, 0xc7, 0xca, 0x94, 0x0a, 0xa1, 0x71, 0x28, 0xec, 0xfa, 0xc0, 0xed, 0x75, 0xa5, 0x5c, 0x24, 0x69, 0x0a, 0x14, 0x4c, 0x3a, 0x27, 0x34, 0x71, 0xc3, 0xf1, 0x0c,
/* (2^158)P */ 0xa5, 0xb8, 0x24, 0xc2, 0x6a, 0x30, 0xee, 0xc8, 0xb0, 0x30, 0x49, 0xcb, 0x7c, 0xee, 0xea, 0x57, 0x4f, 0xe7, 0xcb, 0xaa, 0xbd, 0x06, 0xe8, 0xa1, 0x7d, 0x65, 0xeb, 0x2e, 0x74, 0x62, 0x9a, 0x7d,
/* (2^159)P */ 0x30, 0x48, 0x6c, 0x54, 0xef, 0xb6, 0xb6, 0x9e, 0x2e, 0x6e, 0xb3, 0xdd, 0x1f, 0xca, 0x5c, 0x88, 0x05, 0x71, 0x0d, 0xef, 0x83, 0xf3, 0xb9, 0xe6, 0x12, 0x04, 0x2e, 0x9d, 0xef, 0x4f, 0x65, 0x58,
/* (2^160)P */ 0x26, 0x8e, 0x0e, 0xbe, 0xff, 0xc4, 0x05, 0xa9, 0x6e, 0x81, 0x31, 0x9b, 0xdf, 0xe5, 0x2d, 0x94, 0xe1, 0x88, 0x2e, 0x80, 0x3f, 0x72, 0x7d, 0x49, 0x8d, 0x40, 0x2f, 0x60, 0xea, 0x4d, 0x68, 0x30,
/* (2^161)P */ 0x34, 0xcb, 0xe6, 0xa3, 0x78, 0xa2, 0xe5, 0x21, 0xc4, 0x1d, 0x15, 0x5b, 0x6f, 0x6e, 0xfb, 0xae, 0x15, 0xca, 0x77, 0x9d, 0x04, 0x8e, 0x0b, 0xb3, 0x81, 0x89, 0xb9, 0x53, 0xcf, 0xc9, 0xc3, 0x28,
/* (2^162)P */ 0x2a, 0xdd, 0x6c, 0x55, 0x21, 0xb7, 0x7f, 0x28, 0x74, 0x22, 0x02, 0x97, 0xa8, 0x7c, 0x31, 0x0d, 0x58, 0x32, 0x54, 0x3a, 0x42, 0xc7, 0x68, 0x74, 0x2f, 0x64, 0xb5, 0x4e, 0x46, 0x11, 0x7f, 0x4a,
/* (2^163)P */ 0xa6, 0x3a, 0x19, 0x4d, 0x77, 0xa4, 0x37, 0xa2, 0xa1, 0x29, 0x21, 0xa9, 0x6e, 0x98, 0x65, 0xd8, 0x88, 0x1a, 0x7c, 0xf8, 0xec, 0x15, 0xc5, 0x24, 0xeb, 0xf5, 0x39, 0x5f, 0x57, 0x03, 0x40, 0x60,
/* (2^164)P */ 0x27, 0x9b, 0x0a, 0x57, 0x89, 0xf1, 0xb9, 0x47, 0x78, 0x4b, 0x5e, 0x46, 0xde, 0xce, 0x98, 0x2b, 0x20, 0x5c, 0xb8, 0xdb, 0x51, 0xf5, 0x6d, 0x02, 0x01, 0x19, 0xe2, 0x47, 0x10, 0xd9, 0xfc, 0x74,
/* (2^165)P */ 0xa3, 0xbf, 0xc1, 0x23, 0x0a, 0xa9, 0xe2, 0x13, 0xf6, 0x19, 0x85, 0x47, 0x4e, 0x07, 0xb0, 0x0c, 0x44, 0xcf, 0xf6, 0x3a, 0xbe, 0xcb, 0xf1, 0x5f, 0xbe, 0x2d, 0x81, 0xbe, 0x38, 0x54, 0xfe, 0x67,
/* (2^166)P */ 0xb0, 0x05, 0x0f, 0xa4, 0x4f, 0xf6, 0x3c, 0xd1, 0x87, 0x37, 0x28, 0x32, 0x2f, 0xfb, 0x4d, 0x05, 0xea, 0x2a, 0x0d, 0x7f, 0x5b, 0x91, 0x73, 0x41, 0x4e, 0x0d, 0x61, 0x1f, 0x4f, 0x14, 0x2f, 0x48,
/* (2^167)P */ 0x34, 0x82, 0x7f, 0xb4, 0x01, 0x02, 0x21, 0xf6, 0x90, 0xb9, 0x70, 0x9e, 0x92, 0xe1, 0x0a, 0x5d, 0x7c, 0x56, 0x49, 0xb0, 0x55, 0xf4, 0xd7, 0xdc, 0x01, 0x6f, 0x91, 0xf0, 0xf1, 0xd0, 0x93, 0x7e,
/* (2^168)P */ 0xfa, 0xb4, 0x7d, 0x8a, 0xf1, 0xcb, 0x79, 0xdd, 0x2f, 0xc6, 0x74, 0x6f, 0xbf, 0x91, 0x83, 0xbe, 0xbd, 0x91, 0x82, 0x4b, 0xd1, 0x45, 0x71, 0x02, 0x05, 0x17, 0xbf, 0x2c, 0xea, 0x73, 0x5a, 0x58,
/* (2^169)P */ 0xb2, 0x0d, 0x8a, 0x92, 0x3e, 0xa0, 0x5c, 0x48, 0xe7, 0x57, 0x28, 0x74, 0xa5, 0x01, 0xfc, 0x10, 0xa7, 0x51, 0xd5, 0xd6, 0xdb, 0x2e, 0x48, 0x2f, 0x8a, 0xdb, 0x8f, 0x04, 0xb5, 0x33, 0x04, 0x0f,
/* (2^170)P */ 0x47, 0x62, 0xdc, 0xd7, 0x8d, 0x2e, 0xda, 0x60, 0x9a, 0x81, 0xd4, 0x8c, 0xd3, 0xc9, 0xb4, 0x88, 0x97, 0x66, 0xf6, 0x01, 0xc0, 0x3a, 0x03, 0x13, 0x75, 0x7d, 0x36, 0x3b, 0xfe, 0x24, 0x3b, 0x27,
/* (2^171)P */ 0xd4, 0xb9, 0xb3, 0x31, 0x6a, 0xf6, 0xe8, 0xc6, 0xd5, 0x49, 0xdf, 0x94, 0xa4, 0x14, 0x15, 0x28, 0xa7, 0x3d, 0xb2, 0xc8, 0xdf, 0x6f, 0x72, 0xd1, 0x48, 0xe5, 0xde, 0x03, 0xd1, 0xe7, 0x3a, 0x4b,
/* (2^172)P */ 0x7e, 0x9d, 0x4b, 0xce, 0x19, 0x6e, 0x25, 0xc6, 0x1c, 0xc6, 0xe3, 0x86, 0xf1, 0x5c, 0x5c, 0xff, 0x45, 0xc1, 0x8e, 0x4b, 0xa3, 0x3c, 0xc6, 0xac, 0x74, 0x65, 0xe6, 0xfe, 0x88, 0x18, 0x62, 0x74,
/* (2^173)P */ 0x1e, 0x0a, 0x29, 0x45, 0x96, 0x40, 0x6f, 0x95, 0x2e, 0x96, 0x3a, 0x26, 0xe3, 0xf8, 0x0b, 0xef, 0x7b, 0x64, 0xc2, 0x5e, 0xeb, 0x50, 0x6a, 0xed, 0x02, 0x75, 0xca, 0x9d, 0x3a, 0x28, 0x94, 0x06,
/* (2^174)P */ 0xd1, 0xdc, 0xa2, 0x43, 0x36, 0x96, 0x9b, 0x76, 0x53, 0x53, 0xfc, 0x09, 0xea, 0xc8, 0xb7, 0x42, 0xab, 0x7e, 0x39, 0x13, 0xee, 0x2a, 0x00, 0x4f, 0x3a, 0xd6, 0xb7, 0x19, 0x2c, 0x5e, 0x00, 0x63,
/* (2^175)P */ 0xea, 0x3b, 0x02, 0x63, 0xda, 0x36, 0x67, 0xca, 0xb7, 0x99, 0x2a, 0xb1, 0x6d, 0x7f, 0x6c, 0x96, 0xe1, 0xc5, 0x37, 0xc5, 0x90, 0x93, 0xe0, 0xac, 0xee, 0x89, 0xaa, 0xa1, 0x63, 0x60, 0x69, 0x0b,
/* (2^176)P */ 0xe5, 0x56, 0x8c, 0x28, 0x97, 0x3e, 0xb0, 0xeb, 0xe8, 0x8b, 0x8c, 0x93, 0x9f, 0x9f, 0x2a, 0x43, 0x71, 0x7f, 0x71, 0x5b, 0x3d, 0xa9, 0xa5, 0xa6, 0x97, 0x9d, 0x8f, 0xe1, 0xc3, 0xb4, 0x5f, 0x1a,
/* (2^177)P */ 0xce, 0xcd, 0x60, 0x1c, 0xad, 0xe7, 0x94, 0x1c, 0xa0, 0xc4, 0x02, 0xfc, 0x43, 0x2a, 0x20, 0xee, 0x20, 0x6a, 0xc4, 0x67, 0xd8, 0xe4, 0xaf, 0x8d, 0x58, 0x7b, 0xc2, 0x8a, 0x3c, 0x26, 0x10, 0x0a,
/* (2^178)P */ 0x4a, 0x2a, 0x43, 0xe4, 0xdf, 0xa9, 0xde, 0xd0, 0xc5, 0x77, 0x92, 0xbe, 0x7b, 0xf8, 0x6a, 0x85, 0x1a, 0xc7, 0x12, 0xc2, 0xac, 0x72, 0x84, 0xce, 0x91, 0x1e, 0xbb, 0x9b, 0x6d, 0x1b, 0x15, 0x6f,
/* (2^179)P */ 0x6a, 0xd5, 0xee, 0x7c, 0x52, 0x6c, 0x77, 0x26, 0xec, 0xfa, 0xf8, 0xfb, 0xb7, 0x1c, 0x21, 0x7d, 0xcc, 0x09, 0x46, 0xfd, 0xa6, 0x66, 0xae, 0x37, 0x42, 0x0c, 0x77, 0xd2, 0x02, 0xb7, 0x81, 0x1f,
/* (2^180)P */ 0x92, 0x83, 0xc5, 0xea, 0x57, 0xb0, 0xb0, 0x2f, 0x9d, 0x4e, 0x74, 0x29, 0xfe, 0x89, 0xdd, 0xe1, 0xf8, 0xb4, 0xbe, 0x17, 0xeb, 0xf8, 0x64, 0xc9, 0x1e, 0xd4, 0xa2, 0xc9, 0x73, 0x10, 0x57, 0x29,
/* (2^181)P */ 0x54, 0xe2, 0xc0, 0x81, 0x89, 0xa1, 0x48, 0xa9, 0x30, 0x28, 0xb2, 0x65, 0x9b, 0x36, 0xf6, 0x2d, 0xc6, 0xd3, 0xcf, 0x5f, 0xd7, 0xb2, 0x3e, 0xa3, 0x1f, 0xa0, 0x99, 0x41, 0xec, 0xd6, 0x8c, 0x07,
/* (2^182)P */ 0x2f, 0x0d, 0x90, 0xad, 0x41, 0x4a, 0x58, 0x4a, 0x52, 0x4c, 0xc7, 0xe2, 0x78, 0x2b, 0x14, 0x32, 0x78, 0xc9, 0x31, 0x84, 0x33, 0xe8, 0xc4, 0x68, 0xc2, 0x9f, 0x68, 0x08, 0x90, 0xea, 0x69, 0x7f,
/* (2^183)P */ 0x65, 0x82, 0xa3, 0x46, 0x1e, 0xc8, 0xf2, 0x52, 0xfd, 0x32, 0xa8, 0x04, 0x2d, 0x07, 0x78, 0xfd, 0x94, 0x9e, 0x35, 0x25, 0xfa, 0xd5, 0xd7, 0x8c, 0xd2, 0x29, 0xcc, 0x54, 0x74, 0x1b, 0xe7, 0x4d,
/* (2^184)P */ 0xc9, 0x6a, 0xda, 0x1e, 0xad, 0x60, 0xeb, 0x42, 0x3a, 0x9c, 0xc0, 0xdb, 0xdf, 0x37, 0xad, 0x0a, 0x91, 0xc1, 0x3c, 0xe3, 0x71, 0x4b, 0x00, 0x81, 0x3c, 0x80, 0x22, 0x51, 0x34, 0xbe, 0xe6, 0x44,
/* (2^185)P */ 0xdb, 0x20, 0x19, 0xba, 0x88, 0x83, 0xfe, 0x03, 0x08, 0xb0, 0x0d, 0x15, 0x32, 0x7c, 0xd5, 0xf5, 0x29, 0x0c, 0xf6, 0x1a, 0x28, 0xc4, 0xc8, 0x49, 0xee, 0x1a, 0x70, 0xde, 0x18, 0xb5, 0xed, 0x21,
/* (2^186)P */ 0x99, 0xdc, 0x06, 0x8f, 0x41, 0x3e, 0xb6, 0x7f, 0xb8, 0xd7, 0x66, 0xc1, 0x99, 0x0d, 0x46, 0xa4, 0x83, 0x0a, 0x52, 0xce, 0x48, 0x52, 0xdd, 0x24, 0x58, 0x83, 0x92, 0x2b, 0x71, 0xad, 0xc3, 0x5e,
/* (2^187)P */ 0x0f, 0x93, 0x17, 0xbd, 0x5f, 0x2a, 0x02, 0x15, 0xe3, 0x70, 0x25, 0xd8, 0x77, 0x4a, 0xf6, 0xa4, 0x12, 0x37, 0x78, 0x15, 0x69, 0x8d, 0xbc, 0x12, 0xbb, 0x0a, 0x62, 0xfc, 0xc0, 0x94, 0x81, 0x49,
/* (2^188)P */ 0x82, 0x6c, 0x68, 0x55, 0xd2, 0xd9, 0xa2, 0x38, 0xf0, 0x21, 0x3e, 0x19, 0xd9, 0x6b, 0x5c, 0x78, 0x84, 0x54, 0x4a, 0xb2, 0x1a, 0xc8, 0xd5, 0xe4, 0x89, 0x09, 0xe2, 0xb2, 0x60, 0x78, 0x30, 0x56,
/* (2^189)P */ 0xc4, 0x74, 0x4d, 0x8b, 0xf7, 0x55, 0x9d, 0x42, 0x31, 0x01, 0x35, 0x43, 0x46, 0x83, 0xf1, 0x22, 0xff, 0x1f, 0xc7, 0x98, 0x45, 0xc2, 0x60, 0x1e, 0xef, 0x83, 0x99, 0x97, 0x14, 0xf0, 0xf2, 0x59,
/* (2^190)P */ 0x44, 0x4a, 0x49, 0xeb, 0x56, 0x7d, 0xa4, 0x46, 0x8e, 0xa1, 0x36, 0xd6, 0x54, 0xa8, 0x22, 0x3e, 0x3b, 0x1c, 0x49, 0x74, 0x52, 0xe1, 0x46, 0xb3, 0xe7, 0xcd, 0x90, 0x53, 0x4e, 0xfd, 0xea, 0x2c,
/* (2^191)P */ 0x75, 0x66, 0x0d, 0xbe, 0x38, 0x85, 0x8a, 0xba, 0x23, 0x8e, 0x81, 0x50, 0xbb, 0x74, 0x90, 0x4b, 0xc3, 0x04, 0xd3, 0x85, 0x90, 0xb8, 0xda, 0xcb, 0xc4, 0x92, 0x61, 0xe5, 0xe0, 0x4f, 0xa2, 0x61,
/* (2^192)P */ 0xcb, 0x5b, 0x52, 0xdb, 0xe6, 0x15, 0x76, 0xcb, 0xca, 0xe4, 0x67, 0xa5, 0x35, 0x8c, 0x7d, 0xdd, 0x69, 0xdd, 0xfc, 0xca, 0x3a, 0x15, 0xb4, 0xe6, 0x66, 0x97, 0x3c, 0x7f, 0x09, 0x8e, 0x66, 0x2d,
/* (2^193)P */ 0xf0, 0x5e, 0xe5, 0x5c, 0x26, 0x7e, 0x7e, 0xa5, 0x67, 0xb9, 0xd4, 0x7c, 0x52, 0x4e, 0x9f, 0x5d, 0xe5, 0xd1, 0x2f, 0x49, 0x06, 0x36, 0xc8, 0xfb, 0xae, 0xf7, 0xc3, 0xb7, 0xbe, 0x52, 0x0d, 0x09,
/* (2^194)P */ 0x7c, 0x4d, 0x7b, 0x1e, 0x5a, 0x51, 0xb9, 0x09, 0xc0, 0x44, 0xda, 0x99, 0x25, 0x6a, 0x26, 0x1f, 0x04, 0x55, 0xc5, 0xe2, 0x48, 0x95, 0xc4, 0xa1, 0xcc, 0x15, 0x6f, 0x12, 0x87, 0x42, 0xf0, 0x7e,
/* (2^195)P */ 0x15, 0xef, 0x30, 0xbd, 0x9d, 0x65, 0xd1, 0xfe, 0x7b, 0x27, 0xe0, 0xc4, 0xee, 0xb9, 0x4a, 0x8b, 0x91, 0x32, 0xdf, 0xa5, 0x36, 0x62, 0x4d, 0x88, 0x88, 0xf7, 0x5c, 0xbf, 0xa6, 0x6e, 0xd9, 0x1f,
/* (2^196)P */ 0x9a, 0x0d, 0x19, 0x1f, 0x98, 0x61, 0xa1, 0x42, 0xc1, 0x52, 0x60, 0x7e, 0x50, 0x49, 0xd8, 0x61, 0xd5, 0x2c, 0x5a, 0x28, 0xbf, 0x13, 0xe1, 0x9f, 0xd8, 0x85, 0xad, 0xdb, 0x76, 0xd6, 0x22, 0x7c,
/* (2^197)P */ 0x7d, 0xd2, 0xfb, 0x2b, 0xed, 0x70, 0xe7, 0x82, 0xa5, 0xf5, 0x96, 0xe9, 0xec, 0xb2, 0x05, 0x4c, 0x50, 0x01, 0x90, 0xb0, 0xc2, 0xa9, 0x40, 0xcd, 0x64, 0xbf, 0xd9, 0x13, 0x92, 0x31, 0x95, 0x58,
/* (2^198)P */ 0x08, 0x2e, 0xea, 0x3f, 0x70, 0x5d, 0xcc, 0xe7, 0x8c, 0x18, 0xe2, 0x58, 0x12, 0x49, 0x0c, 0xb5, 0xf0, 0x5b, 0x20, 0x48, 0xaa, 0x0b, 0xe3, 0xcc, 0x62, 0x2d, 0xa3, 0xcf, 0x9c, 0x65, 0x7c, 0x53,
/* (2^199)P */ 0x88, 0xc0, 0xcf, 0x98, 0x3a, 0x62, 0xb6, 0x37, 0xa4, 0xac, 0xd6, 0xa4, 0x1f, 0xed, 0x9b, 0xfe, 0xb0, 0xd1, 0xa8, 0x56, 0x8e, 0x9b, 0xd2, 0x04, 0x75, 0x95, 0x51, 0x0b, 0xc4, 0x71, 0x5f, 0x72,
/* (2^200)P */ 0xe6, 0x9c, 0x33, 0xd0, 0x9c, 0xf8, 0xc7, 0x28, 0x8b, 0xc1, 0xdd, 0x69, 0x44, 0xb1, 0x67, 0x83, 0x2c, 0x65, 0xa1, 0xa6, 0x83, 0xda, 0x3a, 0x88, 0x17, 0x6c, 0x4d, 0x03, 0x74, 0x19, 0x5f, 0x58,
/* (2^201)P */ 0x88, 0x91, 0xb1, 0xf1, 0x66, 0xb2, 0xcf, 0x89, 0x17, 0x52, 0xc3, 0xe7, 0x63, 0x48, 0x3b, 0xe6, 0x6a, 0x52, 0xc0, 0xb4, 0xa6, 0x9d, 0x8c, 0xd8, 0x35, 0x46, 0x95, 0xf0, 0x9d, 0x5c, 0x03, 0x3e,
/* (2^202)P */ 0x9d, 0xde, 0x45, 0xfb, 0x12, 0x54, 0x9d, 0xdd, 0x0d, 0xf4, 0xcf, 0xe4, 0x32, 0x45, 0x68, 0xdd, 0x1c, 0x67, 0x1d, 0x15, 0x9b, 0x99, 0x5c, 0x4b, 0x90, 0xf6, 0xe7, 0x11, 0xc8, 0x2c, 0x8c, 0x2d,
/* (2^203)P */ 0x40, 0x5d, 0x05, 0x90, 0x1d, 0xbe, 0x54, 0x7f, 0x40, 0xaf, 0x4a, 0x46, 0xdf, 0xc5, 0x64, 0xa4, 0xbe, 0x17, 0xe9, 0xf0, 0x24, 0x96, 0x97, 0x33, 0x30, 0x6b, 0x35, 0x27, 0xc5, 0x8d, 0x01, 0x2c,
/* (2^204)P */ 0xd4, 0xb3, 0x30, 0xe3, 0x24, 0x50, 0x41, 0xa5, 0xd3, 0x52, 0x16, 0x69, 0x96, 0x3d, 0xff, 0x73, 0xf1, 0x59, 0x9b, 0xef, 0xc4, 0x42, 0xec, 0x94, 0x5a, 0x8e, 0xd0, 0x18, 0x16, 0x20, 0x47, 0x07,
/* (2^205)P */ 0x53, 0x1c, 0x41, 0xca, 0x8a, 0xa4, 0x6c, 0x4d, 0x19, 0x61, 0xa6, 0xcf, 0x2f, 0x5f, 0x41, 0x66, 0xff, 0x27, 0xe2, 0x51, 0x00, 0xd4, 0x4d, 0x9c, 0xeb, 0xf7, 0x02, 0x9a, 0xc0, 0x0b, 0x81, 0x59,
/* (2^206)P */ 0x1d, 0x10, 0xdc, 0xb3, 0x71, 0xb1, 0x7e, 0x2a, 0x8e, 0xf6, 0xfe, 0x9f, 0xb9, 0x5a, 0x1c, 0x44, 0xea, 0x59, 0xb3, 0x93, 0x9b, 0x5c, 0x02, 0x32, 0x2f, 0x11, 0x9d, 0x1e, 0xa7, 0xe0, 0x8c, 0x5e,
/* (2^207)P */ 0xfd, 0x03, 0x95, 0x42, 0x92, 0xcb, 0xcc, 0xbf, 0x55, 0x5d, 0x09, 0x2f, 0x75, 0xba, 0x71, 0xd2, 0x1e, 0x09, 0x2d, 0x97, 0x5e, 0xad, 0x5e, 0x34, 0xba, 0x03, 0x31, 0xa8, 0x11, 0xdf, 0xc8, 0x18,
/* (2^208)P */ 0x4c, 0x0f, 0xed, 0x9a, 0x9a, 0x94, 0xcd, 0x90, 0x7e, 0xe3, 0x60, 0x66, 0xcb, 0xf4, 0xd1, 0xc5, 0x0b, 0x2e, 0xc5, 0x56, 0x2d, 0xc5, 0xca, 0xb8, 0x0d, 0x8e, 0x80, 0xc5, 0x00, 0xe4, 0x42, 0x6e,
/* (2^209)P */ 0x23, 0xfd, 0xae, 0xee, 0x66, 0x69, 0xb4, 0xa3, 0xca, 0xcd, 0x9e, 0xe3, 0x0b, 0x1f, 0x4f, 0x0c, 0x1d, 0xa5, 0x83, 0xd6, 0xc9, 0xc8, 0x9d, 0x18, 0x1b, 0x35, 0x09, 0x4c, 0x05, 0x7f, 0xf2, 0x51,
/* (2^210)P */ 0x82, 0x06, 0x32, 0x2a, 0xcd, 0x7c, 0x48, 0x4c, 0x96, 0x1c, 0xdf, 0xb3, 0x5b, 0xa9, 0x7e, 0x58, 0xe8, 0xb8, 0x5c, 0x55, 0x9e, 0xf7, 0xcc, 0xc8, 0x3d, 0xd7, 0x06, 0xa2, 0x29, 0xc8, 0x7d, 0x54,
/* (2^211)P */ 0x06, 0x9b, 0xc3, 0x80, 0xcd, 0xa6, 0x22, 0xb8, 0xc6, 0xd4, 0x00, 0x20, 0x73, 0x54, 0x6d, 0xe9, 0x4d, 0x3b, 0x46, 0x91, 0x6f, 0x5b, 0x53, 0x28, 0x1d, 0x6e, 0x48, 0xe2, 0x60, 0x46, 0x8f, 0x22,
/* (2^212)P */ 0xbf, 0x3a, 0x8d, 0xde, 0x38, 0x95, 0x79, 0x98, 0x6e, 0xca, 0xeb, 0x45, 0x00, 0x33, 0xd8, 0x8c, 0x38, 0xe7, 0x21, 0x82, 0x00, 0x2a, 0x95, 0x79, 0xbb, 0xd2, 0x5c, 0x53, 0xa7, 0xe1, 0x22, 0x43,
/* (2^213)P */ 0x1c, 0x80, 0xd1, 0x19, 0x18, 0xc1, 0x14, 0xb1, 0xc7, 0x5e, 0x3f, 0x4f, 0xd8, 0xe4, 0x16, 0x20, 0x4c, 0x0f, 0x26, 0x09, 0xf4, 0x2d, 0x0e, 0xdd, 0x66, 0x72, 0x5f, 0xae, 0xc0, 0x62, 0xc3, 0x5e,
/* (2^214)P */ 0xee, 0xb4, 0xb2, 0xb8, 0x18, 0x2b, 0x46, 0xc0, 0xfb, 0x1a, 0x4d, 0x27, 0x50, 0xd9, 0xc8, 0x7c, 0xd2, 0x02, 0x6b, 0x43, 0x05, 0x71, 0x5f, 0xf2, 0xd3, 0xcc, 0xf9, 0xbf, 0xdc, 0xf8, 0xbb, 0x43,
/* (2^215)P */ 0xdf, 0xe9, 0x39, 0xa0, 0x67, 0x17, 0xad, 0xb6, 0x83, 0x35, 0x9d, 0xf6, 0xa8, 0x4d, 0x71, 0xb0, 0xf5, 0x31, 0x29, 0xb4, 0x18, 0xfa, 0x55, 0x5e, 0x61, 0x09, 0xc6, 0x33, 0x8f, 0x55, 0xd5, 0x4e,
/* (2^216)P */ 0xdd, 0xa5, 0x47, 0xc6, 0x01, 0x79, 0xe3, 0x1f, 0x57, 0xd3, 0x81, 0x80, 0x1f, 0xdf, 0x3d, 0x59, 0xa6, 0xd7, 0x3f, 0x81, 0xfd, 0xa4, 0x49, 0x02, 0x61, 0xaf, 0x9c, 0x4e, 0x27, 0xca, 0xac, 0x69,
/* (2^217)P */ 0xc9, 0x21, 0x07, 0x33, 0xea, 0xa3, 0x7b, 0x04, 0xa0, 0x1e, 0x7e, 0x0e, 0xc2, 0x3f, 0x42, 0x83, 0x60, 0x4a, 0x31, 0x01, 0xaf, 0xc0, 0xf4, 0x1d, 0x27, 0x95, 0x28, 0x89, 0xab, 0x2d, 0xa6, 0x09,
/* (2^218)P */ 0x00, 0xcb, 0xc6, 0x9c, 0xa4, 0x25, 0xb3, 0xa5, 0xb6, 0x6c, 0xb5, 0x54, 0xc6, 0x5d, 0x4b, 0xe9, 0xa0, 0x94, 0xc9, 0xad, 0x79, 0x87, 0xe2, 0x3b, 0xad, 0x4a, 0x3a, 0xba, 0xf8, 0xe8, 0x96, 0x42,
/* (2^219)P */ 0xab, 0x1e, 0x45, 0x1e, 0x76, 0x89, 0x86, 0x32, 0x4a, 0x59, 0x59, 0xff, 0x8b, 0x59, 0x4d, 0x2e, 0x4a, 0x08, 0xa7, 0xd7, 0x53, 0x68, 0xb9, 0x49, 0xa8, 0x20, 0x14, 0x60, 0x19, 0xa3, 0x80, 0x49,
/* (2^220)P */ 0x42, 0x2c, 0x55, 0x2f, 0xe1, 0xb9, 0x65, 0x95, 0x96, 0xfe, 0x00, 0x71, 0xdb, 0x18, 0x53, 0x8a, 0xd7, 0xd0, 0xad, 0x43, 0x4d, 0x0b, 0xc9, 0x05, 0xda, 0x4e, 0x5d, 0x6a, 0xd6, 0x4c, 0x8b, 0x53,
/* (2^221)P */ 0x9f, 0x03, 0x9f, 0xe8, 0xc3, 0x4f, 0xe9, 0xf4, 0x45, 0x80, 0x61, 0x6f, 0xf2, 0x9a, 0x2c, 0x59, 0x50, 0x95, 0x4b, 0xfd, 0xb5, 0x6e, 0xa3, 0x08, 0x19, 0x14, 0xed, 0xc2, 0xf6, 0xfa, 0xff, 0x25,
/* (2^222)P */ 0x54, 0xd3, 0x79, 0xcc, 0x59, 0x44, 0x43, 0x34, 0x6b, 0x47, 0xd5, 0xb1, 0xb4, 0xbf, 0xec, 0xee, 0x99, 0x5d, 0x61, 0x61, 0xa0, 0x34, 0xeb, 0xdd, 0x73, 0xb7, 0x64, 0xeb, 0xcc, 0xce, 0x29, 0x51,
/* (2^223)P */ 0x20, 0x35, 0x99, 0x94, 0x58, 0x21, 0x43, 0xee, 0x3b, 0x0b, 0x4c, 0xf1, 0x7c, 0x9c, 0x2f, 0x77, 0xd5, 0xda, 0xbe, 0x06, 0xe3, 0xfc, 0xe2, 0xd2, 0x97, 0x6a, 0xf0, 0x46, 0xb5, 0x42, 0x5f, 0x71,
/* (2^224)P */ 0x1a, 0x5f, 0x5b, 0xda, 0xce, 0xcd, 0x4e, 0x43, 0xa9, 0x41, 0x97, 0xa4, 0x15, 0x71, 0xa1, 0x0d, 0x2e, 0xad, 0xed, 0x73, 0x7c, 0xd7, 0x0b, 0x68, 0x41, 0x90, 0xdd, 0x4e, 0x35, 0x02, 0x7c, 0x48,
/* (2^225)P */ 0xc4, 0xd9, 0x0e, 0xa7, 0xf3, 0xef, 0xef, 0xb8, 0x02, 0xe3, 0x57, 0xe8, 0xa3, 0x2a, 0xa3, 0x56, 0xa0, 0xa5, 0xa2, 0x48, 0xbd, 0x68, 0x3a, 0xdf, 0x44, 0xc4, 0x76, 0x31, 0xb7, 0x50, 0xf6, 0x07,
/* (2^226)P */ 0xb1, 0xcc, 0xe0, 0x26, 0x16, 0x9b, 0x8b, 0xe3, 0x36, 0xfb, 0x09, 0x8b, 0xc1, 0x53, 0xe0, 0x79, 0x64, 0x49, 0xf9, 0xc9, 0x19, 0x03, 0xd9, 0x56, 0xc4, 0xf5, 0x9f, 0xac, 0xe7, 0x41, 0xa9, 0x1c,
/* (2^227)P */ 0xbb, 0xa0, 0x2f, 0x16, 0x29, 0xdf, 0xc4, 0x49, 0x05, 0x33, 0xb3, 0x82, 0x32, 0xcf, 0x88, 0x84, 0x7d, 0x43, 0xbb, 0xca, 0x14, 0xda, 0xdf, 0x95, 0x86, 0xad, 0xd5, 0x64, 0x82, 0xf7, 0x91, 0x33,
/* (2^228)P */ 0x5d, 0x09, 0xb5, 0xe2, 0x6a, 0xe0, 0x9a, 0x72, 0x46, 0xa9, 0x59, 0x32, 0xd7, 0x58, 0x8a, 0xd5, 0xed, 0x21, 0x39, 0xd1, 0x62, 0x42, 0x83, 0xe9, 0x92, 0xb5, 0x4b, 0xa5, 0xfa, 0xda, 0xfe, 0x27,
/* (2^229)P */ 0xbb, 0x48, 0xad, 0x29, 0xb8, 0xc5, 0x9d, 0xa9, 0x60, 0xe2, 0x9e, 0x49, 0x42, 0x57, 0x02, 0x5f, 0xfd, 0x13, 0x75, 0x5d, 0xcd, 0x8e, 0x2c, 0x80, 0x38, 0xd9, 0x6d, 0x3f, 0xef, 0xb3, 0xce, 0x78,
/* (2^230)P */ 0x94, 0x5d, 0x13, 0x8a, 0x4f, 0xf4, 0x42, 0xc3, 0xa3, 0xdd, 0x8c, 0x82, 0x44, 0xdb, 0x9e, 0x7b, 0xe7, 0xcf, 0x37, 0x05, 0x1a, 0xd1, 0x36, 0x94, 0xc8, 0xb4, 0x1a, 0xec, 0x64, 0xb1, 0x64, 0x50,
/* (2^231)P */ 0xfc, 0xb2, 0x7e, 0xd3, 0xcf, 0xec, 0x20, 0x70, 0xfc, 0x25, 0x0d, 0xd9, 0x3e, 0xea, 0x31, 0x1f, 0x34, 0xbb, 0xa1, 0xdf, 0x7b, 0x0d, 0x93, 0x1b, 0x44, 0x30, 0x11, 0x48, 0x7a, 0x46, 0x44, 0x53,
/* (2^232)P */ 0xfb, 0x6d, 0x5e, 0xf2, 0x70, 0x31, 0x07, 0x70, 0xc8, 0x4c, 0x11, 0x50, 0x1a, 0xdc, 0x85, 0xe3, 0x00, 0x4f, 0xfc, 0xc8, 0x8a, 0x69, 0x48, 0x23, 0xd8, 0x40, 0xdd, 0x84, 0x52, 0xa5, 0x77, 0x2a,
/* (2^233)P */ 0xe4, 0x6c, 0x8c, 0xc9, 0xe0, 0xaf, 0x06, 0xfe, 0xe4, 0xd6, 0xdf, 0xdd, 0x96, 0xdf, 0x35, 0xc2, 0xd3, 0x1e, 0xbf, 0x33, 0x1e, 0xd0, 0x28, 0x14, 0xaf, 0xbd, 0x00, 0x93, 0xec, 0x68, 0x57, 0x78,
/* (2^234)P */ 0x3b, 0xb6, 0xde, 0x91, 0x7a, 0xe5, 0x02, 0x97, 0x80, 0x8b, 0xce, 0xe5, 0xbf, 0xb8, 0xbd, 0x61, 0xac, 0x58, 0x1d, 0x3d, 0x6f, 0x42, 0x5b, 0x64, 0xbc, 0x57, 0xa5, 0x27, 0x22, 0xa8, 0x04, 0x48,
/* (2^235)P */ 0x01, 0x26, 0x4d, 0xb4, 0x8a, 0x04, 0x57, 0x8e, 0x35, 0x69, 0x3a, 0x4b, 0x1a, 0x50, 0xd6, 0x68, 0x93, 0xc2, 0xe1, 0xf9, 0xc3, 0x9e, 0x9c, 0xc3, 0xe2, 0x63, 0xde, 0xd4, 0x57, 0xf2, 0x72, 0x41,
/* (2^236)P */ 0x01, 0x64, 0x0c, 0x33, 0x50, 0xb4, 0x68, 0xd3, 0x91, 0x23, 0x8f, 0x41, 0x17, 0x30, 0x0d, 0x04, 0x0d, 0xd9, 0xb7, 0x90, 0x60, 0xbb, 0x34, 0x2c, 0x1f, 0xd5, 0xdf, 0x8f, 0x22, 0x49, 0xf6, 0x16,
/* (2^237)P */ 0xf5, 0x8e, 0x92, 0x2b, 0x8e, 0x81, 0xa6, 0xbe, 0x72, 0x1e, 0xc1, 0xcd, 0x91, 0xcf, 0x8c, 0xe2, 0xcd, 0x36, 0x7a, 0xe7, 0x68, 0xaa, 0x4a, 0x59, 0x0f, 0xfd, 0x7f, 0x6c, 0x80, 0x34, 0x30, 0x31,
/* (2^238)P */ 0x65, 0xbd, 0x49, 0x22, 0xac, 0x27, 0x9d, 0x8a, 0x12, 0x95, 0x8e, 0x01, 0x64, 0xb4, 0xa3, 0x19, 0xc7, 0x7e, 0xb3, 0x52, 0xf3, 0xcf, 0x6c, 0xc2, 0x21, 0x7b, 0x79, 0x1d, 0x34, 0x68, 0x6f, 0x05,
/* (2^239)P */ 0x27, 0x23, 0xfd, 0x7e, 0x75, 0xd6, 0x79, 0x5e, 0x15, 0xfe, 0x3a, 0x55, 0xb6, 0xbc, 0xbd, 0xfa, 0x60, 0x5a, 0xaf, 0x6e, 0x2c, 0x22, 0xe7, 0xd3, 0x3b, 0x74, 0xae, 0x4d, 0x6d, 0xc7, 0x46, 0x70,
/* (2^240)P */ 0x55, 0x4a, 0x8d, 0xb1, 0x72, 0xe8, 0x0b, 0x66, 0x96, 0x14, 0x4e, 0x57, 0x18, 0x25, 0x99, 0x19, 0xbb, 0xdc, 0x2b, 0x30, 0x3a, 0x05, 0x03, 0xc1, 0x8e, 0x8e, 0x21, 0x0b, 0x80, 0xe9, 0xd8, 0x3e,
/* (2^241)P */ 0x3e, 0xe0, 0x75, 0xfa, 0x39, 0x92, 0x0b, 0x7b, 0x83, 0xc0, 0x33, 0x46, 0x68, 0xfb, 0xe9, 0xef, 0x93, 0x77, 0x1a, 0x39, 0xbe, 0x5f, 0xa3, 0x98, 0x34, 0xfe, 0xd0, 0xe2, 0x0f, 0x51, 0x65, 0x60,
/* (2^242)P */ 0x0c, 0xad, 0xab, 0x48, 0x85, 0x66, 0xcb, 0x55, 0x27, 0xe5, 0x87, 0xda, 0x48, 0x45, 0x58, 0xb4, 0xdd, 0xc1, 0x07, 0x01, 0xea, 0xec, 0x43, 0x2c, 0x35, 0xde, 0x72, 0x93, 0x80, 0x28, 0x60, 0x52,
/* (2^243)P */ 0x1f, 0x3b, 0x21, 0xf9, 0x6a, 0xc5, 0x15, 0x34, 0xdb, 0x98, 0x7e, 0x01, 0x4d, 0x1a, 0xee, 0x5b, 0x9b, 0x70, 0xcf, 0xb5, 0x05, 0xb1, 0xf6, 0x13, 0xb6, 0x9a, 0xb2, 0x82, 0x34, 0x0e, 0xf2, 0x5f,
/* (2^244)P */ 0x90, 0x6c, 0x2e, 0xcc, 0x75, 0x9c, 0xa2, 0x0a, 0x06, 0xe2, 0x70, 0x3a, 0xca, 0x73, 0x7d, 0xfc, 0x15, 0xc5, 0xb5, 0xc4, 0x8f, 0xc3, 0x9f, 0x89, 0x07, 0xc2, 0xff, 0x24, 0xb1, 0x86, 0x03, 0x25,
/* (2^245)P */ 0x56, 0x2b, 0x3d, 0xae, 0xd5, 0x28, 0xea, 0x54, 0xce, 0x60, 0xde, 0xd6, 0x9d, 0x14, 0x13, 0x99, 0xc1, 0xd6, 0x06, 0x8f, 0xc5, 0x4f, 0x69, 0x16, 0xc7, 0x8f, 0x01, 0xeb, 0x75, 0x39, 0xb2, 0x46,
/* (2^246)P */ 0xe2, 0xb4, 0xb7, 0xb4, 0x0f, 0x6a, 0x0a, 0x47, 0xde, 0x53, 0x72, 0x8f, 0x5a, 0x47, 0x92, 0x5d, 0xdb, 0x3a, 0xbd, 0x2f, 0xb5, 0xe5, 0xee, 0xab, 0x68, 0x69, 0x80, 0xa0, 0x01, 0x08, 0xa2, 0x7f,
/* (2^247)P */ 0xd2, 0x14, 0x77, 0x9f, 0xf1, 0xfa, 0xf3, 0x76, 0xc3, 0x60, 0x46, 0x2f, 0xc1, 0x40, 0xe8, 0xb3, 0x4e, 0x74, 0x12, 0xf2, 0x8d, 0xcd, 0xb4, 0x0f, 0xd2, 0x2d, 0x3a, 0x1d, 0x25, 0x5a, 0x06, 0x4b,
/* (2^248)P */ 0x4a, 0xcd, 0x77, 0x3d, 0x38, 0xde, 0xeb, 0x5c, 0xb1, 0x9c, 0x2c, 0x88, 0xdf, 0x39, 0xdf, 0x6a, 0x59, 0xf7, 0x9a, 0xb0, 0x2e, 0x24, 0xdd, 0xa2, 0x22, 0x64, 0x5f, 0x0e, 0xe5, 0xc0, 0x47, 0x31,
/* (2^249)P */ 0xdb, 0x50, 0x13, 0x1d, 0x10, 0xa5, 0x4c, 0x16, 0x62, 0xc9, 0x3f, 0xc3, 0x79, 0x34, 0xd1, 0xf8, 0x08, 0xda, 0xe5, 0x13, 0x4d, 0xce, 0x40, 0xe6, 0xba, 0xf8, 0x61, 0x50, 0xc4, 0xe0, 0xde, 0x4b,
/* (2^250)P */ 0xc9, 0xb1, 0xed, 0xa4, 0xc1, 0x6d, 0xc4, 0xd7, 0x8a, 0xd9, 0x7f, 0x43, 0xb6, 0xd7, 0x14, 0x55, 0x0b, 0xc0, 0xa1, 0xb2, 0x6b, 0x2f, 0x94, 0x58, 0x0e, 0x71, 0x70, 0x1d, 0xab, 0xb2, 0xff, 0x2d,
/* (2^251)P */ 0x68, 0x6d, 0x8b, 0xc1, 0x2f, 0xcf, 0xdf, 0xcc, 0x67, 0x61, 0x80, 0xb7, 0xa8, 0xcb, 0xeb, 0xa8, 0xe3, 0x37, 0x29, 0x5e, 0xf9, 0x97, 0x06, 0x98, 0x8c, 0x6e, 0x12, 0xd0, 0x1c, 0xba, 0xfb, 0x02,
/* (2^252)P */ 0x65, 0x45, 0xff, 0xad, 0x60, 0xc3, 0x98, 0xcb, 0x19, 0x15, 0xdb, 0x4b, 0xd2, 0x01, 0x71, 0x44, 0xd5, 0x15, 0xfb, 0x75, 0x74, 0xc8, 0xc4, 0x98, 0x7d, 0xa2, 0x22, 0x6e, 0x6d, 0xc7, 0xf8, 0x05,
/* (2^253)P */ 0x94, 0xf4, 0xb9, 0xfe, 0xdf, 0xe5, 0x69, 0xab, 0x75, 0x6b, 0x40, 0x18, 0x9d, 0xc7, 0x09, 0xae, 0x1d, 0x2d, 0xa4, 0x94, 0xfb, 0x45, 0x9b, 0x19, 0x84, 0xfa, 0x2a, 0xae, 0xeb, 0x0a, 0x71, 0x79,
/* (2^254)P */ 0xdf, 0xd2, 0x34, 0xf3, 0xa7, 0xed, 0xad, 0xa6, 0xb4, 0x57, 0x2a, 0xaf, 0x51, 0x9c, 0xde, 0x7b, 0xa8, 0xea, 0xdc, 0x86, 0x4f, 0xc6, 0x8f, 0xa9, 0x7b, 0xd0, 0x0e, 0xc2, 0x35, 0x03, 0xbe, 0x6b,
/* (2^255)P */ 0x44, 0x43, 0x98, 0x53, 0xbe, 0xdc, 0x7f, 0x66, 0xa8, 0x49, 0x59, 0x00, 0x1c, 0xbc, 0x72, 0x07, 0x8e, 0xd6, 0xbe, 0x4e, 0x9f, 0xa4, 0x07, 0xba, 0xbf, 0x30, 0xdf, 0xba, 0x85, 0xb0, 0xa7, 0x1f,
}

104
vendor/github.com/cloudflare/circl/dh/x448/curve.go generated vendored Normal file
View File

@ -0,0 +1,104 @@
package x448
import (
fp "github.com/cloudflare/circl/math/fp448"
)
// ladderJoye calculates a fixed-point multiplication with the generator point.
// The algorithm is the right-to-left Joye's ladder as described
// in "How to precompute a ladder" in SAC'2017.
func ladderJoye(k *Key) {
w := [5]fp.Elt{} // [mu,x1,z1,x2,z2] order must be preserved.
w[1] = fp.Elt{ // x1 = S
0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
}
fp.SetOne(&w[2]) // z1 = 1
w[3] = fp.Elt{ // x2 = G-S
0x20, 0x27, 0x9d, 0xc9, 0x7d, 0x19, 0xb1, 0xac,
0xf8, 0xba, 0x69, 0x1c, 0xff, 0x33, 0xac, 0x23,
0x51, 0x1b, 0xce, 0x3a, 0x64, 0x65, 0xbd, 0xf1,
0x23, 0xf8, 0xc1, 0x84, 0x9d, 0x45, 0x54, 0x29,
0x67, 0xb9, 0x81, 0x1c, 0x03, 0xd1, 0xcd, 0xda,
0x7b, 0xeb, 0xff, 0x1a, 0x88, 0x03, 0xcf, 0x3a,
0x42, 0x44, 0x32, 0x01, 0x25, 0xb7, 0xfa, 0xf0,
}
fp.SetOne(&w[4]) // z2 = 1
const n = 448
const h = 2
swap := uint(1)
for s := 0; s < n-h; s++ {
i := (s + h) / 8
j := (s + h) % 8
bit := uint((k[i] >> uint(j)) & 1)
copy(w[0][:], tableGenerator[s*Size:(s+1)*Size])
diffAdd(&w, swap^bit)
swap = bit
}
for s := 0; s < h; s++ {
double(&w[1], &w[2])
}
toAffine((*[fp.Size]byte)(k), &w[1], &w[2])
}
// ladderMontgomery calculates a generic scalar point multiplication
// The algorithm implemented is the left-to-right Montgomery's ladder.
func ladderMontgomery(k, xP *Key) {
w := [5]fp.Elt{} // [x1, x2, z2, x3, z3] order must be preserved.
w[0] = *(*fp.Elt)(xP) // x1 = xP
fp.SetOne(&w[1]) // x2 = 1
w[3] = *(*fp.Elt)(xP) // x3 = xP
fp.SetOne(&w[4]) // z3 = 1
move := uint(0)
for s := 448 - 1; s >= 0; s-- {
i := s / 8
j := s % 8
bit := uint((k[i] >> uint(j)) & 1)
ladderStep(&w, move^bit)
move = bit
}
toAffine((*[fp.Size]byte)(k), &w[1], &w[2])
}
func toAffine(k *[fp.Size]byte, x, z *fp.Elt) {
fp.Inv(z, z)
fp.Mul(x, x, z)
_ = fp.ToBytes(k[:], x)
}
var lowOrderPoints = [3]fp.Elt{
{ /* (0,_,1) point of order 2 on Curve448 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
},
{ /* (1,_,1) a point of order 4 on the twist of Curve448 */
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
},
{ /* (-1,_,1) point of order 4 on Curve448 */
0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
},
}

View File

@ -0,0 +1,30 @@
//go:build amd64 && !purego
// +build amd64,!purego
package x448
import (
fp "github.com/cloudflare/circl/math/fp448"
"golang.org/x/sys/cpu"
)
var hasBmi2Adx = cpu.X86.HasBMI2 && cpu.X86.HasADX
var _ = hasBmi2Adx
func double(x, z *fp.Elt) { doubleAmd64(x, z) }
func diffAdd(w *[5]fp.Elt, b uint) { diffAddAmd64(w, b) }
func ladderStep(w *[5]fp.Elt, b uint) { ladderStepAmd64(w, b) }
func mulA24(z, x *fp.Elt) { mulA24Amd64(z, x) }
//go:noescape
func doubleAmd64(x, z *fp.Elt)
//go:noescape
func diffAddAmd64(w *[5]fp.Elt, b uint)
//go:noescape
func ladderStepAmd64(w *[5]fp.Elt, b uint)
//go:noescape
func mulA24Amd64(z, x *fp.Elt)

View File

@ -0,0 +1,111 @@
#define ladderStepLeg \
addSub(x2,z2) \
addSub(x3,z3) \
integerMulLeg(b0,x2,z3) \
integerMulLeg(b1,x3,z2) \
reduceFromDoubleLeg(t0,b0) \
reduceFromDoubleLeg(t1,b1) \
addSub(t0,t1) \
cselect(x2,x3,regMove) \
cselect(z2,z3,regMove) \
integerSqrLeg(b0,t0) \
integerSqrLeg(b1,t1) \
reduceFromDoubleLeg(x3,b0) \
reduceFromDoubleLeg(z3,b1) \
integerMulLeg(b0,x1,z3) \
reduceFromDoubleLeg(z3,b0) \
integerSqrLeg(b0,x2) \
integerSqrLeg(b1,z2) \
reduceFromDoubleLeg(x2,b0) \
reduceFromDoubleLeg(z2,b1) \
subtraction(t0,x2,z2) \
multiplyA24Leg(t1,t0) \
additionLeg(t1,t1,z2) \
integerMulLeg(b0,x2,z2) \
integerMulLeg(b1,t0,t1) \
reduceFromDoubleLeg(x2,b0) \
reduceFromDoubleLeg(z2,b1)
#define ladderStepBmi2Adx \
addSub(x2,z2) \
addSub(x3,z3) \
integerMulAdx(b0,x2,z3) \
integerMulAdx(b1,x3,z2) \
reduceFromDoubleAdx(t0,b0) \
reduceFromDoubleAdx(t1,b1) \
addSub(t0,t1) \
cselect(x2,x3,regMove) \
cselect(z2,z3,regMove) \
integerSqrAdx(b0,t0) \
integerSqrAdx(b1,t1) \
reduceFromDoubleAdx(x3,b0) \
reduceFromDoubleAdx(z3,b1) \
integerMulAdx(b0,x1,z3) \
reduceFromDoubleAdx(z3,b0) \
integerSqrAdx(b0,x2) \
integerSqrAdx(b1,z2) \
reduceFromDoubleAdx(x2,b0) \
reduceFromDoubleAdx(z2,b1) \
subtraction(t0,x2,z2) \
multiplyA24Adx(t1,t0) \
additionAdx(t1,t1,z2) \
integerMulAdx(b0,x2,z2) \
integerMulAdx(b1,t0,t1) \
reduceFromDoubleAdx(x2,b0) \
reduceFromDoubleAdx(z2,b1)
#define difAddLeg \
addSub(x1,z1) \
integerMulLeg(b0,z1,ui) \
reduceFromDoubleLeg(z1,b0) \
addSub(x1,z1) \
integerSqrLeg(b0,x1) \
integerSqrLeg(b1,z1) \
reduceFromDoubleLeg(x1,b0) \
reduceFromDoubleLeg(z1,b1) \
integerMulLeg(b0,x1,z2) \
integerMulLeg(b1,z1,x2) \
reduceFromDoubleLeg(x1,b0) \
reduceFromDoubleLeg(z1,b1)
#define difAddBmi2Adx \
addSub(x1,z1) \
integerMulAdx(b0,z1,ui) \
reduceFromDoubleAdx(z1,b0) \
addSub(x1,z1) \
integerSqrAdx(b0,x1) \
integerSqrAdx(b1,z1) \
reduceFromDoubleAdx(x1,b0) \
reduceFromDoubleAdx(z1,b1) \
integerMulAdx(b0,x1,z2) \
integerMulAdx(b1,z1,x2) \
reduceFromDoubleAdx(x1,b0) \
reduceFromDoubleAdx(z1,b1)
#define doubleLeg \
addSub(x1,z1) \
integerSqrLeg(b0,x1) \
integerSqrLeg(b1,z1) \
reduceFromDoubleLeg(x1,b0) \
reduceFromDoubleLeg(z1,b1) \
subtraction(t0,x1,z1) \
multiplyA24Leg(t1,t0) \
additionLeg(t1,t1,z1) \
integerMulLeg(b0,x1,z1) \
integerMulLeg(b1,t0,t1) \
reduceFromDoubleLeg(x1,b0) \
reduceFromDoubleLeg(z1,b1)
#define doubleBmi2Adx \
addSub(x1,z1) \
integerSqrAdx(b0,x1) \
integerSqrAdx(b1,z1) \
reduceFromDoubleAdx(x1,b0) \
reduceFromDoubleAdx(z1,b1) \
subtraction(t0,x1,z1) \
multiplyA24Adx(t1,t0) \
additionAdx(t1,t1,z1) \
integerMulAdx(b0,x1,z1) \
integerMulAdx(b1,t0,t1) \
reduceFromDoubleAdx(x1,b0) \
reduceFromDoubleAdx(z1,b1)

View File

@ -0,0 +1,193 @@
// +build amd64
#include "textflag.h"
// Depends on circl/math/fp448 package
#include "../../math/fp448/fp_amd64.h"
#include "curve_amd64.h"
// CTE_A24 is (A+2)/4 from Curve448
#define CTE_A24 39082
#define Size 56
// multiplyA24Leg multiplies x times CTE_A24 and stores in z
// Uses: AX, DX, R8-R15, FLAGS
// Instr: x86_64, cmov, adx
#define multiplyA24Leg(z,x) \
MOVQ $CTE_A24, R15; \
MOVQ 0+x, AX; MULQ R15; MOVQ AX, R8; ;;;;;;;;;;;; MOVQ DX, R9; \
MOVQ 8+x, AX; MULQ R15; ADDQ AX, R9; ADCQ $0, DX; MOVQ DX, R10; \
MOVQ 16+x, AX; MULQ R15; ADDQ AX, R10; ADCQ $0, DX; MOVQ DX, R11; \
MOVQ 24+x, AX; MULQ R15; ADDQ AX, R11; ADCQ $0, DX; MOVQ DX, R12; \
MOVQ 32+x, AX; MULQ R15; ADDQ AX, R12; ADCQ $0, DX; MOVQ DX, R13; \
MOVQ 40+x, AX; MULQ R15; ADDQ AX, R13; ADCQ $0, DX; MOVQ DX, R14; \
MOVQ 48+x, AX; MULQ R15; ADDQ AX, R14; ADCQ $0, DX; \
MOVQ DX, AX; \
SHLQ $32, AX; \
ADDQ DX, R8; MOVQ $0, DX; \
ADCQ $0, R9; \
ADCQ $0, R10; \
ADCQ AX, R11; \
ADCQ $0, R12; \
ADCQ $0, R13; \
ADCQ $0, R14; \
ADCQ $0, DX; \
MOVQ DX, AX; \
SHLQ $32, AX; \
ADDQ DX, R8; \
ADCQ $0, R9; \
ADCQ $0, R10; \
ADCQ AX, R11; \
ADCQ $0, R12; \
ADCQ $0, R13; \
ADCQ $0, R14; \
MOVQ R8, 0+z; \
MOVQ R9, 8+z; \
MOVQ R10, 16+z; \
MOVQ R11, 24+z; \
MOVQ R12, 32+z; \
MOVQ R13, 40+z; \
MOVQ R14, 48+z;
// multiplyA24Adx multiplies x times CTE_A24 and stores in z
// Uses: AX, DX, R8-R14, FLAGS
// Instr: x86_64, bmi2
#define multiplyA24Adx(z,x) \
MOVQ $CTE_A24, DX; \
MULXQ 0+x, R8, R9; \
MULXQ 8+x, AX, R10; ADDQ AX, R9; \
MULXQ 16+x, AX, R11; ADCQ AX, R10; \
MULXQ 24+x, AX, R12; ADCQ AX, R11; \
MULXQ 32+x, AX, R13; ADCQ AX, R12; \
MULXQ 40+x, AX, R14; ADCQ AX, R13; \
MULXQ 48+x, AX, DX; ADCQ AX, R14; \
;;;;;;;;;;;;;;;;;;;; ADCQ $0, DX; \
MOVQ DX, AX; \
SHLQ $32, AX; \
ADDQ DX, R8; MOVQ $0, DX; \
ADCQ $0, R9; \
ADCQ $0, R10; \
ADCQ AX, R11; \
ADCQ $0, R12; \
ADCQ $0, R13; \
ADCQ $0, R14; \
ADCQ $0, DX; \
MOVQ DX, AX; \
SHLQ $32, AX; \
ADDQ DX, R8; \
ADCQ $0, R9; \
ADCQ $0, R10; \
ADCQ AX, R11; \
ADCQ $0, R12; \
ADCQ $0, R13; \
ADCQ $0, R14; \
MOVQ R8, 0+z; \
MOVQ R9, 8+z; \
MOVQ R10, 16+z; \
MOVQ R11, 24+z; \
MOVQ R12, 32+z; \
MOVQ R13, 40+z; \
MOVQ R14, 48+z;
#define mulA24Legacy \
multiplyA24Leg(0(DI),0(SI))
#define mulA24Bmi2Adx \
multiplyA24Adx(0(DI),0(SI))
// func mulA24Amd64(z, x *fp448.Elt)
TEXT ·mulA24Amd64(SB),NOSPLIT,$0-16
MOVQ z+0(FP), DI
MOVQ x+8(FP), SI
CHECK_BMI2ADX(LMA24, mulA24Legacy, mulA24Bmi2Adx)
// func ladderStepAmd64(w *[5]fp448.Elt, b uint)
// ladderStepAmd64 calculates a point addition and doubling as follows:
// (x2,z2) = 2*(x2,z2) and (x3,z3) = (x2,z2)+(x3,z3) using as a difference (x1,-).
// w = {x1,x2,z2,x3,z4} are five fp255.Elt of 56 bytes.
// stack = (t0,t1) are two fp.Elt of fp.Size bytes, and
// (b0,b1) are two-double precision fp.Elt of 2*fp.Size bytes.
TEXT ·ladderStepAmd64(SB),NOSPLIT,$336-16
// Parameters
#define regWork DI
#define regMove SI
#define x1 0*Size(regWork)
#define x2 1*Size(regWork)
#define z2 2*Size(regWork)
#define x3 3*Size(regWork)
#define z3 4*Size(regWork)
// Local variables
#define t0 0*Size(SP)
#define t1 1*Size(SP)
#define b0 2*Size(SP)
#define b1 4*Size(SP)
MOVQ w+0(FP), regWork
MOVQ b+8(FP), regMove
CHECK_BMI2ADX(LLADSTEP, ladderStepLeg, ladderStepBmi2Adx)
#undef regWork
#undef regMove
#undef x1
#undef x2
#undef z2
#undef x3
#undef z3
#undef t0
#undef t1
#undef b0
#undef b1
// func diffAddAmd64(work *[5]fp.Elt, swap uint)
// diffAddAmd64 calculates a differential point addition using a precomputed point.
// (x1,z1) = (x1,z1)+(mu) using a difference point (x2,z2)
// work = {mu,x1,z1,x2,z2} are five fp448.Elt of 56 bytes, and
// stack = (b0,b1) are two-double precision fp.Elt of 2*fp.Size bytes.
// This is Equation 7 at https://eprint.iacr.org/2017/264.
TEXT ·diffAddAmd64(SB),NOSPLIT,$224-16
// Parameters
#define regWork DI
#define regSwap SI
#define ui 0*Size(regWork)
#define x1 1*Size(regWork)
#define z1 2*Size(regWork)
#define x2 3*Size(regWork)
#define z2 4*Size(regWork)
// Local variables
#define b0 0*Size(SP)
#define b1 2*Size(SP)
MOVQ w+0(FP), regWork
MOVQ b+8(FP), regSwap
cswap(x1,x2,regSwap)
cswap(z1,z2,regSwap)
CHECK_BMI2ADX(LDIFADD, difAddLeg, difAddBmi2Adx)
#undef regWork
#undef regSwap
#undef ui
#undef x1
#undef z1
#undef x2
#undef z2
#undef b0
#undef b1
// func doubleAmd64(x, z *fp448.Elt)
// doubleAmd64 calculates a point doubling (x1,z1) = 2*(x1,z1).
// stack = (t0,t1) are two fp.Elt of fp.Size bytes, and
// (b0,b1) are two-double precision fp.Elt of 2*fp.Size bytes.
TEXT ·doubleAmd64(SB),NOSPLIT,$336-16
// Parameters
#define x1 0(DI)
#define z1 0(SI)
// Local variables
#define t0 0*Size(SP)
#define t1 1*Size(SP)
#define b0 2*Size(SP)
#define b1 4*Size(SP)
MOVQ x+0(FP), DI
MOVQ z+8(FP), SI
CHECK_BMI2ADX(LDOUB,doubleLeg,doubleBmi2Adx)
#undef x1
#undef z1
#undef t0
#undef t1
#undef b0
#undef b1

View File

@ -0,0 +1,100 @@
package x448
import (
"encoding/binary"
"math/bits"
"github.com/cloudflare/circl/math/fp448"
)
func doubleGeneric(x, z *fp448.Elt) {
t0, t1 := &fp448.Elt{}, &fp448.Elt{}
fp448.AddSub(x, z)
fp448.Sqr(x, x)
fp448.Sqr(z, z)
fp448.Sub(t0, x, z)
mulA24Generic(t1, t0)
fp448.Add(t1, t1, z)
fp448.Mul(x, x, z)
fp448.Mul(z, t0, t1)
}
func diffAddGeneric(w *[5]fp448.Elt, b uint) {
mu, x1, z1, x2, z2 := &w[0], &w[1], &w[2], &w[3], &w[4]
fp448.Cswap(x1, x2, b)
fp448.Cswap(z1, z2, b)
fp448.AddSub(x1, z1)
fp448.Mul(z1, z1, mu)
fp448.AddSub(x1, z1)
fp448.Sqr(x1, x1)
fp448.Sqr(z1, z1)
fp448.Mul(x1, x1, z2)
fp448.Mul(z1, z1, x2)
}
func ladderStepGeneric(w *[5]fp448.Elt, b uint) {
x1, x2, z2, x3, z3 := &w[0], &w[1], &w[2], &w[3], &w[4]
t0 := &fp448.Elt{}
t1 := &fp448.Elt{}
fp448.AddSub(x2, z2)
fp448.AddSub(x3, z3)
fp448.Mul(t0, x2, z3)
fp448.Mul(t1, x3, z2)
fp448.AddSub(t0, t1)
fp448.Cmov(x2, x3, b)
fp448.Cmov(z2, z3, b)
fp448.Sqr(x3, t0)
fp448.Sqr(z3, t1)
fp448.Mul(z3, x1, z3)
fp448.Sqr(x2, x2)
fp448.Sqr(z2, z2)
fp448.Sub(t0, x2, z2)
mulA24Generic(t1, t0)
fp448.Add(t1, t1, z2)
fp448.Mul(x2, x2, z2)
fp448.Mul(z2, t0, t1)
}
func mulA24Generic(z, x *fp448.Elt) {
const A24 = 39082
const n = 8
var xx [7]uint64
for i := range xx {
xx[i] = binary.LittleEndian.Uint64(x[i*n : (i+1)*n])
}
h0, l0 := bits.Mul64(xx[0], A24)
h1, l1 := bits.Mul64(xx[1], A24)
h2, l2 := bits.Mul64(xx[2], A24)
h3, l3 := bits.Mul64(xx[3], A24)
h4, l4 := bits.Mul64(xx[4], A24)
h5, l5 := bits.Mul64(xx[5], A24)
h6, l6 := bits.Mul64(xx[6], A24)
l1, c0 := bits.Add64(h0, l1, 0)
l2, c1 := bits.Add64(h1, l2, c0)
l3, c2 := bits.Add64(h2, l3, c1)
l4, c3 := bits.Add64(h3, l4, c2)
l5, c4 := bits.Add64(h4, l5, c3)
l6, c5 := bits.Add64(h5, l6, c4)
l7, _ := bits.Add64(h6, 0, c5)
l0, c0 = bits.Add64(l0, l7, 0)
l1, c1 = bits.Add64(l1, 0, c0)
l2, c2 = bits.Add64(l2, 0, c1)
l3, c3 = bits.Add64(l3, l7<<32, c2)
l4, c4 = bits.Add64(l4, 0, c3)
l5, c5 = bits.Add64(l5, 0, c4)
l6, l7 = bits.Add64(l6, 0, c5)
xx[0], c0 = bits.Add64(l0, l7, 0)
xx[1], c1 = bits.Add64(l1, 0, c0)
xx[2], c2 = bits.Add64(l2, 0, c1)
xx[3], c3 = bits.Add64(l3, l7<<32, c2)
xx[4], c4 = bits.Add64(l4, 0, c3)
xx[5], c5 = bits.Add64(l5, 0, c4)
xx[6], _ = bits.Add64(l6, 0, c5)
for i := range xx {
binary.LittleEndian.PutUint64(z[i*n:(i+1)*n], xx[i])
}
}

View File

@ -0,0 +1,11 @@
//go:build !amd64 || purego
// +build !amd64 purego
package x448
import fp "github.com/cloudflare/circl/math/fp448"
func double(x, z *fp.Elt) { doubleGeneric(x, z) }
func diffAdd(w *[5]fp.Elt, b uint) { diffAddGeneric(w, b) }
func ladderStep(w *[5]fp.Elt, b uint) { ladderStepGeneric(w, b) }
func mulA24(z, x *fp.Elt) { mulA24Generic(z, x) }

19
vendor/github.com/cloudflare/circl/dh/x448/doc.go generated vendored Normal file
View File

@ -0,0 +1,19 @@
/*
Package x448 provides Diffie-Hellman functions as specified in RFC-7748.
Validation of public keys.
The Diffie-Hellman function, as described in RFC-7748 [1], works for any
public key. However, if a different protocol requires contributory
behaviour [2,3], then the public keys must be validated against low-order
points [3,4]. To do that, the Shared function performs this validation
internally and returns false when the public key is invalid (i.e., it
is a low-order point).
References:
- [1] RFC7748 by Langley, Hamburg, Turner (https://rfc-editor.org/rfc/rfc7748.txt)
- [2] Curve25519 by Bernstein (https://cr.yp.to/ecdh.html)
- [3] Bernstein (https://cr.yp.to/ecdh.html#validate)
- [4] Cremers&Jackson (https://eprint.iacr.org/2019/526)
*/
package x448

46
vendor/github.com/cloudflare/circl/dh/x448/key.go generated vendored Normal file
View File

@ -0,0 +1,46 @@
package x448
import (
"crypto/subtle"
fp "github.com/cloudflare/circl/math/fp448"
)
// Size is the length in bytes of a X448 key.
const Size = 56
// Key represents a X448 key.
type Key [Size]byte
func (k *Key) clamp(in *Key) *Key {
*k = *in
k[0] &= 252
k[55] |= 128
return k
}
// isValidPubKey verifies if the public key is not a low-order point.
func (k *Key) isValidPubKey() bool {
fp.Modp((*fp.Elt)(k))
isLowOrder := false
for _, P := range lowOrderPoints {
isLowOrder = isLowOrder || subtle.ConstantTimeCompare(P[:], k[:]) != 0
}
return !isLowOrder
}
// KeyGen obtains a public key given a secret key.
func KeyGen(public, secret *Key) {
ladderJoye(public.clamp(secret))
}
// Shared calculates Alice's shared key from Alice's secret key and Bob's
// public key returning true on success. A failure case happens when the public
// key is a low-order point, thus the shared key is all-zeros and the function
// returns false.
func Shared(shared, secret, public *Key) bool {
validPk := *public
ok := validPk.isValidPubKey()
ladderMontgomery(shared.clamp(secret), &validPk)
return ok
}

460
vendor/github.com/cloudflare/circl/dh/x448/table.go generated vendored Normal file
View File

@ -0,0 +1,460 @@
package x448
import fp "github.com/cloudflare/circl/math/fp448"
// tableGenerator contains the set of points:
//
// t[i] = (xi+1)/(xi-1),
//
// where (xi,yi) = 2^iG and G is the generator point
// Size = (448)*(448/8) = 25088 bytes.
var tableGenerator = [448 * fp.Size]byte{
/* (2^ 0)P */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f,
/* (2^ 1)P */ 0x37, 0xfa, 0xaa, 0x0d, 0x86, 0xa6, 0x24, 0xe9, 0x6c, 0x95, 0x08, 0x34, 0xba, 0x1a, 0x81, 0x3a, 0xae, 0x01, 0xa5, 0xa7, 0x05, 0x85, 0x96, 0x00, 0x06, 0x5a, 0xd7, 0xff, 0xee, 0x8e, 0x8f, 0x94, 0xd2, 0xdc, 0xd7, 0xfc, 0xe7, 0xe5, 0x99, 0x1d, 0x05, 0x46, 0x43, 0xe8, 0xbc, 0x12, 0xb7, 0xeb, 0x30, 0x5e, 0x7a, 0x85, 0x68, 0xed, 0x9d, 0x28,
/* (2^ 2)P */ 0xf1, 0x7d, 0x08, 0x2b, 0x32, 0x4a, 0x62, 0x80, 0x36, 0xe7, 0xa4, 0x76, 0x5a, 0x2a, 0x1e, 0xf7, 0x9e, 0x3c, 0x40, 0x46, 0x9a, 0x1b, 0x61, 0xc1, 0xbf, 0x1a, 0x1b, 0xae, 0x91, 0x80, 0xa3, 0x76, 0x6c, 0xd4, 0x8f, 0xa4, 0xee, 0x26, 0x39, 0x23, 0xa4, 0x80, 0xf4, 0x66, 0x92, 0xe4, 0xe1, 0x18, 0x76, 0xc5, 0xe2, 0x19, 0x87, 0xd5, 0xc3, 0xe8,
/* (2^ 3)P */ 0xfb, 0xc9, 0xf0, 0x07, 0xf2, 0x93, 0xd8, 0x50, 0x36, 0xed, 0xfb, 0xbd, 0xb2, 0xd3, 0xfc, 0xdf, 0xd5, 0x2a, 0x6e, 0x26, 0x09, 0xce, 0xd4, 0x07, 0x64, 0x9f, 0x40, 0x74, 0xad, 0x98, 0x2f, 0x1c, 0xb6, 0xdc, 0x2d, 0x42, 0xff, 0xbf, 0x97, 0xd8, 0xdb, 0xef, 0x99, 0xca, 0x73, 0x99, 0x1a, 0x04, 0x3b, 0x56, 0x2c, 0x1f, 0x87, 0x9d, 0x9f, 0x03,
/* (2^ 4)P */ 0x4c, 0x35, 0x97, 0xf7, 0x81, 0x2c, 0x84, 0xa6, 0xe0, 0xcb, 0xce, 0x37, 0x4c, 0x21, 0x1c, 0x67, 0xfa, 0xab, 0x18, 0x4d, 0xef, 0xd0, 0xf0, 0x44, 0xa9, 0xfb, 0xc0, 0x8e, 0xda, 0x57, 0xa1, 0xd8, 0xeb, 0x87, 0xf4, 0x17, 0xea, 0x66, 0x0f, 0x16, 0xea, 0xcd, 0x5f, 0x3e, 0x88, 0xea, 0x09, 0x68, 0x40, 0xdf, 0x43, 0xcc, 0x54, 0x61, 0x58, 0xaa,
/* (2^ 5)P */ 0x8d, 0xe7, 0x59, 0xd7, 0x5e, 0x63, 0x37, 0xa7, 0x3f, 0xd1, 0x49, 0x85, 0x01, 0xdd, 0x5e, 0xb3, 0xe6, 0x29, 0xcb, 0x25, 0x93, 0xdd, 0x08, 0x96, 0x83, 0x52, 0x76, 0x85, 0xf5, 0x5d, 0x02, 0xbf, 0xe9, 0x6d, 0x15, 0x27, 0xc1, 0x09, 0xd1, 0x14, 0x4d, 0x6e, 0xe8, 0xaf, 0x59, 0x58, 0x34, 0x9d, 0x2a, 0x99, 0x85, 0x26, 0xbe, 0x4b, 0x1e, 0xb9,
/* (2^ 6)P */ 0x8d, 0xce, 0x94, 0xe2, 0x18, 0x56, 0x0d, 0x82, 0x8e, 0xdf, 0x85, 0x01, 0x8f, 0x93, 0x3c, 0xc6, 0xbd, 0x61, 0xfb, 0xf4, 0x22, 0xc5, 0x16, 0x87, 0xd1, 0xb1, 0x9e, 0x09, 0xc5, 0x83, 0x2e, 0x4a, 0x07, 0x88, 0xee, 0xe0, 0x29, 0x8d, 0x2e, 0x1f, 0x88, 0xad, 0xfd, 0x18, 0x93, 0xb7, 0xed, 0x42, 0x86, 0x78, 0xf0, 0xb8, 0x70, 0xbe, 0x01, 0x67,
/* (2^ 7)P */ 0xdf, 0x62, 0x2d, 0x94, 0xc7, 0x35, 0x23, 0xda, 0x27, 0xbb, 0x2b, 0xdb, 0x30, 0x80, 0x68, 0x16, 0xa3, 0xae, 0xd7, 0xd2, 0xa7, 0x7c, 0xbf, 0x6a, 0x1d, 0x83, 0xde, 0x96, 0x0a, 0x43, 0xb6, 0x30, 0x37, 0xd6, 0xee, 0x63, 0x59, 0x9a, 0xbf, 0xa3, 0x30, 0x6c, 0xaf, 0x0c, 0xee, 0x3d, 0xcb, 0x35, 0x4b, 0x55, 0x5f, 0x84, 0x85, 0xcb, 0x4f, 0x1e,
/* (2^ 8)P */ 0x9d, 0x04, 0x68, 0x89, 0xa4, 0xa9, 0x0d, 0x87, 0xc1, 0x70, 0xf1, 0xeb, 0xfb, 0x47, 0x0a, 0xf0, 0xde, 0x67, 0xb7, 0x94, 0xcd, 0x36, 0x43, 0xa5, 0x49, 0x43, 0x67, 0xc3, 0xee, 0x3c, 0x6b, 0xec, 0xd0, 0x1a, 0xf4, 0xad, 0xef, 0x06, 0x4a, 0xe8, 0x46, 0x24, 0xd7, 0x93, 0xbf, 0xf0, 0xe3, 0x81, 0x61, 0xec, 0xea, 0x64, 0xfe, 0x67, 0xeb, 0xc7,
/* (2^ 9)P */ 0x95, 0x45, 0x79, 0xcf, 0x2c, 0xfd, 0x9b, 0xfe, 0x84, 0x46, 0x4b, 0x8f, 0xa1, 0xcf, 0xc3, 0x04, 0x94, 0x78, 0xdb, 0xc9, 0xa6, 0x01, 0x75, 0xa4, 0xb4, 0x93, 0x72, 0x43, 0xa7, 0x7d, 0xda, 0x31, 0x38, 0x54, 0xab, 0x4e, 0x3f, 0x89, 0xa6, 0xab, 0x57, 0xc0, 0x16, 0x65, 0xdb, 0x92, 0x96, 0xe4, 0xc8, 0xae, 0xe7, 0x4c, 0x7a, 0xeb, 0xbb, 0x5a,
/* (2^ 10)P */ 0xbe, 0xfe, 0x86, 0xc3, 0x97, 0xe0, 0x6a, 0x18, 0x20, 0x21, 0xca, 0x22, 0x55, 0xa1, 0xeb, 0xf5, 0x74, 0xe5, 0xc9, 0x59, 0xa7, 0x92, 0x65, 0x15, 0x08, 0x71, 0xd1, 0x09, 0x7e, 0x83, 0xfc, 0xbc, 0x5a, 0x93, 0x38, 0x0d, 0x43, 0x42, 0xfd, 0x76, 0x30, 0xe8, 0x63, 0x60, 0x09, 0x8d, 0x6c, 0xd3, 0xf8, 0x56, 0x3d, 0x68, 0x47, 0xab, 0xa0, 0x1d,
/* (2^ 11)P */ 0x38, 0x50, 0x1c, 0xb1, 0xac, 0x88, 0x8f, 0x38, 0xe3, 0x69, 0xe6, 0xfc, 0x4f, 0x8f, 0xe1, 0x9b, 0xb1, 0x1a, 0x09, 0x39, 0x19, 0xdf, 0xcd, 0x98, 0x7b, 0x64, 0x42, 0xf6, 0x11, 0xea, 0xc7, 0xe8, 0x92, 0x65, 0x00, 0x2c, 0x75, 0xb5, 0x94, 0x1e, 0x5b, 0xa6, 0x66, 0x81, 0x77, 0xf3, 0x39, 0x94, 0xac, 0xbd, 0xe4, 0x2a, 0x66, 0x84, 0x9c, 0x60,
/* (2^ 12)P */ 0xb5, 0xb6, 0xd9, 0x03, 0x67, 0xa4, 0xa8, 0x0a, 0x4a, 0x2b, 0x9d, 0xfa, 0x13, 0xe1, 0x99, 0x25, 0x4a, 0x5c, 0x67, 0xb9, 0xb2, 0xb7, 0xdd, 0x1e, 0xaf, 0xeb, 0x63, 0x41, 0xb6, 0xb9, 0xa0, 0x87, 0x0a, 0xe0, 0x06, 0x07, 0xaa, 0x97, 0xf8, 0xf9, 0x38, 0x4f, 0xdf, 0x0c, 0x40, 0x7c, 0xc3, 0x98, 0xa9, 0x74, 0xf1, 0x5d, 0xda, 0xd1, 0xc0, 0x0a,
/* (2^ 13)P */ 0xf2, 0x0a, 0xab, 0xab, 0x94, 0x50, 0xf0, 0xa3, 0x6f, 0xc6, 0x66, 0xba, 0xa6, 0xdc, 0x44, 0xdd, 0xd6, 0x08, 0xf4, 0xd3, 0xed, 0xb1, 0x40, 0x93, 0xee, 0xf6, 0xb8, 0x8e, 0xb4, 0x7c, 0xb9, 0x82, 0xc9, 0x9d, 0x45, 0x3b, 0x8e, 0x10, 0xcb, 0x70, 0x1e, 0xba, 0x3c, 0x62, 0x50, 0xda, 0xa9, 0x93, 0xb5, 0xd7, 0xd0, 0x6f, 0x29, 0x52, 0x95, 0xae,
/* (2^ 14)P */ 0x14, 0x68, 0x69, 0x23, 0xa8, 0x44, 0x87, 0x9e, 0x22, 0x91, 0xe8, 0x92, 0xdf, 0xf7, 0xae, 0xba, 0x1c, 0x96, 0xe1, 0xc3, 0x94, 0xed, 0x6c, 0x95, 0xae, 0x96, 0xa7, 0x15, 0x9f, 0xf1, 0x17, 0x11, 0x92, 0x42, 0xd5, 0xcd, 0x18, 0xe7, 0xa9, 0xb5, 0x2f, 0xcd, 0xde, 0x6c, 0xc9, 0x7d, 0xfc, 0x7e, 0xbd, 0x7f, 0x10, 0x3d, 0x01, 0x00, 0x8d, 0x95,
/* (2^ 15)P */ 0x3b, 0x76, 0x72, 0xae, 0xaf, 0x84, 0xf2, 0xf7, 0xd1, 0x6d, 0x13, 0x9c, 0x47, 0xe1, 0xb7, 0xa3, 0x19, 0x16, 0xee, 0x75, 0x45, 0xf6, 0x1a, 0x7b, 0x78, 0x49, 0x79, 0x05, 0x86, 0xf0, 0x7f, 0x9f, 0xfc, 0xc4, 0xbd, 0x86, 0xf3, 0x41, 0xa7, 0xfe, 0x01, 0xd5, 0x67, 0x16, 0x10, 0x5b, 0xa5, 0x16, 0xf3, 0x7f, 0x60, 0xce, 0xd2, 0x0c, 0x8e, 0x4b,
/* (2^ 16)P */ 0x4a, 0x07, 0x99, 0x4a, 0x0f, 0x74, 0x91, 0x14, 0x68, 0xb9, 0x48, 0xb7, 0x44, 0x77, 0x9b, 0x4a, 0xe0, 0x68, 0x0e, 0x43, 0x4d, 0x98, 0x98, 0xbf, 0xa8, 0x3a, 0xb7, 0x6d, 0x2a, 0x9a, 0x77, 0x5f, 0x62, 0xf5, 0x6b, 0x4a, 0xb7, 0x7d, 0xe5, 0x09, 0x6b, 0xc0, 0x8b, 0x9c, 0x88, 0x37, 0x33, 0xf2, 0x41, 0xac, 0x22, 0x1f, 0xcf, 0x3b, 0x82, 0x34,
/* (2^ 17)P */ 0x00, 0xc3, 0x78, 0x42, 0x32, 0x2e, 0xdc, 0xda, 0xb1, 0x96, 0x21, 0xa4, 0xe4, 0xbb, 0xe9, 0x9d, 0xbb, 0x0f, 0x93, 0xed, 0x26, 0x3d, 0xb5, 0xdb, 0x94, 0x31, 0x37, 0x07, 0xa2, 0xb2, 0xd5, 0x99, 0x0d, 0x93, 0xe1, 0xce, 0x3f, 0x0b, 0x96, 0x82, 0x47, 0xfe, 0x60, 0x6f, 0x8f, 0x61, 0x88, 0xd7, 0x05, 0x95, 0x0b, 0x46, 0x06, 0xb7, 0x32, 0x06,
/* (2^ 18)P */ 0x44, 0xf5, 0x34, 0xdf, 0x2f, 0x9c, 0x5d, 0x9f, 0x53, 0x5c, 0x42, 0x8f, 0xc9, 0xdc, 0xd8, 0x40, 0xa2, 0xe7, 0x6a, 0x4a, 0x05, 0xf7, 0x86, 0x77, 0x2b, 0xae, 0x37, 0xed, 0x48, 0xfb, 0xf7, 0x62, 0x7c, 0x17, 0x59, 0x92, 0x41, 0x61, 0x93, 0x38, 0x30, 0xd1, 0xef, 0x54, 0x54, 0x03, 0x17, 0x57, 0x91, 0x15, 0x11, 0x33, 0xb5, 0xfa, 0xfb, 0x17,
/* (2^ 19)P */ 0x29, 0xbb, 0xd4, 0xb4, 0x9c, 0xf1, 0x72, 0x94, 0xce, 0x6a, 0x29, 0xa8, 0x89, 0x18, 0x19, 0xf7, 0xb7, 0xcc, 0xee, 0x9a, 0x02, 0xe3, 0xc0, 0xb1, 0xe0, 0xee, 0x83, 0x78, 0xb4, 0x9e, 0x07, 0x87, 0xdf, 0xb0, 0x82, 0x26, 0x4e, 0xa4, 0x0c, 0x33, 0xaf, 0x40, 0x59, 0xb6, 0xdd, 0x52, 0x45, 0xf0, 0xb4, 0xf6, 0xe8, 0x4e, 0x4e, 0x79, 0x1a, 0x5d,
/* (2^ 20)P */ 0x27, 0x33, 0x4d, 0x4c, 0x6b, 0x4f, 0x75, 0xb1, 0xbc, 0x1f, 0xab, 0x5b, 0x2b, 0xf0, 0x1c, 0x57, 0x86, 0xdd, 0xfd, 0x60, 0xb0, 0x8c, 0xe7, 0x9a, 0xe5, 0x5c, 0xeb, 0x11, 0x3a, 0xda, 0x22, 0x25, 0x99, 0x06, 0x8d, 0xf4, 0xaf, 0x29, 0x7a, 0xc9, 0xe5, 0xd2, 0x16, 0x9e, 0xd4, 0x63, 0x1d, 0x64, 0xa6, 0x47, 0x96, 0x37, 0x6f, 0x93, 0x2c, 0xcc,
/* (2^ 21)P */ 0xc1, 0x94, 0x74, 0x86, 0x75, 0xf2, 0x91, 0x58, 0x23, 0x85, 0x63, 0x76, 0x54, 0xc7, 0xb4, 0x8c, 0xbc, 0x4e, 0xc4, 0xa7, 0xba, 0xa0, 0x55, 0x26, 0x71, 0xd5, 0x33, 0x72, 0xc9, 0xad, 0x1e, 0xf9, 0x5d, 0x78, 0x70, 0x93, 0x4e, 0x85, 0xfc, 0x39, 0x06, 0x73, 0x76, 0xff, 0xe8, 0x64, 0x69, 0x42, 0x45, 0xb2, 0x69, 0xb5, 0x32, 0xe7, 0x2c, 0xde,
/* (2^ 22)P */ 0xde, 0x16, 0xd8, 0x33, 0x49, 0x32, 0xe9, 0x0e, 0x3a, 0x60, 0xee, 0x2e, 0x24, 0x75, 0xe3, 0x9c, 0x92, 0x07, 0xdb, 0xad, 0x92, 0xf5, 0x11, 0xdf, 0xdb, 0xb0, 0x17, 0x5c, 0xd6, 0x1a, 0x70, 0x00, 0xb7, 0xe2, 0x18, 0xec, 0xdc, 0xc2, 0x02, 0x93, 0xb3, 0xc8, 0x3f, 0x4f, 0x1b, 0x96, 0xe6, 0x33, 0x8c, 0xfb, 0xcc, 0xa5, 0x4e, 0xe8, 0xe7, 0x11,
/* (2^ 23)P */ 0x05, 0x7a, 0x74, 0x52, 0xf8, 0xdf, 0x0d, 0x7c, 0x6a, 0x1a, 0x4e, 0x9a, 0x02, 0x1d, 0xae, 0x77, 0xf8, 0x8e, 0xf9, 0xa2, 0x38, 0x54, 0x50, 0xb2, 0x2c, 0x08, 0x9d, 0x9b, 0x9f, 0xfb, 0x2b, 0x06, 0xde, 0x9d, 0xc2, 0x03, 0x0b, 0x22, 0x2b, 0x10, 0x5b, 0x3a, 0x73, 0x29, 0x8e, 0x3e, 0x37, 0x08, 0x2c, 0x3b, 0xf8, 0x80, 0xc1, 0x66, 0x1e, 0x98,
/* (2^ 24)P */ 0xd8, 0xd6, 0x3e, 0xcd, 0x63, 0x8c, 0x2b, 0x41, 0x81, 0xc0, 0x0c, 0x06, 0x87, 0xd6, 0xe7, 0x92, 0xfe, 0xf1, 0x0c, 0x4a, 0x84, 0x5b, 0xaf, 0x40, 0x53, 0x6f, 0x60, 0xd6, 0x6b, 0x76, 0x4b, 0xc2, 0xad, 0xc9, 0xb6, 0xb6, 0x6a, 0xa2, 0xb3, 0xf5, 0xf5, 0xc2, 0x55, 0x83, 0xb2, 0xd3, 0xe9, 0x41, 0x6c, 0x63, 0x51, 0xb8, 0x81, 0x74, 0xc8, 0x2c,
/* (2^ 25)P */ 0xb2, 0xaf, 0x1c, 0xee, 0x07, 0xb0, 0x58, 0xa8, 0x2c, 0x6a, 0xc9, 0x2d, 0x62, 0x28, 0x75, 0x0c, 0x40, 0xb6, 0x11, 0x33, 0x96, 0x80, 0x28, 0x6d, 0xd5, 0x9e, 0x87, 0x90, 0x01, 0x66, 0x1d, 0x1c, 0xf8, 0xb4, 0x92, 0xac, 0x38, 0x18, 0x05, 0xc2, 0x4c, 0x4b, 0x54, 0x7d, 0x80, 0x46, 0x87, 0x2d, 0x99, 0x8e, 0x70, 0x80, 0x69, 0x71, 0x8b, 0xed,
/* (2^ 26)P */ 0x37, 0xa7, 0x6b, 0x71, 0x36, 0x75, 0x8e, 0xff, 0x0f, 0x42, 0xda, 0x5a, 0x46, 0xa6, 0x97, 0x79, 0x7e, 0x30, 0xb3, 0x8f, 0xc7, 0x3a, 0xa0, 0xcb, 0x1d, 0x9c, 0x78, 0x77, 0x36, 0xc2, 0xe7, 0xf4, 0x2f, 0x29, 0x07, 0xb1, 0x07, 0xfd, 0xed, 0x1b, 0x39, 0x77, 0x06, 0x38, 0x77, 0x0f, 0x50, 0x31, 0x12, 0xbf, 0x92, 0xbf, 0x72, 0x79, 0x54, 0xa9,
/* (2^ 27)P */ 0xbd, 0x4d, 0x46, 0x6b, 0x1a, 0x80, 0x46, 0x2d, 0xed, 0xfd, 0x64, 0x6d, 0x94, 0xbc, 0x4a, 0x6e, 0x0c, 0x12, 0xf6, 0x12, 0xab, 0x54, 0x88, 0xd3, 0x85, 0xac, 0x51, 0xae, 0x6f, 0xca, 0xc4, 0xb7, 0xec, 0x22, 0x54, 0x6d, 0x80, 0xb2, 0x1c, 0x63, 0x33, 0x76, 0x6b, 0x8e, 0x6d, 0x59, 0xcd, 0x73, 0x92, 0x5f, 0xff, 0xad, 0x10, 0x35, 0x70, 0x5f,
/* (2^ 28)P */ 0xb3, 0x84, 0xde, 0xc8, 0x04, 0x43, 0x63, 0xfa, 0x29, 0xd9, 0xf0, 0x69, 0x65, 0x5a, 0x0c, 0xe8, 0x2e, 0x0b, 0xfe, 0xb0, 0x7a, 0x42, 0xb3, 0xc3, 0xfc, 0xe6, 0xb8, 0x92, 0x29, 0xae, 0xed, 0xec, 0xd5, 0xe8, 0x4a, 0xa1, 0xbd, 0x3b, 0xd3, 0xc0, 0x07, 0xab, 0x65, 0x65, 0x35, 0x9a, 0xa6, 0x5e, 0x78, 0x18, 0x76, 0x1c, 0x15, 0x49, 0xe6, 0x75,
/* (2^ 29)P */ 0x45, 0xb3, 0x92, 0xa9, 0xc3, 0xb8, 0x11, 0x68, 0x64, 0x3a, 0x83, 0x5d, 0xa8, 0x94, 0x6a, 0x9d, 0xaa, 0x27, 0x9f, 0x98, 0x5d, 0xc0, 0x29, 0xf0, 0xc0, 0x4b, 0x14, 0x3c, 0x05, 0xe7, 0xf8, 0xbd, 0x38, 0x22, 0x96, 0x75, 0x65, 0x5e, 0x0d, 0x3f, 0xbb, 0x6f, 0xe8, 0x3f, 0x96, 0x76, 0x9f, 0xba, 0xd9, 0x44, 0x92, 0x96, 0x22, 0xe7, 0x52, 0xe7,
/* (2^ 30)P */ 0xf4, 0xa3, 0x95, 0x90, 0x47, 0xdf, 0x7d, 0xdc, 0xf4, 0x13, 0x87, 0x67, 0x7d, 0x4f, 0x9d, 0xa0, 0x00, 0x46, 0x72, 0x08, 0xc3, 0xa2, 0x7a, 0x3e, 0xe7, 0x6d, 0x52, 0x7c, 0x11, 0x36, 0x50, 0x83, 0x89, 0x64, 0xcb, 0x1f, 0x08, 0x83, 0x46, 0xcb, 0xac, 0xa6, 0xd8, 0x9c, 0x1b, 0xe8, 0x05, 0x47, 0xc7, 0x26, 0x06, 0x83, 0x39, 0xe9, 0xb1, 0x1c,
/* (2^ 31)P */ 0x11, 0xe8, 0xc8, 0x42, 0xbf, 0x30, 0x9c, 0xa3, 0xf1, 0x85, 0x96, 0x95, 0x4f, 0x4f, 0x52, 0xa2, 0xf5, 0x8b, 0x68, 0x24, 0x16, 0xac, 0x9b, 0xa9, 0x27, 0x28, 0x0e, 0x84, 0x03, 0x46, 0x22, 0x5f, 0xf7, 0x0d, 0xa6, 0x85, 0x88, 0xc1, 0x45, 0x4b, 0x85, 0x1a, 0x10, 0x7f, 0xc9, 0x94, 0x20, 0xb0, 0x04, 0x28, 0x12, 0x30, 0xb9, 0xe6, 0x40, 0x6b,
/* (2^ 32)P */ 0xac, 0x1b, 0x57, 0xb6, 0x42, 0xdb, 0x81, 0x8d, 0x76, 0xfd, 0x9b, 0x1c, 0x29, 0x30, 0xd5, 0x3a, 0xcc, 0x53, 0xd9, 0x26, 0x7a, 0x0f, 0x9c, 0x2e, 0x79, 0xf5, 0x62, 0xeb, 0x61, 0x9d, 0x9b, 0x80, 0x39, 0xcd, 0x60, 0x2e, 0x1f, 0x08, 0x22, 0xbc, 0x19, 0xb3, 0x2a, 0x43, 0x44, 0xf2, 0x4e, 0x66, 0xf4, 0x36, 0xa6, 0xa7, 0xbc, 0xa4, 0x15, 0x7e,
/* (2^ 33)P */ 0xc1, 0x90, 0x8a, 0xde, 0xff, 0x78, 0xc3, 0x73, 0x16, 0xee, 0x76, 0xa0, 0x84, 0x60, 0x8d, 0xe6, 0x82, 0x0f, 0xde, 0x4e, 0xc5, 0x99, 0x34, 0x06, 0x90, 0x44, 0x55, 0xf8, 0x91, 0xd8, 0xe1, 0xe4, 0x2c, 0x8a, 0xde, 0x94, 0x1e, 0x78, 0x25, 0x3d, 0xfd, 0xd8, 0x59, 0x7d, 0xaf, 0x6e, 0xbe, 0x96, 0xbe, 0x3c, 0x16, 0x23, 0x0f, 0x4c, 0xa4, 0x28,
/* (2^ 34)P */ 0xba, 0x11, 0x35, 0x57, 0x03, 0xb6, 0xf4, 0x24, 0x89, 0xb8, 0x5a, 0x0d, 0x50, 0x9c, 0xaa, 0x51, 0x7f, 0xa4, 0x0e, 0xfc, 0x71, 0xb3, 0x3b, 0xf1, 0x96, 0x50, 0x23, 0x15, 0xf5, 0xf5, 0xd4, 0x23, 0xdc, 0x8b, 0x26, 0x9e, 0xae, 0xb7, 0x50, 0xcd, 0xc4, 0x25, 0xf6, 0x75, 0x40, 0x9c, 0x37, 0x79, 0x33, 0x60, 0xd4, 0x4b, 0x13, 0x32, 0xee, 0xe2,
/* (2^ 35)P */ 0x43, 0xb8, 0x56, 0x59, 0xf0, 0x68, 0x23, 0xb3, 0xea, 0x70, 0x58, 0x4c, 0x1e, 0x5a, 0x16, 0x54, 0x03, 0xb2, 0xf4, 0x73, 0xb6, 0xd9, 0x5c, 0x9c, 0x6f, 0xcf, 0x82, 0x2e, 0x54, 0x15, 0x46, 0x2c, 0xa3, 0xda, 0x4e, 0x87, 0xf5, 0x2b, 0xba, 0x91, 0xa3, 0xa0, 0x89, 0xba, 0x48, 0x2b, 0xfa, 0x64, 0x02, 0x7f, 0x78, 0x03, 0xd1, 0xe8, 0x3b, 0xe9,
/* (2^ 36)P */ 0x15, 0xa4, 0x71, 0xd4, 0x0c, 0x24, 0xe9, 0x07, 0xa1, 0x43, 0xf4, 0x7f, 0xbb, 0xa2, 0xa6, 0x6b, 0xfa, 0xb7, 0xea, 0x58, 0xd1, 0x96, 0xb0, 0x24, 0x5c, 0xc7, 0x37, 0x4e, 0x60, 0x0f, 0x40, 0xf2, 0x2f, 0x44, 0x70, 0xea, 0x80, 0x63, 0xfe, 0xfc, 0x46, 0x59, 0x12, 0x27, 0xb5, 0x27, 0xfd, 0xb7, 0x73, 0x0b, 0xca, 0x8b, 0xc2, 0xd3, 0x71, 0x08,
/* (2^ 37)P */ 0x26, 0x0e, 0xd7, 0x52, 0x6f, 0xf1, 0xf2, 0x9d, 0xb8, 0x3d, 0xbd, 0xd4, 0x75, 0x97, 0xd8, 0xbf, 0xa8, 0x86, 0x96, 0xa5, 0x80, 0xa0, 0x45, 0x75, 0xf6, 0x77, 0x71, 0xdb, 0x77, 0x96, 0x55, 0x99, 0x31, 0xd0, 0x4f, 0x34, 0xf4, 0x35, 0x39, 0x41, 0xd3, 0x7d, 0xf7, 0xe2, 0x74, 0xde, 0xbe, 0x5b, 0x1f, 0x39, 0x10, 0x21, 0xa3, 0x4d, 0x3b, 0xc8,
/* (2^ 38)P */ 0x04, 0x00, 0x2a, 0x45, 0xb2, 0xaf, 0x9b, 0x18, 0x6a, 0xeb, 0x96, 0x28, 0xa4, 0x77, 0xd0, 0x13, 0xcf, 0x17, 0x65, 0xe8, 0xc5, 0x81, 0x28, 0xad, 0x39, 0x7a, 0x0b, 0xaa, 0x55, 0x2b, 0xf3, 0xfc, 0x86, 0x40, 0xad, 0x0d, 0x1e, 0x28, 0xa2, 0x2d, 0xc5, 0xd6, 0x04, 0x15, 0xa2, 0x30, 0x3d, 0x12, 0x8e, 0xd6, 0xb5, 0xf7, 0x69, 0xbb, 0x84, 0x20,
/* (2^ 39)P */ 0xd7, 0x7a, 0x77, 0x2c, 0xfb, 0x81, 0x80, 0xe9, 0x1e, 0xc6, 0x36, 0x31, 0x79, 0xc3, 0x7c, 0xa9, 0x57, 0x6b, 0xb5, 0x70, 0xfb, 0xe4, 0xa1, 0xff, 0xfd, 0x21, 0xa5, 0x7c, 0xfa, 0x44, 0xba, 0x0d, 0x96, 0x3d, 0xc4, 0x5c, 0x39, 0x52, 0x87, 0xd7, 0x22, 0x0f, 0x52, 0x88, 0x91, 0x87, 0x96, 0xac, 0xfa, 0x3b, 0xdf, 0xdc, 0x83, 0x8c, 0x99, 0x29,
/* (2^ 40)P */ 0x98, 0x6b, 0x3a, 0x8d, 0x83, 0x17, 0xe1, 0x62, 0xd8, 0x80, 0x4c, 0x97, 0xce, 0x6b, 0xaa, 0x10, 0xa7, 0xc4, 0xe9, 0xeb, 0xa5, 0xfb, 0xc9, 0xdd, 0x2d, 0xeb, 0xfc, 0x9a, 0x71, 0xcd, 0x68, 0x6e, 0xc0, 0x35, 0x64, 0x62, 0x1b, 0x95, 0x12, 0xe8, 0x53, 0xec, 0xf0, 0xf4, 0x86, 0x86, 0x78, 0x18, 0xc4, 0xc6, 0xbc, 0x5a, 0x59, 0x8f, 0x7c, 0x7e,
/* (2^ 41)P */ 0x7f, 0xd7, 0x1e, 0xc5, 0x83, 0xdc, 0x1f, 0xbe, 0x0b, 0xcf, 0x2e, 0x01, 0x01, 0xed, 0xac, 0x17, 0x3b, 0xed, 0xa4, 0x30, 0x96, 0x0e, 0x14, 0x7e, 0x19, 0x2b, 0xa5, 0x67, 0x1e, 0xb3, 0x34, 0x03, 0xa8, 0xbb, 0x0a, 0x7d, 0x08, 0x2d, 0xd5, 0x53, 0x19, 0x6f, 0x13, 0xd5, 0xc0, 0x90, 0x8a, 0xcc, 0xc9, 0x5c, 0xab, 0x24, 0xd7, 0x03, 0xf6, 0x57,
/* (2^ 42)P */ 0x49, 0xcb, 0xb4, 0x96, 0x5f, 0xa6, 0xf8, 0x71, 0x6f, 0x59, 0xad, 0x05, 0x24, 0x2d, 0xaf, 0x67, 0xa8, 0xbe, 0x95, 0xdf, 0x0d, 0x28, 0x5a, 0x7f, 0x6e, 0x87, 0x8c, 0x6e, 0x67, 0x0c, 0xf4, 0xe0, 0x1c, 0x30, 0xc2, 0x66, 0xae, 0x20, 0xa1, 0x34, 0xec, 0x9c, 0xbc, 0xae, 0x3d, 0xa1, 0x28, 0x28, 0x95, 0x1d, 0xc9, 0x3a, 0xa8, 0xfd, 0xfc, 0xa1,
/* (2^ 43)P */ 0xe2, 0x2b, 0x9d, 0xed, 0x02, 0x99, 0x67, 0xbb, 0x2e, 0x16, 0x62, 0x05, 0x70, 0xc7, 0x27, 0xb9, 0x1c, 0x3f, 0xf2, 0x11, 0x01, 0xd8, 0x51, 0xa4, 0x18, 0x92, 0xa9, 0x5d, 0xfb, 0xa9, 0xe4, 0x42, 0xba, 0x38, 0x34, 0x1a, 0x4a, 0xc5, 0x6a, 0x37, 0xde, 0xa7, 0x0c, 0xb4, 0x7e, 0x7f, 0xde, 0xa6, 0xee, 0xcd, 0x55, 0x57, 0x05, 0x06, 0xfd, 0x5d,
/* (2^ 44)P */ 0x2f, 0x32, 0xcf, 0x2e, 0x2c, 0x7b, 0xbe, 0x9a, 0x0c, 0x57, 0x35, 0xf8, 0x87, 0xda, 0x9c, 0xec, 0x48, 0xf2, 0xbb, 0xe2, 0xda, 0x10, 0x58, 0x20, 0xc6, 0xd3, 0x87, 0xe9, 0xc7, 0x26, 0xd1, 0x9a, 0x46, 0x87, 0x90, 0xda, 0xdc, 0xde, 0xc3, 0xb3, 0xf2, 0xe8, 0x6f, 0x4a, 0xe6, 0xe8, 0x9d, 0x98, 0x36, 0x20, 0x03, 0x47, 0x15, 0x3f, 0x64, 0x59,
/* (2^ 45)P */ 0xd4, 0x71, 0x49, 0x0a, 0x67, 0x97, 0xaa, 0x3f, 0xf4, 0x1b, 0x3a, 0x6e, 0x5e, 0x17, 0xcc, 0x0a, 0x8f, 0x81, 0x6a, 0x41, 0x38, 0x77, 0x40, 0x8a, 0x11, 0x42, 0x62, 0xd2, 0x50, 0x32, 0x79, 0x78, 0x28, 0xc2, 0x2e, 0x10, 0x01, 0x94, 0x30, 0x4f, 0x7f, 0x18, 0x17, 0x56, 0x85, 0x4e, 0xad, 0xf7, 0xcb, 0x87, 0x3c, 0x3f, 0x50, 0x2c, 0xc0, 0xba,
/* (2^ 46)P */ 0xbc, 0x30, 0x8e, 0x65, 0x8e, 0x57, 0x5b, 0x38, 0x7a, 0xd4, 0x95, 0x52, 0x7a, 0x32, 0x59, 0x69, 0xcd, 0x9d, 0x47, 0x34, 0x5b, 0x55, 0xa5, 0x24, 0x60, 0xdd, 0xc0, 0xc1, 0x62, 0x73, 0x44, 0xae, 0x4c, 0x9c, 0x65, 0x55, 0x1b, 0x9d, 0x8a, 0x29, 0xb0, 0x1a, 0x52, 0xa8, 0xf1, 0xe6, 0x9a, 0xb3, 0xf6, 0xa3, 0xc9, 0x0a, 0x70, 0x7d, 0x0f, 0xee,
/* (2^ 47)P */ 0x77, 0xd3, 0xe5, 0x8e, 0xfa, 0x00, 0xeb, 0x1b, 0x7f, 0xdc, 0x68, 0x3f, 0x92, 0xbd, 0xb7, 0x0b, 0xb7, 0xb5, 0x24, 0xdf, 0xc5, 0x67, 0x53, 0xd4, 0x36, 0x79, 0xc4, 0x7b, 0x57, 0xbc, 0x99, 0x97, 0x60, 0xef, 0xe4, 0x01, 0xa1, 0xa7, 0xaa, 0x12, 0x36, 0x29, 0xb1, 0x03, 0xc2, 0x83, 0x1c, 0x2b, 0x83, 0xef, 0x2e, 0x2c, 0x23, 0x92, 0xfd, 0xd1,
/* (2^ 48)P */ 0x94, 0xef, 0x03, 0x59, 0xfa, 0x8a, 0x18, 0x76, 0xee, 0x58, 0x08, 0x4d, 0x44, 0xce, 0xf1, 0x52, 0x33, 0x49, 0xf6, 0x69, 0x71, 0xe3, 0xa9, 0xbc, 0x86, 0xe3, 0x43, 0xde, 0x33, 0x7b, 0x90, 0x8b, 0x3e, 0x7d, 0xd5, 0x4a, 0xf0, 0x23, 0x99, 0xa6, 0xea, 0x5f, 0x08, 0xe5, 0xb9, 0x49, 0x8b, 0x0d, 0x6a, 0x21, 0xab, 0x07, 0x62, 0xcd, 0xc4, 0xbe,
/* (2^ 49)P */ 0x61, 0xbf, 0x70, 0x14, 0xfa, 0x4e, 0x9e, 0x7c, 0x0c, 0xf8, 0xb2, 0x48, 0x71, 0x62, 0x83, 0xd6, 0xd1, 0xdc, 0x9c, 0x29, 0x66, 0xb1, 0x34, 0x9c, 0x8d, 0xe6, 0x88, 0xaf, 0xbe, 0xdc, 0x4d, 0xeb, 0xb0, 0xe7, 0x28, 0xae, 0xb2, 0x05, 0x56, 0xc6, 0x0e, 0x10, 0x26, 0xab, 0x2c, 0x59, 0x72, 0x03, 0x66, 0xfe, 0x8f, 0x2c, 0x51, 0x2d, 0xdc, 0xae,
/* (2^ 50)P */ 0xdc, 0x63, 0xf1, 0x8b, 0x5c, 0x65, 0x0b, 0xf1, 0xa6, 0x22, 0xe2, 0xd9, 0xdb, 0x49, 0xb1, 0x3c, 0x47, 0xc2, 0xfe, 0xac, 0x86, 0x07, 0x52, 0xec, 0xb0, 0x08, 0x69, 0xfb, 0xd1, 0x06, 0xdc, 0x48, 0x5c, 0x3d, 0xb2, 0x4d, 0xb8, 0x1a, 0x4e, 0xda, 0xb9, 0xc1, 0x2b, 0xab, 0x4b, 0x62, 0x81, 0x21, 0x9a, 0xfc, 0x3d, 0x39, 0x83, 0x11, 0x36, 0xeb,
/* (2^ 51)P */ 0x94, 0xf3, 0x17, 0xef, 0xf9, 0x60, 0x54, 0xc3, 0xd7, 0x27, 0x35, 0xc5, 0x98, 0x5e, 0xf6, 0x63, 0x6c, 0xa0, 0x4a, 0xd3, 0xa3, 0x98, 0xd9, 0x42, 0xe3, 0xf1, 0xf8, 0x81, 0x96, 0xa9, 0xea, 0x6d, 0x4b, 0x8e, 0x33, 0xca, 0x94, 0x0d, 0xa0, 0xf7, 0xbb, 0x64, 0xa3, 0x36, 0x6f, 0xdc, 0x5a, 0x94, 0x42, 0xca, 0x06, 0xb2, 0x2b, 0x9a, 0x9f, 0x71,
/* (2^ 52)P */ 0xec, 0xdb, 0xa6, 0x1f, 0xdf, 0x15, 0x36, 0xa3, 0xda, 0x8a, 0x7a, 0xb6, 0xa7, 0xe3, 0xaf, 0x52, 0xe0, 0x8d, 0xe8, 0xf2, 0x44, 0x20, 0xeb, 0xa1, 0x20, 0xc4, 0x65, 0x3c, 0x7c, 0x6c, 0x49, 0xed, 0x2f, 0x66, 0x23, 0x68, 0x61, 0x91, 0x40, 0x9f, 0x50, 0x19, 0xd1, 0x84, 0xa7, 0xe2, 0xed, 0x34, 0x37, 0xe3, 0xe4, 0x11, 0x7f, 0x87, 0x55, 0x0f,
/* (2^ 53)P */ 0xb3, 0xa1, 0x0f, 0xb0, 0x48, 0xc0, 0x4d, 0x96, 0xa7, 0xcf, 0x5a, 0x81, 0xb8, 0x4a, 0x46, 0xef, 0x0a, 0xd3, 0x40, 0x7e, 0x02, 0xe3, 0x63, 0xaa, 0x50, 0xd1, 0x2a, 0x37, 0x22, 0x4a, 0x7f, 0x4f, 0xb6, 0xf9, 0x01, 0x82, 0x78, 0x3d, 0x93, 0x14, 0x11, 0x8a, 0x90, 0x60, 0xcd, 0x45, 0x4e, 0x7b, 0x42, 0xb9, 0x3e, 0x6e, 0x68, 0x1f, 0x36, 0x41,
/* (2^ 54)P */ 0x13, 0x73, 0x0e, 0x4f, 0x79, 0x93, 0x9e, 0x29, 0x70, 0x7b, 0x4a, 0x59, 0x1a, 0x9a, 0xf4, 0x55, 0x08, 0xf0, 0xdb, 0x17, 0x58, 0xec, 0x64, 0xad, 0x7f, 0x29, 0xeb, 0x3f, 0x85, 0x4e, 0x60, 0x28, 0x98, 0x1f, 0x73, 0x4e, 0xe6, 0xa8, 0xab, 0xd5, 0xd6, 0xfc, 0xa1, 0x36, 0x6d, 0x15, 0xc6, 0x13, 0x83, 0xa0, 0xc2, 0x6e, 0xd9, 0xdb, 0xc9, 0xcc,
/* (2^ 55)P */ 0xff, 0xd8, 0x52, 0xa3, 0xdc, 0x99, 0xcf, 0x3e, 0x19, 0xb3, 0x68, 0xd0, 0xb5, 0x0d, 0xb8, 0xee, 0x3f, 0xef, 0x6e, 0xc0, 0x38, 0x28, 0x44, 0x92, 0x78, 0x91, 0x1a, 0x08, 0x78, 0x6c, 0x65, 0x24, 0xf3, 0xa2, 0x3d, 0xf2, 0xe5, 0x79, 0x62, 0x69, 0x29, 0xf4, 0x22, 0xc5, 0xdb, 0x6a, 0xae, 0xf4, 0x44, 0xa3, 0x6f, 0xc7, 0x86, 0xab, 0xef, 0xef,
/* (2^ 56)P */ 0xbf, 0x54, 0x9a, 0x09, 0x5d, 0x17, 0xd0, 0xde, 0xfb, 0xf5, 0xca, 0xff, 0x13, 0x20, 0x88, 0x82, 0x3a, 0xe2, 0xd0, 0x3b, 0xfb, 0x05, 0x76, 0xd1, 0xc0, 0x02, 0x71, 0x3b, 0x94, 0xe8, 0xc9, 0x84, 0xcf, 0xa4, 0xe9, 0x28, 0x7b, 0xf5, 0x09, 0xc3, 0x2b, 0x22, 0x40, 0xf1, 0x68, 0x24, 0x24, 0x7d, 0x9f, 0x6e, 0xcd, 0xfe, 0xb0, 0x19, 0x61, 0xf5,
/* (2^ 57)P */ 0xe8, 0x63, 0x51, 0xb3, 0x95, 0x6b, 0x7b, 0x74, 0x92, 0x52, 0x45, 0xa4, 0xed, 0xea, 0x0e, 0x0d, 0x2b, 0x01, 0x1e, 0x2c, 0xbc, 0x91, 0x06, 0x69, 0xdb, 0x1f, 0xb5, 0x77, 0x1d, 0x56, 0xf5, 0xb4, 0x02, 0x80, 0x49, 0x56, 0x12, 0xce, 0x86, 0x05, 0xc9, 0xd9, 0xae, 0xf3, 0x6d, 0xe6, 0x3f, 0x40, 0x52, 0xe9, 0x49, 0x2b, 0x31, 0x06, 0x86, 0x14,
/* (2^ 58)P */ 0xf5, 0x09, 0x3b, 0xd2, 0xff, 0xdf, 0x11, 0xa5, 0x1c, 0x99, 0xe8, 0x1b, 0xa4, 0x2c, 0x7d, 0x8e, 0xc8, 0xf7, 0x03, 0x46, 0xfa, 0xb6, 0xde, 0x73, 0x91, 0x7e, 0x5a, 0x7a, 0xd7, 0x9a, 0x5b, 0x80, 0x24, 0x62, 0x5e, 0x92, 0xf1, 0xa3, 0x45, 0xa3, 0x43, 0x92, 0x8a, 0x2a, 0x5b, 0x0c, 0xb4, 0xc8, 0xad, 0x1c, 0xb6, 0x6c, 0x5e, 0x81, 0x18, 0x91,
/* (2^ 59)P */ 0x96, 0xb3, 0xca, 0x2b, 0xe3, 0x7a, 0x59, 0x72, 0x17, 0x74, 0x29, 0x21, 0xe7, 0x78, 0x07, 0xad, 0xda, 0xb6, 0xcd, 0xf9, 0x27, 0x4d, 0xc8, 0xf2, 0x98, 0x22, 0xca, 0xf2, 0x33, 0x74, 0x7a, 0xdd, 0x1e, 0x71, 0xec, 0xe3, 0x3f, 0xe2, 0xa2, 0xd2, 0x38, 0x75, 0xb0, 0xd0, 0x0a, 0xcf, 0x7d, 0x36, 0xdc, 0x49, 0x38, 0x25, 0x34, 0x4f, 0x20, 0x9a,
/* (2^ 60)P */ 0x2b, 0x6e, 0x04, 0x0d, 0x4f, 0x3d, 0x3b, 0x24, 0xf6, 0x4e, 0x5e, 0x0a, 0xbd, 0x48, 0x96, 0xba, 0x81, 0x8f, 0x39, 0x82, 0x13, 0xe6, 0x72, 0xf3, 0x0f, 0xb6, 0x94, 0xf4, 0xc5, 0x90, 0x74, 0x91, 0xa8, 0xf2, 0xc9, 0xca, 0x9a, 0x4d, 0x98, 0xf2, 0xdf, 0x52, 0x4e, 0x97, 0x2f, 0xeb, 0x84, 0xd3, 0xaf, 0xc2, 0xcc, 0xfb, 0x4c, 0x26, 0x4b, 0xe4,
/* (2^ 61)P */ 0x12, 0x9e, 0xfb, 0x9d, 0x78, 0x79, 0x99, 0xdd, 0xb3, 0x0b, 0x2e, 0x56, 0x41, 0x8e, 0x3f, 0x39, 0xb8, 0x97, 0x89, 0x53, 0x9b, 0x8a, 0x3c, 0x40, 0x9d, 0xa4, 0x6c, 0x2e, 0x31, 0x71, 0xc6, 0x0a, 0x41, 0xd4, 0x95, 0x06, 0x5e, 0xc1, 0xab, 0xc2, 0x14, 0xc4, 0xc7, 0x15, 0x08, 0x3a, 0xad, 0x7a, 0xb4, 0x62, 0xa3, 0x0c, 0x90, 0xf4, 0x47, 0x08,
/* (2^ 62)P */ 0x7f, 0xec, 0x09, 0x82, 0xf5, 0x94, 0x09, 0x93, 0x32, 0xd3, 0xdc, 0x56, 0x80, 0x7b, 0x5b, 0x22, 0x80, 0x6a, 0x96, 0x72, 0xb1, 0xc2, 0xd9, 0xa1, 0x8b, 0x66, 0x42, 0x16, 0xe2, 0x07, 0xb3, 0x2d, 0xf1, 0x75, 0x35, 0x72, 0xc7, 0x98, 0xbe, 0x63, 0x3b, 0x20, 0x75, 0x05, 0xc1, 0x3e, 0x31, 0x5a, 0xf7, 0xaa, 0xae, 0x4b, 0xdb, 0x1d, 0xd0, 0x74,
/* (2^ 63)P */ 0x36, 0x5c, 0x74, 0xe6, 0x5d, 0x59, 0x3f, 0x15, 0x4b, 0x4d, 0x4e, 0x67, 0x41, 0xfe, 0x98, 0x1f, 0x49, 0x76, 0x91, 0x0f, 0x9b, 0xf4, 0xaf, 0x86, 0xaf, 0x66, 0x19, 0xed, 0x46, 0xf1, 0x05, 0x9a, 0xcc, 0xd1, 0x14, 0x1f, 0x82, 0x12, 0x8e, 0xe6, 0xf4, 0xc3, 0x42, 0x5c, 0x4e, 0x33, 0x93, 0xbe, 0x30, 0xe7, 0x64, 0xa9, 0x35, 0x00, 0x4d, 0xf9,
/* (2^ 64)P */ 0x1f, 0xc1, 0x1e, 0xb7, 0xe3, 0x7c, 0xfa, 0xa3, 0x6b, 0x76, 0xaf, 0x9c, 0x05, 0x85, 0x4a, 0xa9, 0xfb, 0xe3, 0x7e, 0xf2, 0x49, 0x56, 0xdc, 0x2f, 0x57, 0x10, 0xba, 0x37, 0xb2, 0x62, 0xf5, 0x6b, 0xe5, 0x8f, 0x0a, 0x87, 0xd1, 0x6a, 0xcb, 0x9d, 0x07, 0xd0, 0xf6, 0x38, 0x99, 0x2c, 0x61, 0x4a, 0x4e, 0xd8, 0xd2, 0x88, 0x29, 0x99, 0x11, 0x95,
/* (2^ 65)P */ 0x6f, 0xdc, 0xd5, 0xd6, 0xd6, 0xa7, 0x4c, 0x46, 0x93, 0x65, 0x62, 0x23, 0x95, 0x32, 0x9c, 0xde, 0x40, 0x41, 0x68, 0x2c, 0x18, 0x4e, 0x5a, 0x8c, 0xc0, 0xc5, 0xc5, 0xea, 0x5c, 0x45, 0x0f, 0x60, 0x78, 0x39, 0xb6, 0x36, 0x23, 0x12, 0xbc, 0x21, 0x9a, 0xf8, 0x91, 0xac, 0xc4, 0x70, 0xdf, 0x85, 0x8e, 0x3c, 0xec, 0x22, 0x04, 0x98, 0xa8, 0xaa,
/* (2^ 66)P */ 0xcc, 0x52, 0x10, 0x5b, 0x4b, 0x6c, 0xc5, 0xfa, 0x3e, 0xd4, 0xf8, 0x1c, 0x04, 0x14, 0x48, 0x33, 0xd9, 0xfc, 0x5f, 0xb0, 0xa5, 0x48, 0x8c, 0x45, 0x8a, 0xee, 0x3e, 0xa7, 0xc1, 0x2e, 0x34, 0xca, 0xf6, 0xc9, 0xeb, 0x10, 0xbb, 0xe1, 0x59, 0x84, 0x25, 0xe8, 0x81, 0x70, 0xc0, 0x09, 0x42, 0xa7, 0x3b, 0x0d, 0x33, 0x00, 0xb5, 0x77, 0xbe, 0x25,
/* (2^ 67)P */ 0xcd, 0x1f, 0xbc, 0x7d, 0xef, 0xe5, 0xca, 0x91, 0xaf, 0xa9, 0x59, 0x6a, 0x09, 0xca, 0xd6, 0x1b, 0x3d, 0x55, 0xde, 0xa2, 0x6a, 0x80, 0xd6, 0x95, 0x47, 0xe4, 0x5f, 0x68, 0x54, 0x08, 0xdf, 0x29, 0xba, 0x2a, 0x02, 0x84, 0xe8, 0xe9, 0x00, 0x77, 0x99, 0x36, 0x03, 0xf6, 0x4a, 0x3e, 0x21, 0x81, 0x7d, 0xb8, 0xa4, 0x8a, 0xa2, 0x05, 0xef, 0xbc,
/* (2^ 68)P */ 0x7c, 0x59, 0x5f, 0x66, 0xd9, 0xb7, 0x83, 0x43, 0x8a, 0xa1, 0x8d, 0x51, 0x70, 0xba, 0xf2, 0x9b, 0x95, 0xc0, 0x4b, 0x4c, 0xa0, 0x14, 0xd3, 0xa4, 0x5d, 0x4a, 0x37, 0x36, 0x97, 0x31, 0x1e, 0x12, 0xe7, 0xbb, 0x08, 0x67, 0xa5, 0x23, 0xd7, 0xfb, 0x97, 0xd8, 0x6a, 0x03, 0xb1, 0xf8, 0x7f, 0xda, 0x58, 0xd9, 0x3f, 0x73, 0x4a, 0x53, 0xe1, 0x7b,
/* (2^ 69)P */ 0x55, 0x83, 0x98, 0x78, 0x6c, 0x56, 0x5e, 0xed, 0xf7, 0x23, 0x3e, 0x4c, 0x7d, 0x09, 0x2d, 0x09, 0x9c, 0x58, 0x8b, 0x32, 0xca, 0xfe, 0xbf, 0x47, 0x03, 0xeb, 0x4d, 0xe7, 0xeb, 0x9c, 0x83, 0x05, 0x68, 0xaa, 0x80, 0x89, 0x44, 0xf9, 0xd4, 0xdc, 0xdb, 0xb1, 0xdb, 0x77, 0xac, 0xf9, 0x2a, 0xae, 0x35, 0xac, 0x74, 0xb5, 0x95, 0x62, 0x18, 0x85,
/* (2^ 70)P */ 0xab, 0x82, 0x7e, 0x10, 0xd7, 0xe6, 0x57, 0xd1, 0x66, 0x12, 0x31, 0x9c, 0x9c, 0xa6, 0x27, 0x59, 0x71, 0x2e, 0xeb, 0xa0, 0x68, 0xc5, 0x87, 0x51, 0xf4, 0xca, 0x3f, 0x98, 0x56, 0xb0, 0x89, 0xb1, 0xc7, 0x7b, 0x46, 0xb3, 0xae, 0x36, 0xf2, 0xee, 0x15, 0x1a, 0x60, 0xf4, 0x50, 0x76, 0x4f, 0xc4, 0x53, 0x0d, 0x36, 0x4d, 0x31, 0xb1, 0x20, 0x51,
/* (2^ 71)P */ 0xf7, 0x1d, 0x8c, 0x1b, 0x5e, 0xe5, 0x02, 0x6f, 0xc5, 0xa5, 0xe0, 0x5f, 0xc6, 0xb6, 0x63, 0x43, 0xaf, 0x3c, 0x19, 0x6c, 0xf4, 0xaf, 0xa4, 0x33, 0xb1, 0x0a, 0x37, 0x3d, 0xd9, 0x4d, 0xe2, 0x29, 0x24, 0x26, 0x94, 0x7c, 0x02, 0xe4, 0xe2, 0xf2, 0xbe, 0xbd, 0xac, 0x1b, 0x48, 0xb8, 0xdd, 0xe9, 0x0d, 0x9a, 0x50, 0x1a, 0x98, 0x71, 0x6e, 0xdc,
/* (2^ 72)P */ 0x9f, 0x40, 0xb1, 0xb3, 0x66, 0x28, 0x6c, 0xfe, 0xa6, 0x7d, 0xf8, 0x3e, 0xb8, 0xf3, 0xde, 0x52, 0x76, 0x52, 0xa3, 0x92, 0x98, 0x23, 0xab, 0x4f, 0x88, 0x97, 0xfc, 0x22, 0xe1, 0x6b, 0x67, 0xcd, 0x13, 0x95, 0xda, 0x65, 0xdd, 0x3b, 0x67, 0x3f, 0x5f, 0x4c, 0xf2, 0x8a, 0xad, 0x98, 0xa7, 0x94, 0x24, 0x45, 0x87, 0x11, 0x7c, 0x75, 0x79, 0x85,
/* (2^ 73)P */ 0x70, 0xbf, 0xf9, 0x3b, 0xa9, 0x44, 0x57, 0x72, 0x96, 0xc9, 0xa4, 0x98, 0x65, 0xbf, 0x87, 0xb3, 0x3a, 0x39, 0x12, 0xde, 0xe5, 0x39, 0x01, 0x4f, 0xf7, 0xc0, 0x71, 0x52, 0x36, 0x85, 0xb3, 0x18, 0xf8, 0x14, 0xc0, 0x6d, 0xae, 0x9e, 0x4f, 0xb0, 0x72, 0x87, 0xac, 0x5c, 0xd1, 0x6c, 0x41, 0x6c, 0x90, 0x9d, 0x22, 0x81, 0xe4, 0x2b, 0xea, 0xe5,
/* (2^ 74)P */ 0xfc, 0xea, 0x1a, 0x65, 0xd9, 0x49, 0x6a, 0x39, 0xb5, 0x96, 0x72, 0x7b, 0x32, 0xf1, 0xd0, 0xe9, 0x45, 0xd9, 0x31, 0x55, 0xc7, 0x34, 0xe9, 0x5a, 0xec, 0x73, 0x0b, 0x03, 0xc4, 0xb3, 0xe6, 0xc9, 0x5e, 0x0a, 0x17, 0xfe, 0x53, 0x66, 0x7f, 0x21, 0x18, 0x74, 0x54, 0x1b, 0xc9, 0x49, 0x16, 0xd2, 0x48, 0xaf, 0x5b, 0x47, 0x7b, 0xeb, 0xaa, 0xc9,
/* (2^ 75)P */ 0x47, 0x04, 0xf5, 0x5a, 0x87, 0x77, 0x9e, 0x21, 0x34, 0x4e, 0x83, 0x88, 0xaf, 0x02, 0x1d, 0xb0, 0x5a, 0x1d, 0x1d, 0x7d, 0x8d, 0x2c, 0xd3, 0x8d, 0x63, 0xa9, 0x45, 0xfb, 0x15, 0x6d, 0x86, 0x45, 0xcd, 0x38, 0x0e, 0xf7, 0x37, 0x79, 0xed, 0x6d, 0x5a, 0xbc, 0x32, 0xcc, 0x66, 0xf1, 0x3a, 0xb2, 0x87, 0x6f, 0x70, 0x71, 0xd9, 0xf2, 0xfa, 0x7b,
/* (2^ 76)P */ 0x68, 0x07, 0xdc, 0x61, 0x40, 0xe4, 0xec, 0x32, 0xc8, 0xbe, 0x66, 0x30, 0x54, 0x80, 0xfd, 0x13, 0x7a, 0xef, 0xae, 0xed, 0x2e, 0x00, 0x6d, 0x3f, 0xbd, 0xfc, 0x91, 0x24, 0x53, 0x7f, 0x63, 0x9d, 0x2e, 0xe3, 0x76, 0xe0, 0xf3, 0xe1, 0x8f, 0x7a, 0xc4, 0x77, 0x0c, 0x91, 0xc0, 0xc2, 0x18, 0x6b, 0x04, 0xad, 0xb6, 0x70, 0x9a, 0x64, 0xc5, 0x82,
/* (2^ 77)P */ 0x7f, 0xea, 0x13, 0xd8, 0x9e, 0xfc, 0x5b, 0x06, 0xb5, 0x4f, 0xda, 0x38, 0xe0, 0x9c, 0xd2, 0x3a, 0xc1, 0x1c, 0x62, 0x70, 0x7f, 0xc6, 0x24, 0x0a, 0x47, 0x04, 0x01, 0xc4, 0x55, 0x09, 0xd1, 0x7a, 0x07, 0xba, 0xa3, 0x80, 0x4f, 0xc1, 0x65, 0x36, 0x6d, 0xc0, 0x10, 0xcf, 0x94, 0xa9, 0xa2, 0x01, 0x44, 0xd1, 0xf9, 0x1c, 0x4c, 0xfb, 0xf8, 0x99,
/* (2^ 78)P */ 0x6c, 0xb9, 0x6b, 0xee, 0x43, 0x5b, 0xb9, 0xbb, 0xee, 0x2e, 0x52, 0xc1, 0xc6, 0xb9, 0x61, 0xd2, 0x93, 0xa5, 0xaf, 0x52, 0xf4, 0xa4, 0x1a, 0x51, 0x61, 0xa7, 0xcb, 0x9e, 0xbb, 0x56, 0x65, 0xe2, 0xbf, 0x75, 0xb9, 0x9c, 0x50, 0x96, 0x60, 0x81, 0x74, 0x47, 0xc0, 0x04, 0x88, 0x71, 0x76, 0x39, 0x9a, 0xa7, 0xb1, 0x4e, 0x43, 0x15, 0xe0, 0xbb,
/* (2^ 79)P */ 0xbb, 0xce, 0xe2, 0xbb, 0xf9, 0x17, 0x0f, 0x82, 0x40, 0xad, 0x73, 0xe3, 0xeb, 0x3b, 0x06, 0x1a, 0xcf, 0x8e, 0x6e, 0x28, 0xb8, 0x26, 0xd9, 0x5b, 0xb7, 0xb3, 0xcf, 0xb4, 0x6a, 0x1c, 0xbf, 0x7f, 0xb8, 0xb5, 0x79, 0xcf, 0x45, 0x68, 0x7d, 0xc5, 0xeb, 0xf3, 0xbe, 0x39, 0x40, 0xfc, 0x07, 0x90, 0x7a, 0x62, 0xad, 0x86, 0x08, 0x71, 0x25, 0xe1,
/* (2^ 80)P */ 0x9b, 0x46, 0xac, 0xef, 0xc1, 0x4e, 0xa1, 0x97, 0x95, 0x76, 0xf9, 0x1b, 0xc2, 0xb2, 0x6a, 0x41, 0xea, 0x80, 0x3d, 0xe9, 0x08, 0x52, 0x5a, 0xe3, 0xf2, 0x08, 0xc5, 0xea, 0x39, 0x3f, 0x44, 0x71, 0x4d, 0xea, 0x0d, 0x05, 0x23, 0xe4, 0x2e, 0x3c, 0x89, 0xfe, 0x12, 0x8a, 0x95, 0x42, 0x0a, 0x68, 0xea, 0x5a, 0x28, 0x06, 0x9e, 0xe3, 0x5f, 0xe0,
/* (2^ 81)P */ 0x00, 0x61, 0x6c, 0x98, 0x9b, 0xe7, 0xb9, 0x06, 0x1c, 0xc5, 0x1b, 0xed, 0xbe, 0xc8, 0xb3, 0xea, 0x87, 0xf0, 0xc4, 0x24, 0x7d, 0xbb, 0x5d, 0xa4, 0x1d, 0x7a, 0x16, 0x00, 0x55, 0x94, 0x67, 0x78, 0xbd, 0x58, 0x02, 0x82, 0x90, 0x53, 0x76, 0xd4, 0x72, 0x99, 0x51, 0x6f, 0x7b, 0xcf, 0x80, 0x30, 0x31, 0x3b, 0x01, 0xc7, 0xc1, 0xef, 0xe6, 0x42,
/* (2^ 82)P */ 0xe2, 0x35, 0xaf, 0x4b, 0x79, 0xc6, 0x12, 0x24, 0x99, 0xc0, 0x68, 0xb0, 0x43, 0x3e, 0xe5, 0xef, 0xe2, 0x29, 0xea, 0xb8, 0xb3, 0xbc, 0x6a, 0x53, 0x2c, 0x69, 0x18, 0x5a, 0xf9, 0x15, 0xae, 0x66, 0x58, 0x18, 0xd3, 0x2d, 0x4b, 0x00, 0xfd, 0x84, 0xab, 0x4f, 0xae, 0x70, 0x6b, 0x9e, 0x9a, 0xdf, 0x83, 0xfd, 0x2e, 0x3c, 0xcf, 0xf8, 0x88, 0x5b,
/* (2^ 83)P */ 0xa4, 0x90, 0x31, 0x85, 0x13, 0xcd, 0xdf, 0x64, 0xc9, 0xa1, 0x0b, 0xe7, 0xb6, 0x73, 0x8a, 0x1b, 0x22, 0x78, 0x4c, 0xd4, 0xae, 0x48, 0x18, 0x00, 0x00, 0xa8, 0x9f, 0x06, 0xf9, 0xfb, 0x2d, 0xc3, 0xb1, 0x2a, 0xbc, 0x13, 0x99, 0x57, 0xaf, 0xf0, 0x8d, 0x61, 0x54, 0x29, 0xd5, 0xf2, 0x72, 0x00, 0x96, 0xd1, 0x85, 0x12, 0x8a, 0xf0, 0x23, 0xfb,
/* (2^ 84)P */ 0x69, 0xc7, 0xdb, 0xd9, 0x92, 0x75, 0x08, 0x9b, 0xeb, 0xa5, 0x93, 0xd1, 0x1a, 0xf4, 0xf5, 0xaf, 0xe6, 0xc4, 0x4a, 0x0d, 0x35, 0x26, 0x39, 0x9d, 0xd3, 0x17, 0x3e, 0xae, 0x2d, 0xbf, 0x73, 0x9f, 0xb7, 0x74, 0x91, 0xd1, 0xd8, 0x5c, 0x14, 0xf9, 0x75, 0xdf, 0xeb, 0xc2, 0x22, 0xd8, 0x14, 0x8d, 0x86, 0x23, 0x4d, 0xd1, 0x2d, 0xdb, 0x6b, 0x42,
/* (2^ 85)P */ 0x8c, 0xda, 0xc6, 0xf8, 0x71, 0xba, 0x2b, 0x06, 0x78, 0xae, 0xcc, 0x3a, 0xe3, 0xe3, 0xa1, 0x8b, 0xe2, 0x34, 0x6d, 0x28, 0x9e, 0x46, 0x13, 0x4d, 0x9e, 0xa6, 0x73, 0x49, 0x65, 0x79, 0x88, 0xb9, 0x3a, 0xd1, 0x6d, 0x2f, 0x48, 0x2b, 0x0a, 0x7f, 0x58, 0x20, 0x37, 0xf4, 0x0e, 0xbb, 0x4a, 0x95, 0x58, 0x0c, 0x88, 0x30, 0xc4, 0x74, 0xdd, 0xfd,
/* (2^ 86)P */ 0x6d, 0x13, 0x4e, 0x89, 0x2d, 0xa9, 0xa3, 0xed, 0x09, 0xe3, 0x0e, 0x71, 0x3e, 0x4a, 0xab, 0x90, 0xde, 0x03, 0xeb, 0x56, 0x46, 0x60, 0x06, 0xf5, 0x71, 0xe5, 0xee, 0x9b, 0xef, 0xff, 0xc4, 0x2c, 0x9f, 0x37, 0x48, 0x45, 0x94, 0x12, 0x41, 0x81, 0x15, 0x70, 0x91, 0x99, 0x5e, 0x56, 0x6b, 0xf4, 0xa6, 0xc9, 0xf5, 0x69, 0x9d, 0x78, 0x37, 0x57,
/* (2^ 87)P */ 0xf3, 0x51, 0x57, 0x7e, 0x43, 0x6f, 0xc6, 0x67, 0x59, 0x0c, 0xcf, 0x94, 0xe6, 0x3d, 0xb5, 0x07, 0xc9, 0x77, 0x48, 0xc9, 0x68, 0x0d, 0x98, 0x36, 0x62, 0x35, 0x38, 0x1c, 0xf5, 0xc5, 0xec, 0x66, 0x78, 0xfe, 0x47, 0xab, 0x26, 0xd6, 0x44, 0xb6, 0x06, 0x0f, 0x89, 0xe3, 0x19, 0x40, 0x1a, 0xe7, 0xd8, 0x65, 0x55, 0xf7, 0x1a, 0xfc, 0xa3, 0x0e,
/* (2^ 88)P */ 0x0e, 0x30, 0xa6, 0xb7, 0x58, 0x60, 0x62, 0x2a, 0x6c, 0x13, 0xa8, 0x14, 0x9b, 0xb8, 0xf2, 0x70, 0xd8, 0xb1, 0x71, 0x88, 0x8c, 0x18, 0x31, 0x25, 0x93, 0x90, 0xb4, 0xc7, 0x49, 0xd8, 0xd4, 0xdb, 0x1e, 0x1e, 0x7f, 0xaa, 0xba, 0xc9, 0xf2, 0x5d, 0xa9, 0x3a, 0x43, 0xb4, 0x5c, 0xee, 0x7b, 0xc7, 0x97, 0xb7, 0x66, 0xd7, 0x23, 0xd9, 0x22, 0x59,
/* (2^ 89)P */ 0x28, 0x19, 0xa6, 0xf9, 0x89, 0x20, 0x78, 0xd4, 0x6d, 0xcb, 0x79, 0x8f, 0x61, 0x6f, 0xb2, 0x5c, 0x4f, 0xa6, 0x54, 0x84, 0x95, 0x24, 0x36, 0x64, 0xcb, 0x39, 0xe7, 0x8f, 0x97, 0x9c, 0x5c, 0x3c, 0xfb, 0x51, 0x11, 0x01, 0x17, 0xdb, 0xc9, 0x9b, 0x51, 0x03, 0x9a, 0xe9, 0xe5, 0x24, 0x1e, 0xf5, 0xda, 0xe0, 0x48, 0x02, 0x23, 0xd0, 0x2c, 0x81,
/* (2^ 90)P */ 0x42, 0x1b, 0xe4, 0x91, 0x85, 0x2a, 0x0c, 0xd2, 0x28, 0x66, 0x57, 0x9e, 0x33, 0x8d, 0x25, 0x71, 0x10, 0x65, 0x76, 0xa2, 0x8c, 0x21, 0x86, 0x81, 0x15, 0xc2, 0x27, 0xeb, 0x54, 0x2d, 0x4f, 0x6c, 0xe6, 0xd6, 0x24, 0x9c, 0x1a, 0x12, 0xb8, 0x81, 0xe2, 0x0a, 0xf3, 0xd3, 0xf0, 0xd3, 0xe1, 0x74, 0x1f, 0x9b, 0x11, 0x47, 0xd0, 0xcf, 0xb6, 0x54,
/* (2^ 91)P */ 0x26, 0x45, 0xa2, 0x10, 0xd4, 0x2d, 0xae, 0xc0, 0xb0, 0xe8, 0x86, 0xb3, 0xc7, 0xea, 0x70, 0x87, 0x61, 0xb5, 0xa5, 0x55, 0xbe, 0x88, 0x1d, 0x7a, 0xd9, 0x6f, 0xeb, 0x83, 0xe2, 0x44, 0x7f, 0x98, 0x04, 0xd6, 0x50, 0x9d, 0xa7, 0x86, 0x66, 0x09, 0x63, 0xe1, 0xed, 0x72, 0xb1, 0xe4, 0x1d, 0x3a, 0xfd, 0x47, 0xce, 0x1c, 0xaa, 0x3b, 0x8f, 0x1b,
/* (2^ 92)P */ 0xf4, 0x3c, 0x4a, 0xb6, 0xc2, 0x9c, 0xe0, 0x2e, 0xb7, 0x38, 0xea, 0x61, 0x35, 0x97, 0x10, 0x90, 0xae, 0x22, 0x48, 0xb3, 0xa9, 0xc6, 0x7a, 0xbb, 0x23, 0xf2, 0xf8, 0x1b, 0xa7, 0xa1, 0x79, 0xcc, 0xc4, 0xf8, 0x08, 0x76, 0x8a, 0x5a, 0x1c, 0x1b, 0xc5, 0x33, 0x91, 0xa9, 0xb8, 0xb9, 0xd3, 0xf8, 0x49, 0xcd, 0xe5, 0x82, 0x43, 0xf7, 0xca, 0x68,
/* (2^ 93)P */ 0x38, 0xba, 0xae, 0x44, 0xfe, 0x57, 0x64, 0x56, 0x7c, 0x0e, 0x9c, 0xca, 0xff, 0xa9, 0x82, 0xbb, 0x38, 0x4a, 0xa7, 0xf7, 0x47, 0xab, 0xbe, 0x6d, 0x23, 0x0b, 0x8a, 0xed, 0xc2, 0xb9, 0x8f, 0xf1, 0xec, 0x91, 0x44, 0x73, 0x64, 0xba, 0xd5, 0x8f, 0x37, 0x38, 0x0d, 0xd5, 0xf8, 0x73, 0x57, 0xb6, 0xc2, 0x45, 0xdc, 0x25, 0xb2, 0xb6, 0xea, 0xd9,
/* (2^ 94)P */ 0xbf, 0xe9, 0x1a, 0x40, 0x4d, 0xcc, 0xe6, 0x1d, 0x70, 0x1a, 0x65, 0xcc, 0x34, 0x2c, 0x37, 0x2c, 0x2d, 0x6b, 0x6d, 0xe5, 0x2f, 0x19, 0x9e, 0xe4, 0xe1, 0xaa, 0xd4, 0xab, 0x54, 0xf4, 0xa8, 0xe4, 0x69, 0x2d, 0x8e, 0x4d, 0xd7, 0xac, 0xb0, 0x5b, 0xfe, 0xe3, 0x26, 0x07, 0xc3, 0xf8, 0x1b, 0x43, 0xa8, 0x1d, 0x64, 0xa5, 0x25, 0x88, 0xbb, 0x77,
/* (2^ 95)P */ 0x92, 0xcd, 0x6e, 0xa0, 0x79, 0x04, 0x18, 0xf4, 0x11, 0x58, 0x48, 0xb5, 0x3c, 0x7b, 0xd1, 0xcc, 0xd3, 0x14, 0x2c, 0xa0, 0xdd, 0x04, 0x44, 0x11, 0xb3, 0x6d, 0x2f, 0x0d, 0xf5, 0x2a, 0x75, 0x5d, 0x1d, 0xda, 0x86, 0x8d, 0x7d, 0x6b, 0x32, 0x68, 0xb6, 0x6c, 0x64, 0x9e, 0xde, 0x80, 0x88, 0xce, 0x08, 0xbf, 0x0b, 0xe5, 0x8e, 0x4f, 0x1d, 0xfb,
/* (2^ 96)P */ 0xaf, 0xe8, 0x85, 0xbf, 0x7f, 0x37, 0x8d, 0x66, 0x7c, 0xd5, 0xd3, 0x96, 0xa5, 0x81, 0x67, 0x95, 0xff, 0x48, 0xde, 0xde, 0xd7, 0x7a, 0x46, 0x34, 0xb1, 0x13, 0x70, 0x29, 0xed, 0x87, 0x90, 0xb0, 0x40, 0x2c, 0xa6, 0x43, 0x6e, 0xb6, 0xbc, 0x48, 0x8a, 0xc1, 0xae, 0xb8, 0xd4, 0xe2, 0xc0, 0x32, 0xb2, 0xa6, 0x2a, 0x8f, 0xb5, 0x16, 0x9e, 0xc3,
/* (2^ 97)P */ 0xff, 0x4d, 0xd2, 0xd6, 0x74, 0xef, 0x2c, 0x96, 0xc1, 0x11, 0xa8, 0xb8, 0xfe, 0x94, 0x87, 0x3e, 0xa0, 0xfb, 0x57, 0xa3, 0xfc, 0x7a, 0x7e, 0x6a, 0x59, 0x6c, 0x54, 0xbb, 0xbb, 0xa2, 0x25, 0x38, 0x1b, 0xdf, 0x5d, 0x7b, 0x94, 0x14, 0xde, 0x07, 0x6e, 0xd3, 0xab, 0x02, 0x26, 0x74, 0x16, 0x12, 0xdf, 0x2e, 0x2a, 0xa7, 0xb0, 0xe8, 0x29, 0xc0,
/* (2^ 98)P */ 0x6a, 0x38, 0x0b, 0xd3, 0xba, 0x45, 0x23, 0xe0, 0x04, 0x3b, 0x83, 0x39, 0xc5, 0x11, 0xe6, 0xcf, 0x39, 0x0a, 0xb3, 0xb0, 0x3b, 0x27, 0x29, 0x63, 0x1c, 0xf3, 0x00, 0xe6, 0xd2, 0x55, 0x21, 0x1f, 0x84, 0x97, 0x9f, 0x01, 0x49, 0x43, 0x30, 0x5f, 0xe0, 0x1d, 0x24, 0xc4, 0x4e, 0xa0, 0x2b, 0x0b, 0x12, 0x55, 0xc3, 0x27, 0xae, 0x08, 0x83, 0x7c,
/* (2^ 99)P */ 0x5d, 0x1a, 0xb7, 0xa9, 0xf5, 0xfd, 0xec, 0xad, 0xb7, 0x87, 0x02, 0x5f, 0x0d, 0x30, 0x4d, 0xe2, 0x65, 0x87, 0xa4, 0x41, 0x45, 0x1d, 0x67, 0xe0, 0x30, 0x5c, 0x13, 0x87, 0xf6, 0x2e, 0x08, 0xc1, 0xc7, 0x12, 0x45, 0xc8, 0x9b, 0xad, 0xb8, 0xd5, 0x57, 0xbb, 0x5c, 0x48, 0x3a, 0xe1, 0x91, 0x5e, 0xf6, 0x4d, 0x8a, 0x63, 0x75, 0x69, 0x0c, 0x01,
/* (2^100)P */ 0x8f, 0x53, 0x2d, 0xa0, 0x71, 0x3d, 0xfc, 0x45, 0x10, 0x96, 0xcf, 0x56, 0xf9, 0xbb, 0x40, 0x3c, 0x86, 0x52, 0x76, 0xbe, 0x84, 0xf9, 0xa6, 0x9d, 0x3d, 0x27, 0xbe, 0xb4, 0x00, 0x49, 0x94, 0xf5, 0x5d, 0xe1, 0x62, 0x85, 0x66, 0xe5, 0xb8, 0x20, 0x2c, 0x09, 0x7d, 0x9d, 0x3d, 0x6e, 0x74, 0x39, 0xab, 0xad, 0xa0, 0x90, 0x97, 0x5f, 0xbb, 0xa7,
/* (2^101)P */ 0xdb, 0x2d, 0x99, 0x08, 0x16, 0x46, 0x83, 0x7a, 0xa8, 0xea, 0x3d, 0x28, 0x5b, 0x49, 0xfc, 0xb9, 0x6d, 0x00, 0x9e, 0x54, 0x4f, 0x47, 0x64, 0x9b, 0x58, 0x4d, 0x07, 0x0c, 0x6f, 0x29, 0x56, 0x0b, 0x00, 0x14, 0x85, 0x96, 0x41, 0x04, 0xb9, 0x5c, 0xa4, 0xf6, 0x16, 0x73, 0x6a, 0xc7, 0x62, 0x0c, 0x65, 0x2f, 0x93, 0xbf, 0xf7, 0xb9, 0xb7, 0xf1,
/* (2^102)P */ 0xeb, 0x6d, 0xb3, 0x46, 0x32, 0xd2, 0xcb, 0x08, 0x94, 0x14, 0xbf, 0x3f, 0xc5, 0xcb, 0x5f, 0x9f, 0x8a, 0x89, 0x0c, 0x1b, 0x45, 0xad, 0x4c, 0x50, 0xb4, 0xe1, 0xa0, 0x6b, 0x11, 0x92, 0xaf, 0x1f, 0x00, 0xcc, 0xe5, 0x13, 0x7e, 0xe4, 0x2e, 0xa0, 0x57, 0xf3, 0xa7, 0x84, 0x79, 0x7a, 0xc2, 0xb7, 0xb7, 0xfc, 0x5d, 0xa5, 0xa9, 0x64, 0xcc, 0xd8,
/* (2^103)P */ 0xa9, 0xc4, 0x12, 0x8b, 0x34, 0x78, 0x3e, 0x38, 0xfd, 0x3f, 0x87, 0xfa, 0x88, 0x94, 0xd5, 0xd9, 0x7f, 0xeb, 0x58, 0xff, 0xb9, 0x45, 0xdb, 0xa1, 0xed, 0x22, 0x28, 0x1d, 0x00, 0x6d, 0x79, 0x85, 0x7a, 0x75, 0x5d, 0xf0, 0xb1, 0x9e, 0x47, 0x28, 0x8c, 0x62, 0xdf, 0xfb, 0x4c, 0x7b, 0xc5, 0x1a, 0x42, 0x95, 0xef, 0x9a, 0xb7, 0x27, 0x7e, 0xda,
/* (2^104)P */ 0xca, 0xd5, 0xc0, 0x17, 0xa1, 0x66, 0x79, 0x9c, 0x2a, 0xb7, 0x0a, 0xfe, 0x62, 0xe4, 0x26, 0x78, 0x90, 0xa7, 0xcb, 0xb0, 0x4f, 0x6d, 0xf9, 0x8f, 0xf7, 0x7d, 0xac, 0xb8, 0x78, 0x1f, 0x41, 0xea, 0x97, 0x1e, 0x62, 0x97, 0x43, 0x80, 0x58, 0x80, 0xb6, 0x69, 0x7d, 0xee, 0x16, 0xd2, 0xa1, 0x81, 0xd7, 0xb1, 0x27, 0x03, 0x48, 0xda, 0xab, 0xec,
/* (2^105)P */ 0x5b, 0xed, 0x40, 0x8e, 0x8c, 0xc1, 0x66, 0x90, 0x7f, 0x0c, 0xb2, 0xfc, 0xbd, 0x16, 0xac, 0x7d, 0x4c, 0x6a, 0xf9, 0xae, 0xe7, 0x4e, 0x11, 0x12, 0xe9, 0xbe, 0x17, 0x09, 0xc6, 0xc1, 0x5e, 0xb5, 0x7b, 0x50, 0x5c, 0x27, 0xfb, 0x80, 0xab, 0x01, 0xfa, 0x5b, 0x9b, 0x75, 0x16, 0x6e, 0xb2, 0x5c, 0x8c, 0x2f, 0xa5, 0x6a, 0x1a, 0x68, 0xa6, 0x90,
/* (2^106)P */ 0x75, 0xfe, 0xb6, 0x96, 0x96, 0x87, 0x4c, 0x12, 0xa9, 0xd1, 0xd8, 0x03, 0xa3, 0xc1, 0x15, 0x96, 0xe8, 0xa0, 0x75, 0x82, 0xa0, 0x6d, 0xea, 0x54, 0xdc, 0x5f, 0x0d, 0x7e, 0xf6, 0x70, 0xb5, 0xdc, 0x7a, 0xf6, 0xc4, 0xd4, 0x21, 0x49, 0xf5, 0xd4, 0x14, 0x6d, 0x48, 0x1d, 0x7c, 0x99, 0x42, 0xdf, 0x78, 0x6b, 0x9d, 0xb9, 0x30, 0x3c, 0xd0, 0x29,
/* (2^107)P */ 0x85, 0xd6, 0xd8, 0xf3, 0x91, 0x74, 0xdd, 0xbd, 0x72, 0x96, 0x10, 0xe4, 0x76, 0x02, 0x5a, 0x72, 0x67, 0xd3, 0x17, 0x72, 0x14, 0x9a, 0x20, 0x5b, 0x0f, 0x8d, 0xed, 0x6d, 0x4e, 0xe3, 0xd9, 0x82, 0xc2, 0x99, 0xee, 0x39, 0x61, 0x69, 0x8a, 0x24, 0x01, 0x92, 0x15, 0xe7, 0xfc, 0xf9, 0x4d, 0xac, 0xf1, 0x30, 0x49, 0x01, 0x0b, 0x6e, 0x0f, 0x20,
/* (2^108)P */ 0xd8, 0x25, 0x94, 0x5e, 0x43, 0x29, 0xf5, 0xcc, 0xe8, 0xe3, 0x55, 0x41, 0x3c, 0x9f, 0x58, 0x5b, 0x00, 0xeb, 0xc5, 0xdf, 0xcf, 0xfb, 0xfd, 0x6e, 0x92, 0xec, 0x99, 0x30, 0xd6, 0x05, 0xdd, 0x80, 0x7a, 0x5d, 0x6d, 0x16, 0x85, 0xd8, 0x9d, 0x43, 0x65, 0xd8, 0x2c, 0x33, 0x2f, 0x5c, 0x41, 0xea, 0xb7, 0x95, 0x77, 0xf2, 0x9e, 0x59, 0x09, 0xe8,
/* (2^109)P */ 0x00, 0xa0, 0x03, 0x80, 0xcd, 0x60, 0xe5, 0x17, 0xd4, 0x15, 0x99, 0xdd, 0x4f, 0xbf, 0x66, 0xb8, 0xc0, 0xf5, 0xf9, 0xfc, 0x6d, 0x42, 0x18, 0x34, 0x1c, 0x7d, 0x5b, 0xb5, 0x09, 0xd0, 0x99, 0x57, 0x81, 0x0b, 0x62, 0xb3, 0xa2, 0xf9, 0x0b, 0xae, 0x95, 0xb8, 0xc2, 0x3b, 0x0d, 0x5b, 0x00, 0xf1, 0xed, 0xbc, 0x05, 0x9d, 0x61, 0xbc, 0x73, 0x9d,
/* (2^110)P */ 0xd4, 0xdb, 0x29, 0xe5, 0x85, 0xe9, 0xc6, 0x89, 0x2a, 0xa8, 0x54, 0xab, 0xb3, 0x7f, 0x88, 0xc0, 0x4d, 0xe0, 0xd1, 0x74, 0x6e, 0xa3, 0xa7, 0x39, 0xd5, 0xcc, 0xa1, 0x8a, 0xcb, 0x5b, 0x34, 0xad, 0x92, 0xb4, 0xd8, 0xd5, 0x17, 0xf6, 0x77, 0x18, 0x9e, 0xaf, 0x45, 0x3b, 0x03, 0xe2, 0xf8, 0x52, 0x60, 0xdc, 0x15, 0x20, 0x9e, 0xdf, 0xd8, 0x5d,
/* (2^111)P */ 0x02, 0xc1, 0xac, 0x1a, 0x15, 0x8e, 0x6c, 0xf5, 0x1e, 0x1e, 0xba, 0x7e, 0xc2, 0xda, 0x7d, 0x02, 0xda, 0x43, 0xae, 0x04, 0x70, 0x28, 0x54, 0x78, 0x94, 0xf5, 0x4f, 0x07, 0x84, 0x8f, 0xed, 0xaa, 0xc0, 0xb8, 0xcd, 0x7f, 0x7e, 0x33, 0xa3, 0xbe, 0x21, 0x29, 0xc8, 0x56, 0x34, 0xc0, 0x76, 0x87, 0x8f, 0xc7, 0x73, 0x58, 0x90, 0x16, 0xfc, 0xd6,
/* (2^112)P */ 0xb8, 0x3f, 0xe1, 0xdf, 0x3a, 0x91, 0x25, 0x0c, 0xf6, 0x47, 0xa8, 0x89, 0xc4, 0xc6, 0x61, 0xec, 0x86, 0x2c, 0xfd, 0xbe, 0xa4, 0x6f, 0xc2, 0xd4, 0x46, 0x19, 0x70, 0x5d, 0x09, 0x02, 0x86, 0xd3, 0x4b, 0xe9, 0x16, 0x7b, 0xf0, 0x0d, 0x6c, 0xff, 0x91, 0x05, 0xbf, 0x55, 0xb4, 0x00, 0x8d, 0xe5, 0x6d, 0x68, 0x20, 0x90, 0x12, 0xb5, 0x5c, 0x32,
/* (2^113)P */ 0x80, 0x45, 0xc8, 0x51, 0x87, 0xba, 0x1c, 0x5c, 0xcf, 0x5f, 0x4b, 0x3c, 0x9e, 0x3b, 0x36, 0xd2, 0x26, 0xa2, 0x7f, 0xab, 0xb7, 0xbf, 0xda, 0x68, 0x23, 0x8f, 0xc3, 0xa0, 0xfd, 0xad, 0xf1, 0x56, 0x3b, 0xd0, 0x75, 0x2b, 0x44, 0x61, 0xd8, 0xf4, 0xf1, 0x05, 0x49, 0x53, 0x07, 0xee, 0x47, 0xef, 0xc0, 0x7c, 0x9d, 0xe4, 0x15, 0x88, 0xc5, 0x47,
/* (2^114)P */ 0x2d, 0xb5, 0x09, 0x80, 0xb9, 0xd3, 0xd8, 0xfe, 0x4c, 0xd2, 0xa6, 0x6e, 0xd3, 0x75, 0xcf, 0xb0, 0x99, 0xcb, 0x50, 0x8d, 0xe9, 0x67, 0x9b, 0x20, 0xe8, 0x57, 0xd8, 0x14, 0x85, 0x73, 0x6a, 0x74, 0xe0, 0x99, 0xf0, 0x6b, 0x6e, 0x59, 0x30, 0x31, 0x33, 0x96, 0x5f, 0xa1, 0x0c, 0x1b, 0xf4, 0xca, 0x09, 0xe1, 0x9b, 0xb5, 0xcf, 0x6d, 0x0b, 0xeb,
/* (2^115)P */ 0x1a, 0xde, 0x50, 0xa9, 0xac, 0x3e, 0x10, 0x43, 0x4f, 0x82, 0x4f, 0xc0, 0xfe, 0x3f, 0x33, 0xd2, 0x64, 0x86, 0x50, 0xa9, 0x51, 0x76, 0x5e, 0x50, 0x97, 0x6c, 0x73, 0x8d, 0x77, 0xa3, 0x75, 0x03, 0xbc, 0xc9, 0xfb, 0x50, 0xd9, 0x6d, 0x16, 0xad, 0x5d, 0x32, 0x3d, 0xac, 0x44, 0xdf, 0x51, 0xf7, 0x19, 0xd4, 0x0b, 0x57, 0x78, 0x0b, 0x81, 0x4e,
/* (2^116)P */ 0x32, 0x24, 0xf1, 0x6c, 0x55, 0x62, 0x1d, 0xb3, 0x1f, 0xda, 0xfa, 0x6a, 0x8f, 0x98, 0x01, 0x16, 0xde, 0x44, 0x50, 0x0d, 0x2e, 0x6c, 0x0b, 0xa2, 0xd3, 0x74, 0x0e, 0xa9, 0xbf, 0x8d, 0xa9, 0xc8, 0xc8, 0x2f, 0x62, 0xc1, 0x35, 0x5e, 0xfd, 0x3a, 0xb3, 0x83, 0x2d, 0xee, 0x4e, 0xfd, 0x5c, 0x5e, 0xad, 0x85, 0xa5, 0x10, 0xb5, 0x4f, 0x34, 0xa7,
/* (2^117)P */ 0xd1, 0x58, 0x6f, 0xe6, 0x54, 0x2c, 0xc2, 0xcd, 0xcf, 0x83, 0xdc, 0x88, 0x0c, 0xb9, 0xb4, 0x62, 0x18, 0x89, 0x65, 0x28, 0xe9, 0x72, 0x4b, 0x65, 0xcf, 0xd6, 0x90, 0x88, 0xd7, 0x76, 0x17, 0x4f, 0x74, 0x64, 0x1e, 0xcb, 0xd3, 0xf5, 0x4b, 0xaa, 0x2e, 0x4d, 0x2d, 0x7c, 0x13, 0x1f, 0xfd, 0xd9, 0x60, 0x83, 0x7e, 0xda, 0x64, 0x1c, 0xdc, 0x9f,
/* (2^118)P */ 0xad, 0xef, 0xac, 0x1b, 0xc1, 0x30, 0x5a, 0x15, 0xc9, 0x1f, 0xac, 0xf1, 0xca, 0x44, 0x95, 0x95, 0xea, 0xf2, 0x22, 0xe7, 0x8d, 0x25, 0xf0, 0xff, 0xd8, 0x71, 0xf7, 0xf8, 0x8f, 0x8f, 0xcd, 0xf4, 0x1e, 0xfe, 0x6c, 0x68, 0x04, 0xb8, 0x78, 0xa1, 0x5f, 0xa6, 0x5d, 0x5e, 0xf9, 0x8d, 0xea, 0x80, 0xcb, 0xf3, 0x17, 0xa6, 0x03, 0xc9, 0x38, 0xd5,
/* (2^119)P */ 0x79, 0x14, 0x31, 0xc3, 0x38, 0xe5, 0xaa, 0xbf, 0x17, 0xa3, 0x04, 0x4e, 0x80, 0x59, 0x9c, 0x9f, 0x19, 0x39, 0xe4, 0x2d, 0x23, 0x54, 0x4a, 0x7f, 0x3e, 0xf3, 0xd9, 0xc7, 0xba, 0x6c, 0x8f, 0x6b, 0xfa, 0x34, 0xb5, 0x23, 0x17, 0x1d, 0xff, 0x1d, 0xea, 0x1f, 0xd7, 0xba, 0x61, 0xb2, 0xe0, 0x38, 0x6a, 0xe9, 0xcf, 0x48, 0x5d, 0x6a, 0x10, 0x9c,
/* (2^120)P */ 0xc8, 0xbb, 0x13, 0x1c, 0x3f, 0x3c, 0x34, 0xfd, 0xac, 0x37, 0x52, 0x44, 0x25, 0xa8, 0xde, 0x1d, 0x63, 0xf4, 0x81, 0x9a, 0xbe, 0x0b, 0x74, 0x2e, 0xc8, 0x51, 0x16, 0xd3, 0xac, 0x4a, 0xaf, 0xe2, 0x5f, 0x3a, 0x89, 0x32, 0xd1, 0x9b, 0x7c, 0x90, 0x0d, 0xac, 0xdc, 0x8b, 0x73, 0x45, 0x45, 0x97, 0xb1, 0x90, 0x2c, 0x1b, 0x31, 0xca, 0xb1, 0x94,
/* (2^121)P */ 0x07, 0x28, 0xdd, 0x10, 0x14, 0xa5, 0x95, 0x7e, 0xf3, 0xe4, 0xd4, 0x14, 0xb4, 0x7e, 0x76, 0xdb, 0x42, 0xd6, 0x94, 0x3e, 0xeb, 0x44, 0x64, 0x88, 0x0d, 0xec, 0xc1, 0x21, 0xf0, 0x79, 0xe0, 0x83, 0x67, 0x55, 0x53, 0xc2, 0xf6, 0xc5, 0xc5, 0x89, 0x39, 0xe8, 0x42, 0xd0, 0x17, 0xbd, 0xff, 0x35, 0x59, 0x0e, 0xc3, 0x06, 0x86, 0xd4, 0x64, 0xcf,
/* (2^122)P */ 0x91, 0xa8, 0xdb, 0x57, 0x9b, 0xe2, 0x96, 0x31, 0x10, 0x6e, 0xd7, 0x9a, 0x97, 0xb3, 0xab, 0xb5, 0x15, 0x66, 0xbe, 0xcc, 0x6d, 0x9a, 0xac, 0x06, 0xb3, 0x0d, 0xaa, 0x4b, 0x9c, 0x96, 0x79, 0x6c, 0x34, 0xee, 0x9e, 0x53, 0x4d, 0x6e, 0xbd, 0x88, 0x02, 0xbf, 0x50, 0x54, 0x12, 0x5d, 0x01, 0x02, 0x46, 0xc6, 0x74, 0x02, 0x8c, 0x24, 0xae, 0xb1,
/* (2^123)P */ 0xf5, 0x22, 0xea, 0xac, 0x7d, 0x9c, 0x33, 0x8a, 0xa5, 0x36, 0x79, 0x6a, 0x4f, 0xa4, 0xdc, 0xa5, 0x73, 0x64, 0xc4, 0x6f, 0x43, 0x02, 0x3b, 0x94, 0x66, 0xd2, 0x4b, 0x4f, 0xf6, 0x45, 0x33, 0x5d, 0x10, 0x33, 0x18, 0x1e, 0xa3, 0xfc, 0xf7, 0xd2, 0xb8, 0xc8, 0xa7, 0xe0, 0x76, 0x8a, 0xcd, 0xff, 0x4f, 0x99, 0x34, 0x47, 0x84, 0x91, 0x96, 0x9f,
/* (2^124)P */ 0x8a, 0x48, 0x3b, 0x48, 0x4a, 0xbc, 0xac, 0xe2, 0x80, 0xd6, 0xd2, 0x35, 0xde, 0xd0, 0x56, 0x42, 0x33, 0xb3, 0x56, 0x5a, 0xcd, 0xb8, 0x3d, 0xb5, 0x25, 0xc1, 0xed, 0xff, 0x87, 0x0b, 0x79, 0xff, 0xf2, 0x62, 0xe1, 0x76, 0xc6, 0xa2, 0x0f, 0xa8, 0x9b, 0x0d, 0xcc, 0x3f, 0x3d, 0x35, 0x27, 0x8d, 0x0b, 0x74, 0xb0, 0xc3, 0x78, 0x8c, 0xcc, 0xc8,
/* (2^125)P */ 0xfc, 0x9a, 0x0c, 0xa8, 0x49, 0x42, 0xb8, 0xdf, 0xcf, 0xb3, 0x19, 0xa6, 0x64, 0x57, 0xfe, 0xe8, 0xf8, 0xa6, 0x4b, 0x86, 0xa1, 0xd5, 0x83, 0x7f, 0x14, 0x99, 0x18, 0x0c, 0x7d, 0x5b, 0xf7, 0x3d, 0xf9, 0x4b, 0x79, 0xb1, 0x86, 0x30, 0xb4, 0x5e, 0x6a, 0xe8, 0x9d, 0xfa, 0x8a, 0x41, 0xc4, 0x30, 0xfc, 0x56, 0x74, 0x14, 0x42, 0xc8, 0x96, 0x0e,
/* (2^126)P */ 0xdf, 0x66, 0xec, 0xbc, 0x44, 0xdb, 0x19, 0xce, 0xd4, 0xb5, 0x49, 0x40, 0x07, 0x49, 0xe0, 0x3a, 0x61, 0x10, 0xfb, 0x7d, 0xba, 0xb1, 0xe0, 0x28, 0x5b, 0x99, 0x59, 0x96, 0xa2, 0xee, 0xe0, 0x23, 0x37, 0x39, 0x1f, 0xe6, 0x57, 0x9f, 0xf8, 0xf8, 0xdc, 0x74, 0xf6, 0x8f, 0x4f, 0x5e, 0x51, 0xa4, 0x12, 0xac, 0xbe, 0xe4, 0xf3, 0xd1, 0xf0, 0x24,
/* (2^127)P */ 0x1e, 0x3e, 0x9a, 0x5f, 0xdf, 0x9f, 0xd6, 0x4e, 0x8a, 0x28, 0xc3, 0xcd, 0x96, 0x9d, 0x57, 0xc7, 0x61, 0x81, 0x90, 0xff, 0xae, 0xb1, 0x4f, 0xc2, 0x96, 0x8b, 0x1a, 0x18, 0xf4, 0x50, 0xcb, 0x31, 0xe1, 0x57, 0xf4, 0x90, 0xa8, 0xea, 0xac, 0xe7, 0x61, 0x98, 0xb6, 0x15, 0xc1, 0x7b, 0x29, 0xa4, 0xc3, 0x18, 0xef, 0xb9, 0xd8, 0xdf, 0xf6, 0xac,
/* (2^128)P */ 0xca, 0xa8, 0x6c, 0xf1, 0xb4, 0xca, 0xfe, 0x31, 0xee, 0x48, 0x38, 0x8b, 0x0e, 0xbb, 0x7a, 0x30, 0xaa, 0xf9, 0xee, 0x27, 0x53, 0x24, 0xdc, 0x2e, 0x15, 0xa6, 0x48, 0x8f, 0xa0, 0x7e, 0xf1, 0xdc, 0x93, 0x87, 0x39, 0xeb, 0x7f, 0x38, 0x92, 0x92, 0x4c, 0x29, 0xe9, 0x57, 0xd8, 0x59, 0xfc, 0xe9, 0x9c, 0x44, 0xc0, 0x65, 0xcf, 0xac, 0x4b, 0xdc,
/* (2^129)P */ 0xa3, 0xd0, 0x37, 0x8f, 0x86, 0x2f, 0xc6, 0x47, 0x55, 0x46, 0x65, 0x26, 0x4b, 0x91, 0xe2, 0x18, 0x5c, 0x4f, 0x23, 0xc1, 0x37, 0x29, 0xb9, 0xc1, 0x27, 0xc5, 0x3c, 0xbf, 0x7e, 0x23, 0xdb, 0x73, 0x99, 0xbd, 0x1b, 0xb2, 0x31, 0x68, 0x3a, 0xad, 0xb7, 0xb0, 0x10, 0xc5, 0xe5, 0x11, 0x51, 0xba, 0xa7, 0x60, 0x66, 0x54, 0xf0, 0x08, 0xd7, 0x69,
/* (2^130)P */ 0x89, 0x41, 0x79, 0xcc, 0xeb, 0x0a, 0xf5, 0x4b, 0xa3, 0x4c, 0xce, 0x52, 0xb0, 0xa7, 0xe4, 0x41, 0x75, 0x7d, 0x04, 0xbb, 0x09, 0x4c, 0x50, 0x9f, 0xdf, 0xea, 0x74, 0x61, 0x02, 0xad, 0xb4, 0x9d, 0xb7, 0x05, 0xb9, 0xea, 0xeb, 0x91, 0x35, 0xe7, 0x49, 0xea, 0xd3, 0x4f, 0x3c, 0x60, 0x21, 0x7a, 0xde, 0xc7, 0xe2, 0x5a, 0xee, 0x8e, 0x93, 0xc7,
/* (2^131)P */ 0x00, 0xe8, 0xed, 0xd0, 0xb3, 0x0d, 0xaf, 0xb2, 0xde, 0x2c, 0xf6, 0x00, 0xe2, 0xea, 0x6d, 0xf8, 0x0e, 0xd9, 0x67, 0x59, 0xa9, 0x50, 0xbb, 0x17, 0x8f, 0xff, 0xb1, 0x9f, 0x17, 0xb6, 0xf2, 0xb5, 0xba, 0x80, 0xf7, 0x0f, 0xba, 0xd5, 0x09, 0x43, 0xaa, 0x4e, 0x3a, 0x67, 0x6a, 0x89, 0x9b, 0x18, 0x65, 0x35, 0xf8, 0x3a, 0x49, 0x91, 0x30, 0x51,
/* (2^132)P */ 0x8d, 0x25, 0xe9, 0x0e, 0x7d, 0x50, 0x76, 0xe4, 0x58, 0x7e, 0xb9, 0x33, 0xe6, 0x65, 0x90, 0xc2, 0x50, 0x9d, 0x50, 0x2e, 0x11, 0xad, 0xd5, 0x43, 0x52, 0x32, 0x41, 0x4f, 0x7b, 0xb6, 0xa0, 0xec, 0x81, 0x75, 0x36, 0x7c, 0x77, 0x85, 0x59, 0x70, 0xe4, 0xf9, 0xef, 0x66, 0x8d, 0x35, 0xc8, 0x2a, 0x6e, 0x5b, 0xc6, 0x0d, 0x0b, 0x29, 0x60, 0x68,
/* (2^133)P */ 0xf8, 0xce, 0xb0, 0x3a, 0x56, 0x7d, 0x51, 0x9a, 0x25, 0x73, 0xea, 0xdd, 0xe4, 0xe0, 0x0e, 0xf0, 0x07, 0xc0, 0x31, 0x00, 0x73, 0x35, 0xd0, 0x39, 0xc4, 0x9b, 0xb7, 0x95, 0xe0, 0x62, 0x70, 0x36, 0x0b, 0xcb, 0xa0, 0x42, 0xde, 0x51, 0xcf, 0x41, 0xe0, 0xb8, 0xb4, 0xc0, 0xe5, 0x46, 0x99, 0x9f, 0x02, 0x7f, 0x14, 0x8c, 0xc1, 0x4e, 0xef, 0xe8,
/* (2^134)P */ 0x10, 0x01, 0x57, 0x0a, 0xbe, 0x8b, 0x18, 0xc8, 0xca, 0x00, 0x28, 0x77, 0x4a, 0x9a, 0xc7, 0x55, 0x2a, 0xcc, 0x0c, 0x7b, 0xb9, 0xe9, 0xc8, 0x97, 0x7c, 0x02, 0xe3, 0x09, 0x2f, 0x62, 0x30, 0xb8, 0x40, 0x09, 0x65, 0xe9, 0x55, 0x63, 0xb5, 0x07, 0xca, 0x9f, 0x00, 0xdf, 0x9d, 0x5c, 0xc7, 0xee, 0x57, 0xa5, 0x90, 0x15, 0x1e, 0x22, 0xa0, 0x12,
/* (2^135)P */ 0x71, 0x2d, 0xc9, 0xef, 0x27, 0xb9, 0xd8, 0x12, 0x43, 0x6b, 0xa8, 0xce, 0x3b, 0x6d, 0x6e, 0x91, 0x43, 0x23, 0xbc, 0x32, 0xb3, 0xbf, 0xe1, 0xc7, 0x39, 0xcf, 0x7c, 0x42, 0x4c, 0xb1, 0x30, 0xe2, 0xdd, 0x69, 0x06, 0xe5, 0xea, 0xf0, 0x2a, 0x16, 0x50, 0x71, 0xca, 0x92, 0xdf, 0xc1, 0xcc, 0xec, 0xe6, 0x54, 0x07, 0xf3, 0x18, 0x8d, 0xd8, 0x29,
/* (2^136)P */ 0x98, 0x51, 0x48, 0x8f, 0xfa, 0x2e, 0x5e, 0x67, 0xb0, 0xc6, 0x17, 0x12, 0xb6, 0x7d, 0xc9, 0xad, 0x81, 0x11, 0xad, 0x0c, 0x1c, 0x2d, 0x45, 0xdf, 0xac, 0x66, 0xbd, 0x08, 0x6f, 0x7c, 0xc7, 0x06, 0x6e, 0x19, 0x08, 0x39, 0x64, 0xd7, 0xe4, 0xd1, 0x11, 0x5f, 0x1c, 0xf4, 0x67, 0xc3, 0x88, 0x6a, 0xe6, 0x07, 0xa3, 0x83, 0xd7, 0xfd, 0x2a, 0xf9,
/* (2^137)P */ 0x87, 0xed, 0xeb, 0xd9, 0xdf, 0xff, 0x43, 0x8b, 0xaa, 0x20, 0x58, 0xb0, 0xb4, 0x6b, 0x14, 0xb8, 0x02, 0xc5, 0x40, 0x20, 0x22, 0xbb, 0xf7, 0xb4, 0xf3, 0x05, 0x1e, 0x4d, 0x94, 0xff, 0xe3, 0xc5, 0x22, 0x82, 0xfe, 0xaf, 0x90, 0x42, 0x98, 0x6b, 0x76, 0x8b, 0x3e, 0x89, 0x3f, 0x42, 0x2a, 0xa7, 0x26, 0x00, 0xda, 0x5c, 0xa2, 0x2b, 0xec, 0xdd,
/* (2^138)P */ 0x5c, 0x21, 0x16, 0x0d, 0x46, 0xb8, 0xd0, 0xa7, 0x88, 0xe7, 0x25, 0xcb, 0x3e, 0x50, 0x73, 0x61, 0xe7, 0xaf, 0x5a, 0x3f, 0x47, 0x8b, 0x3d, 0x97, 0x79, 0x2c, 0xe6, 0x6d, 0x95, 0x74, 0x65, 0x70, 0x36, 0xfd, 0xd1, 0x9e, 0x13, 0x18, 0x63, 0xb1, 0x2d, 0x0b, 0xb5, 0x36, 0x3e, 0xe7, 0x35, 0x42, 0x3b, 0xe6, 0x1f, 0x4d, 0x9d, 0x59, 0xa2, 0x43,
/* (2^139)P */ 0x8c, 0x0c, 0x7c, 0x24, 0x9e, 0xe0, 0xf8, 0x05, 0x1c, 0x9e, 0x1f, 0x31, 0xc0, 0x70, 0xb3, 0xfb, 0x4e, 0xf8, 0x0a, 0x57, 0xb7, 0x49, 0xb5, 0x73, 0xa1, 0x5f, 0x9b, 0x6a, 0x07, 0x6c, 0x87, 0x71, 0x87, 0xd4, 0xbe, 0x98, 0x1e, 0x98, 0xee, 0x52, 0xc1, 0x7b, 0x95, 0x0f, 0x28, 0x32, 0x36, 0x28, 0xd0, 0x3a, 0x0f, 0x7d, 0x2a, 0xa9, 0x62, 0xb9,
/* (2^140)P */ 0x97, 0xe6, 0x18, 0x77, 0xf9, 0x34, 0xac, 0xbc, 0xe0, 0x62, 0x9f, 0x42, 0xde, 0xbd, 0x2f, 0xf7, 0x1f, 0xb7, 0x14, 0x52, 0x8a, 0x79, 0xb2, 0x3f, 0xd2, 0x95, 0x71, 0x01, 0xe8, 0xaf, 0x8c, 0xa4, 0xa4, 0xa7, 0x27, 0xf3, 0x5c, 0xdf, 0x3e, 0x57, 0x7a, 0xf1, 0x76, 0x49, 0xe6, 0x42, 0x3f, 0x8f, 0x1e, 0x63, 0x4a, 0x65, 0xb5, 0x41, 0xf5, 0x02,
/* (2^141)P */ 0x72, 0x85, 0xc5, 0x0b, 0xe1, 0x47, 0x64, 0x02, 0xc5, 0x4d, 0x81, 0x69, 0xb2, 0xcf, 0x0f, 0x6c, 0xd4, 0x6d, 0xd0, 0xc7, 0xb4, 0x1c, 0xd0, 0x32, 0x59, 0x89, 0xe2, 0xe0, 0x96, 0x8b, 0x12, 0x98, 0xbf, 0x63, 0x7a, 0x4c, 0x76, 0x7e, 0x58, 0x17, 0x8f, 0x5b, 0x0a, 0x59, 0x65, 0x75, 0xbc, 0x61, 0x1f, 0xbe, 0xc5, 0x6e, 0x0a, 0x57, 0x52, 0x70,
/* (2^142)P */ 0x92, 0x1c, 0x77, 0xbb, 0x62, 0x02, 0x6c, 0x25, 0x9c, 0x66, 0x07, 0x83, 0xab, 0xcc, 0x80, 0x5d, 0xd2, 0x76, 0x0c, 0xa4, 0xc5, 0xb4, 0x8a, 0x68, 0x23, 0x31, 0x32, 0x29, 0x8a, 0x47, 0x92, 0x12, 0x80, 0xb3, 0xfa, 0x18, 0xe4, 0x8d, 0xc0, 0x4d, 0xfe, 0x97, 0x5f, 0x72, 0x41, 0xb5, 0x5c, 0x7a, 0xbd, 0xf0, 0xcf, 0x5e, 0x97, 0xaa, 0x64, 0x32,
/* (2^143)P */ 0x35, 0x3f, 0x75, 0xc1, 0x7a, 0x75, 0x7e, 0xa9, 0xc6, 0x0b, 0x4e, 0x32, 0x62, 0xec, 0xe3, 0x5c, 0xfb, 0x01, 0x43, 0xb6, 0xd4, 0x5b, 0x75, 0xd2, 0xee, 0x7f, 0x5d, 0x23, 0x2b, 0xb3, 0x54, 0x34, 0x4c, 0xd3, 0xb4, 0x32, 0x84, 0x81, 0xb5, 0x09, 0x76, 0x19, 0xda, 0x58, 0xda, 0x7c, 0xdb, 0x2e, 0xdd, 0x4c, 0x8e, 0xdd, 0x5d, 0x89, 0x10, 0x10,
/* (2^144)P */ 0x57, 0x25, 0x6a, 0x08, 0x37, 0x92, 0xa8, 0xdf, 0x24, 0xef, 0x8f, 0x33, 0x34, 0x52, 0xa4, 0x4c, 0xf0, 0x77, 0x9f, 0x69, 0x77, 0xd5, 0x8f, 0xd2, 0x9a, 0xb3, 0xb6, 0x1d, 0x2d, 0xa6, 0xf7, 0x1f, 0xda, 0xd7, 0xcb, 0x75, 0x11, 0xc3, 0x6b, 0xc0, 0x38, 0xb1, 0xd5, 0x2d, 0x96, 0x84, 0x16, 0xfa, 0x26, 0xb9, 0xcc, 0x3f, 0x16, 0x47, 0x23, 0x74,
/* (2^145)P */ 0x9b, 0x61, 0x2a, 0x1c, 0xdd, 0x39, 0xa5, 0xfa, 0x1c, 0x7d, 0x63, 0x50, 0xca, 0xe6, 0x9d, 0xfa, 0xb7, 0xc4, 0x4c, 0x6a, 0x97, 0x5f, 0x36, 0x4e, 0x47, 0xdd, 0x17, 0xf7, 0xf9, 0x19, 0xce, 0x75, 0x17, 0xad, 0xce, 0x2a, 0xf3, 0xfe, 0x27, 0x8f, 0x3e, 0x48, 0xc0, 0x60, 0x87, 0x24, 0x19, 0xae, 0x59, 0xe4, 0x5a, 0x00, 0x2a, 0xba, 0xa2, 0x1f,
/* (2^146)P */ 0x26, 0x88, 0x42, 0x60, 0x9f, 0x6e, 0x2c, 0x7c, 0x39, 0x0f, 0x47, 0x6a, 0x0e, 0x02, 0xbb, 0x4b, 0x34, 0x29, 0x55, 0x18, 0x36, 0xcf, 0x3b, 0x47, 0xf1, 0x2e, 0xfc, 0x6e, 0x94, 0xff, 0xe8, 0x6b, 0x06, 0xd2, 0xba, 0x77, 0x5e, 0x60, 0xd7, 0x19, 0xef, 0x02, 0x9d, 0x3a, 0xc2, 0xb7, 0xa9, 0xd8, 0x57, 0xee, 0x7e, 0x2b, 0xf2, 0x6d, 0x28, 0xda,
/* (2^147)P */ 0xdf, 0xd9, 0x92, 0x11, 0x98, 0x23, 0xe2, 0x45, 0x2f, 0x74, 0x70, 0xee, 0x0e, 0x55, 0x65, 0x79, 0x86, 0x38, 0x17, 0x92, 0x85, 0x87, 0x99, 0x50, 0xd9, 0x7c, 0xdb, 0xa1, 0x10, 0xec, 0x30, 0xb7, 0x40, 0xa3, 0x23, 0x9b, 0x0e, 0x27, 0x49, 0x29, 0x03, 0x94, 0xff, 0x53, 0xdc, 0xd7, 0xed, 0x49, 0xa9, 0x5a, 0x3b, 0xee, 0xd7, 0xc7, 0x65, 0xaf,
/* (2^148)P */ 0xa0, 0xbd, 0xbe, 0x03, 0xee, 0x0c, 0xbe, 0x32, 0x00, 0x7b, 0x52, 0xcb, 0x92, 0x29, 0xbf, 0xa0, 0xc6, 0xd9, 0xd2, 0xd6, 0x15, 0xe8, 0x3a, 0x75, 0x61, 0x65, 0x56, 0xae, 0xad, 0x3c, 0x2a, 0x64, 0x14, 0x3f, 0x8e, 0xc1, 0x2d, 0x0c, 0x8d, 0x20, 0xdb, 0x58, 0x4b, 0xe5, 0x40, 0x15, 0x4b, 0xdc, 0xa8, 0xbd, 0xef, 0x08, 0xa7, 0xd1, 0xf4, 0xb0,
/* (2^149)P */ 0xa9, 0x0f, 0x05, 0x94, 0x66, 0xac, 0x1f, 0x65, 0x3f, 0xe1, 0xb8, 0xe1, 0x34, 0x5e, 0x1d, 0x8f, 0xe3, 0x93, 0x03, 0x15, 0xff, 0xb6, 0x65, 0xb6, 0x6e, 0xc0, 0x2f, 0xd4, 0x2e, 0xb9, 0x2c, 0x13, 0x3c, 0x99, 0x1c, 0xb5, 0x87, 0xba, 0x79, 0xcb, 0xf0, 0x18, 0x06, 0x86, 0x04, 0x14, 0x25, 0x09, 0xcd, 0x1c, 0x14, 0xda, 0x35, 0xd0, 0x38, 0x3b,
/* (2^150)P */ 0x1b, 0x04, 0xa3, 0x27, 0xb4, 0xd3, 0x37, 0x48, 0x1e, 0x8f, 0x69, 0xd3, 0x5a, 0x2f, 0x20, 0x02, 0x36, 0xbe, 0x06, 0x7b, 0x6b, 0x6c, 0x12, 0x5b, 0x80, 0x74, 0x44, 0xe6, 0xf8, 0xf5, 0x95, 0x59, 0x29, 0xab, 0x51, 0x47, 0x83, 0x28, 0xe0, 0xad, 0xde, 0xaa, 0xd3, 0xb1, 0x1a, 0xcb, 0xa3, 0xcd, 0x8b, 0x6a, 0xb1, 0xa7, 0x0a, 0xd1, 0xf9, 0xbe,
/* (2^151)P */ 0xce, 0x2f, 0x85, 0xca, 0x74, 0x6d, 0x49, 0xb8, 0xce, 0x80, 0x44, 0xe0, 0xda, 0x5b, 0xcf, 0x2f, 0x79, 0x74, 0xfe, 0xb4, 0x2c, 0x99, 0x20, 0x6e, 0x09, 0x04, 0xfb, 0x6d, 0x57, 0x5b, 0x95, 0x0c, 0x45, 0xda, 0x4f, 0x7f, 0x63, 0xcc, 0x85, 0x5a, 0x67, 0x50, 0x68, 0x71, 0xb4, 0x67, 0xb1, 0x2e, 0xc1, 0x1c, 0xdc, 0xff, 0x2a, 0x7c, 0x10, 0x5e,
/* (2^152)P */ 0xa6, 0xde, 0xf3, 0xd4, 0x22, 0x30, 0x24, 0x9e, 0x0b, 0x30, 0x54, 0x59, 0x7e, 0xa2, 0xeb, 0x89, 0x54, 0x65, 0x3e, 0x40, 0xd1, 0xde, 0xe6, 0xee, 0x4d, 0xbf, 0x5e, 0x40, 0x1d, 0xee, 0x4f, 0x68, 0xd9, 0xa7, 0x2f, 0xb3, 0x64, 0xb3, 0xf5, 0xc8, 0xd3, 0xaa, 0x70, 0x70, 0x3d, 0xef, 0xd3, 0x95, 0x54, 0xdb, 0x3e, 0x94, 0x95, 0x92, 0x1f, 0x45,
/* (2^153)P */ 0x22, 0x80, 0x1d, 0x9d, 0x96, 0xa5, 0x78, 0x6f, 0xe0, 0x1e, 0x1b, 0x66, 0x42, 0xc8, 0xae, 0x9e, 0x46, 0x45, 0x08, 0x41, 0xdf, 0x80, 0xae, 0x6f, 0xdb, 0x15, 0x5a, 0x21, 0x31, 0x7a, 0xd0, 0xf2, 0x54, 0x15, 0x88, 0xd3, 0x0f, 0x7f, 0x14, 0x5a, 0x14, 0x97, 0xab, 0xf4, 0x58, 0x6a, 0x9f, 0xea, 0x74, 0xe5, 0x6b, 0x90, 0x59, 0x2b, 0x48, 0xd9,
/* (2^154)P */ 0x12, 0x24, 0x04, 0xf5, 0x50, 0xc2, 0x8c, 0xb0, 0x7c, 0x46, 0x98, 0xd5, 0x24, 0xad, 0xf6, 0x72, 0xdc, 0x82, 0x1a, 0x60, 0xc1, 0xeb, 0x48, 0xef, 0x7f, 0x6e, 0xe6, 0xcc, 0xdb, 0x7b, 0xae, 0xbe, 0x5e, 0x1e, 0x5c, 0xe6, 0x0a, 0x70, 0xdf, 0xa4, 0xa3, 0x85, 0x1b, 0x1b, 0x7f, 0x72, 0xb9, 0x96, 0x6f, 0xdc, 0x03, 0x76, 0x66, 0xfb, 0xa0, 0x33,
/* (2^155)P */ 0x37, 0x40, 0xbb, 0xbc, 0x68, 0x58, 0x86, 0xca, 0xbb, 0xa5, 0x24, 0x76, 0x3d, 0x48, 0xd1, 0xad, 0xb4, 0xa8, 0xcf, 0xc3, 0xb6, 0xa8, 0xba, 0x1a, 0x3a, 0xbe, 0x33, 0x75, 0x04, 0x5c, 0x13, 0x8c, 0x0d, 0x70, 0x8d, 0xa6, 0x4e, 0x2a, 0xeb, 0x17, 0x3c, 0x22, 0xdd, 0x3e, 0x96, 0x40, 0x11, 0x9e, 0x4e, 0xae, 0x3d, 0xf8, 0x91, 0xd7, 0x50, 0xc8,
/* (2^156)P */ 0xd8, 0xca, 0xde, 0x19, 0xcf, 0x00, 0xe4, 0x73, 0x18, 0x7f, 0x9b, 0x9f, 0xf4, 0x5b, 0x49, 0x49, 0x99, 0xdc, 0xa4, 0x46, 0x21, 0xb5, 0xd7, 0x3e, 0xb7, 0x47, 0x1b, 0xa9, 0x9f, 0x4c, 0x69, 0x7d, 0xec, 0x33, 0xd6, 0x1c, 0x51, 0x7f, 0x47, 0x74, 0x7a, 0x6c, 0xf3, 0xd2, 0x2e, 0xbf, 0xdf, 0x6c, 0x9e, 0x77, 0x3b, 0x34, 0xf6, 0x73, 0x80, 0xed,
/* (2^157)P */ 0x16, 0xfb, 0x16, 0xc3, 0xc2, 0x83, 0xe4, 0xf4, 0x03, 0x7f, 0x52, 0xb0, 0x67, 0x51, 0x7b, 0x24, 0x5a, 0x51, 0xd3, 0xb6, 0x4e, 0x59, 0x76, 0xcd, 0x08, 0x7b, 0x1d, 0x7a, 0x9c, 0x65, 0xae, 0xce, 0xaa, 0xd2, 0x1c, 0x85, 0x66, 0x68, 0x06, 0x15, 0xa8, 0x06, 0xe6, 0x16, 0x37, 0xf4, 0x49, 0x9e, 0x0f, 0x50, 0x37, 0xb1, 0xb2, 0x93, 0x70, 0x43,
/* (2^158)P */ 0x18, 0x3a, 0x16, 0xe5, 0x8d, 0xc8, 0x35, 0xd6, 0x7b, 0x09, 0xec, 0x61, 0x5f, 0x5c, 0x2a, 0x19, 0x96, 0x2e, 0xc3, 0xfd, 0xab, 0xe6, 0x23, 0xae, 0xab, 0xc5, 0xcb, 0xb9, 0x7b, 0x2d, 0x34, 0x51, 0xb9, 0x41, 0x9e, 0x7d, 0xca, 0xda, 0x25, 0x45, 0x14, 0xb0, 0xc7, 0x4d, 0x26, 0x2b, 0xfe, 0x43, 0xb0, 0x21, 0x5e, 0xfa, 0xdc, 0x7c, 0xf9, 0x5a,
/* (2^159)P */ 0x94, 0xad, 0x42, 0x17, 0xf5, 0xcd, 0x1c, 0x0d, 0xf6, 0x41, 0xd2, 0x55, 0xbb, 0x50, 0xf1, 0xc6, 0xbc, 0xa6, 0xc5, 0x3a, 0xfd, 0x9b, 0x75, 0x3e, 0xf6, 0x1a, 0xa7, 0xb2, 0x6e, 0x64, 0x12, 0xdc, 0x3c, 0xe5, 0xf6, 0xfc, 0x3b, 0xfa, 0x43, 0x81, 0xd4, 0xa5, 0xee, 0xf5, 0x9c, 0x47, 0x2f, 0xd0, 0x9c, 0xde, 0xa1, 0x48, 0x91, 0x9a, 0x34, 0xc1,
/* (2^160)P */ 0x37, 0x1b, 0xb3, 0x88, 0xc9, 0x98, 0x4e, 0xfb, 0x84, 0x4f, 0x2b, 0x0a, 0xb6, 0x8f, 0x35, 0x15, 0xcd, 0x61, 0x7a, 0x5f, 0x5c, 0xa0, 0xca, 0x23, 0xa0, 0x93, 0x1f, 0xcc, 0x3c, 0x39, 0x3a, 0x24, 0xa7, 0x49, 0xad, 0x8d, 0x59, 0xcc, 0x94, 0x5a, 0x16, 0xf5, 0x70, 0xe8, 0x52, 0x1e, 0xee, 0x20, 0x30, 0x17, 0x7e, 0xf0, 0x4c, 0x93, 0x06, 0x5a,
/* (2^161)P */ 0x81, 0xba, 0x3b, 0xd7, 0x3e, 0xb4, 0x32, 0x3a, 0x22, 0x39, 0x2a, 0xfc, 0x19, 0xd9, 0xd2, 0xf6, 0xc5, 0x79, 0x6c, 0x0e, 0xde, 0xda, 0x01, 0xff, 0x52, 0xfb, 0xb6, 0x95, 0x4e, 0x7a, 0x10, 0xb8, 0x06, 0x86, 0x3c, 0xcd, 0x56, 0xd6, 0x15, 0xbf, 0x6e, 0x3e, 0x4f, 0x35, 0x5e, 0xca, 0xbc, 0xa5, 0x95, 0xa2, 0xdf, 0x2d, 0x1d, 0xaf, 0x59, 0xf9,
/* (2^162)P */ 0x69, 0xe5, 0xe2, 0xfa, 0xc9, 0x7f, 0xdd, 0x09, 0xf5, 0x6b, 0x4e, 0x2e, 0xbe, 0xb4, 0xbf, 0x3e, 0xb2, 0xf2, 0x81, 0x30, 0xe1, 0x07, 0xa8, 0x0d, 0x2b, 0xd2, 0x5a, 0x55, 0xbe, 0x4b, 0x86, 0x5d, 0xb0, 0x5e, 0x7c, 0x8f, 0xc1, 0x3c, 0x81, 0x4c, 0xf7, 0x6d, 0x7d, 0xe6, 0x4f, 0x8a, 0x85, 0xc2, 0x2f, 0x28, 0xef, 0x8c, 0x69, 0xc2, 0xc2, 0x1a,
/* (2^163)P */ 0xd9, 0xe4, 0x0e, 0x1e, 0xc2, 0xf7, 0x2f, 0x9f, 0xa1, 0x40, 0xfe, 0x46, 0x16, 0xaf, 0x2e, 0xd1, 0xec, 0x15, 0x9b, 0x61, 0x92, 0xce, 0xfc, 0x10, 0x43, 0x1d, 0x00, 0xf6, 0xbe, 0x20, 0x80, 0x80, 0x6f, 0x3c, 0x16, 0x94, 0x59, 0xba, 0x03, 0x53, 0x6e, 0xb6, 0xdd, 0x25, 0x7b, 0x86, 0xbf, 0x96, 0xf4, 0x2f, 0xa1, 0x96, 0x8d, 0xf9, 0xb3, 0x29,
/* (2^164)P */ 0x3b, 0x04, 0x60, 0x6e, 0xce, 0xab, 0xd2, 0x63, 0x18, 0x53, 0x88, 0x16, 0x4a, 0x6a, 0xab, 0x72, 0x03, 0x68, 0xa5, 0xd4, 0x0d, 0xb2, 0x82, 0x81, 0x1f, 0x2b, 0x5c, 0x75, 0xe8, 0xd2, 0x1d, 0x7f, 0xe7, 0x1b, 0x35, 0x02, 0xde, 0xec, 0xbd, 0xcb, 0xc7, 0x01, 0xd3, 0x95, 0x61, 0xfe, 0xb2, 0x7a, 0x66, 0x09, 0x4c, 0x6d, 0xfd, 0x39, 0xf7, 0x52,
/* (2^165)P */ 0x42, 0xc1, 0x5f, 0xf8, 0x35, 0x52, 0xc1, 0xfe, 0xc5, 0x11, 0x80, 0x1c, 0x11, 0x46, 0x31, 0x11, 0xbe, 0xd0, 0xc4, 0xb6, 0x07, 0x13, 0x38, 0xa0, 0x8d, 0x65, 0xf0, 0x56, 0x9e, 0x16, 0xbf, 0x9d, 0xcd, 0x51, 0x34, 0xf9, 0x08, 0x48, 0x7b, 0x76, 0x0c, 0x7b, 0x30, 0x07, 0xa8, 0x76, 0xaf, 0xa3, 0x29, 0x38, 0xb0, 0x58, 0xde, 0x72, 0x4b, 0x45,
/* (2^166)P */ 0xd4, 0x16, 0xa7, 0xc0, 0xb4, 0x9f, 0xdf, 0x1a, 0x37, 0xc8, 0x35, 0xed, 0xc5, 0x85, 0x74, 0x64, 0x09, 0x22, 0xef, 0xe9, 0x0c, 0xaf, 0x12, 0x4c, 0x9e, 0xf8, 0x47, 0x56, 0xe0, 0x7f, 0x4e, 0x24, 0x6b, 0x0c, 0xe7, 0xad, 0xc6, 0x47, 0x1d, 0xa4, 0x0d, 0x86, 0x89, 0x65, 0xe8, 0x5f, 0x71, 0xc7, 0xe9, 0xcd, 0xec, 0x6c, 0x62, 0xc7, 0xe3, 0xb3,
/* (2^167)P */ 0xb5, 0xea, 0x86, 0xe3, 0x15, 0x18, 0x3f, 0x6d, 0x7b, 0x05, 0x95, 0x15, 0x53, 0x26, 0x1c, 0xeb, 0xbe, 0x7e, 0x16, 0x42, 0x4b, 0xa2, 0x3d, 0xdd, 0x0e, 0xff, 0xba, 0x67, 0xb5, 0xae, 0x7a, 0x17, 0xde, 0x23, 0xad, 0x14, 0xcc, 0xd7, 0xaf, 0x57, 0x01, 0xe0, 0xdd, 0x48, 0xdd, 0xd7, 0xe3, 0xdf, 0xe9, 0x2d, 0xda, 0x67, 0xa4, 0x9f, 0x29, 0x04,
/* (2^168)P */ 0x16, 0x53, 0xe6, 0x9c, 0x4e, 0xe5, 0x1e, 0x70, 0x81, 0x25, 0x02, 0x9b, 0x47, 0x6d, 0xd2, 0x08, 0x73, 0xbe, 0x0a, 0xf1, 0x7b, 0xeb, 0x24, 0xeb, 0x38, 0x23, 0x5c, 0xb6, 0x3e, 0xce, 0x1e, 0xe3, 0xbc, 0x82, 0x35, 0x1f, 0xaf, 0x3a, 0x3a, 0xe5, 0x4e, 0xc1, 0xca, 0xbf, 0x47, 0xb4, 0xbb, 0xbc, 0x5f, 0xea, 0xc6, 0xca, 0xf3, 0xa0, 0xa2, 0x73,
/* (2^169)P */ 0xef, 0xa4, 0x7a, 0x4e, 0xe4, 0xc7, 0xb6, 0x43, 0x2e, 0xa5, 0xe4, 0xa5, 0xba, 0x1e, 0xa5, 0xfe, 0x9e, 0xce, 0xa9, 0x80, 0x04, 0xcb, 0x4f, 0xd8, 0x74, 0x05, 0x48, 0xfa, 0x99, 0x11, 0x5d, 0x97, 0x3b, 0x07, 0x0d, 0xdd, 0xe6, 0xb1, 0x74, 0x87, 0x1a, 0xd3, 0x26, 0xb7, 0x8f, 0xe1, 0x63, 0x3d, 0xec, 0x53, 0x93, 0xb0, 0x81, 0x78, 0x34, 0xa4,
/* (2^170)P */ 0xe1, 0xe7, 0xd4, 0x58, 0x9d, 0x0e, 0x8b, 0x65, 0x66, 0x37, 0x16, 0x48, 0x6f, 0xaa, 0x42, 0x37, 0x77, 0xad, 0xb1, 0x56, 0x48, 0xdf, 0x65, 0x36, 0x30, 0xb8, 0x00, 0x12, 0xd8, 0x32, 0x28, 0x7f, 0xc1, 0x71, 0xeb, 0x93, 0x0f, 0x48, 0x04, 0xe1, 0x5a, 0x6a, 0x96, 0xc1, 0xca, 0x89, 0x6d, 0x1b, 0x82, 0x4c, 0x18, 0x6d, 0x55, 0x4b, 0xea, 0xfd,
/* (2^171)P */ 0x62, 0x1a, 0x53, 0xb4, 0xb1, 0xbe, 0x6f, 0x15, 0x18, 0x88, 0xd4, 0x66, 0x61, 0xc7, 0x12, 0x69, 0x02, 0xbd, 0x03, 0x23, 0x2b, 0xef, 0xf9, 0x54, 0xa4, 0x85, 0xa8, 0xe3, 0xb7, 0xbd, 0xa9, 0xa3, 0xf3, 0x2a, 0xdd, 0xf1, 0xd4, 0x03, 0x0f, 0xa9, 0xa1, 0xd8, 0xa3, 0xcd, 0xb2, 0x71, 0x90, 0x4b, 0x35, 0x62, 0xf2, 0x2f, 0xce, 0x67, 0x1f, 0xaa,
/* (2^172)P */ 0x9e, 0x1e, 0xcd, 0x43, 0x7e, 0x87, 0x37, 0x94, 0x3a, 0x97, 0x4c, 0x7e, 0xee, 0xc9, 0x37, 0x85, 0xf1, 0xd9, 0x4f, 0xbf, 0xf9, 0x6f, 0x39, 0x9a, 0x39, 0x87, 0x2e, 0x25, 0x84, 0x42, 0xc3, 0x80, 0xcb, 0x07, 0x22, 0xae, 0x30, 0xd5, 0x50, 0xa1, 0x23, 0xcc, 0x31, 0x81, 0x9d, 0xf1, 0x30, 0xd9, 0x2b, 0x73, 0x41, 0x16, 0x50, 0xab, 0x2d, 0xa2,
/* (2^173)P */ 0xa4, 0x69, 0x4f, 0xa1, 0x4e, 0xb9, 0xbf, 0x14, 0xe8, 0x2b, 0x04, 0x93, 0xb7, 0x6e, 0x9f, 0x7d, 0x73, 0x0a, 0xc5, 0x14, 0xb8, 0xde, 0x8c, 0xc1, 0xfe, 0xc0, 0xa7, 0xa4, 0xcc, 0x42, 0x42, 0x81, 0x15, 0x65, 0x8a, 0x80, 0xb9, 0xde, 0x1f, 0x60, 0x33, 0x0e, 0xcb, 0xfc, 0xe0, 0xdb, 0x83, 0xa1, 0xe5, 0xd0, 0x16, 0x86, 0x2c, 0xe2, 0x87, 0xed,
/* (2^174)P */ 0x7a, 0xc0, 0xeb, 0x6b, 0xf6, 0x0d, 0x4c, 0x6d, 0x1e, 0xdb, 0xab, 0xe7, 0x19, 0x45, 0xc6, 0xe3, 0xb2, 0x06, 0xbb, 0xbc, 0x70, 0x99, 0x83, 0x33, 0xeb, 0x28, 0xc8, 0x77, 0xf6, 0x4d, 0x01, 0xb7, 0x59, 0xa0, 0xd2, 0xb3, 0x2a, 0x72, 0x30, 0xe7, 0x11, 0x39, 0xb6, 0x41, 0x29, 0x65, 0x5a, 0x14, 0xb9, 0x86, 0x08, 0xe0, 0x7d, 0x32, 0x8c, 0xf0,
/* (2^175)P */ 0x5c, 0x11, 0x30, 0x9e, 0x05, 0x27, 0xf5, 0x45, 0x0f, 0xb3, 0xc9, 0x75, 0xc3, 0xd7, 0xe1, 0x82, 0x3b, 0x8e, 0x87, 0x23, 0x00, 0x15, 0x19, 0x07, 0xd9, 0x21, 0x53, 0xc7, 0xf1, 0xa3, 0xbf, 0x70, 0x64, 0x15, 0x18, 0xca, 0x23, 0x9e, 0xd3, 0x08, 0xc3, 0x2a, 0x8b, 0xe5, 0x83, 0x04, 0x89, 0x14, 0xfd, 0x28, 0x25, 0x1c, 0xe3, 0x26, 0xa7, 0x22,
/* (2^176)P */ 0xdc, 0xd4, 0x75, 0x60, 0x99, 0x94, 0xea, 0x09, 0x8e, 0x8a, 0x3c, 0x1b, 0xf9, 0xbd, 0x33, 0x0d, 0x51, 0x3d, 0x12, 0x6f, 0x4e, 0x72, 0xe0, 0x17, 0x20, 0xe9, 0x75, 0xe6, 0x3a, 0xb2, 0x13, 0x83, 0x4e, 0x7a, 0x08, 0x9e, 0xd1, 0x04, 0x5f, 0x6b, 0x42, 0x0b, 0x76, 0x2a, 0x2d, 0x77, 0x53, 0x6c, 0x65, 0x6d, 0x8e, 0x25, 0x3c, 0xb6, 0x8b, 0x69,
/* (2^177)P */ 0xb9, 0x49, 0x28, 0xd0, 0xdc, 0x6c, 0x8f, 0x4c, 0xc9, 0x14, 0x8a, 0x38, 0xa3, 0xcb, 0xc4, 0x9d, 0x53, 0xcf, 0xe9, 0xe3, 0xcf, 0xe0, 0xb1, 0xf2, 0x1b, 0x4c, 0x7f, 0x83, 0x2a, 0x7a, 0xe9, 0x8b, 0x3b, 0x86, 0x61, 0x30, 0xe9, 0x99, 0xbd, 0xba, 0x19, 0x6e, 0x65, 0x2a, 0x12, 0x3e, 0x9c, 0xa8, 0xaf, 0xc3, 0xcf, 0xf8, 0x1f, 0x77, 0x86, 0xea,
/* (2^178)P */ 0x30, 0xde, 0xe7, 0xff, 0x54, 0xf7, 0xa2, 0x59, 0xf6, 0x0b, 0xfb, 0x7a, 0xf2, 0x39, 0xf0, 0xdb, 0x39, 0xbc, 0xf0, 0xfa, 0x60, 0xeb, 0x6b, 0x4f, 0x47, 0x17, 0xc8, 0x00, 0x65, 0x6d, 0x25, 0x1c, 0xd0, 0x48, 0x56, 0x53, 0x45, 0x11, 0x30, 0x02, 0x49, 0x20, 0x27, 0xac, 0xf2, 0x4c, 0xac, 0x64, 0x3d, 0x52, 0xb8, 0x89, 0xe0, 0x93, 0x16, 0x0f,
/* (2^179)P */ 0x84, 0x09, 0xba, 0x40, 0xb2, 0x2f, 0xa3, 0xa8, 0xc2, 0xba, 0x46, 0x33, 0x05, 0x9d, 0x62, 0xad, 0xa1, 0x3c, 0x33, 0xef, 0x0d, 0xeb, 0xf0, 0x77, 0x11, 0x5a, 0xb0, 0x21, 0x9c, 0xdf, 0x55, 0x24, 0x25, 0x35, 0x51, 0x61, 0x92, 0xf0, 0xb1, 0xce, 0xf5, 0xd4, 0x7b, 0x6c, 0x21, 0x9d, 0x56, 0x52, 0xf8, 0xa1, 0x4c, 0xe9, 0x27, 0x55, 0xac, 0x91,
/* (2^180)P */ 0x03, 0x3e, 0x30, 0xd2, 0x0a, 0xfa, 0x7d, 0x82, 0x3d, 0x1f, 0x8b, 0xcb, 0xb6, 0x04, 0x5c, 0xcc, 0x8b, 0xda, 0xe2, 0x68, 0x74, 0x08, 0x8c, 0x44, 0x83, 0x57, 0x6d, 0x6f, 0x80, 0xb0, 0x7e, 0xa9, 0x82, 0x91, 0x7b, 0x4c, 0x37, 0x97, 0xd1, 0x63, 0xd1, 0xbd, 0x45, 0xe6, 0x8a, 0x86, 0xd6, 0x89, 0x54, 0xfd, 0xd2, 0xb1, 0xd7, 0x54, 0xad, 0xaf,
/* (2^181)P */ 0x8b, 0x33, 0x62, 0x49, 0x9f, 0x63, 0xf9, 0x87, 0x42, 0x58, 0xbf, 0xb3, 0xe6, 0x68, 0x02, 0x60, 0x5c, 0x76, 0x62, 0xf7, 0x61, 0xd7, 0x36, 0x31, 0xf7, 0x9c, 0xb5, 0xe5, 0x13, 0x6c, 0xea, 0x78, 0xae, 0xcf, 0xde, 0xbf, 0xb6, 0xeb, 0x4f, 0xc8, 0x2a, 0xb4, 0x9a, 0x9f, 0xf3, 0xd1, 0x6a, 0xec, 0x0c, 0xbd, 0x85, 0x98, 0x40, 0x06, 0x1c, 0x2a,
/* (2^182)P */ 0x74, 0x3b, 0xe7, 0x81, 0xd5, 0xae, 0x54, 0x56, 0x03, 0xe8, 0x97, 0x16, 0x76, 0xcf, 0x24, 0x96, 0x96, 0x5b, 0xcc, 0x09, 0xab, 0x23, 0x6f, 0x54, 0xae, 0x8f, 0xe4, 0x12, 0xcb, 0xfd, 0xbc, 0xac, 0x93, 0x45, 0x3d, 0x68, 0x08, 0x22, 0x59, 0xc6, 0xf0, 0x47, 0x19, 0x8c, 0x79, 0x93, 0x1e, 0x0e, 0x30, 0xb0, 0x94, 0xfb, 0x17, 0x1d, 0x5a, 0x12,
/* (2^183)P */ 0x85, 0xff, 0x40, 0x18, 0x85, 0xff, 0x44, 0x37, 0x69, 0x23, 0x4d, 0x34, 0xe1, 0xeb, 0xa3, 0x1b, 0x55, 0x40, 0xc1, 0x64, 0xf4, 0xd4, 0x13, 0x0a, 0x9f, 0xb9, 0x19, 0xfc, 0x88, 0x7d, 0xc0, 0x72, 0xcf, 0x69, 0x2f, 0xd2, 0x0c, 0x82, 0x0f, 0xda, 0x08, 0xba, 0x0f, 0xaa, 0x3b, 0xe9, 0xe5, 0x83, 0x7a, 0x06, 0xe8, 0x1b, 0x38, 0x43, 0xc3, 0x54,
/* (2^184)P */ 0x14, 0xaa, 0xb3, 0x6e, 0xe6, 0x28, 0xee, 0xc5, 0x22, 0x6c, 0x7c, 0xf9, 0xa8, 0x71, 0xcc, 0xfe, 0x68, 0x7e, 0xd3, 0xb8, 0x37, 0x96, 0xca, 0x0b, 0xd9, 0xb6, 0x06, 0xa9, 0xf6, 0x71, 0xe8, 0x31, 0xf7, 0xd8, 0xf1, 0x5d, 0xab, 0xb9, 0xf0, 0x5c, 0x98, 0xcf, 0x22, 0xa2, 0x2a, 0xf6, 0xd0, 0x59, 0xf0, 0x9d, 0xd9, 0x6a, 0x4f, 0x59, 0x57, 0xad,
/* (2^185)P */ 0xd7, 0x2b, 0x3d, 0x38, 0x4c, 0x2e, 0x23, 0x4d, 0x49, 0xa2, 0x62, 0x62, 0xf9, 0x0f, 0xde, 0x08, 0xf3, 0x86, 0x71, 0xb6, 0xc7, 0xf9, 0x85, 0x9c, 0x33, 0xa1, 0xcf, 0x16, 0xaa, 0x60, 0xb9, 0xb7, 0xea, 0xed, 0x01, 0x1c, 0x59, 0xdb, 0x3f, 0x3f, 0x97, 0x2e, 0xf0, 0x09, 0x9f, 0x10, 0x85, 0x5f, 0x53, 0x39, 0xf3, 0x13, 0x40, 0x56, 0x95, 0xf9,
/* (2^186)P */ 0xb4, 0xe3, 0xda, 0xc6, 0x1f, 0x78, 0x8e, 0xac, 0xd4, 0x20, 0x1d, 0xa0, 0xbf, 0x4c, 0x09, 0x16, 0xa7, 0x30, 0xb5, 0x8d, 0x9e, 0xa1, 0x5f, 0x6d, 0x52, 0xf4, 0x71, 0xb6, 0x32, 0x2d, 0x21, 0x51, 0xc6, 0xfc, 0x2f, 0x08, 0xf4, 0x13, 0x6c, 0x55, 0xba, 0x72, 0x81, 0x24, 0x49, 0x0e, 0x4f, 0x06, 0x36, 0x39, 0x6a, 0xc5, 0x81, 0xfc, 0xeb, 0xb2,
/* (2^187)P */ 0x7d, 0x8d, 0xc8, 0x6c, 0xea, 0xb4, 0xb9, 0xe8, 0x40, 0xc9, 0x69, 0xc9, 0x30, 0x05, 0xfd, 0x34, 0x46, 0xfd, 0x94, 0x05, 0x16, 0xf5, 0x4b, 0x13, 0x3d, 0x24, 0x1a, 0xd6, 0x64, 0x2b, 0x9c, 0xe2, 0xa5, 0xd9, 0x98, 0xe0, 0xe8, 0xf4, 0xbc, 0x2c, 0xbd, 0xa2, 0x56, 0xe3, 0x9e, 0x14, 0xdb, 0xbf, 0x05, 0xbf, 0x9a, 0x13, 0x5d, 0xf7, 0x91, 0xa3,
/* (2^188)P */ 0x8b, 0xcb, 0x27, 0xf3, 0x15, 0x26, 0x05, 0x40, 0x0f, 0xa6, 0x15, 0x13, 0x71, 0x95, 0xa2, 0xc6, 0x38, 0x04, 0x67, 0xf8, 0x9a, 0x83, 0x06, 0xaa, 0x25, 0x36, 0x72, 0x01, 0x6f, 0x74, 0x5f, 0xe5, 0x6e, 0x44, 0x99, 0xce, 0x13, 0xbc, 0x82, 0xc2, 0x0d, 0xa4, 0x98, 0x50, 0x38, 0xf3, 0xa2, 0xc5, 0xe5, 0x24, 0x1f, 0x6f, 0x56, 0x3e, 0x07, 0xb2,
/* (2^189)P */ 0xbd, 0x0f, 0x32, 0x60, 0x07, 0xb1, 0xd7, 0x0b, 0x11, 0x07, 0x57, 0x02, 0x89, 0xe8, 0x8b, 0xe8, 0x5a, 0x1f, 0xee, 0x54, 0x6b, 0xff, 0xb3, 0x04, 0x07, 0x57, 0x13, 0x0b, 0x94, 0xa8, 0x4d, 0x81, 0xe2, 0x17, 0x16, 0x45, 0xd4, 0x4b, 0xf7, 0x7e, 0x64, 0x66, 0x20, 0xe8, 0x0b, 0x26, 0xfd, 0xa9, 0x8a, 0x47, 0x52, 0x89, 0x14, 0xd0, 0xd1, 0xa1,
/* (2^190)P */ 0xdc, 0x03, 0xe6, 0x20, 0x44, 0x47, 0x8f, 0x04, 0x16, 0x24, 0x22, 0xc1, 0x55, 0x5c, 0xbe, 0x43, 0xc3, 0x92, 0xc5, 0x54, 0x3d, 0x5d, 0xd1, 0x05, 0x9c, 0xc6, 0x7c, 0xbf, 0x23, 0x84, 0x1a, 0xba, 0x4f, 0x1f, 0xfc, 0xa1, 0xae, 0x1a, 0x64, 0x02, 0x51, 0xf1, 0xcb, 0x7a, 0x20, 0xce, 0xb2, 0x34, 0x3c, 0xca, 0xe0, 0xe4, 0xba, 0x22, 0xd4, 0x7b,
/* (2^191)P */ 0xca, 0xfd, 0xca, 0xd7, 0xde, 0x61, 0xae, 0xf0, 0x79, 0x0c, 0x20, 0xab, 0xbc, 0x6f, 0x4d, 0x61, 0xf0, 0xc7, 0x9c, 0x8d, 0x4b, 0x52, 0xf3, 0xb9, 0x48, 0x63, 0x0b, 0xb6, 0xd2, 0x25, 0x9a, 0x96, 0x72, 0xc1, 0x6b, 0x0c, 0xb5, 0xfb, 0x71, 0xaa, 0xad, 0x47, 0x5b, 0xe7, 0xc0, 0x0a, 0x55, 0xb2, 0xd4, 0x16, 0x2f, 0xb1, 0x01, 0xfd, 0xce, 0x27,
/* (2^192)P */ 0x64, 0x11, 0x4b, 0xab, 0x57, 0x09, 0xc6, 0x49, 0x4a, 0x37, 0xc3, 0x36, 0xc4, 0x7b, 0x81, 0x1f, 0x42, 0xed, 0xbb, 0xe0, 0xa0, 0x8d, 0x51, 0xe6, 0xca, 0x8b, 0xb9, 0xcd, 0x99, 0x2d, 0x91, 0x53, 0xa9, 0x47, 0xcb, 0x32, 0xc7, 0xa4, 0x92, 0xec, 0x46, 0x74, 0x44, 0x6d, 0x71, 0x9f, 0x6d, 0x0c, 0x69, 0xa4, 0xf8, 0xbe, 0x9f, 0x7f, 0xa0, 0xd7,
/* (2^193)P */ 0x5f, 0x33, 0xb6, 0x91, 0xc8, 0xa5, 0x3f, 0x5d, 0x7f, 0x38, 0x6e, 0x74, 0x20, 0x4a, 0xd6, 0x2b, 0x98, 0x2a, 0x41, 0x4b, 0x83, 0x64, 0x0b, 0x92, 0x7a, 0x06, 0x1e, 0xc6, 0x2c, 0xf6, 0xe4, 0x91, 0xe5, 0xb1, 0x2e, 0x6e, 0x4e, 0xa8, 0xc8, 0x14, 0x32, 0x57, 0x44, 0x1c, 0xe4, 0xb9, 0x7f, 0x54, 0x51, 0x08, 0x81, 0xaa, 0x4e, 0xce, 0xa1, 0x5d,
/* (2^194)P */ 0x5c, 0xd5, 0x9b, 0x5e, 0x7c, 0xb5, 0xb1, 0x52, 0x73, 0x00, 0x41, 0x56, 0x79, 0x08, 0x7e, 0x07, 0x28, 0x06, 0xa6, 0xfb, 0x7f, 0x69, 0xbd, 0x7a, 0x3c, 0xae, 0x9f, 0x39, 0xbb, 0x54, 0xa2, 0x79, 0xb9, 0x0e, 0x7f, 0xbb, 0xe0, 0xe6, 0xb7, 0x27, 0x64, 0x38, 0x45, 0xdb, 0x84, 0xe4, 0x61, 0x72, 0x3f, 0xe2, 0x24, 0xfe, 0x7a, 0x31, 0x9a, 0xc9,
/* (2^195)P */ 0xa1, 0xd2, 0xa4, 0xee, 0x24, 0x96, 0xe5, 0x5b, 0x79, 0x78, 0x3c, 0x7b, 0x82, 0x3b, 0x8b, 0x58, 0x0b, 0xa3, 0x63, 0x2d, 0xbc, 0x75, 0x46, 0xe8, 0x83, 0x1a, 0xc0, 0x2a, 0x92, 0x61, 0xa8, 0x75, 0x37, 0x3c, 0xbf, 0x0f, 0xef, 0x8f, 0x6c, 0x97, 0x75, 0x10, 0x05, 0x7a, 0xde, 0x23, 0xe8, 0x2a, 0x35, 0xeb, 0x41, 0x64, 0x7d, 0xcf, 0xe0, 0x52,
/* (2^196)P */ 0x4a, 0xd0, 0x49, 0x93, 0xae, 0xf3, 0x24, 0x8c, 0xe1, 0x09, 0x98, 0x45, 0xd8, 0xb9, 0xfe, 0x8e, 0x8c, 0xa8, 0x2c, 0xc9, 0x9f, 0xce, 0x01, 0xdc, 0x38, 0x11, 0xab, 0x85, 0xb9, 0xe8, 0x00, 0x51, 0xfd, 0x82, 0xe1, 0x9b, 0x4e, 0xfc, 0xb5, 0x2a, 0x0f, 0x8b, 0xda, 0x4e, 0x02, 0xca, 0xcc, 0xe3, 0x91, 0xc4, 0xe0, 0xcf, 0x7b, 0xd6, 0xe6, 0x6a,
/* (2^197)P */ 0xfe, 0x11, 0xd7, 0xaa, 0xe3, 0x0c, 0x52, 0x2e, 0x04, 0xe0, 0xe0, 0x61, 0xc8, 0x05, 0xd7, 0x31, 0x4c, 0xc3, 0x9b, 0x2d, 0xce, 0x59, 0xbe, 0x12, 0xb7, 0x30, 0x21, 0xfc, 0x81, 0xb8, 0x5e, 0x57, 0x73, 0xd0, 0xad, 0x8e, 0x9e, 0xe4, 0xeb, 0xcd, 0xcf, 0xd2, 0x0f, 0x01, 0x35, 0x16, 0xed, 0x7a, 0x43, 0x8e, 0x42, 0xdc, 0xea, 0x4c, 0xa8, 0x7c,
/* (2^198)P */ 0x37, 0x26, 0xcc, 0x76, 0x0b, 0xe5, 0x76, 0xdd, 0x3e, 0x19, 0x3c, 0xc4, 0x6c, 0x7f, 0xd0, 0x03, 0xc1, 0xb8, 0x59, 0x82, 0xca, 0x36, 0xc1, 0xe4, 0xc8, 0xb2, 0x83, 0x69, 0x9c, 0xc5, 0x9d, 0x12, 0x82, 0x1c, 0xea, 0xb2, 0x84, 0x9f, 0xf3, 0x52, 0x6b, 0xbb, 0xd8, 0x81, 0x56, 0x83, 0x04, 0x66, 0x05, 0x22, 0x49, 0x37, 0x93, 0xb1, 0xfd, 0xd5,
/* (2^199)P */ 0xaf, 0x96, 0xbf, 0x03, 0xbe, 0xe6, 0x5d, 0x78, 0x19, 0xba, 0x37, 0x46, 0x0a, 0x2b, 0x52, 0x7c, 0xd8, 0x51, 0x9e, 0x3d, 0x29, 0x42, 0xdb, 0x0e, 0x31, 0x20, 0x94, 0xf8, 0x43, 0x9a, 0x2d, 0x22, 0xd3, 0xe3, 0xa1, 0x79, 0x68, 0xfb, 0x2d, 0x7e, 0xd6, 0x79, 0xda, 0x0b, 0xc6, 0x5b, 0x76, 0x68, 0xf0, 0xfe, 0x72, 0x59, 0xbb, 0xa1, 0x9c, 0x74,
/* (2^200)P */ 0x0a, 0xd9, 0xec, 0xc5, 0xbd, 0xf0, 0xda, 0xcf, 0x82, 0xab, 0x46, 0xc5, 0x32, 0x13, 0xdc, 0x5b, 0xac, 0xc3, 0x53, 0x9a, 0x7f, 0xef, 0xa5, 0x40, 0x5a, 0x1f, 0xc1, 0x12, 0x91, 0x54, 0x83, 0x6a, 0xb0, 0x9a, 0x85, 0x4d, 0xbf, 0x36, 0x8e, 0xd3, 0xa2, 0x2b, 0xe5, 0xd6, 0xc6, 0xe1, 0x58, 0x5b, 0x82, 0x9b, 0xc8, 0xf2, 0x03, 0xba, 0xf5, 0x92,
/* (2^201)P */ 0xfb, 0x21, 0x7e, 0xde, 0xe7, 0xb4, 0xc0, 0x56, 0x86, 0x3a, 0x5b, 0x78, 0xf8, 0xf0, 0xf4, 0xe7, 0x5c, 0x00, 0xd2, 0xd7, 0xd6, 0xf8, 0x75, 0x5e, 0x0f, 0x3e, 0xd1, 0x4b, 0x77, 0xd8, 0xad, 0xb0, 0xc9, 0x8b, 0x59, 0x7d, 0x30, 0x76, 0x64, 0x7a, 0x76, 0xd9, 0x51, 0x69, 0xfc, 0xbd, 0x8e, 0xb5, 0x55, 0xe0, 0xd2, 0x07, 0x15, 0xa9, 0xf7, 0xa4,
/* (2^202)P */ 0xaa, 0x2d, 0x2f, 0x2b, 0x3c, 0x15, 0xdd, 0xcd, 0xe9, 0x28, 0x82, 0x4f, 0xa2, 0xaa, 0x31, 0x48, 0xcc, 0xfa, 0x07, 0x73, 0x8a, 0x34, 0x74, 0x0d, 0xab, 0x1a, 0xca, 0xd2, 0xbf, 0x3a, 0xdb, 0x1a, 0x5f, 0x50, 0x62, 0xf4, 0x6b, 0x83, 0x38, 0x43, 0x96, 0xee, 0x6b, 0x39, 0x1e, 0xf0, 0x17, 0x80, 0x1e, 0x9b, 0xed, 0x2b, 0x2f, 0xcc, 0x65, 0xf7,
/* (2^203)P */ 0x03, 0xb3, 0x23, 0x9c, 0x0d, 0xd1, 0xeb, 0x7e, 0x34, 0x17, 0x8a, 0x4c, 0xde, 0x54, 0x39, 0xc4, 0x11, 0x82, 0xd3, 0xa4, 0x00, 0x32, 0x95, 0x9c, 0xa6, 0x64, 0x76, 0x6e, 0xd6, 0x53, 0x27, 0xb4, 0x6a, 0x14, 0x8c, 0x54, 0xf6, 0x58, 0x9e, 0x22, 0x4a, 0x55, 0x18, 0x77, 0xd0, 0x08, 0x6b, 0x19, 0x8a, 0xb5, 0xe7, 0x19, 0xb8, 0x60, 0x92, 0xb1,
/* (2^204)P */ 0x66, 0xec, 0xf3, 0x12, 0xde, 0x67, 0x7f, 0xd4, 0x5b, 0xf6, 0x70, 0x64, 0x0a, 0xb5, 0xc2, 0xf9, 0xb3, 0x64, 0xab, 0x56, 0x46, 0xc7, 0x93, 0xc2, 0x8b, 0x2d, 0xd0, 0xd6, 0x39, 0x3b, 0x1f, 0xcd, 0xb3, 0xac, 0xcc, 0x2c, 0x27, 0x6a, 0xbc, 0xb3, 0x4b, 0xa8, 0x3c, 0x69, 0x20, 0xe2, 0x18, 0x35, 0x17, 0xe1, 0x8a, 0xd3, 0x11, 0x74, 0xaa, 0x4d,
/* (2^205)P */ 0x96, 0xc4, 0x16, 0x7e, 0xfd, 0xf5, 0xd0, 0x7d, 0x1f, 0x32, 0x1b, 0xdb, 0xa6, 0xfd, 0x51, 0x75, 0x4d, 0xd7, 0x00, 0xe5, 0x7f, 0x58, 0x5b, 0xeb, 0x4b, 0x6a, 0x78, 0xfe, 0xe5, 0xd6, 0x8f, 0x99, 0x17, 0xca, 0x96, 0x45, 0xf7, 0x52, 0xdf, 0x84, 0x06, 0x77, 0xb9, 0x05, 0x63, 0x5d, 0xe9, 0x91, 0xb1, 0x4b, 0x82, 0x5a, 0xdb, 0xd7, 0xca, 0x69,
/* (2^206)P */ 0x02, 0xd3, 0x38, 0x38, 0x87, 0xea, 0xbd, 0x9f, 0x11, 0xca, 0xf3, 0x21, 0xf1, 0x9b, 0x35, 0x97, 0x98, 0xff, 0x8e, 0x6d, 0x3d, 0xd6, 0xb2, 0xfa, 0x68, 0xcb, 0x7e, 0x62, 0x85, 0xbb, 0xc7, 0x5d, 0xee, 0x32, 0x30, 0x2e, 0x71, 0x96, 0x63, 0x43, 0x98, 0xc4, 0xa7, 0xde, 0x60, 0xb2, 0xd9, 0x43, 0x4a, 0xfa, 0x97, 0x2d, 0x5f, 0x21, 0xd4, 0xfe,
/* (2^207)P */ 0x3b, 0x20, 0x29, 0x07, 0x07, 0xb5, 0x78, 0xc3, 0xc7, 0xab, 0x56, 0xba, 0x40, 0xde, 0x1d, 0xcf, 0xc3, 0x00, 0x56, 0x21, 0x0c, 0xc8, 0x42, 0xd9, 0x0e, 0xcd, 0x02, 0x7c, 0x07, 0xb9, 0x11, 0xd7, 0x96, 0xaf, 0xff, 0xad, 0xc5, 0xba, 0x30, 0x6d, 0x82, 0x3a, 0xbf, 0xef, 0x7b, 0xf7, 0x0a, 0x74, 0xbd, 0x31, 0x0c, 0xe4, 0xec, 0x1a, 0xe5, 0xc5,
/* (2^208)P */ 0xcc, 0xf2, 0x28, 0x16, 0x12, 0xbf, 0xef, 0x85, 0xbc, 0xf7, 0xcb, 0x9f, 0xdb, 0xa8, 0xb2, 0x49, 0x53, 0x48, 0xa8, 0x24, 0xa8, 0x68, 0x8d, 0xbb, 0x21, 0x0a, 0x5a, 0xbd, 0xb2, 0x91, 0x61, 0x47, 0xc4, 0x43, 0x08, 0xa6, 0x19, 0xef, 0x8e, 0x88, 0x39, 0xc6, 0x33, 0x30, 0xf3, 0x0e, 0xc5, 0x92, 0x66, 0xd6, 0xfe, 0xc5, 0x12, 0xd9, 0x4c, 0x2d,
/* (2^209)P */ 0x30, 0x34, 0x07, 0xbf, 0x9c, 0x5a, 0x4e, 0x65, 0xf1, 0x39, 0x35, 0x38, 0xae, 0x7b, 0x55, 0xac, 0x6a, 0x92, 0x24, 0x7e, 0x50, 0xd3, 0xba, 0x78, 0x51, 0xfe, 0x4d, 0x32, 0x05, 0x11, 0xf5, 0x52, 0xf1, 0x31, 0x45, 0x39, 0x98, 0x7b, 0x28, 0x56, 0xc3, 0x5d, 0x4f, 0x07, 0x6f, 0x84, 0xb8, 0x1a, 0x58, 0x0b, 0xc4, 0x7c, 0xc4, 0x8d, 0x32, 0x8e,
/* (2^210)P */ 0x7e, 0xaf, 0x98, 0xce, 0xc5, 0x2b, 0x9d, 0xf6, 0xfa, 0x2c, 0xb6, 0x2a, 0x5a, 0x1d, 0xc0, 0x24, 0x8d, 0xa4, 0xce, 0xb1, 0x12, 0x01, 0xf9, 0x79, 0xc6, 0x79, 0x38, 0x0c, 0xd4, 0x07, 0xc9, 0xf7, 0x37, 0xa1, 0x0b, 0xfe, 0x72, 0xec, 0x5d, 0xd6, 0xb0, 0x1c, 0x70, 0xbe, 0x70, 0x01, 0x13, 0xe0, 0x86, 0x95, 0xc7, 0x2e, 0x12, 0x3b, 0xe6, 0xa6,
/* (2^211)P */ 0x24, 0x82, 0x67, 0xe0, 0x14, 0x7b, 0x56, 0x08, 0x38, 0x44, 0xdb, 0xa0, 0x3a, 0x05, 0x47, 0xb2, 0xc0, 0xac, 0xd1, 0xcc, 0x3f, 0x82, 0xb8, 0x8a, 0x88, 0xbc, 0xf5, 0x33, 0xa1, 0x35, 0x0f, 0xf6, 0xe2, 0xef, 0x6c, 0xf7, 0x37, 0x9e, 0xe8, 0x10, 0xca, 0xb0, 0x8e, 0x80, 0x86, 0x00, 0x23, 0xd0, 0x4a, 0x76, 0x9f, 0xf7, 0x2c, 0x52, 0x15, 0x0e,
/* (2^212)P */ 0x5e, 0x49, 0xe1, 0x2c, 0x9a, 0x01, 0x76, 0xa6, 0xb3, 0x07, 0x5b, 0xa4, 0x07, 0xef, 0x1d, 0xc3, 0x6a, 0xbb, 0x64, 0xbe, 0x71, 0x15, 0x6e, 0x32, 0x31, 0x46, 0x9a, 0x9e, 0x8f, 0x45, 0x73, 0xce, 0x0b, 0x94, 0x1a, 0x52, 0x07, 0xf4, 0x50, 0x30, 0x49, 0x53, 0x50, 0xfb, 0x71, 0x1f, 0x5a, 0x03, 0xa9, 0x76, 0xf2, 0x8f, 0x42, 0xff, 0xed, 0xed,
/* (2^213)P */ 0xed, 0x08, 0xdb, 0x91, 0x1c, 0xee, 0xa2, 0xb4, 0x47, 0xa2, 0xfa, 0xcb, 0x03, 0xd1, 0xff, 0x8c, 0xad, 0x64, 0x50, 0x61, 0xcd, 0xfc, 0x88, 0xa0, 0x31, 0x95, 0x30, 0xb9, 0x58, 0xdd, 0xd7, 0x43, 0xe4, 0x46, 0xc2, 0x16, 0xd9, 0x72, 0x4a, 0x56, 0x51, 0x70, 0x85, 0xf1, 0xa1, 0x80, 0x40, 0xd5, 0xba, 0x67, 0x81, 0xda, 0xcd, 0x03, 0xea, 0x51,
/* (2^214)P */ 0x42, 0x50, 0xf0, 0xef, 0x37, 0x61, 0x72, 0x85, 0xe1, 0xf1, 0xff, 0x6f, 0x3d, 0xe8, 0x7b, 0x21, 0x5c, 0xe5, 0x50, 0x03, 0xde, 0x00, 0xc1, 0xf7, 0x3a, 0x55, 0x12, 0x1c, 0x9e, 0x1e, 0xce, 0xd1, 0x2f, 0xaf, 0x05, 0x70, 0x5b, 0x47, 0xf2, 0x04, 0x7a, 0x89, 0xbc, 0x78, 0xa6, 0x65, 0x6c, 0xaa, 0x3c, 0xa2, 0x3c, 0x8b, 0x5c, 0xa9, 0x22, 0x48,
/* (2^215)P */ 0x7e, 0x8c, 0x8f, 0x2f, 0x60, 0xe3, 0x5a, 0x94, 0xd4, 0xce, 0xdd, 0x9d, 0x83, 0x3b, 0x77, 0x78, 0x43, 0x1d, 0xfd, 0x8f, 0xc8, 0xe8, 0x02, 0x90, 0xab, 0xf6, 0xc9, 0xfc, 0xf1, 0x63, 0xaa, 0x5f, 0x42, 0xf1, 0x78, 0x34, 0x64, 0x16, 0x75, 0x9c, 0x7d, 0xd0, 0xe4, 0x74, 0x5a, 0xa8, 0xfb, 0xcb, 0xac, 0x20, 0xa3, 0xc2, 0xa6, 0x20, 0xf8, 0x1b,
/* (2^216)P */ 0x00, 0x4f, 0x1e, 0x56, 0xb5, 0x34, 0xb2, 0x87, 0x31, 0xe5, 0xee, 0x8d, 0xf1, 0x41, 0x67, 0xb7, 0x67, 0x3a, 0x54, 0x86, 0x5c, 0xf0, 0x0b, 0x37, 0x2f, 0x1b, 0x92, 0x5d, 0x58, 0x93, 0xdc, 0xd8, 0x58, 0xcc, 0x9e, 0x67, 0xd0, 0x97, 0x3a, 0xaf, 0x49, 0x39, 0x2d, 0x3b, 0xd8, 0x98, 0xfb, 0x76, 0x6b, 0xe7, 0xaf, 0xc3, 0x45, 0x44, 0x53, 0x94,
/* (2^217)P */ 0x30, 0xbd, 0x90, 0x75, 0xd3, 0xbd, 0x3b, 0x58, 0x27, 0x14, 0x9f, 0x6b, 0xd4, 0x31, 0x99, 0xcd, 0xde, 0x3a, 0x21, 0x1e, 0xb4, 0x02, 0xe4, 0x33, 0x04, 0x02, 0xb0, 0x50, 0x66, 0x68, 0x90, 0xdd, 0x7b, 0x69, 0x31, 0xd9, 0xcf, 0x68, 0x73, 0xf1, 0x60, 0xdd, 0xc8, 0x1d, 0x5d, 0xe3, 0xd6, 0x5b, 0x2a, 0xa4, 0xea, 0xc4, 0x3f, 0x08, 0xcd, 0x9c,
/* (2^218)P */ 0x6b, 0x1a, 0xbf, 0x55, 0xc1, 0x1b, 0x0c, 0x05, 0x09, 0xdf, 0xf5, 0x5e, 0xa3, 0x77, 0x95, 0xe9, 0xdf, 0x19, 0xdd, 0xc7, 0x94, 0xcb, 0x06, 0x73, 0xd0, 0x88, 0x02, 0x33, 0x94, 0xca, 0x7a, 0x2f, 0x8e, 0x3d, 0x72, 0x61, 0x2d, 0x4d, 0xa6, 0x61, 0x1f, 0x32, 0x5e, 0x87, 0x53, 0x36, 0x11, 0x15, 0x20, 0xb3, 0x5a, 0x57, 0x51, 0x93, 0x20, 0xd8,
/* (2^219)P */ 0xb7, 0x56, 0xf4, 0xab, 0x7d, 0x0c, 0xfb, 0x99, 0x1a, 0x30, 0x29, 0xb0, 0x75, 0x2a, 0xf8, 0x53, 0x71, 0x23, 0xbd, 0xa7, 0xd8, 0x0a, 0xe2, 0x27, 0x65, 0xe9, 0x74, 0x26, 0x98, 0x4a, 0x69, 0x19, 0xb2, 0x4d, 0x0a, 0x17, 0x98, 0xb2, 0xa9, 0x57, 0x4e, 0xf6, 0x86, 0xc8, 0x01, 0xa4, 0xc6, 0x98, 0xad, 0x5a, 0x90, 0x2c, 0x05, 0x46, 0x64, 0xb7,
/* (2^220)P */ 0x7b, 0x91, 0xdf, 0xfc, 0xf8, 0x1c, 0x8c, 0x15, 0x9e, 0xf7, 0xd5, 0xa8, 0xe8, 0xe7, 0xe3, 0xa3, 0xb0, 0x04, 0x74, 0xfa, 0x78, 0xfb, 0x26, 0xbf, 0x67, 0x42, 0xf9, 0x8c, 0x9b, 0xb4, 0x69, 0x5b, 0x02, 0x13, 0x6d, 0x09, 0x6c, 0xd6, 0x99, 0x61, 0x7b, 0x89, 0x4a, 0x67, 0x75, 0xa3, 0x98, 0x13, 0x23, 0x1d, 0x18, 0x24, 0x0e, 0xef, 0x41, 0x79,
/* (2^221)P */ 0x86, 0x33, 0xab, 0x08, 0xcb, 0xbf, 0x1e, 0x76, 0x3c, 0x0b, 0xbd, 0x30, 0xdb, 0xe9, 0xa3, 0x35, 0x87, 0x1b, 0xe9, 0x07, 0x00, 0x66, 0x7f, 0x3b, 0x35, 0x0c, 0x8a, 0x3f, 0x61, 0xbc, 0xe0, 0xae, 0xf6, 0xcc, 0x54, 0xe1, 0x72, 0x36, 0x2d, 0xee, 0x93, 0x24, 0xf8, 0xd7, 0xc5, 0xf9, 0xcb, 0xb0, 0xe5, 0x88, 0x0d, 0x23, 0x4b, 0x76, 0x15, 0xa2,
/* (2^222)P */ 0x37, 0xdb, 0x83, 0xd5, 0x6d, 0x06, 0x24, 0x37, 0x1b, 0x15, 0x85, 0x15, 0xe2, 0xc0, 0x4e, 0x02, 0xa9, 0x6d, 0x0a, 0x3a, 0x94, 0x4a, 0x6f, 0x49, 0x00, 0x01, 0x72, 0xbb, 0x60, 0x14, 0x35, 0xae, 0xb4, 0xc6, 0x01, 0x0a, 0x00, 0x9e, 0xc3, 0x58, 0xc5, 0xd1, 0x5e, 0x30, 0x73, 0x96, 0x24, 0x85, 0x9d, 0xf0, 0xf9, 0xec, 0x09, 0xd3, 0xe7, 0x70,
/* (2^223)P */ 0xf3, 0xbd, 0x96, 0x87, 0xe9, 0x71, 0xbd, 0xd6, 0xa2, 0x45, 0xeb, 0x0a, 0xcd, 0x2c, 0xf1, 0x72, 0xa6, 0x31, 0xa9, 0x6f, 0x09, 0xa1, 0x5e, 0xdd, 0xc8, 0x8d, 0x0d, 0xbc, 0x5a, 0x8d, 0xb1, 0x2c, 0x9a, 0xcc, 0x37, 0x74, 0xc2, 0xa9, 0x4e, 0xd6, 0xc0, 0x3c, 0xa0, 0x23, 0xb0, 0xa0, 0x77, 0x14, 0x80, 0x45, 0x71, 0x6a, 0x2d, 0x41, 0xc3, 0x82,
/* (2^224)P */ 0x37, 0x44, 0xec, 0x8a, 0x3e, 0xc1, 0x0c, 0xa9, 0x12, 0x9c, 0x08, 0x88, 0xcb, 0xd9, 0xf8, 0xba, 0x00, 0xd6, 0xc3, 0xdf, 0xef, 0x7a, 0x44, 0x7e, 0x25, 0x69, 0xc9, 0xc1, 0x46, 0xe5, 0x20, 0x9e, 0xcc, 0x0b, 0x05, 0x3e, 0xf4, 0x78, 0x43, 0x0c, 0xa6, 0x2f, 0xc1, 0xfa, 0x70, 0xb2, 0x3c, 0x31, 0x7a, 0x63, 0x58, 0xab, 0x17, 0xcf, 0x4c, 0x4f,
/* (2^225)P */ 0x2b, 0x08, 0x31, 0x59, 0x75, 0x8b, 0xec, 0x0a, 0xa9, 0x79, 0x70, 0xdd, 0xf1, 0x11, 0xc3, 0x11, 0x1f, 0xab, 0x37, 0xaa, 0x26, 0xea, 0x53, 0xc4, 0x79, 0xa7, 0x91, 0x00, 0xaa, 0x08, 0x42, 0xeb, 0x8b, 0x8b, 0xe8, 0xc3, 0x2f, 0xb8, 0x78, 0x90, 0x38, 0x0e, 0x8a, 0x42, 0x0c, 0x0f, 0xbf, 0x3e, 0xf8, 0xd8, 0x07, 0xcf, 0x6a, 0x34, 0xc9, 0xfa,
/* (2^226)P */ 0x11, 0xe0, 0x76, 0x4d, 0x23, 0xc5, 0xa6, 0xcc, 0x9f, 0x9a, 0x2a, 0xde, 0x3a, 0xb5, 0x92, 0x39, 0x19, 0x8a, 0xf1, 0x8d, 0xf9, 0x4d, 0xc9, 0xb4, 0x39, 0x9f, 0x57, 0xd8, 0x72, 0xab, 0x1d, 0x61, 0x6a, 0xb2, 0xff, 0x52, 0xba, 0x54, 0x0e, 0xfb, 0x83, 0x30, 0x8a, 0xf7, 0x3b, 0xf4, 0xd8, 0xae, 0x1a, 0x94, 0x3a, 0xec, 0x63, 0xfe, 0x6e, 0x7c,
/* (2^227)P */ 0xdc, 0x70, 0x8e, 0x55, 0x44, 0xbf, 0xd2, 0x6a, 0xa0, 0x14, 0x61, 0x89, 0xd5, 0x55, 0x45, 0x3c, 0xf6, 0x40, 0x0d, 0x83, 0x85, 0x44, 0xb4, 0x62, 0x56, 0xfe, 0x60, 0xd7, 0x07, 0x1d, 0x47, 0x30, 0x3b, 0x73, 0xa4, 0xb5, 0xb7, 0xea, 0xac, 0xda, 0xf1, 0x17, 0xaa, 0x60, 0xdf, 0xe9, 0x84, 0xda, 0x31, 0x32, 0x61, 0xbf, 0xd0, 0x7e, 0x8a, 0x02,
/* (2^228)P */ 0xb9, 0x51, 0xb3, 0x89, 0x21, 0x5d, 0xa2, 0xfe, 0x79, 0x2a, 0xb3, 0x2a, 0x3b, 0xe6, 0x6f, 0x2b, 0x22, 0x03, 0xea, 0x7b, 0x1f, 0xaf, 0x85, 0xc3, 0x38, 0x55, 0x5b, 0x8e, 0xb4, 0xaa, 0x77, 0xfe, 0x03, 0x6e, 0xda, 0x91, 0x24, 0x0c, 0x48, 0x39, 0x27, 0x43, 0x16, 0xd2, 0x0a, 0x0d, 0x43, 0xa3, 0x0e, 0xca, 0x45, 0xd1, 0x7f, 0xf5, 0xd3, 0x16,
/* (2^229)P */ 0x3d, 0x32, 0x9b, 0x38, 0xf8, 0x06, 0x93, 0x78, 0x5b, 0x50, 0x2b, 0x06, 0xd8, 0x66, 0xfe, 0xab, 0x9b, 0x58, 0xc7, 0xd1, 0x4d, 0xd5, 0xf8, 0x3b, 0x10, 0x7e, 0x85, 0xde, 0x58, 0x4e, 0xdf, 0x53, 0xd9, 0x58, 0xe0, 0x15, 0x81, 0x9f, 0x1a, 0x78, 0xfc, 0x9f, 0x10, 0xc2, 0x23, 0xd6, 0x78, 0xd1, 0x9d, 0xd2, 0xd5, 0x1c, 0x53, 0xe2, 0xc9, 0x76,
/* (2^230)P */ 0x98, 0x1e, 0x38, 0x7b, 0x71, 0x18, 0x4b, 0x15, 0xaf, 0xa1, 0xa6, 0x98, 0xcb, 0x26, 0xa3, 0xc8, 0x07, 0x46, 0xda, 0x3b, 0x70, 0x65, 0xec, 0x7a, 0x2b, 0x34, 0x94, 0xa8, 0xb6, 0x14, 0xf8, 0x1a, 0xce, 0xf7, 0xc8, 0x60, 0xf3, 0x88, 0xf4, 0x33, 0x60, 0x7b, 0xd1, 0x02, 0xe7, 0xda, 0x00, 0x4a, 0xea, 0xd2, 0xfd, 0x88, 0xd2, 0x99, 0x28, 0xf3,
/* (2^231)P */ 0x28, 0x24, 0x1d, 0x26, 0xc2, 0xeb, 0x8b, 0x3b, 0xb4, 0x6b, 0xbe, 0x6b, 0x77, 0xff, 0xf3, 0x21, 0x3b, 0x26, 0x6a, 0x8c, 0x8e, 0x2a, 0x44, 0xa8, 0x01, 0x2b, 0x71, 0xea, 0x64, 0x30, 0xfd, 0xfd, 0x95, 0xcb, 0x39, 0x38, 0x48, 0xfa, 0x96, 0x97, 0x8c, 0x2f, 0x33, 0xca, 0x03, 0xe6, 0xd7, 0x94, 0x55, 0x6c, 0xc3, 0xb3, 0xa8, 0xf7, 0xae, 0x8c,
/* (2^232)P */ 0xea, 0x62, 0x8a, 0xb4, 0xeb, 0x74, 0xf7, 0xb8, 0xae, 0xc5, 0x20, 0x71, 0x06, 0xd6, 0x7c, 0x62, 0x9b, 0x69, 0x74, 0xef, 0xa7, 0x6d, 0xd6, 0x8c, 0x37, 0xb9, 0xbf, 0xcf, 0xeb, 0xe4, 0x2f, 0x04, 0x02, 0x21, 0x7d, 0x75, 0x6b, 0x92, 0x48, 0xf8, 0x70, 0xad, 0x69, 0xe2, 0xea, 0x0e, 0x88, 0x67, 0x72, 0xcc, 0x2d, 0x10, 0xce, 0x2d, 0xcf, 0x65,
/* (2^233)P */ 0x49, 0xf3, 0x57, 0x64, 0xe5, 0x5c, 0xc5, 0x65, 0x49, 0x97, 0xc4, 0x8a, 0xcc, 0xa9, 0xca, 0x94, 0x7b, 0x86, 0x88, 0xb6, 0x51, 0x27, 0x69, 0xa5, 0x0f, 0x8b, 0x06, 0x59, 0xa0, 0x94, 0xef, 0x63, 0x1a, 0x01, 0x9e, 0x4f, 0xd2, 0x5a, 0x93, 0xc0, 0x7c, 0xe6, 0x61, 0x77, 0xb6, 0xf5, 0x40, 0xd9, 0x98, 0x43, 0x5b, 0x56, 0x68, 0xe9, 0x37, 0x8f,
/* (2^234)P */ 0xee, 0x87, 0xd2, 0x05, 0x1b, 0x39, 0x89, 0x10, 0x07, 0x6d, 0xe8, 0xfd, 0x8b, 0x4d, 0xb2, 0xa7, 0x7b, 0x1e, 0xa0, 0x6c, 0x0d, 0x3d, 0x3d, 0x49, 0xba, 0x61, 0x36, 0x1f, 0xc2, 0x84, 0x4a, 0xcc, 0x87, 0xa9, 0x1b, 0x23, 0x04, 0xe2, 0x3e, 0x97, 0xe1, 0xdb, 0xd5, 0x5a, 0xe8, 0x41, 0x6b, 0xe5, 0x5a, 0xa1, 0x99, 0xe5, 0x7b, 0xa7, 0xe0, 0x3b,
/* (2^235)P */ 0xea, 0xa3, 0x6a, 0xdd, 0x77, 0x7f, 0x77, 0x41, 0xc5, 0x6a, 0xe4, 0xaf, 0x11, 0x5f, 0x88, 0xa5, 0x10, 0xee, 0xd0, 0x8c, 0x0c, 0xb4, 0xa5, 0x2a, 0xd0, 0xd8, 0x1d, 0x47, 0x06, 0xc0, 0xd5, 0xce, 0x51, 0x54, 0x9b, 0x2b, 0xe6, 0x2f, 0xe7, 0xe7, 0x31, 0x5f, 0x5c, 0x23, 0x81, 0x3e, 0x03, 0x93, 0xaa, 0x2d, 0x71, 0x84, 0xa0, 0x89, 0x32, 0xa6,
/* (2^236)P */ 0x55, 0xa3, 0x13, 0x92, 0x4e, 0x93, 0x7d, 0xec, 0xca, 0x57, 0xfb, 0x37, 0xae, 0xd2, 0x18, 0x2e, 0x54, 0x05, 0x6c, 0xd1, 0x28, 0xca, 0x90, 0x40, 0x82, 0x2e, 0x79, 0xc6, 0x5a, 0xc7, 0xdd, 0x84, 0x93, 0xdf, 0x15, 0xb8, 0x1f, 0xb1, 0xf9, 0xaf, 0x2c, 0xe5, 0x32, 0xcd, 0xc2, 0x99, 0x6d, 0xac, 0x85, 0x5c, 0x63, 0xd3, 0xe2, 0xff, 0x24, 0xda,
/* (2^237)P */ 0x2d, 0x8d, 0xfd, 0x65, 0xcc, 0xe5, 0x02, 0xa0, 0xe5, 0xb9, 0xec, 0x59, 0x09, 0x50, 0x27, 0xb7, 0x3d, 0x2a, 0x79, 0xb2, 0x76, 0x5d, 0x64, 0x95, 0xf8, 0xc5, 0xaf, 0x8a, 0x62, 0x11, 0x5c, 0x56, 0x1c, 0x05, 0x64, 0x9e, 0x5e, 0xbd, 0x54, 0x04, 0xe6, 0x9e, 0xab, 0xe6, 0x22, 0x7e, 0x42, 0x54, 0xb5, 0xa5, 0xd0, 0x8d, 0x28, 0x6b, 0x0f, 0x0b,
/* (2^238)P */ 0x2d, 0xb2, 0x8c, 0x59, 0x10, 0x37, 0x84, 0x3b, 0x9b, 0x65, 0x1b, 0x0f, 0x10, 0xf9, 0xea, 0x60, 0x1b, 0x02, 0xf5, 0xee, 0x8b, 0xe6, 0x32, 0x7d, 0x10, 0x7f, 0x5f, 0x8c, 0x72, 0x09, 0x4e, 0x1f, 0x29, 0xff, 0x65, 0xcb, 0x3e, 0x3a, 0xd2, 0x96, 0x50, 0x1e, 0xea, 0x64, 0x99, 0xb5, 0x4c, 0x7a, 0x69, 0xb8, 0x95, 0xae, 0x48, 0xc0, 0x7c, 0xb1,
/* (2^239)P */ 0xcd, 0x7c, 0x4f, 0x3e, 0xea, 0xf3, 0x90, 0xcb, 0x12, 0x76, 0xd1, 0x17, 0xdc, 0x0d, 0x13, 0x0f, 0xfd, 0x4d, 0xb5, 0x1f, 0xe4, 0xdd, 0xf2, 0x4d, 0x58, 0xea, 0xa5, 0x66, 0x92, 0xcf, 0xe5, 0x54, 0xea, 0x9b, 0x35, 0x83, 0x1a, 0x44, 0x8e, 0x62, 0x73, 0x45, 0x98, 0xa3, 0x89, 0x95, 0x52, 0x93, 0x1a, 0x8d, 0x63, 0x0f, 0xc2, 0x57, 0x3c, 0xb1,
/* (2^240)P */ 0x72, 0xb4, 0xdf, 0x51, 0xb7, 0xf6, 0x52, 0xa2, 0x14, 0x56, 0xe5, 0x0a, 0x2e, 0x75, 0x81, 0x02, 0xee, 0x93, 0x48, 0x0a, 0x92, 0x4e, 0x0c, 0x0f, 0xdf, 0x09, 0x89, 0x99, 0xf6, 0xf9, 0x22, 0xa2, 0x32, 0xf8, 0xb0, 0x76, 0x0c, 0xb2, 0x4d, 0x6e, 0xbe, 0x83, 0x35, 0x61, 0x44, 0xd2, 0x58, 0xc7, 0xdd, 0x14, 0xcf, 0xc3, 0x4b, 0x7c, 0x07, 0xee,
/* (2^241)P */ 0x8b, 0x03, 0xee, 0xcb, 0xa7, 0x2e, 0x28, 0xbd, 0x97, 0xd1, 0x4c, 0x2b, 0xd1, 0x92, 0x67, 0x5b, 0x5a, 0x12, 0xbf, 0x29, 0x17, 0xfc, 0x50, 0x09, 0x74, 0x76, 0xa2, 0xd4, 0x82, 0xfd, 0x2c, 0x0c, 0x90, 0xf7, 0xe7, 0xe5, 0x9a, 0x2c, 0x16, 0x40, 0xb9, 0x6c, 0xd9, 0xe0, 0x22, 0x9e, 0xf8, 0xdd, 0x73, 0xe4, 0x7b, 0x9e, 0xbe, 0x4f, 0x66, 0x22,
/* (2^242)P */ 0xa4, 0x10, 0xbe, 0xb8, 0x83, 0x3a, 0x77, 0x8e, 0xea, 0x0a, 0xc4, 0x97, 0x3e, 0xb6, 0x6c, 0x81, 0xd7, 0x65, 0xd9, 0xf7, 0xae, 0xe6, 0xbe, 0xab, 0x59, 0x81, 0x29, 0x4b, 0xff, 0xe1, 0x0f, 0xc3, 0x2b, 0xad, 0x4b, 0xef, 0xc4, 0x50, 0x9f, 0x88, 0x31, 0xf2, 0xde, 0x80, 0xd6, 0xf4, 0x20, 0x9c, 0x77, 0x9b, 0xbe, 0xbe, 0x08, 0xf5, 0xf0, 0x95,
/* (2^243)P */ 0x0e, 0x7c, 0x7b, 0x7c, 0xb3, 0xd8, 0x83, 0xfc, 0x8c, 0x75, 0x51, 0x74, 0x1b, 0xe1, 0x6d, 0x11, 0x05, 0x46, 0x24, 0x0d, 0xa4, 0x2b, 0x32, 0xfd, 0x2c, 0x4e, 0x21, 0xdf, 0x39, 0x6b, 0x96, 0xfc, 0xff, 0x92, 0xfc, 0x35, 0x0d, 0x9a, 0x4b, 0xc0, 0x70, 0x46, 0x32, 0x7d, 0xc0, 0xc4, 0x04, 0xe0, 0x2d, 0x83, 0xa7, 0x00, 0xc7, 0xcb, 0xb4, 0x8f,
/* (2^244)P */ 0xa9, 0x5a, 0x7f, 0x0e, 0xdd, 0x2c, 0x85, 0xaa, 0x4d, 0xac, 0xde, 0xb3, 0xb6, 0xaf, 0xe6, 0xd1, 0x06, 0x7b, 0x2c, 0xa4, 0x01, 0x19, 0x22, 0x7d, 0x78, 0xf0, 0x3a, 0xea, 0x89, 0xfe, 0x21, 0x61, 0x6d, 0xb8, 0xfe, 0xa5, 0x2a, 0xab, 0x0d, 0x7b, 0x51, 0x39, 0xb6, 0xde, 0xbc, 0xf0, 0xc5, 0x48, 0xd7, 0x09, 0x82, 0x6e, 0x66, 0x75, 0xc5, 0xcd,
/* (2^245)P */ 0xee, 0xdf, 0x2b, 0x6c, 0xa8, 0xde, 0x61, 0xe1, 0x27, 0xfa, 0x2a, 0x0f, 0x68, 0xe7, 0x7a, 0x9b, 0x13, 0xe9, 0x56, 0xd2, 0x1c, 0x3d, 0x2f, 0x3c, 0x7a, 0xf6, 0x6f, 0x45, 0xee, 0xe8, 0xf4, 0xa0, 0xa6, 0xe8, 0xa5, 0x27, 0xee, 0xf2, 0x85, 0xa9, 0xd5, 0x0e, 0xa9, 0x26, 0x60, 0xfe, 0xee, 0xc7, 0x59, 0x99, 0x5e, 0xa3, 0xdf, 0x23, 0x36, 0xd5,
/* (2^246)P */ 0x15, 0x66, 0x6f, 0xd5, 0x78, 0xa4, 0x0a, 0xf7, 0xb1, 0xe8, 0x75, 0x6b, 0x48, 0x7d, 0xa6, 0x4d, 0x3d, 0x36, 0x9b, 0xc7, 0xcc, 0x68, 0x9a, 0xfe, 0x2f, 0x39, 0x2a, 0x51, 0x31, 0x39, 0x7d, 0x73, 0x6f, 0xc8, 0x74, 0x72, 0x6f, 0x6e, 0xda, 0x5f, 0xad, 0x48, 0xc8, 0x40, 0xe1, 0x06, 0x01, 0x36, 0xa1, 0x88, 0xc8, 0x99, 0x9c, 0xd1, 0x11, 0x8f,
/* (2^247)P */ 0xab, 0xc5, 0xcb, 0xcf, 0xbd, 0x73, 0x21, 0xd0, 0x82, 0xb1, 0x2e, 0x2d, 0xd4, 0x36, 0x1b, 0xed, 0xa9, 0x8a, 0x26, 0x79, 0xc4, 0x17, 0xae, 0xe5, 0x09, 0x0a, 0x0c, 0xa4, 0x21, 0xa0, 0x6e, 0xdd, 0x62, 0x8e, 0x44, 0x62, 0xcc, 0x50, 0xff, 0x93, 0xb3, 0x9a, 0x72, 0x8c, 0x3f, 0xa1, 0xa6, 0x4d, 0x87, 0xd5, 0x1c, 0x5a, 0xc0, 0x0b, 0x1a, 0xd6,
/* (2^248)P */ 0x67, 0x36, 0x6a, 0x1f, 0x96, 0xe5, 0x80, 0x20, 0xa9, 0xe8, 0x0b, 0x0e, 0x21, 0x29, 0x3f, 0xc8, 0x0a, 0x6d, 0x27, 0x47, 0xca, 0xd9, 0x05, 0x55, 0xbf, 0x11, 0xcf, 0x31, 0x7a, 0x37, 0xc7, 0x90, 0xa9, 0xf4, 0x07, 0x5e, 0xd5, 0xc3, 0x92, 0xaa, 0x95, 0xc8, 0x23, 0x2a, 0x53, 0x45, 0xe3, 0x3a, 0x24, 0xe9, 0x67, 0x97, 0x3a, 0x82, 0xf9, 0xa6,
/* (2^249)P */ 0x92, 0x9e, 0x6d, 0x82, 0x67, 0xe9, 0xf9, 0x17, 0x96, 0x2c, 0xa7, 0xd3, 0x89, 0xf9, 0xdb, 0xd8, 0x20, 0xc6, 0x2e, 0xec, 0x4a, 0x76, 0x64, 0xbf, 0x27, 0x40, 0xe2, 0xb4, 0xdf, 0x1f, 0xa0, 0xef, 0x07, 0x80, 0xfb, 0x8e, 0x12, 0xf8, 0xb8, 0xe1, 0xc6, 0xdf, 0x7c, 0x69, 0x35, 0x5a, 0xe1, 0x8e, 0x5d, 0x69, 0x84, 0x56, 0xb6, 0x31, 0x1c, 0x0b,
/* (2^250)P */ 0xd6, 0x94, 0x5c, 0xef, 0xbb, 0x46, 0x45, 0x44, 0x5b, 0xa1, 0xae, 0x03, 0x65, 0xdd, 0xb5, 0x66, 0x88, 0x35, 0x29, 0x95, 0x16, 0x54, 0xa6, 0xf5, 0xc9, 0x78, 0x34, 0xe6, 0x0f, 0xc4, 0x2b, 0x5b, 0x79, 0x51, 0x68, 0x48, 0x3a, 0x26, 0x87, 0x05, 0x70, 0xaf, 0x8b, 0xa6, 0xc7, 0x2e, 0xb3, 0xa9, 0x10, 0x01, 0xb0, 0xb9, 0x31, 0xfd, 0xdc, 0x80,
/* (2^251)P */ 0x25, 0xf2, 0xad, 0xd6, 0x75, 0xa3, 0x04, 0x05, 0x64, 0x8a, 0x97, 0x60, 0x27, 0x2a, 0xe5, 0x6d, 0xb0, 0x73, 0xf4, 0x07, 0x2a, 0x9d, 0xe9, 0x46, 0xb4, 0x1c, 0x51, 0xf8, 0x63, 0x98, 0x7e, 0xe5, 0x13, 0x51, 0xed, 0x98, 0x65, 0x98, 0x4f, 0x8f, 0xe7, 0x7e, 0x72, 0xd7, 0x64, 0x11, 0x2f, 0xcd, 0x12, 0xf8, 0xc4, 0x63, 0x52, 0x0f, 0x7f, 0xc4,
/* (2^252)P */ 0x5c, 0xd9, 0x85, 0x63, 0xc7, 0x8a, 0x65, 0x9a, 0x25, 0x83, 0x31, 0x73, 0x49, 0xf0, 0x93, 0x96, 0x70, 0x67, 0x6d, 0xb1, 0xff, 0x95, 0x54, 0xe4, 0xf8, 0x15, 0x6c, 0x5f, 0xbd, 0xf6, 0x0f, 0x38, 0x7b, 0x68, 0x7d, 0xd9, 0x3d, 0xf0, 0xa9, 0xa0, 0xe4, 0xd1, 0xb6, 0x34, 0x6d, 0x14, 0x16, 0xc2, 0x4c, 0x30, 0x0e, 0x67, 0xd3, 0xbe, 0x2e, 0xc0,
/* (2^253)P */ 0x06, 0x6b, 0x52, 0xc8, 0x14, 0xcd, 0xae, 0x03, 0x93, 0xea, 0xc1, 0xf2, 0xf6, 0x8b, 0xc5, 0xb6, 0xdc, 0x82, 0x42, 0x29, 0x94, 0xe0, 0x25, 0x6c, 0x3f, 0x9f, 0x5d, 0xe4, 0x96, 0xf6, 0x8e, 0x3f, 0xf9, 0x72, 0xc4, 0x77, 0x60, 0x8b, 0xa4, 0xf9, 0xa8, 0xc3, 0x0a, 0x81, 0xb1, 0x97, 0x70, 0x18, 0xab, 0xea, 0x37, 0x8a, 0x08, 0xc7, 0xe2, 0x95,
/* (2^254)P */ 0x94, 0x49, 0xd9, 0x5f, 0x76, 0x72, 0x82, 0xad, 0x2d, 0x50, 0x1a, 0x7a, 0x5b, 0xe6, 0x95, 0x1e, 0x95, 0x65, 0x87, 0x1c, 0x52, 0xd7, 0x44, 0xe6, 0x9b, 0x56, 0xcd, 0x6f, 0x05, 0xff, 0x67, 0xc5, 0xdb, 0xa2, 0xac, 0xe4, 0xa2, 0x28, 0x63, 0x5f, 0xfb, 0x0c, 0x3b, 0xf1, 0x87, 0xc3, 0x36, 0x78, 0x3f, 0x77, 0xfa, 0x50, 0x85, 0xf9, 0xd7, 0x82,
/* (2^255)P */ 0x64, 0xc0, 0xe0, 0xd8, 0x2d, 0xed, 0xcb, 0x6a, 0xfd, 0xcd, 0xbc, 0x7e, 0x9f, 0xc8, 0x85, 0xe9, 0xc1, 0x7c, 0x0f, 0xe5, 0x18, 0xea, 0xd4, 0x51, 0xad, 0x59, 0x13, 0x75, 0xd9, 0x3d, 0xd4, 0x8a, 0xb2, 0xbe, 0x78, 0x52, 0x2b, 0x52, 0x94, 0x37, 0x41, 0xd6, 0xb4, 0xb6, 0x45, 0x20, 0x76, 0xe0, 0x1f, 0x31, 0xdb, 0xb1, 0xa1, 0x43, 0xf0, 0x18,
/* (2^256)P */ 0x74, 0xa9, 0xa4, 0xa9, 0xdd, 0x6e, 0x3e, 0x68, 0xe5, 0xc3, 0x2e, 0x92, 0x17, 0xa4, 0xcb, 0x80, 0xb1, 0xf0, 0x06, 0x93, 0xef, 0xe6, 0x00, 0xe6, 0x3b, 0xb1, 0x32, 0x65, 0x7b, 0x83, 0xb6, 0x8a, 0x49, 0x1b, 0x14, 0x89, 0xee, 0xba, 0xf5, 0x6a, 0x8d, 0x36, 0xef, 0xb0, 0xd8, 0xb2, 0x16, 0x99, 0x17, 0x35, 0x02, 0x16, 0x55, 0x58, 0xdd, 0x82,
/* (2^257)P */ 0x36, 0x95, 0xe8, 0xf4, 0x36, 0x42, 0xbb, 0xc5, 0x3e, 0xfa, 0x30, 0x84, 0x9e, 0x59, 0xfd, 0xd2, 0x95, 0x42, 0xf8, 0x64, 0xd9, 0xb9, 0x0e, 0x9f, 0xfa, 0xd0, 0x7b, 0x20, 0x31, 0x77, 0x48, 0x29, 0x4d, 0xd0, 0x32, 0x57, 0x56, 0x30, 0xa6, 0x17, 0x53, 0x04, 0xbf, 0x08, 0x28, 0xec, 0xb8, 0x46, 0xc1, 0x03, 0x89, 0xdc, 0xed, 0xa0, 0x35, 0x53,
/* (2^258)P */ 0xc5, 0x7f, 0x9e, 0xd8, 0xc5, 0xba, 0x5f, 0x68, 0xc8, 0x23, 0x75, 0xea, 0x0d, 0xd9, 0x5a, 0xfd, 0x61, 0x1a, 0xa3, 0x2e, 0x45, 0x63, 0x14, 0x55, 0x86, 0x21, 0x29, 0xbe, 0xef, 0x5e, 0x50, 0xe5, 0x18, 0x59, 0xe7, 0xe3, 0xce, 0x4d, 0x8c, 0x15, 0x8f, 0x89, 0x66, 0x44, 0x52, 0x3d, 0xfa, 0xc7, 0x9a, 0x59, 0x90, 0x8e, 0xc0, 0x06, 0x3f, 0xc9,
/* (2^259)P */ 0x8e, 0x04, 0xd9, 0x16, 0x50, 0x1d, 0x8c, 0x9f, 0xd5, 0xe3, 0xce, 0xfd, 0x47, 0x04, 0x27, 0x4d, 0xc2, 0xfa, 0x71, 0xd9, 0x0b, 0xb8, 0x65, 0xf4, 0x11, 0xf3, 0x08, 0xee, 0x81, 0xc8, 0x67, 0x99, 0x0b, 0x8d, 0x77, 0xa3, 0x4f, 0xb5, 0x9b, 0xdb, 0x26, 0xf1, 0x97, 0xeb, 0x04, 0x54, 0xeb, 0x80, 0x08, 0x1d, 0x1d, 0xf6, 0x3d, 0x1f, 0x5a, 0xb8,
/* (2^260)P */ 0xb7, 0x9c, 0x9d, 0xee, 0xb9, 0x5c, 0xad, 0x0d, 0x9e, 0xfd, 0x60, 0x3c, 0x27, 0x4e, 0xa2, 0x95, 0xfb, 0x64, 0x7e, 0x79, 0x64, 0x87, 0x10, 0xb4, 0x73, 0xe0, 0x9d, 0x46, 0x4d, 0x3d, 0xee, 0x83, 0xe4, 0x16, 0x88, 0x97, 0xe6, 0x4d, 0xba, 0x70, 0xb6, 0x96, 0x7b, 0xff, 0x4b, 0xc8, 0xcf, 0x72, 0x83, 0x3e, 0x5b, 0x24, 0x2e, 0x57, 0xf1, 0x82,
/* (2^261)P */ 0x30, 0x71, 0x40, 0x51, 0x4f, 0x44, 0xbb, 0xc7, 0xf0, 0x54, 0x6e, 0x9d, 0xeb, 0x15, 0xad, 0xf8, 0x61, 0x43, 0x5a, 0xef, 0xc0, 0xb1, 0x57, 0xae, 0x03, 0x40, 0xe8, 0x68, 0x6f, 0x03, 0x20, 0x4f, 0x8a, 0x51, 0x2a, 0x9e, 0xd2, 0x45, 0xaf, 0xb4, 0xf5, 0xd4, 0x95, 0x7f, 0x3d, 0x3d, 0xb7, 0xb6, 0x28, 0xc5, 0x08, 0x8b, 0x44, 0xd6, 0x3f, 0xe7,
/* (2^262)P */ 0xa9, 0x52, 0x04, 0x67, 0xcb, 0x20, 0x63, 0xf8, 0x18, 0x01, 0x44, 0x21, 0x6a, 0x8a, 0x83, 0x48, 0xd4, 0xaf, 0x23, 0x0f, 0x35, 0x8d, 0xe5, 0x5a, 0xc4, 0x7c, 0x55, 0x46, 0x19, 0x5f, 0x35, 0xe0, 0x5d, 0x97, 0x4c, 0x2d, 0x04, 0xed, 0x59, 0xd4, 0xb0, 0xb2, 0xc6, 0xe3, 0x51, 0xe1, 0x38, 0xc6, 0x30, 0x49, 0x8f, 0xae, 0x61, 0x64, 0xce, 0xa8,
/* (2^263)P */ 0x9b, 0x64, 0x83, 0x3c, 0xd3, 0xdf, 0xb9, 0x27, 0xe7, 0x5b, 0x7f, 0xeb, 0xf3, 0x26, 0xcf, 0xb1, 0x8f, 0xaf, 0x26, 0xc8, 0x48, 0xce, 0xa1, 0xac, 0x7d, 0x10, 0x34, 0x28, 0xe1, 0x1f, 0x69, 0x03, 0x64, 0x77, 0x61, 0xdd, 0x4a, 0x9b, 0x18, 0x47, 0xf8, 0xca, 0x63, 0xc9, 0x03, 0x2d, 0x20, 0x2a, 0x69, 0x6e, 0x42, 0xd0, 0xe7, 0xaa, 0xb5, 0xf3,
/* (2^264)P */ 0xea, 0x31, 0x0c, 0x57, 0x0f, 0x3e, 0xe3, 0x35, 0xd8, 0x30, 0xa5, 0x6f, 0xdd, 0x95, 0x43, 0xc6, 0x66, 0x07, 0x4f, 0x34, 0xc3, 0x7e, 0x04, 0x10, 0x2d, 0xc4, 0x1c, 0x94, 0x52, 0x2e, 0x5b, 0x9a, 0x65, 0x2f, 0x91, 0xaa, 0x4f, 0x3c, 0xdc, 0x23, 0x18, 0xe1, 0x4f, 0x85, 0xcd, 0xf4, 0x8c, 0x51, 0xf7, 0xab, 0x4f, 0xdc, 0x15, 0x5c, 0x9e, 0xc5,
/* (2^265)P */ 0x54, 0x57, 0x23, 0x17, 0xe7, 0x82, 0x2f, 0x04, 0x7d, 0xfe, 0xe7, 0x1f, 0xa2, 0x57, 0x79, 0xe9, 0x58, 0x9b, 0xbe, 0xc6, 0x16, 0x4a, 0x17, 0x50, 0x90, 0x4a, 0x34, 0x70, 0x87, 0x37, 0x01, 0x26, 0xd8, 0xa3, 0x5f, 0x07, 0x7c, 0xd0, 0x7d, 0x05, 0x8a, 0x93, 0x51, 0x2f, 0x99, 0xea, 0xcf, 0x00, 0xd8, 0xc7, 0xe6, 0x9b, 0x8c, 0x62, 0x45, 0x87,
/* (2^266)P */ 0xc3, 0xfd, 0x29, 0x66, 0xe7, 0x30, 0x29, 0x77, 0xe0, 0x0d, 0x63, 0x5b, 0xe6, 0x90, 0x1a, 0x1e, 0x99, 0xc2, 0xa7, 0xab, 0xff, 0xa7, 0xbd, 0x79, 0x01, 0x97, 0xfd, 0x27, 0x1b, 0x43, 0x2b, 0xe6, 0xfe, 0x5e, 0xf1, 0xb9, 0x35, 0x38, 0x08, 0x25, 0x55, 0x90, 0x68, 0x2e, 0xc3, 0x67, 0x39, 0x9f, 0x2b, 0x2c, 0x70, 0x48, 0x8c, 0x47, 0xee, 0x56,
/* (2^267)P */ 0xf7, 0x32, 0x70, 0xb5, 0xe6, 0x42, 0xfd, 0x0a, 0x39, 0x9b, 0x07, 0xfe, 0x0e, 0xf4, 0x47, 0xba, 0x6a, 0x3f, 0xf5, 0x2c, 0x15, 0xf3, 0x60, 0x3f, 0xb1, 0x83, 0x7b, 0x2e, 0x34, 0x58, 0x1a, 0x6e, 0x4a, 0x49, 0x05, 0x45, 0xca, 0xdb, 0x00, 0x01, 0x0c, 0x42, 0x5e, 0x60, 0x40, 0x5f, 0xd9, 0xc7, 0x3a, 0x9e, 0x1c, 0x8d, 0xab, 0x11, 0x55, 0x65,
/* (2^268)P */ 0x87, 0x40, 0xb7, 0x0d, 0xaa, 0x34, 0x89, 0x90, 0x75, 0x6d, 0xa2, 0xfe, 0x3b, 0x6d, 0x5c, 0x39, 0x98, 0x10, 0x9e, 0x15, 0xc5, 0x35, 0xa2, 0x27, 0x23, 0x0a, 0x2d, 0x60, 0xe2, 0xa8, 0x7f, 0x3e, 0x77, 0x8f, 0xcc, 0x44, 0xcc, 0x30, 0x28, 0xe2, 0xf0, 0x04, 0x8c, 0xee, 0xe4, 0x5f, 0x68, 0x8c, 0xdf, 0x70, 0xbf, 0x31, 0xee, 0x2a, 0xfc, 0xce,
/* (2^269)P */ 0x92, 0xf2, 0xa0, 0xd9, 0x58, 0x3b, 0x7c, 0x1a, 0x99, 0x46, 0x59, 0x54, 0x60, 0x06, 0x8d, 0x5e, 0xf0, 0x22, 0xa1, 0xed, 0x92, 0x8a, 0x4d, 0x76, 0x95, 0x05, 0x0b, 0xff, 0xfc, 0x9a, 0xd1, 0xcc, 0x05, 0xb9, 0x5e, 0x99, 0xe8, 0x2a, 0x76, 0x7b, 0xfd, 0xa6, 0xe2, 0xd1, 0x1a, 0xd6, 0x76, 0x9f, 0x2f, 0x0e, 0xd1, 0xa8, 0x77, 0x5a, 0x40, 0x5a,
/* (2^270)P */ 0xff, 0xf9, 0x3f, 0xa9, 0xa6, 0x6c, 0x6d, 0x03, 0x8b, 0xa7, 0x10, 0x5d, 0x3f, 0xec, 0x3e, 0x1c, 0x0b, 0x6b, 0xa2, 0x6a, 0x22, 0xa9, 0x28, 0xd0, 0x66, 0xc9, 0xc2, 0x3d, 0x47, 0x20, 0x7d, 0xa6, 0x1d, 0xd8, 0x25, 0xb5, 0xf2, 0xf9, 0x70, 0x19, 0x6b, 0xf8, 0x43, 0x36, 0xc5, 0x1f, 0xe4, 0x5a, 0x4c, 0x13, 0xe4, 0x6d, 0x08, 0x0b, 0x1d, 0xb1,
/* (2^271)P */ 0x3f, 0x20, 0x9b, 0xfb, 0xec, 0x7d, 0x31, 0xc5, 0xfc, 0x88, 0x0b, 0x30, 0xed, 0x36, 0xc0, 0x63, 0xb1, 0x7d, 0x10, 0xda, 0xb6, 0x2e, 0xad, 0xf3, 0xec, 0x94, 0xe7, 0xec, 0xb5, 0x9c, 0xfe, 0xf5, 0x35, 0xf0, 0xa2, 0x2d, 0x7f, 0xca, 0x6b, 0x67, 0x1a, 0xf6, 0xb3, 0xda, 0x09, 0x2a, 0xaa, 0xdf, 0xb1, 0xca, 0x9b, 0xfb, 0xeb, 0xb3, 0xcd, 0xc0,
/* (2^272)P */ 0xcd, 0x4d, 0x89, 0x00, 0xa4, 0x3b, 0x48, 0xf0, 0x76, 0x91, 0x35, 0xa5, 0xf8, 0xc9, 0xb6, 0x46, 0xbc, 0xf6, 0x9a, 0x45, 0x47, 0x17, 0x96, 0x80, 0x5b, 0x3a, 0x28, 0x33, 0xf9, 0x5a, 0xef, 0x43, 0x07, 0xfe, 0x3b, 0xf4, 0x8e, 0x19, 0xce, 0xd2, 0x94, 0x4b, 0x6d, 0x8e, 0x67, 0x20, 0xc7, 0x4f, 0x2f, 0x59, 0x8e, 0xe1, 0xa1, 0xa9, 0xf9, 0x0e,
/* (2^273)P */ 0xdc, 0x7b, 0xb5, 0x50, 0x2e, 0xe9, 0x7e, 0x8b, 0x78, 0xa1, 0x38, 0x96, 0x22, 0xc3, 0x61, 0x67, 0x6d, 0xc8, 0x58, 0xed, 0x41, 0x1d, 0x5d, 0x86, 0x98, 0x7f, 0x2f, 0x1b, 0x8d, 0x3e, 0xaa, 0xc1, 0xd2, 0x0a, 0xf3, 0xbf, 0x95, 0x04, 0xf3, 0x10, 0x3c, 0x2b, 0x7f, 0x90, 0x46, 0x04, 0xaa, 0x6a, 0xa9, 0x35, 0x76, 0xac, 0x49, 0xb5, 0x00, 0x45,
/* (2^274)P */ 0xb1, 0x93, 0x79, 0x84, 0x4a, 0x2a, 0x30, 0x78, 0x16, 0xaa, 0xc5, 0x74, 0x06, 0xce, 0xa5, 0xa7, 0x32, 0x86, 0xe0, 0xf9, 0x10, 0xd2, 0x58, 0x76, 0xfb, 0x66, 0x49, 0x76, 0x3a, 0x90, 0xba, 0xb5, 0xcc, 0x99, 0xcd, 0x09, 0xc1, 0x9a, 0x74, 0x23, 0xdf, 0x0c, 0xfe, 0x99, 0x52, 0x80, 0xa3, 0x7c, 0x1c, 0x71, 0x5f, 0x2c, 0x49, 0x57, 0xf4, 0xf9,
/* (2^275)P */ 0x6d, 0xbf, 0x52, 0xe6, 0x25, 0x98, 0xed, 0xcf, 0xe3, 0xbc, 0x08, 0xa2, 0x1a, 0x90, 0xae, 0xa0, 0xbf, 0x07, 0x15, 0xad, 0x0a, 0x9f, 0x3e, 0x47, 0x44, 0xc2, 0x10, 0x46, 0xa6, 0x7a, 0x9e, 0x2f, 0x57, 0xbc, 0xe2, 0xf0, 0x1d, 0xd6, 0x9a, 0x06, 0xed, 0xfc, 0x54, 0x95, 0x92, 0x15, 0xa2, 0xf7, 0x8d, 0x6b, 0xef, 0xb2, 0x05, 0xed, 0x5c, 0x63,
/* (2^276)P */ 0xbc, 0x0b, 0x27, 0x3a, 0x3a, 0xf8, 0xe1, 0x48, 0x02, 0x7e, 0x27, 0xe6, 0x81, 0x62, 0x07, 0x73, 0x74, 0xe5, 0x52, 0xd7, 0xf8, 0x26, 0xca, 0x93, 0x4d, 0x3e, 0x9b, 0x55, 0x09, 0x8e, 0xe3, 0xd7, 0xa6, 0xe3, 0xb6, 0x2a, 0xa9, 0xb3, 0xb0, 0xa0, 0x8c, 0x01, 0xbb, 0x07, 0x90, 0x78, 0x6d, 0x6d, 0xe9, 0xf0, 0x7a, 0x90, 0xbd, 0xdc, 0x0c, 0x36,
/* (2^277)P */ 0x7f, 0x20, 0x12, 0x0f, 0x40, 0x00, 0x53, 0xd8, 0x0c, 0x27, 0x47, 0x47, 0x22, 0x80, 0xfb, 0x62, 0xe4, 0xa7, 0xf7, 0xbd, 0x42, 0xa5, 0xc3, 0x2b, 0xb2, 0x7f, 0x50, 0xcc, 0xe2, 0xfb, 0xd5, 0xc0, 0x63, 0xdd, 0x24, 0x5f, 0x7c, 0x08, 0x91, 0xbf, 0x6e, 0x47, 0x44, 0xd4, 0x6a, 0xc0, 0xc3, 0x09, 0x39, 0x27, 0xdd, 0xc7, 0xca, 0x06, 0x29, 0x55,
/* (2^278)P */ 0x76, 0x28, 0x58, 0xb0, 0xd2, 0xf3, 0x0f, 0x04, 0xe9, 0xc9, 0xab, 0x66, 0x5b, 0x75, 0x51, 0xdc, 0xe5, 0x8f, 0xe8, 0x1f, 0xdb, 0x03, 0x0f, 0xb0, 0x7d, 0xf9, 0x20, 0x64, 0x89, 0xe9, 0xdc, 0xe6, 0x24, 0xc3, 0xd5, 0xd2, 0x41, 0xa6, 0xe4, 0xe3, 0xc4, 0x79, 0x7c, 0x0f, 0xa1, 0x61, 0x2f, 0xda, 0xa4, 0xc9, 0xfd, 0xad, 0x5c, 0x65, 0x6a, 0xf3,
/* (2^279)P */ 0xd5, 0xab, 0x72, 0x7a, 0x3b, 0x59, 0xea, 0xcf, 0xd5, 0x17, 0xd2, 0xb2, 0x5f, 0x2d, 0xab, 0xad, 0x9e, 0x88, 0x64, 0x55, 0x96, 0x6e, 0xf3, 0x44, 0xa9, 0x11, 0xf5, 0xf8, 0x3a, 0xf1, 0xcd, 0x79, 0x4c, 0x99, 0x6d, 0x23, 0x6a, 0xa0, 0xc2, 0x1a, 0x19, 0x45, 0xb5, 0xd8, 0x95, 0x2f, 0x49, 0xe9, 0x46, 0x39, 0x26, 0x60, 0x04, 0x15, 0x8b, 0xcc,
/* (2^280)P */ 0x66, 0x0c, 0xf0, 0x54, 0x41, 0x02, 0x91, 0xab, 0xe5, 0x85, 0x8a, 0x44, 0xa6, 0x34, 0x96, 0x32, 0xc0, 0xdf, 0x6c, 0x41, 0x39, 0xd4, 0xc6, 0xe1, 0xe3, 0x81, 0xb0, 0x4c, 0x34, 0x4f, 0xe5, 0xf4, 0x35, 0x46, 0x1f, 0xeb, 0x75, 0xfd, 0x43, 0x37, 0x50, 0x99, 0xab, 0xad, 0xb7, 0x8c, 0xa1, 0x57, 0xcb, 0xe6, 0xce, 0x16, 0x2e, 0x85, 0xcc, 0xf9,
/* (2^281)P */ 0x63, 0xd1, 0x3f, 0x9e, 0xa2, 0x17, 0x2e, 0x1d, 0x3e, 0xce, 0x48, 0x2d, 0xbb, 0x8f, 0x69, 0xc9, 0xa6, 0x3d, 0x4e, 0xfe, 0x09, 0x56, 0xb3, 0x02, 0x5f, 0x99, 0x97, 0x0c, 0x54, 0xda, 0x32, 0x97, 0x9b, 0xf4, 0x95, 0xf1, 0xad, 0xe3, 0x2b, 0x04, 0xa7, 0x9b, 0x3f, 0xbb, 0xe7, 0x87, 0x2e, 0x1f, 0x8b, 0x4b, 0x7a, 0xa4, 0x43, 0x0c, 0x0f, 0x35,
/* (2^282)P */ 0x05, 0xdc, 0xe0, 0x2c, 0xa1, 0xc1, 0xd0, 0xf1, 0x1f, 0x4e, 0xc0, 0x6c, 0x35, 0x7b, 0xca, 0x8f, 0x8b, 0x02, 0xb1, 0xf7, 0xd6, 0x2e, 0xe7, 0x93, 0x80, 0x85, 0x18, 0x88, 0x19, 0xb9, 0xb4, 0x4a, 0xbc, 0xeb, 0x5a, 0x78, 0x38, 0xed, 0xc6, 0x27, 0x2a, 0x74, 0x76, 0xf0, 0x1b, 0x79, 0x92, 0x2f, 0xd2, 0x81, 0x98, 0xdf, 0xa9, 0x50, 0x19, 0xeb,
/* (2^283)P */ 0xb5, 0xe7, 0xb4, 0x11, 0x3a, 0x81, 0xb6, 0xb4, 0xf8, 0xa2, 0xb3, 0x6c, 0xfc, 0x9d, 0xe0, 0xc0, 0xe0, 0x59, 0x7f, 0x05, 0x37, 0xef, 0x2c, 0xa9, 0x3a, 0x24, 0xac, 0x7b, 0x25, 0xa0, 0x55, 0xd2, 0x44, 0x82, 0x82, 0x6e, 0x64, 0xa3, 0x58, 0xc8, 0x67, 0xae, 0x26, 0xa7, 0x0f, 0x42, 0x63, 0xe1, 0x93, 0x01, 0x52, 0x19, 0xaf, 0x49, 0x3e, 0x33,
/* (2^284)P */ 0x05, 0x85, 0xe6, 0x66, 0xaf, 0x5f, 0xdf, 0xbf, 0x9d, 0x24, 0x62, 0x60, 0x90, 0xe2, 0x4c, 0x7d, 0x4e, 0xc3, 0x74, 0x5d, 0x4f, 0x53, 0xf3, 0x63, 0x13, 0xf4, 0x74, 0x28, 0x6b, 0x7d, 0x57, 0x0c, 0x9d, 0x84, 0xa7, 0x1a, 0xff, 0xa0, 0x79, 0xdf, 0xfc, 0x65, 0x98, 0x8e, 0x22, 0x0d, 0x62, 0x7e, 0xf2, 0x34, 0x60, 0x83, 0x05, 0x14, 0xb1, 0xc1,
/* (2^285)P */ 0x64, 0x22, 0xcc, 0xdf, 0x5c, 0xbc, 0x88, 0x68, 0x4c, 0xd9, 0xbc, 0x0e, 0xc9, 0x8b, 0xb4, 0x23, 0x52, 0xad, 0xb0, 0xb3, 0xf1, 0x17, 0xd8, 0x15, 0x04, 0x6b, 0x99, 0xf0, 0xc4, 0x7d, 0x48, 0x22, 0x4a, 0xf8, 0x6f, 0xaa, 0x88, 0x0d, 0xc5, 0x5e, 0xa9, 0x1c, 0x61, 0x3d, 0x95, 0xa9, 0x7b, 0x6a, 0x79, 0x33, 0x0a, 0x2b, 0x99, 0xe3, 0x4e, 0x48,
/* (2^286)P */ 0x6b, 0x9b, 0x6a, 0x2a, 0xf1, 0x60, 0x31, 0xb4, 0x73, 0xd1, 0x87, 0x45, 0x9c, 0x15, 0x58, 0x4b, 0x91, 0x6d, 0x94, 0x1c, 0x41, 0x11, 0x4a, 0x83, 0xec, 0xaf, 0x65, 0xbc, 0x34, 0xaa, 0x26, 0xe2, 0xaf, 0xed, 0x46, 0x05, 0x4e, 0xdb, 0xc6, 0x4e, 0x10, 0x28, 0x4e, 0x72, 0xe5, 0x31, 0xa3, 0x20, 0xd7, 0xb1, 0x96, 0x64, 0xf6, 0xce, 0x08, 0x08,
/* (2^287)P */ 0x16, 0xa9, 0x5c, 0x9f, 0x9a, 0xb4, 0xb8, 0xc8, 0x32, 0x78, 0xc0, 0x3a, 0xd9, 0x5f, 0x94, 0xac, 0x3a, 0x42, 0x1f, 0x43, 0xd6, 0x80, 0x47, 0x2c, 0xdc, 0x76, 0x27, 0xfa, 0x50, 0xe5, 0xa1, 0xe4, 0xc3, 0xcb, 0x61, 0x31, 0xe1, 0x2e, 0xde, 0x81, 0x3b, 0x77, 0x1c, 0x39, 0x3c, 0xdb, 0xda, 0x87, 0x4b, 0x84, 0x12, 0xeb, 0xdd, 0x54, 0xbf, 0xe7,
/* (2^288)P */ 0xbf, 0xcb, 0x73, 0x21, 0x3d, 0x7e, 0x13, 0x8c, 0xa6, 0x34, 0x21, 0x2b, 0xa5, 0xe4, 0x9f, 0x8e, 0x9c, 0x01, 0x9c, 0x43, 0xd9, 0xc7, 0xb9, 0xf1, 0xbe, 0x7f, 0x45, 0x51, 0x97, 0xa1, 0x8e, 0x01, 0xf8, 0xbd, 0xd2, 0xbf, 0x81, 0x3a, 0x8b, 0xab, 0xe4, 0x89, 0xb7, 0xbd, 0xf2, 0xcd, 0xa9, 0x8a, 0x8a, 0xde, 0xfb, 0x8a, 0x55, 0x12, 0x7b, 0x17,
/* (2^289)P */ 0x1b, 0x95, 0x58, 0x4d, 0xe6, 0x51, 0x31, 0x52, 0x1c, 0xd8, 0x15, 0x84, 0xb1, 0x0d, 0x36, 0x25, 0x88, 0x91, 0x46, 0x71, 0x42, 0x56, 0xe2, 0x90, 0x08, 0x9e, 0x77, 0x1b, 0xee, 0x22, 0x3f, 0xec, 0xee, 0x8c, 0x7b, 0x2e, 0x79, 0xc4, 0x6c, 0x07, 0xa1, 0x7e, 0x52, 0xf5, 0x26, 0x5c, 0x84, 0x2a, 0x50, 0x6e, 0x82, 0xb3, 0x76, 0xda, 0x35, 0x16,
/* (2^290)P */ 0x0a, 0x6f, 0x99, 0x87, 0xc0, 0x7d, 0x8a, 0xb2, 0xca, 0xae, 0xe8, 0x65, 0x98, 0x0f, 0xb3, 0x44, 0xe1, 0xdc, 0x52, 0x79, 0x75, 0xec, 0x8f, 0x95, 0x87, 0x45, 0xd1, 0x32, 0x18, 0x55, 0x15, 0xce, 0x64, 0x9b, 0x08, 0x4f, 0x2c, 0xea, 0xba, 0x1c, 0x57, 0x06, 0x63, 0xc8, 0xb1, 0xfd, 0xc5, 0x67, 0xe7, 0x1f, 0x87, 0x9e, 0xde, 0x72, 0x7d, 0xec,
/* (2^291)P */ 0x36, 0x8b, 0x4d, 0x2c, 0xc2, 0x46, 0xe8, 0x96, 0xac, 0x0b, 0x8c, 0xc5, 0x09, 0x10, 0xfc, 0xf2, 0xda, 0xea, 0x22, 0xb2, 0xd3, 0x89, 0xeb, 0xb2, 0x85, 0x0f, 0xff, 0x59, 0x50, 0x2c, 0x99, 0x5a, 0x1f, 0xec, 0x2a, 0x6f, 0xec, 0xcf, 0xe9, 0xce, 0x12, 0x6b, 0x19, 0xd8, 0xde, 0x9b, 0xce, 0x0e, 0x6a, 0xaa, 0xe1, 0x32, 0xea, 0x4c, 0xfe, 0x92,
/* (2^292)P */ 0x5f, 0x17, 0x70, 0x53, 0x26, 0x03, 0x0b, 0xab, 0xd1, 0xc1, 0x42, 0x0b, 0xab, 0x2b, 0x3d, 0x31, 0xa4, 0xd5, 0x2b, 0x5e, 0x00, 0xd5, 0x9a, 0x22, 0x34, 0xe0, 0x53, 0x3f, 0x59, 0x7f, 0x2c, 0x6d, 0x72, 0x9a, 0xa4, 0xbe, 0x3d, 0x42, 0x05, 0x1b, 0xf2, 0x7f, 0x88, 0x56, 0xd1, 0x7c, 0x7d, 0x6b, 0x9f, 0x43, 0xfe, 0x65, 0x19, 0xae, 0x9c, 0x4c,
/* (2^293)P */ 0xf3, 0x7c, 0x20, 0xa9, 0xfc, 0xf2, 0xf2, 0x3b, 0x3c, 0x57, 0x41, 0x94, 0xe5, 0xcc, 0x6a, 0x37, 0x5d, 0x09, 0xf2, 0xab, 0xc2, 0xca, 0x60, 0x38, 0x6b, 0x7a, 0xe1, 0x78, 0x2b, 0xc1, 0x1d, 0xe8, 0xfd, 0xbc, 0x3d, 0x5c, 0xa2, 0xdb, 0x49, 0x20, 0x79, 0xe6, 0x1b, 0x9b, 0x65, 0xd9, 0x6d, 0xec, 0x57, 0x1d, 0xd2, 0xe9, 0x90, 0xeb, 0x43, 0x7b,
/* (2^294)P */ 0x2a, 0x8b, 0x2e, 0x19, 0x18, 0x10, 0xb8, 0x83, 0xe7, 0x7d, 0x2d, 0x9a, 0x3a, 0xe5, 0xd1, 0xe4, 0x7c, 0x38, 0xe5, 0x59, 0x2a, 0x6e, 0xd9, 0x01, 0x29, 0x3d, 0x23, 0xf7, 0x52, 0xba, 0x61, 0x04, 0x9a, 0xde, 0xc4, 0x31, 0x50, 0xeb, 0x1b, 0xaa, 0xde, 0x39, 0x58, 0xd8, 0x1b, 0x1e, 0xfc, 0x57, 0x9a, 0x28, 0x43, 0x9e, 0x97, 0x5e, 0xaa, 0xa3,
/* (2^295)P */ 0x97, 0x0a, 0x74, 0xc4, 0x39, 0x99, 0x6b, 0x40, 0xc7, 0x3e, 0x8c, 0xa7, 0xb1, 0x4e, 0x9a, 0x59, 0x6e, 0x1c, 0xfe, 0xfc, 0x2a, 0x5e, 0x73, 0x2b, 0x8c, 0xa9, 0x71, 0xf5, 0xda, 0x6b, 0x15, 0xab, 0xf7, 0xbe, 0x2a, 0x44, 0x5f, 0xba, 0xae, 0x67, 0x93, 0xc5, 0x86, 0xc1, 0xb8, 0xdf, 0xdc, 0xcb, 0xd7, 0xff, 0xb1, 0x71, 0x7c, 0x6f, 0x88, 0xf8,
/* (2^296)P */ 0x3f, 0x89, 0xb1, 0xbf, 0x24, 0x16, 0xac, 0x56, 0xfe, 0xdf, 0x94, 0x71, 0xbf, 0xd6, 0x57, 0x0c, 0xb4, 0x77, 0x37, 0xaa, 0x2a, 0x70, 0x76, 0x49, 0xaf, 0x0c, 0x97, 0x8e, 0x78, 0x2a, 0x67, 0xc9, 0x3b, 0x3d, 0x5b, 0x01, 0x2f, 0xda, 0xd5, 0xa8, 0xde, 0x02, 0xa9, 0xac, 0x76, 0x00, 0x0b, 0x46, 0xc6, 0x2d, 0xdc, 0x08, 0xf4, 0x10, 0x2c, 0xbe,
/* (2^297)P */ 0xcb, 0x07, 0xf9, 0x91, 0xc6, 0xd5, 0x3e, 0x54, 0x63, 0xae, 0xfc, 0x10, 0xbe, 0x3a, 0x20, 0x73, 0x4e, 0x65, 0x0e, 0x2d, 0x86, 0x77, 0x83, 0x9d, 0xe2, 0x0a, 0xe9, 0xac, 0x22, 0x52, 0x76, 0xd4, 0x6e, 0xfa, 0xe0, 0x09, 0xef, 0x78, 0x82, 0x9f, 0x26, 0xf9, 0x06, 0xb5, 0xe7, 0x05, 0x0e, 0xf2, 0x46, 0x72, 0x93, 0xd3, 0x24, 0xbd, 0x87, 0x60,
/* (2^298)P */ 0x14, 0x55, 0x84, 0x7b, 0x6c, 0x60, 0x80, 0x73, 0x8c, 0xbe, 0x2d, 0xd6, 0x69, 0xd6, 0x17, 0x26, 0x44, 0x9f, 0x88, 0xa2, 0x39, 0x7c, 0x89, 0xbc, 0x6d, 0x9e, 0x46, 0xb6, 0x68, 0x66, 0xea, 0xdc, 0x31, 0xd6, 0x21, 0x51, 0x9f, 0x28, 0x28, 0xaf, 0x9e, 0x47, 0x2c, 0x4c, 0x8f, 0xf3, 0xaf, 0x1f, 0xe4, 0xab, 0xac, 0xe9, 0x0c, 0x91, 0x3a, 0x61,
/* (2^299)P */ 0xb0, 0x37, 0x55, 0x4b, 0xe9, 0xc3, 0xb1, 0xce, 0x42, 0xe6, 0xc5, 0x11, 0x7f, 0x2c, 0x11, 0xfc, 0x4e, 0x71, 0x17, 0x00, 0x74, 0x7f, 0xbf, 0x07, 0x4d, 0xfd, 0x40, 0xb2, 0x87, 0xb0, 0xef, 0x1f, 0x35, 0x2c, 0x2d, 0xd7, 0xe1, 0xe4, 0xad, 0x0e, 0x7f, 0x63, 0x66, 0x62, 0x23, 0x41, 0xf6, 0xc1, 0x14, 0xa6, 0xd7, 0xa9, 0x11, 0x56, 0x9d, 0x1b,
/* (2^300)P */ 0x02, 0x82, 0x42, 0x18, 0x4f, 0x1b, 0xc9, 0x5d, 0x78, 0x5f, 0xee, 0xed, 0x01, 0x49, 0x8f, 0xf2, 0xa0, 0xe2, 0x6e, 0xbb, 0x6b, 0x04, 0x8d, 0xb2, 0x41, 0xae, 0xc8, 0x1b, 0x59, 0x34, 0xb8, 0x2a, 0xdb, 0x1f, 0xd2, 0x52, 0xdf, 0x3f, 0x35, 0x00, 0x8b, 0x61, 0xbc, 0x97, 0xa0, 0xc4, 0x77, 0xd1, 0xe4, 0x2c, 0x59, 0x68, 0xff, 0x30, 0xf2, 0xe2,
/* (2^301)P */ 0x79, 0x08, 0xb1, 0xdb, 0x55, 0xae, 0xd0, 0xed, 0xda, 0xa0, 0xec, 0x6c, 0xae, 0x68, 0xf2, 0x0b, 0x61, 0xb3, 0xf5, 0x21, 0x69, 0x87, 0x0b, 0x03, 0xea, 0x8a, 0x15, 0xd9, 0x7e, 0xca, 0xf7, 0xcd, 0xf3, 0x33, 0xb3, 0x4c, 0x5b, 0x23, 0x4e, 0x6f, 0x90, 0xad, 0x91, 0x4b, 0x4f, 0x46, 0x37, 0xe5, 0xe8, 0xb7, 0xeb, 0xd5, 0xca, 0x34, 0x4e, 0x23,
/* (2^302)P */ 0x09, 0x02, 0xdd, 0xfd, 0x70, 0xac, 0x56, 0x80, 0x36, 0x5e, 0x49, 0xd0, 0x3f, 0xc2, 0xe0, 0xba, 0x46, 0x7f, 0x5c, 0xf7, 0xc5, 0xbd, 0xd5, 0x55, 0x7d, 0x3f, 0xd5, 0x7d, 0x06, 0xdf, 0x27, 0x20, 0x4f, 0xe9, 0x30, 0xec, 0x1b, 0xa0, 0x0c, 0xd4, 0x2c, 0xe1, 0x2b, 0x65, 0x73, 0xea, 0x75, 0x35, 0xe8, 0xe6, 0x56, 0xd6, 0x07, 0x15, 0x99, 0xdf,
/* (2^303)P */ 0x4e, 0x10, 0xb7, 0xd0, 0x63, 0x8c, 0xcf, 0x16, 0x00, 0x7c, 0x58, 0xdf, 0x86, 0xdc, 0x4e, 0xca, 0x9c, 0x40, 0x5a, 0x42, 0xfd, 0xec, 0x98, 0xa4, 0x42, 0x53, 0xae, 0x16, 0x9d, 0xfd, 0x75, 0x5a, 0x12, 0x56, 0x1e, 0xc6, 0x57, 0xcc, 0x79, 0x27, 0x96, 0x00, 0xcf, 0x80, 0x4f, 0x8a, 0x36, 0x5c, 0xbb, 0xe9, 0x12, 0xdb, 0xb6, 0x2b, 0xad, 0x96,
/* (2^304)P */ 0x92, 0x32, 0x1f, 0xfd, 0xc6, 0x02, 0x94, 0x08, 0x1b, 0x60, 0x6a, 0x9f, 0x8b, 0xd6, 0xc8, 0xad, 0xd5, 0x1b, 0x27, 0x4e, 0xa4, 0x4d, 0x4a, 0x00, 0x10, 0x5f, 0x86, 0x11, 0xf5, 0xe3, 0x14, 0x32, 0x43, 0xee, 0xb9, 0xc7, 0xab, 0xf4, 0x6f, 0xe5, 0x66, 0x0c, 0x06, 0x0d, 0x96, 0x79, 0x28, 0xaf, 0x45, 0x2b, 0x56, 0xbe, 0xe4, 0x4a, 0x52, 0xd6,
/* (2^305)P */ 0x15, 0x16, 0x69, 0xef, 0x60, 0xca, 0x82, 0x25, 0x0f, 0xc6, 0x30, 0xa0, 0x0a, 0xd1, 0x83, 0x29, 0xcd, 0xb6, 0x89, 0x6c, 0xf5, 0xb2, 0x08, 0x38, 0xe6, 0xca, 0x6b, 0x19, 0x93, 0xc6, 0x5f, 0x75, 0x8e, 0x60, 0x34, 0x23, 0xc4, 0x13, 0x17, 0x69, 0x55, 0xcc, 0x72, 0x9c, 0x2b, 0x6c, 0x80, 0xf4, 0x4b, 0x8b, 0xb6, 0x97, 0x65, 0x07, 0xb6, 0xfb,
/* (2^306)P */ 0x01, 0x99, 0x74, 0x28, 0xa6, 0x67, 0xa3, 0xe5, 0x25, 0xfb, 0xdf, 0x82, 0x93, 0xe7, 0x35, 0x74, 0xce, 0xe3, 0x15, 0x1c, 0x1d, 0x79, 0x52, 0x84, 0x08, 0x04, 0x2f, 0x5c, 0xb8, 0xcd, 0x7f, 0x89, 0xb0, 0x39, 0x93, 0x63, 0xc9, 0x5d, 0x06, 0x01, 0x59, 0xf7, 0x7e, 0xf1, 0x4c, 0x3d, 0x12, 0x8d, 0x69, 0x1d, 0xb7, 0x21, 0x5e, 0x88, 0x82, 0xa2,
/* (2^307)P */ 0x8e, 0x69, 0xaf, 0x9a, 0x41, 0x0d, 0x9d, 0xcf, 0x8e, 0x8d, 0x5c, 0x51, 0x6e, 0xde, 0x0e, 0x48, 0x23, 0x89, 0xe5, 0x37, 0x80, 0xd6, 0x9d, 0x72, 0x32, 0x26, 0x38, 0x2d, 0x63, 0xa0, 0xfa, 0xd3, 0x40, 0xc0, 0x8c, 0x68, 0x6f, 0x2b, 0x1e, 0x9a, 0x39, 0x51, 0x78, 0x74, 0x9a, 0x7b, 0x4a, 0x8f, 0x0c, 0xa0, 0x88, 0x60, 0xa5, 0x21, 0xcd, 0xc7,
/* (2^308)P */ 0x3a, 0x7f, 0x73, 0x14, 0xbf, 0x89, 0x6a, 0x4c, 0x09, 0x5d, 0xf2, 0x93, 0x20, 0x2d, 0xc4, 0x29, 0x86, 0x06, 0x95, 0xab, 0x22, 0x76, 0x4c, 0x54, 0xe1, 0x7e, 0x80, 0x6d, 0xab, 0x29, 0x61, 0x87, 0x77, 0xf6, 0xc0, 0x3e, 0xda, 0xab, 0x65, 0x7e, 0x39, 0x12, 0xa1, 0x6b, 0x42, 0xf7, 0xc5, 0x97, 0x77, 0xec, 0x6f, 0x22, 0xbe, 0x44, 0xc7, 0x03,
/* (2^309)P */ 0xa5, 0x23, 0x90, 0x41, 0xa3, 0xc5, 0x3e, 0xe0, 0xa5, 0x32, 0x49, 0x1f, 0x39, 0x78, 0xb1, 0xd8, 0x24, 0xea, 0xd4, 0x87, 0x53, 0x42, 0x51, 0xf4, 0xd9, 0x46, 0x25, 0x2f, 0x62, 0xa9, 0x90, 0x9a, 0x4a, 0x25, 0x8a, 0xd2, 0x10, 0xe7, 0x3c, 0xbc, 0x58, 0x8d, 0x16, 0x14, 0x96, 0xa4, 0x6f, 0xf8, 0x12, 0x69, 0x91, 0x73, 0xe2, 0xfa, 0xf4, 0x57,
/* (2^310)P */ 0x51, 0x45, 0x3f, 0x96, 0xdc, 0x97, 0x38, 0xa6, 0x01, 0x63, 0x09, 0xea, 0xc2, 0x13, 0x30, 0xb0, 0x00, 0xb8, 0x0a, 0xce, 0xd1, 0x8f, 0x3e, 0x69, 0x62, 0x46, 0x33, 0x9c, 0xbf, 0x4b, 0xcb, 0x0c, 0x90, 0x1c, 0x45, 0xcf, 0x37, 0x5b, 0xf7, 0x4b, 0x5e, 0x95, 0xc3, 0x28, 0x9f, 0x08, 0x83, 0x53, 0x74, 0xab, 0x0c, 0xb4, 0xc0, 0xa1, 0xbc, 0x89,
/* (2^311)P */ 0x06, 0xb1, 0x51, 0x15, 0x65, 0x60, 0x21, 0x17, 0x7a, 0x20, 0x65, 0xee, 0x12, 0x35, 0x4d, 0x46, 0xf4, 0xf8, 0xd0, 0xb1, 0xca, 0x09, 0x30, 0x08, 0x89, 0x23, 0x3b, 0xe7, 0xab, 0x8b, 0x77, 0xa6, 0xad, 0x25, 0xdd, 0xea, 0x3c, 0x7d, 0xa5, 0x24, 0xb3, 0xe8, 0xfa, 0xfb, 0xc9, 0xf2, 0x71, 0xe9, 0xfa, 0xf2, 0xdc, 0x54, 0xdd, 0x55, 0x2e, 0x2f,
/* (2^312)P */ 0x7f, 0x96, 0x96, 0xfb, 0x52, 0x86, 0xcf, 0xea, 0x62, 0x18, 0xf1, 0x53, 0x1f, 0x61, 0x2a, 0x9f, 0x8c, 0x51, 0xca, 0x2c, 0xde, 0x6d, 0xce, 0xab, 0x58, 0x32, 0x0b, 0x33, 0x9b, 0x99, 0xb4, 0x5c, 0x88, 0x2a, 0x76, 0xcc, 0x3e, 0x54, 0x1e, 0x9d, 0xa2, 0x89, 0xe4, 0x19, 0xba, 0x80, 0xc8, 0x39, 0x32, 0x7f, 0x0f, 0xc7, 0x84, 0xbb, 0x43, 0x56,
/* (2^313)P */ 0x9b, 0x07, 0xb4, 0x42, 0xa9, 0xa0, 0x78, 0x4f, 0x28, 0x70, 0x2b, 0x7e, 0x61, 0xe0, 0xdd, 0x02, 0x98, 0xfc, 0xed, 0x31, 0x80, 0xf1, 0x15, 0x52, 0x89, 0x23, 0xcd, 0x5d, 0x2b, 0xc5, 0x19, 0x32, 0xfb, 0x70, 0x50, 0x7a, 0x97, 0x6b, 0x42, 0xdb, 0xca, 0xdb, 0xc4, 0x59, 0x99, 0xe0, 0x12, 0x1f, 0x17, 0xba, 0x8b, 0xf0, 0xc4, 0x38, 0x5d, 0x27,
/* (2^314)P */ 0x29, 0x1d, 0xdc, 0x2b, 0xf6, 0x5b, 0x04, 0x61, 0x36, 0x76, 0xa0, 0x56, 0x36, 0x6e, 0xd7, 0x24, 0x4d, 0xe7, 0xef, 0x44, 0xd2, 0xd5, 0x07, 0xcd, 0xc4, 0x9d, 0x80, 0x48, 0xc3, 0x38, 0xcf, 0xd8, 0xa3, 0xdd, 0xb2, 0x5e, 0xb5, 0x70, 0x15, 0xbb, 0x36, 0x85, 0x8a, 0xd7, 0xfb, 0x56, 0x94, 0x73, 0x9c, 0x81, 0xbe, 0xb1, 0x44, 0x28, 0xf1, 0x37,
/* (2^315)P */ 0xbf, 0xcf, 0x5c, 0xd2, 0xe2, 0xea, 0xc2, 0xcd, 0x70, 0x7a, 0x9d, 0xcb, 0x81, 0xc1, 0xe9, 0xf1, 0x56, 0x71, 0x52, 0xf7, 0x1b, 0x87, 0xc6, 0xd8, 0xcc, 0xb2, 0x69, 0xf3, 0xb0, 0xbd, 0xba, 0x83, 0x12, 0x26, 0xc4, 0xce, 0x72, 0xde, 0x3b, 0x21, 0x28, 0x9e, 0x5a, 0x94, 0xf5, 0x04, 0xa3, 0xc8, 0x0f, 0x5e, 0xbc, 0x71, 0xf9, 0x0d, 0xce, 0xf5,
/* (2^316)P */ 0x93, 0x97, 0x00, 0x85, 0xf4, 0xb4, 0x40, 0xec, 0xd9, 0x2b, 0x6c, 0xd6, 0x63, 0x9e, 0x93, 0x0a, 0x5a, 0xf4, 0xa7, 0x9a, 0xe3, 0x3c, 0xf0, 0x55, 0xd1, 0x96, 0x6c, 0xf5, 0x2a, 0xce, 0xd7, 0x95, 0x72, 0xbf, 0xc5, 0x0c, 0xce, 0x79, 0xa2, 0x0a, 0x78, 0xe0, 0x72, 0xd0, 0x66, 0x28, 0x05, 0x75, 0xd3, 0x23, 0x09, 0x91, 0xed, 0x7e, 0xc4, 0xbc,
/* (2^317)P */ 0x77, 0xc2, 0x9a, 0xf7, 0xa6, 0xe6, 0x18, 0xb4, 0xe7, 0xf6, 0xda, 0xec, 0x44, 0x6d, 0xfb, 0x08, 0xee, 0x65, 0xa8, 0x92, 0x85, 0x1f, 0xba, 0x38, 0x93, 0x20, 0x5c, 0x4d, 0xd2, 0x18, 0x0f, 0x24, 0xbe, 0x1a, 0x96, 0x44, 0x7d, 0xeb, 0xb3, 0xda, 0x95, 0xf4, 0xaf, 0x6c, 0x06, 0x0f, 0x47, 0x37, 0xc8, 0x77, 0x63, 0xe1, 0x29, 0xef, 0xff, 0xa5,
/* (2^318)P */ 0x16, 0x12, 0xd9, 0x47, 0x90, 0x22, 0x9b, 0x05, 0xf2, 0xa5, 0x9a, 0xae, 0x83, 0x98, 0xb5, 0xac, 0xab, 0x29, 0xaa, 0xdc, 0x5f, 0xde, 0xcd, 0xf7, 0x42, 0xad, 0x3b, 0x96, 0xd6, 0x3e, 0x6e, 0x52, 0x47, 0xb1, 0xab, 0x51, 0xde, 0x49, 0x7c, 0x87, 0x8d, 0x86, 0xe2, 0x70, 0x13, 0x21, 0x51, 0x1c, 0x0c, 0x25, 0xc1, 0xb0, 0xe6, 0x19, 0xcf, 0x12,
/* (2^319)P */ 0xf0, 0xbc, 0x97, 0x8f, 0x4b, 0x2f, 0xd1, 0x1f, 0x8c, 0x57, 0xed, 0x3c, 0xf4, 0x26, 0x19, 0xbb, 0x60, 0xca, 0x24, 0xc5, 0xd9, 0x97, 0xe2, 0x5f, 0x76, 0x49, 0x39, 0x7e, 0x2d, 0x12, 0x21, 0x98, 0xda, 0xe6, 0xdb, 0xd2, 0xd8, 0x9f, 0x18, 0xd8, 0x83, 0x6c, 0xba, 0x89, 0x8d, 0x29, 0xfa, 0x46, 0x33, 0x8c, 0x28, 0xdf, 0x6a, 0xb3, 0x69, 0x28,
/* (2^320)P */ 0x86, 0x17, 0xbc, 0xd6, 0x7c, 0xba, 0x1e, 0x83, 0xbb, 0x84, 0xb5, 0x8c, 0xad, 0xdf, 0xa1, 0x24, 0x81, 0x70, 0x40, 0x0f, 0xad, 0xad, 0x3b, 0x23, 0xd0, 0x93, 0xa0, 0x49, 0x5c, 0x4b, 0x51, 0xbe, 0x20, 0x49, 0x4e, 0xda, 0x2d, 0xd3, 0xad, 0x1b, 0x74, 0x08, 0x41, 0xf0, 0xef, 0x19, 0xe9, 0x45, 0x5d, 0x02, 0xae, 0x26, 0x25, 0xd9, 0xd1, 0xc2,
/* (2^321)P */ 0x48, 0x81, 0x3e, 0xb2, 0x83, 0xf8, 0x4d, 0xb3, 0xd0, 0x4c, 0x75, 0xb3, 0xa0, 0x52, 0x26, 0xf2, 0xaf, 0x5d, 0x36, 0x70, 0x72, 0xd6, 0xb7, 0x88, 0x08, 0x69, 0xbd, 0x15, 0x25, 0xb1, 0x45, 0x1b, 0xb7, 0x0b, 0x5f, 0x71, 0x5d, 0x83, 0x49, 0xb9, 0x84, 0x3b, 0x7c, 0xc1, 0x50, 0x93, 0x05, 0x53, 0xe0, 0x61, 0xea, 0xc1, 0xef, 0xdb, 0x82, 0x97,
/* (2^322)P */ 0x00, 0xd5, 0xc3, 0x3a, 0x4d, 0x8a, 0x23, 0x7a, 0xef, 0xff, 0x37, 0xef, 0xf3, 0xbc, 0xa9, 0xb6, 0xae, 0xd7, 0x3a, 0x7b, 0xfd, 0x3e, 0x8e, 0x9b, 0xab, 0x44, 0x54, 0x60, 0x28, 0x6c, 0xbf, 0x15, 0x24, 0x4a, 0x56, 0x60, 0x7f, 0xa9, 0x7a, 0x28, 0x59, 0x2c, 0x8a, 0xd1, 0x7d, 0x6b, 0x00, 0xfd, 0xa5, 0xad, 0xbc, 0x19, 0x3f, 0xcb, 0x73, 0xe0,
/* (2^323)P */ 0xcf, 0x9e, 0x66, 0x06, 0x4d, 0x2b, 0xf5, 0x9c, 0xc2, 0x9d, 0x9e, 0xed, 0x5a, 0x5c, 0x2d, 0x00, 0xbf, 0x29, 0x90, 0x88, 0xe4, 0x5d, 0xfd, 0xe2, 0xf0, 0x38, 0xec, 0x4d, 0x26, 0xea, 0x54, 0xf0, 0x3c, 0x84, 0x10, 0x6a, 0xf9, 0x66, 0x9c, 0xe7, 0x21, 0xfd, 0x0f, 0xc7, 0x13, 0x50, 0x81, 0xb6, 0x50, 0xf9, 0x04, 0x7f, 0xa4, 0x37, 0x85, 0x14,
/* (2^324)P */ 0xdb, 0x87, 0x49, 0xc7, 0xa8, 0x39, 0x0c, 0x32, 0x98, 0x0c, 0xb9, 0x1a, 0x1b, 0x4d, 0xe0, 0x8a, 0x9a, 0x8e, 0x8f, 0xab, 0x5a, 0x17, 0x3d, 0x04, 0x21, 0xce, 0x3e, 0x2c, 0xf9, 0xa3, 0x97, 0xe4, 0x77, 0x95, 0x0e, 0xb6, 0xa5, 0x15, 0xad, 0x3a, 0x1e, 0x46, 0x53, 0x17, 0x09, 0x83, 0x71, 0x4e, 0x86, 0x38, 0xd5, 0x23, 0x44, 0x16, 0x8d, 0xc8,
/* (2^325)P */ 0x05, 0x5e, 0x99, 0x08, 0xbb, 0xc3, 0xc0, 0xb7, 0x6c, 0x12, 0xf2, 0xf3, 0xf4, 0x7c, 0x6a, 0x4d, 0x9e, 0xeb, 0x3d, 0xb9, 0x63, 0x94, 0xce, 0x81, 0xd8, 0x11, 0xcb, 0x55, 0x69, 0x4a, 0x20, 0x0b, 0x4c, 0x2e, 0x14, 0xb8, 0xd4, 0x6a, 0x7c, 0xf0, 0xed, 0xfc, 0x8f, 0xef, 0xa0, 0xeb, 0x6c, 0x01, 0xe2, 0xdc, 0x10, 0x22, 0xa2, 0x01, 0x85, 0x64,
/* (2^326)P */ 0x58, 0xe1, 0x9c, 0x27, 0x55, 0xc6, 0x25, 0xa6, 0x7d, 0x67, 0x88, 0x65, 0x99, 0x6c, 0xcb, 0xdb, 0x27, 0x4f, 0x44, 0x29, 0xf5, 0x4a, 0x23, 0x10, 0xbc, 0x03, 0x3f, 0x36, 0x1e, 0xef, 0xb0, 0xba, 0x75, 0xe8, 0x74, 0x5f, 0x69, 0x3e, 0x26, 0x40, 0xb4, 0x2f, 0xdc, 0x43, 0xbf, 0xa1, 0x8b, 0xbd, 0xca, 0x6e, 0xc1, 0x6e, 0x21, 0x79, 0xa0, 0xd0,
/* (2^327)P */ 0x78, 0x93, 0x4a, 0x2d, 0x22, 0x6e, 0x6e, 0x7d, 0x74, 0xd2, 0x66, 0x58, 0xce, 0x7b, 0x1d, 0x97, 0xb1, 0xf2, 0xda, 0x1c, 0x79, 0xfb, 0xba, 0xd1, 0xc0, 0xc5, 0x6e, 0xc9, 0x11, 0x89, 0xd2, 0x41, 0x8d, 0x70, 0xb9, 0xcc, 0xea, 0x6a, 0xb3, 0x45, 0xb6, 0x05, 0x2e, 0xf2, 0x17, 0xf1, 0x27, 0xb8, 0xed, 0x06, 0x1f, 0xdb, 0x9d, 0x1f, 0x69, 0x28,
/* (2^328)P */ 0x93, 0x12, 0xa8, 0x11, 0xe1, 0x92, 0x30, 0x8d, 0xac, 0xe1, 0x1c, 0x60, 0x7c, 0xed, 0x2d, 0x2e, 0xd3, 0x03, 0x5c, 0x9c, 0xc5, 0xbd, 0x64, 0x4a, 0x8c, 0xba, 0x76, 0xfe, 0xc6, 0xc1, 0xea, 0xc2, 0x4f, 0xbe, 0x70, 0x3d, 0x64, 0xcf, 0x8e, 0x18, 0xcb, 0xcd, 0x57, 0xa7, 0xf7, 0x36, 0xa9, 0x6b, 0x3e, 0xb8, 0x69, 0xee, 0x47, 0xa2, 0x7e, 0xb2,
/* (2^329)P */ 0x96, 0xaf, 0x3a, 0xf5, 0xed, 0xcd, 0xaf, 0xf7, 0x82, 0xaf, 0x59, 0x62, 0x0b, 0x36, 0x85, 0xf9, 0xaf, 0xd6, 0x38, 0xff, 0x87, 0x2e, 0x1d, 0x6c, 0x8b, 0xaf, 0x3b, 0xdf, 0x28, 0xa2, 0xd6, 0x4d, 0x80, 0x92, 0xc3, 0x0f, 0x34, 0xa8, 0xae, 0x69, 0x5d, 0x7b, 0x9d, 0xbc, 0xf5, 0xfd, 0x1d, 0xb1, 0x96, 0x55, 0x86, 0xe1, 0x5c, 0xb6, 0xac, 0xb9,
/* (2^330)P */ 0x50, 0x9e, 0x37, 0x28, 0x7d, 0xa8, 0x33, 0x63, 0xda, 0x3f, 0x20, 0x98, 0x0e, 0x09, 0xa8, 0x77, 0x3b, 0x7a, 0xfc, 0x16, 0x85, 0x44, 0x64, 0x77, 0x65, 0x68, 0x92, 0x41, 0xc6, 0x1f, 0xdf, 0x27, 0xf9, 0xec, 0xa0, 0x61, 0x22, 0xea, 0x19, 0xe7, 0x75, 0x8b, 0x4e, 0xe5, 0x0f, 0xb7, 0xf7, 0xd2, 0x53, 0xf4, 0xdd, 0x4a, 0xaa, 0x78, 0x40, 0xb7,
/* (2^331)P */ 0xd4, 0x89, 0xe3, 0x79, 0xba, 0xb6, 0xc3, 0xda, 0xe6, 0x78, 0x65, 0x7d, 0x6e, 0x22, 0x62, 0xb1, 0x3d, 0xea, 0x90, 0x84, 0x30, 0x5e, 0xd4, 0x39, 0x84, 0x78, 0xd9, 0x75, 0xd6, 0xce, 0x2a, 0x11, 0x29, 0x69, 0xa4, 0x5e, 0xaa, 0x2a, 0x98, 0x5a, 0xe5, 0x91, 0x8f, 0xb2, 0xfb, 0xda, 0x97, 0xe8, 0x83, 0x6f, 0x04, 0xb9, 0x5d, 0xaf, 0xe1, 0x9b,
/* (2^332)P */ 0x8b, 0xe4, 0xe1, 0x48, 0x9c, 0xc4, 0x83, 0x89, 0xdf, 0x65, 0xd3, 0x35, 0x55, 0x13, 0xf4, 0x1f, 0x36, 0x92, 0x33, 0x38, 0xcb, 0xed, 0x15, 0xe6, 0x60, 0x2d, 0x25, 0xf5, 0x36, 0x60, 0x3a, 0x37, 0x9b, 0x71, 0x9d, 0x42, 0xb0, 0x14, 0xc8, 0xba, 0x62, 0xa3, 0x49, 0xb0, 0x88, 0xc1, 0x72, 0x73, 0xdd, 0x62, 0x40, 0xa9, 0x62, 0x88, 0x99, 0xca,
/* (2^333)P */ 0x47, 0x7b, 0xea, 0xda, 0x46, 0x2f, 0x45, 0xc6, 0xe3, 0xb4, 0x4d, 0x8d, 0xac, 0x0b, 0x54, 0x22, 0x06, 0x31, 0x16, 0x66, 0x3e, 0xe4, 0x38, 0x12, 0xcd, 0xf3, 0xe7, 0x99, 0x37, 0xd9, 0x62, 0x24, 0x4b, 0x05, 0xf2, 0x58, 0xe6, 0x29, 0x4b, 0x0d, 0xf6, 0xc1, 0xba, 0xa0, 0x1e, 0x0f, 0xcb, 0x1f, 0xc6, 0x2b, 0x19, 0xfc, 0x82, 0x01, 0xd0, 0x86,
/* (2^334)P */ 0xa2, 0xae, 0x77, 0x20, 0xfb, 0xa8, 0x18, 0xb4, 0x61, 0xef, 0xe8, 0x52, 0x79, 0xbb, 0x86, 0x90, 0x5d, 0x2e, 0x76, 0xed, 0x66, 0x60, 0x5d, 0x00, 0xb5, 0xa4, 0x00, 0x40, 0x89, 0xec, 0xd1, 0xd2, 0x0d, 0x26, 0xb9, 0x30, 0xb2, 0xd2, 0xb8, 0xe8, 0x0e, 0x56, 0xf9, 0x67, 0x94, 0x2e, 0x62, 0xe1, 0x79, 0x48, 0x2b, 0xa9, 0xfa, 0xea, 0xdb, 0x28,
/* (2^335)P */ 0x35, 0xf1, 0xb0, 0x43, 0xbd, 0x27, 0xef, 0x18, 0x44, 0xa2, 0x04, 0xb4, 0x69, 0xa1, 0x97, 0x1f, 0x8c, 0x04, 0x82, 0x9b, 0x00, 0x6d, 0xf8, 0xbf, 0x7d, 0xc1, 0x5b, 0xab, 0xe8, 0xb2, 0x34, 0xbd, 0xaf, 0x7f, 0xb2, 0x0d, 0xf3, 0xed, 0xfc, 0x5b, 0x50, 0xee, 0xe7, 0x4a, 0x20, 0xd9, 0xf5, 0xc6, 0x9a, 0x97, 0x6d, 0x07, 0x2f, 0xb9, 0x31, 0x02,
/* (2^336)P */ 0xf9, 0x54, 0x4a, 0xc5, 0x61, 0x7e, 0x1d, 0xa6, 0x0e, 0x1a, 0xa8, 0xd3, 0x8c, 0x36, 0x7d, 0xf1, 0x06, 0xb1, 0xac, 0x93, 0xcd, 0xe9, 0x8f, 0x61, 0x6c, 0x5d, 0x03, 0x23, 0xdf, 0x85, 0x53, 0x39, 0x63, 0x5e, 0xeb, 0xf3, 0xd3, 0xd3, 0x75, 0x97, 0x9b, 0x62, 0x9b, 0x01, 0xb3, 0x19, 0xd8, 0x2b, 0x36, 0xf2, 0x2c, 0x2c, 0x6f, 0x36, 0xc6, 0x3c,
/* (2^337)P */ 0x05, 0x74, 0x43, 0x10, 0xb6, 0xb0, 0xf8, 0xbf, 0x02, 0x46, 0x9a, 0xee, 0xc1, 0xaf, 0xc1, 0xe5, 0x5a, 0x2e, 0xbb, 0xe1, 0xdc, 0xc6, 0xce, 0x51, 0x29, 0x50, 0xbf, 0x1b, 0xde, 0xff, 0xba, 0x4d, 0x8d, 0x8b, 0x7e, 0xe7, 0xbd, 0x5b, 0x8f, 0xbe, 0xe3, 0x75, 0x71, 0xff, 0x37, 0x05, 0x5a, 0x10, 0xeb, 0x54, 0x7e, 0x44, 0x72, 0x2c, 0xd4, 0xfc,
/* (2^338)P */ 0x03, 0x12, 0x1c, 0xb2, 0x08, 0x90, 0xa1, 0x2d, 0x50, 0xa0, 0xad, 0x7f, 0x8d, 0xa6, 0x97, 0xc1, 0xbd, 0xdc, 0xc3, 0xa7, 0xad, 0x31, 0xdf, 0xb8, 0x03, 0x84, 0xc3, 0xb9, 0x29, 0x3d, 0x92, 0x2e, 0xc3, 0x90, 0x07, 0xe8, 0xa7, 0xc7, 0xbc, 0x61, 0xe9, 0x3e, 0xa0, 0x35, 0xda, 0x1d, 0xab, 0x48, 0xfe, 0x50, 0xc9, 0x25, 0x59, 0x23, 0x69, 0x3f,
/* (2^339)P */ 0x8e, 0x91, 0xab, 0x6b, 0x91, 0x4f, 0x89, 0x76, 0x67, 0xad, 0xb2, 0x65, 0x9d, 0xad, 0x02, 0x36, 0xdc, 0xac, 0x96, 0x93, 0x97, 0x21, 0x14, 0xd0, 0xe8, 0x11, 0x60, 0x1e, 0xeb, 0x96, 0x06, 0xf2, 0x53, 0xf2, 0x6d, 0xb7, 0x93, 0x6f, 0x26, 0x91, 0x23, 0xe3, 0x34, 0x04, 0x92, 0x91, 0x37, 0x08, 0x50, 0xd6, 0x28, 0x09, 0x27, 0xa1, 0x0c, 0x00,
/* (2^340)P */ 0x1f, 0xbb, 0x21, 0x26, 0x33, 0xcb, 0xa4, 0xd1, 0xee, 0x85, 0xf9, 0xd9, 0x3c, 0x90, 0xc3, 0xd1, 0x26, 0xa2, 0x25, 0x93, 0x43, 0x61, 0xed, 0x91, 0x6e, 0x54, 0x03, 0x2e, 0x42, 0x9d, 0xf7, 0xa6, 0x02, 0x0f, 0x2f, 0x9c, 0x7a, 0x8d, 0x12, 0xc2, 0x18, 0xfc, 0x41, 0xff, 0x85, 0x26, 0x1a, 0x44, 0x55, 0x0b, 0x89, 0xab, 0x6f, 0x62, 0x33, 0x8c,
/* (2^341)P */ 0xe0, 0x3c, 0x5d, 0x70, 0x64, 0x87, 0x81, 0x35, 0xf2, 0x37, 0xa6, 0x24, 0x3e, 0xe0, 0x62, 0xd5, 0x71, 0xe7, 0x93, 0xfb, 0xac, 0xc3, 0xe7, 0xc7, 0x04, 0xe2, 0x70, 0xd3, 0x29, 0x5b, 0x21, 0xbf, 0xf4, 0x26, 0x5d, 0xf3, 0x95, 0xb4, 0x2a, 0x6a, 0x07, 0x55, 0xa6, 0x4b, 0x3b, 0x15, 0xf2, 0x25, 0x8a, 0x95, 0x3f, 0x63, 0x2f, 0x7a, 0x23, 0x96,
/* (2^342)P */ 0x0d, 0x3d, 0xd9, 0x13, 0xa7, 0xb3, 0x5e, 0x67, 0xf7, 0x02, 0x23, 0xee, 0x84, 0xff, 0x99, 0xda, 0xb9, 0x53, 0xf8, 0xf0, 0x0e, 0x39, 0x2f, 0x3c, 0x64, 0x34, 0xe3, 0x09, 0xfd, 0x2b, 0x33, 0xc7, 0xfe, 0x62, 0x2b, 0x84, 0xdf, 0x2b, 0xd2, 0x7c, 0x26, 0x01, 0x70, 0x66, 0x5b, 0x85, 0xc2, 0xbe, 0x88, 0x37, 0xf1, 0x30, 0xac, 0xb8, 0x76, 0xa3,
/* (2^343)P */ 0x6e, 0x01, 0xf0, 0x55, 0x35, 0xe4, 0xbd, 0x43, 0x62, 0x9d, 0xd6, 0x11, 0xef, 0x6f, 0xb8, 0x8c, 0xaa, 0x98, 0x87, 0xc6, 0x6d, 0xc4, 0xcc, 0x74, 0x92, 0x53, 0x4a, 0xdf, 0xe4, 0x08, 0x89, 0x17, 0xd0, 0x0f, 0xf4, 0x00, 0x60, 0x78, 0x08, 0x44, 0xb5, 0xda, 0x18, 0xed, 0x98, 0xc8, 0x61, 0x3d, 0x39, 0xdb, 0xcf, 0x1d, 0x49, 0x40, 0x65, 0x75,
/* (2^344)P */ 0x8e, 0x10, 0xae, 0x5f, 0x06, 0xd2, 0x95, 0xfd, 0x20, 0x16, 0x49, 0x5b, 0x57, 0xbe, 0x22, 0x8b, 0x43, 0xfb, 0xe6, 0xcc, 0x26, 0xa5, 0x5d, 0xd3, 0x68, 0xc5, 0xf9, 0x5a, 0x86, 0x24, 0x87, 0x27, 0x05, 0xfd, 0xe2, 0xff, 0xb3, 0xa3, 0x7b, 0x37, 0x59, 0xc5, 0x4e, 0x14, 0x94, 0xf9, 0x3b, 0xcb, 0x7c, 0xed, 0xca, 0x1d, 0xb2, 0xac, 0x05, 0x4a,
/* (2^345)P */ 0xf4, 0xd1, 0x81, 0xeb, 0x89, 0xbf, 0xfe, 0x1e, 0x41, 0x92, 0x29, 0xee, 0xe1, 0x43, 0xf5, 0x86, 0x1d, 0x2f, 0xbb, 0x1e, 0x84, 0x5d, 0x7b, 0x8d, 0xd5, 0xda, 0xee, 0x1e, 0x8a, 0xd0, 0x27, 0xf2, 0x60, 0x51, 0x59, 0x82, 0xf4, 0x84, 0x2b, 0x5b, 0x14, 0x2d, 0x81, 0x82, 0x3e, 0x2b, 0xb4, 0x6d, 0x51, 0x4f, 0xc5, 0xcb, 0xbf, 0x74, 0xe3, 0xb4,
/* (2^346)P */ 0x19, 0x2f, 0x22, 0xb3, 0x04, 0x5f, 0x81, 0xca, 0x05, 0x60, 0xb9, 0xaa, 0xee, 0x0e, 0x2f, 0x48, 0x38, 0xf9, 0x91, 0xb4, 0x66, 0xe4, 0x57, 0x28, 0x54, 0x10, 0xe9, 0x61, 0x9d, 0xd4, 0x90, 0x75, 0xb1, 0x39, 0x23, 0xb6, 0xfc, 0x82, 0xe0, 0xfa, 0xbb, 0x5c, 0x6e, 0xc3, 0x44, 0x13, 0x00, 0x83, 0x55, 0x9e, 0x8e, 0x10, 0x61, 0x81, 0x91, 0x04,
/* (2^347)P */ 0x5f, 0x2a, 0xd7, 0x81, 0xd9, 0x9c, 0xbb, 0x79, 0xbc, 0x62, 0x56, 0x98, 0x03, 0x5a, 0x18, 0x85, 0x2a, 0x9c, 0xd0, 0xfb, 0xd2, 0xb1, 0xaf, 0xef, 0x0d, 0x24, 0xc5, 0xfa, 0x39, 0xbb, 0x6b, 0xed, 0xa4, 0xdf, 0xe4, 0x87, 0xcd, 0x41, 0xd3, 0x72, 0x32, 0xc6, 0x28, 0x21, 0xb1, 0xba, 0x8b, 0xa3, 0x91, 0x79, 0x76, 0x22, 0x25, 0x10, 0x61, 0xd1,
/* (2^348)P */ 0x73, 0xb5, 0x32, 0x97, 0xdd, 0xeb, 0xdd, 0x22, 0x22, 0xf1, 0x33, 0x3c, 0x77, 0x56, 0x7d, 0x6b, 0x48, 0x2b, 0x05, 0x81, 0x03, 0x03, 0x91, 0x9a, 0xe3, 0x5e, 0xd4, 0xee, 0x3f, 0xf8, 0xbb, 0x50, 0x21, 0x32, 0x4c, 0x4a, 0x58, 0x49, 0xde, 0x0c, 0xde, 0x30, 0x82, 0x3d, 0x92, 0xf0, 0x6c, 0xcc, 0x32, 0x3e, 0xd2, 0x78, 0x8a, 0x6e, 0x2c, 0xd0,
/* (2^349)P */ 0xf0, 0xf7, 0xa1, 0x0b, 0xc1, 0x74, 0x85, 0xa8, 0xe9, 0xdd, 0x48, 0xa1, 0xc0, 0x16, 0xd8, 0x2b, 0x61, 0x08, 0xc2, 0x2b, 0x30, 0x26, 0x79, 0xce, 0x9e, 0xfd, 0x39, 0xd7, 0x81, 0xa4, 0x63, 0x8c, 0xd5, 0x74, 0xa0, 0x88, 0xfa, 0x03, 0x30, 0xe9, 0x7f, 0x2b, 0xc6, 0x02, 0xc9, 0x5e, 0xe4, 0xd5, 0x4d, 0x92, 0xd0, 0xf6, 0xf2, 0x5b, 0x79, 0x08,
/* (2^350)P */ 0x34, 0x89, 0x81, 0x43, 0xd1, 0x94, 0x2c, 0x10, 0x54, 0x9b, 0xa0, 0xe5, 0x44, 0xe8, 0xc2, 0x2f, 0x3e, 0x0e, 0x74, 0xae, 0xba, 0xe2, 0xac, 0x85, 0x6b, 0xd3, 0x5c, 0x97, 0xf7, 0x90, 0xf1, 0x12, 0xc0, 0x03, 0xc8, 0x1f, 0x37, 0x72, 0x8c, 0x9b, 0x9c, 0x17, 0x96, 0x9d, 0xc7, 0xbf, 0xa3, 0x3f, 0x44, 0x3d, 0x87, 0x81, 0xbd, 0x81, 0xa6, 0x5f,
/* (2^351)P */ 0xe4, 0xff, 0x78, 0x62, 0x82, 0x5b, 0x76, 0x58, 0xf5, 0x5b, 0xa6, 0xc4, 0x53, 0x11, 0x3b, 0x7b, 0xaa, 0x67, 0xf8, 0xea, 0x3b, 0x5d, 0x9a, 0x2e, 0x04, 0xeb, 0x4a, 0x24, 0xfb, 0x56, 0xf0, 0xa8, 0xd4, 0x14, 0xed, 0x0f, 0xfd, 0xc5, 0x26, 0x17, 0x2a, 0xf0, 0xb9, 0x13, 0x8c, 0xbd, 0x65, 0x14, 0x24, 0x95, 0x27, 0x12, 0x63, 0x2a, 0x09, 0x18,
/* (2^352)P */ 0xe1, 0x5c, 0xe7, 0xe0, 0x00, 0x6a, 0x96, 0xf2, 0x49, 0x6a, 0x39, 0xa5, 0xe0, 0x17, 0x79, 0x4a, 0x63, 0x07, 0x62, 0x09, 0x61, 0x1b, 0x6e, 0xa9, 0xb5, 0x62, 0xb7, 0xde, 0xdf, 0x80, 0x4c, 0x5a, 0x99, 0x73, 0x59, 0x9d, 0xfb, 0xb1, 0x5e, 0xbe, 0xb8, 0xb7, 0x63, 0x93, 0xe8, 0xad, 0x5e, 0x1f, 0xae, 0x59, 0x1c, 0xcd, 0xb4, 0xc2, 0xb3, 0x8a,
/* (2^353)P */ 0x78, 0x53, 0xa1, 0x4c, 0x70, 0x9c, 0x63, 0x7e, 0xb3, 0x12, 0x40, 0x5f, 0xbb, 0x23, 0xa7, 0xf7, 0x77, 0x96, 0x5b, 0x4d, 0x91, 0x10, 0x52, 0x85, 0x9e, 0xa5, 0x38, 0x0b, 0xfd, 0x25, 0x01, 0x4b, 0xfa, 0x4d, 0xd3, 0x3f, 0x78, 0x74, 0x42, 0xff, 0x62, 0x2d, 0x27, 0xdc, 0x9d, 0xd1, 0x29, 0x76, 0x2e, 0x78, 0xb3, 0x35, 0xfa, 0x15, 0xd5, 0x38,
/* (2^354)P */ 0x8b, 0xc7, 0x43, 0xce, 0xf0, 0x5e, 0xf1, 0x0d, 0x02, 0x38, 0xe8, 0x82, 0xc9, 0x25, 0xad, 0x2d, 0x27, 0xa4, 0x54, 0x18, 0xb2, 0x30, 0x73, 0xa4, 0x41, 0x08, 0xe4, 0x86, 0xe6, 0x8c, 0xe9, 0x2a, 0x34, 0xb3, 0xd6, 0x61, 0x8f, 0x66, 0x26, 0x08, 0xb6, 0x06, 0x33, 0xaa, 0x12, 0xac, 0x72, 0xec, 0x2e, 0x52, 0xa3, 0x25, 0x3e, 0xd7, 0x62, 0xe8,
/* (2^355)P */ 0xc4, 0xbb, 0x89, 0xc8, 0x40, 0xcc, 0x84, 0xec, 0x4a, 0xd9, 0xc4, 0x55, 0x78, 0x00, 0xcf, 0xd8, 0xe9, 0x24, 0x59, 0xdc, 0x5e, 0xf0, 0x66, 0xa1, 0x83, 0xae, 0x97, 0x18, 0xc5, 0x54, 0x27, 0xa2, 0x21, 0x52, 0x03, 0x31, 0x5b, 0x11, 0x67, 0xf6, 0x12, 0x00, 0x87, 0x2f, 0xff, 0x59, 0x70, 0x8f, 0x6d, 0x71, 0xab, 0xab, 0x24, 0xb8, 0xba, 0x35,
/* (2^356)P */ 0x69, 0x43, 0xa7, 0x14, 0x06, 0x96, 0xe9, 0xc2, 0xe3, 0x2b, 0x45, 0x22, 0xc0, 0xd0, 0x2f, 0x34, 0xd1, 0x01, 0x99, 0xfc, 0x99, 0x38, 0xa1, 0x25, 0x2e, 0x59, 0x6c, 0x27, 0xc9, 0xeb, 0x7b, 0xdc, 0x4e, 0x26, 0x68, 0xba, 0xfa, 0xec, 0x02, 0x05, 0x64, 0x80, 0x30, 0x20, 0x5c, 0x26, 0x7f, 0xaf, 0x95, 0x17, 0x3d, 0x5c, 0x9e, 0x96, 0x96, 0xaf,
/* (2^357)P */ 0xa6, 0xba, 0x21, 0x29, 0x32, 0xe2, 0x98, 0xde, 0x9b, 0x6d, 0x0b, 0x44, 0x91, 0xa8, 0x3e, 0xd4, 0xb8, 0x04, 0x6c, 0xf6, 0x04, 0x39, 0xbd, 0x52, 0x05, 0x15, 0x27, 0x78, 0x8e, 0x55, 0xac, 0x79, 0xc5, 0xe6, 0x00, 0x7f, 0x90, 0xa2, 0xdd, 0x07, 0x13, 0xe0, 0x24, 0x70, 0x5c, 0x0f, 0x4d, 0xa9, 0xf9, 0xae, 0xcb, 0x34, 0x10, 0x9d, 0x89, 0x9d,
/* (2^358)P */ 0x12, 0xe0, 0xb3, 0x9f, 0xc4, 0x96, 0x1d, 0xcf, 0xed, 0x99, 0x64, 0x28, 0x8d, 0xc7, 0x31, 0x82, 0xee, 0x5e, 0x75, 0x48, 0xff, 0x3a, 0xf2, 0x09, 0x34, 0x03, 0x93, 0x52, 0x19, 0xb2, 0xc5, 0x81, 0x93, 0x45, 0x5e, 0x59, 0x21, 0x2b, 0xec, 0x89, 0xba, 0x36, 0x6e, 0xf9, 0x82, 0x75, 0x7e, 0x82, 0x3f, 0xaa, 0xe2, 0xe3, 0x3b, 0x94, 0xfd, 0x98,
/* (2^359)P */ 0x7c, 0xdb, 0x75, 0x31, 0x61, 0xfb, 0x15, 0x28, 0x94, 0xd7, 0xc3, 0x5a, 0xa9, 0xa1, 0x0a, 0x66, 0x0f, 0x2b, 0x13, 0x3e, 0x42, 0xb5, 0x28, 0x3a, 0xca, 0x83, 0xf3, 0x61, 0x22, 0xf4, 0x40, 0xc5, 0xdf, 0xe7, 0x31, 0x9f, 0x7e, 0x51, 0x75, 0x06, 0x9d, 0x51, 0xc8, 0xe7, 0x9f, 0xc3, 0x71, 0x4f, 0x3d, 0x5b, 0xfb, 0xe9, 0x8e, 0x08, 0x40, 0x8e,
/* (2^360)P */ 0xf7, 0x31, 0xad, 0x50, 0x5d, 0x25, 0x93, 0x73, 0x68, 0xf6, 0x7c, 0x89, 0x5a, 0x3d, 0x9f, 0x9b, 0x05, 0x82, 0xe7, 0x70, 0x4b, 0x19, 0xaa, 0xcf, 0xff, 0xde, 0x50, 0x8f, 0x2f, 0x69, 0xd3, 0xf0, 0x99, 0x51, 0x6b, 0x9d, 0xb6, 0x56, 0x6f, 0xf8, 0x4c, 0x74, 0x8b, 0x4c, 0x91, 0xf9, 0xa9, 0xb1, 0x3e, 0x07, 0xdf, 0x0b, 0x27, 0x8a, 0xb1, 0xed,
/* (2^361)P */ 0xfb, 0x67, 0xd9, 0x48, 0xd2, 0xe4, 0x44, 0x9b, 0x43, 0x15, 0x8a, 0xeb, 0x00, 0x53, 0xad, 0x25, 0xc7, 0x7e, 0x19, 0x30, 0x87, 0xb7, 0xd5, 0x5f, 0x04, 0xf8, 0xaa, 0xdd, 0x57, 0xae, 0x34, 0x75, 0xe2, 0x84, 0x4b, 0x54, 0x60, 0x37, 0x95, 0xe4, 0xd3, 0xec, 0xac, 0xef, 0x47, 0x31, 0xa3, 0xc8, 0x31, 0x22, 0xdb, 0x26, 0xe7, 0x6a, 0xb5, 0xad,
/* (2^362)P */ 0x44, 0x09, 0x5c, 0x95, 0xe4, 0x72, 0x3c, 0x1a, 0xd1, 0xac, 0x42, 0x51, 0x99, 0x6f, 0xfa, 0x1f, 0xf2, 0x22, 0xbe, 0xff, 0x7b, 0x66, 0xf5, 0x6c, 0xb3, 0x66, 0xc7, 0x4d, 0x78, 0x31, 0x83, 0x80, 0xf5, 0x41, 0xe9, 0x7f, 0xbe, 0xf7, 0x23, 0x49, 0x6b, 0x84, 0x4e, 0x7e, 0x47, 0x07, 0x6e, 0x74, 0xdf, 0xe5, 0x9d, 0x9e, 0x56, 0x2a, 0xc0, 0xbc,
/* (2^363)P */ 0xac, 0x10, 0x80, 0x8c, 0x7c, 0xfa, 0x83, 0xdf, 0xb3, 0xd0, 0xc4, 0xbe, 0xfb, 0x9f, 0xac, 0xc9, 0xc3, 0x40, 0x95, 0x0b, 0x09, 0x23, 0xda, 0x63, 0x67, 0xcf, 0xe7, 0x9f, 0x7d, 0x7b, 0x6b, 0xe2, 0xe6, 0x6d, 0xdb, 0x87, 0x9e, 0xa6, 0xff, 0x6d, 0xab, 0xbd, 0xfb, 0x54, 0x84, 0x68, 0xcf, 0x89, 0xf1, 0xd0, 0xe2, 0x85, 0x61, 0xdc, 0x22, 0xd1,
/* (2^364)P */ 0xa8, 0x48, 0xfb, 0x8c, 0x6a, 0x63, 0x01, 0x72, 0x43, 0x43, 0xeb, 0x21, 0xa3, 0x00, 0x8a, 0xc0, 0x87, 0x51, 0x9e, 0x86, 0x75, 0x16, 0x79, 0xf9, 0x6b, 0x11, 0x80, 0x62, 0xc2, 0x9d, 0xb8, 0x8c, 0x30, 0x8e, 0x8d, 0x03, 0x52, 0x7e, 0x31, 0x59, 0x38, 0xf9, 0x25, 0xc7, 0x0f, 0xc7, 0xa8, 0x2b, 0x5c, 0x80, 0xfa, 0x90, 0xa2, 0x63, 0xca, 0xe7,
/* (2^365)P */ 0xf1, 0x5d, 0xb5, 0xd9, 0x20, 0x10, 0x7d, 0x0f, 0xc5, 0x50, 0x46, 0x07, 0xff, 0x02, 0x75, 0x2b, 0x4a, 0xf3, 0x39, 0x91, 0x72, 0xb7, 0xd5, 0xcc, 0x38, 0xb8, 0xe7, 0x36, 0x26, 0x5e, 0x11, 0x97, 0x25, 0xfb, 0x49, 0x68, 0xdc, 0xb4, 0x46, 0x87, 0x5c, 0xc2, 0x7f, 0xaa, 0x7d, 0x36, 0x23, 0xa6, 0xc6, 0x53, 0xec, 0xbc, 0x57, 0x47, 0xc1, 0x2b,
/* (2^366)P */ 0x25, 0x5d, 0x7d, 0x95, 0xda, 0x0b, 0x8f, 0x78, 0x1e, 0x19, 0x09, 0xfa, 0x67, 0xe0, 0xa0, 0x17, 0x24, 0x76, 0x6c, 0x30, 0x1f, 0x62, 0x3d, 0xbe, 0x45, 0x70, 0xcc, 0xb6, 0x1e, 0x68, 0x06, 0x25, 0x68, 0x16, 0x1a, 0x33, 0x3f, 0x90, 0xc7, 0x78, 0x2d, 0x98, 0x3c, 0x2f, 0xb9, 0x2d, 0x94, 0x0b, 0xfb, 0x49, 0x56, 0x30, 0xd7, 0xc1, 0xe6, 0x48,
/* (2^367)P */ 0x7a, 0xd1, 0xe0, 0x8e, 0x67, 0xfc, 0x0b, 0x50, 0x1f, 0x84, 0x98, 0xfa, 0xaf, 0xae, 0x2e, 0x31, 0x27, 0xcf, 0x3f, 0xf2, 0x6e, 0x8d, 0x81, 0x8f, 0xd2, 0x5f, 0xde, 0xd3, 0x5e, 0xe9, 0xe7, 0x13, 0x48, 0x83, 0x5a, 0x4e, 0x84, 0xd1, 0x58, 0xcf, 0x6b, 0x84, 0xdf, 0x13, 0x1d, 0x91, 0x85, 0xe8, 0xcb, 0x29, 0x79, 0xd2, 0xca, 0xac, 0x6a, 0x93,
/* (2^368)P */ 0x53, 0x82, 0xce, 0x61, 0x96, 0x88, 0x6f, 0xe1, 0x4a, 0x4c, 0x1e, 0x30, 0x73, 0xe8, 0x74, 0xde, 0x40, 0x2b, 0xe0, 0xc4, 0xb5, 0xd8, 0x7c, 0x15, 0xe7, 0xe1, 0xb1, 0xe0, 0xd6, 0x88, 0xb1, 0x6a, 0x57, 0x19, 0x6a, 0x22, 0x66, 0x57, 0xf6, 0x8d, 0xfd, 0xc0, 0xf2, 0xa3, 0x03, 0x56, 0xfb, 0x2e, 0x75, 0x5e, 0xc7, 0x8e, 0x22, 0x96, 0x5c, 0x06,
/* (2^369)P */ 0x98, 0x7e, 0xbf, 0x3e, 0xbf, 0x24, 0x9d, 0x15, 0xd3, 0xf6, 0xd3, 0xd2, 0xf0, 0x11, 0xf2, 0xdb, 0x36, 0x23, 0x38, 0xf7, 0x1d, 0x71, 0x20, 0xd2, 0x54, 0x7f, 0x1e, 0x24, 0x8f, 0xe2, 0xaa, 0xf7, 0x3f, 0x6b, 0x41, 0x4e, 0xdc, 0x0e, 0xec, 0xe8, 0x35, 0x0a, 0x08, 0x6d, 0x89, 0x5b, 0x32, 0x91, 0x01, 0xb6, 0xe0, 0x2c, 0xc6, 0xa1, 0xbe, 0xb4,
/* (2^370)P */ 0x29, 0xf2, 0x1e, 0x1c, 0xdc, 0x68, 0x8a, 0x43, 0x87, 0x2c, 0x48, 0xb3, 0x9e, 0xed, 0xd2, 0x82, 0x46, 0xac, 0x2f, 0xef, 0x93, 0x34, 0x37, 0xca, 0x64, 0x8d, 0xc9, 0x06, 0x90, 0xbb, 0x78, 0x0a, 0x3c, 0x4c, 0xcf, 0x35, 0x7a, 0x0f, 0xf7, 0xa7, 0xf4, 0x2f, 0x45, 0x69, 0x3f, 0xa9, 0x5d, 0xce, 0x7b, 0x8a, 0x84, 0xc3, 0xae, 0xf4, 0xda, 0xd5,
/* (2^371)P */ 0xca, 0xba, 0x95, 0x43, 0x05, 0x7b, 0x06, 0xd9, 0x5c, 0x0a, 0x18, 0x5f, 0x6a, 0x6a, 0xce, 0xc0, 0x3d, 0x95, 0x51, 0x0e, 0x1a, 0xbe, 0x85, 0x7a, 0xf2, 0x69, 0xec, 0xc0, 0x8c, 0xca, 0xa3, 0x32, 0x0a, 0x76, 0x50, 0xc6, 0x76, 0x61, 0x00, 0x89, 0xbf, 0x6e, 0x0f, 0x48, 0x90, 0x31, 0x93, 0xec, 0x34, 0x70, 0xf0, 0xc3, 0x8d, 0xf0, 0x0f, 0xb5,
/* (2^372)P */ 0xbe, 0x23, 0xe2, 0x18, 0x99, 0xf1, 0xed, 0x8a, 0xf6, 0xc9, 0xac, 0xb8, 0x1e, 0x9a, 0x3c, 0x15, 0xae, 0xd7, 0x6d, 0xb3, 0x04, 0xee, 0x5b, 0x0d, 0x1e, 0x79, 0xb7, 0xf9, 0xf9, 0x8d, 0xad, 0xf9, 0x8f, 0x5a, 0x6a, 0x7b, 0xd7, 0x9b, 0xca, 0x62, 0xfe, 0x9c, 0xc0, 0x6f, 0x6d, 0x9d, 0x76, 0xa3, 0x69, 0xb9, 0x4c, 0xa1, 0xc4, 0x0c, 0x76, 0xaa,
/* (2^373)P */ 0x1c, 0x06, 0xfe, 0x3f, 0x45, 0x70, 0xcd, 0x97, 0xa9, 0xa2, 0xb1, 0xd3, 0xf2, 0xa5, 0x0c, 0x49, 0x2c, 0x75, 0x73, 0x1f, 0xcf, 0x00, 0xaf, 0xd5, 0x2e, 0xde, 0x0d, 0x8f, 0x8f, 0x7c, 0xc4, 0x58, 0xce, 0xd4, 0xf6, 0x24, 0x19, 0x2e, 0xd8, 0xc5, 0x1d, 0x1a, 0x3f, 0xb8, 0x4f, 0xbc, 0x7d, 0xbd, 0x68, 0xe3, 0x81, 0x98, 0x1b, 0xa8, 0xc9, 0xd9,
/* (2^374)P */ 0x39, 0x95, 0x78, 0x24, 0x6c, 0x38, 0xe4, 0xe7, 0xd0, 0x8d, 0xb9, 0x38, 0x71, 0x5e, 0xc1, 0x62, 0x80, 0xcc, 0xcb, 0x8c, 0x97, 0xca, 0xf8, 0xb9, 0xd9, 0x9c, 0xce, 0x72, 0x7b, 0x70, 0xee, 0x5f, 0xea, 0xa2, 0xdf, 0xa9, 0x14, 0x10, 0xf9, 0x6e, 0x59, 0x9f, 0x9c, 0xe0, 0x0c, 0xb2, 0x07, 0x97, 0xcd, 0xd2, 0x89, 0x16, 0xfd, 0x9c, 0xa8, 0xa5,
/* (2^375)P */ 0x5a, 0x61, 0xf1, 0x59, 0x7c, 0x38, 0xda, 0xe2, 0x85, 0x99, 0x68, 0xe9, 0xc9, 0xf7, 0x32, 0x7e, 0xc4, 0xca, 0xb7, 0x11, 0x08, 0x69, 0x2b, 0x66, 0x02, 0xf7, 0x2e, 0x18, 0xc3, 0x8e, 0xe1, 0xf9, 0xc5, 0x19, 0x9a, 0x0a, 0x9c, 0x07, 0xba, 0xc7, 0x9c, 0x03, 0x34, 0x89, 0x99, 0x67, 0x0b, 0x16, 0x4b, 0x07, 0x36, 0x16, 0x36, 0x2c, 0xe2, 0xa1,
/* (2^376)P */ 0x70, 0x10, 0x91, 0x27, 0xa8, 0x24, 0x8e, 0x29, 0x04, 0x6f, 0x79, 0x1f, 0xd3, 0xa5, 0x68, 0xd3, 0x0b, 0x7d, 0x56, 0x4d, 0x14, 0x57, 0x7b, 0x2e, 0x00, 0x9f, 0x9a, 0xfd, 0x6c, 0x63, 0x18, 0x81, 0xdb, 0x9d, 0xb7, 0xd7, 0xa4, 0x1e, 0xe8, 0x40, 0xf1, 0x4c, 0xa3, 0x01, 0xd5, 0x4b, 0x75, 0xea, 0xdd, 0x97, 0xfd, 0x5b, 0xb2, 0x66, 0x6a, 0x24,
/* (2^377)P */ 0x72, 0x11, 0xfe, 0x73, 0x1b, 0xd3, 0xea, 0x7f, 0x93, 0x15, 0x15, 0x05, 0xfe, 0x40, 0xe8, 0x28, 0xd8, 0x50, 0x47, 0x66, 0xfa, 0xb7, 0xb5, 0x04, 0xba, 0x35, 0x1e, 0x32, 0x9f, 0x5f, 0x32, 0xba, 0x3d, 0xd1, 0xed, 0x9a, 0x76, 0xca, 0xa3, 0x3e, 0x77, 0xd8, 0xd8, 0x7c, 0x5f, 0x68, 0x42, 0xb5, 0x86, 0x7f, 0x3b, 0xc9, 0xc1, 0x89, 0x64, 0xda,
/* (2^378)P */ 0xd5, 0xd4, 0x17, 0x31, 0xfc, 0x6a, 0xfd, 0xb8, 0xe8, 0xe5, 0x3e, 0x39, 0x06, 0xe4, 0xd1, 0x90, 0x2a, 0xca, 0xf6, 0x54, 0x6c, 0x1b, 0x2f, 0x49, 0x97, 0xb1, 0x2a, 0x82, 0x43, 0x3d, 0x1f, 0x8b, 0xe2, 0x47, 0xc5, 0x24, 0xa8, 0xd5, 0x53, 0x29, 0x7d, 0xc6, 0x87, 0xa6, 0x25, 0x3a, 0x64, 0xdd, 0x71, 0x08, 0x9e, 0xcd, 0xe9, 0x45, 0xc7, 0xba,
/* (2^379)P */ 0x37, 0x72, 0x6d, 0x13, 0x7a, 0x8d, 0x04, 0x31, 0xe6, 0xe3, 0x9e, 0x36, 0x71, 0x3e, 0xc0, 0x1e, 0xe3, 0x71, 0xd3, 0x49, 0x4e, 0x4a, 0x36, 0x42, 0x68, 0x68, 0x61, 0xc7, 0x3c, 0xdb, 0x81, 0x49, 0xf7, 0x91, 0x4d, 0xea, 0x4c, 0x4f, 0x98, 0xc6, 0x7e, 0x60, 0x84, 0x4b, 0x6a, 0x37, 0xbb, 0x52, 0xf7, 0xce, 0x02, 0xe4, 0xad, 0xd1, 0x3c, 0xa7,
/* (2^380)P */ 0x51, 0x06, 0x2d, 0xf8, 0x08, 0xe8, 0xf1, 0x0c, 0xe5, 0xa9, 0xac, 0x29, 0x73, 0x3b, 0xed, 0x98, 0x5f, 0x55, 0x08, 0x38, 0x51, 0x44, 0x36, 0x5d, 0xea, 0xc3, 0xb8, 0x0e, 0xa0, 0x4f, 0xd2, 0x79, 0xe9, 0x98, 0xc3, 0xf5, 0x00, 0xb9, 0x26, 0x27, 0x42, 0xa8, 0x07, 0xc1, 0x12, 0x31, 0xc1, 0xc3, 0x3c, 0x3b, 0x7a, 0x72, 0x97, 0xc2, 0x70, 0x3a,
/* (2^381)P */ 0xf4, 0xb2, 0xba, 0x32, 0xbc, 0xa9, 0x2f, 0x87, 0xc7, 0x3c, 0x45, 0xcd, 0xae, 0xe2, 0x13, 0x6d, 0x3a, 0xf2, 0xf5, 0x66, 0x97, 0x29, 0xaf, 0x53, 0x9f, 0xda, 0xea, 0x14, 0xdf, 0x04, 0x98, 0x19, 0x95, 0x9e, 0x2a, 0x00, 0x5c, 0x9d, 0x1d, 0xf0, 0x39, 0x23, 0xff, 0xfc, 0xca, 0x36, 0xb7, 0xde, 0xdf, 0x37, 0x78, 0x52, 0x21, 0xfa, 0x19, 0x10,
/* (2^382)P */ 0x50, 0x20, 0x73, 0x74, 0x62, 0x21, 0xf2, 0xf7, 0x9b, 0x66, 0x85, 0x34, 0x74, 0xd4, 0x9d, 0x60, 0xd7, 0xbc, 0xc8, 0x46, 0x3b, 0xb8, 0x80, 0x42, 0x15, 0x0a, 0x6c, 0x35, 0x1a, 0x69, 0xf0, 0x1d, 0x4b, 0x29, 0x54, 0x5a, 0x9a, 0x48, 0xec, 0x9f, 0x37, 0x74, 0x91, 0xd0, 0xd1, 0x9e, 0x00, 0xc2, 0x76, 0x56, 0xd6, 0xa0, 0x15, 0x14, 0x83, 0x59,
/* (2^383)P */ 0xc2, 0xf8, 0x22, 0x20, 0x23, 0x07, 0xbd, 0x1d, 0x6f, 0x1e, 0x8c, 0x56, 0x06, 0x6a, 0x4b, 0x9f, 0xe2, 0xa9, 0x92, 0x46, 0x4b, 0x46, 0x59, 0xd7, 0xe1, 0xda, 0x14, 0x98, 0x07, 0x65, 0x7e, 0x28, 0x20, 0xf2, 0x9d, 0x4f, 0x36, 0x5c, 0x92, 0xe0, 0x9d, 0xfe, 0x3e, 0xda, 0xe4, 0x47, 0x19, 0x3c, 0x00, 0x7f, 0x22, 0xf2, 0x9e, 0x51, 0xae, 0x4d,
/* (2^384)P */ 0xbe, 0x8c, 0x1b, 0x10, 0xb6, 0xad, 0xcc, 0xcc, 0xd8, 0x5e, 0x21, 0xa6, 0xfb, 0xf1, 0xf6, 0xbd, 0x0a, 0x24, 0x67, 0xb4, 0x57, 0x7a, 0xbc, 0xe8, 0xe9, 0xff, 0xee, 0x0a, 0x1f, 0xee, 0xbd, 0xc8, 0x44, 0xed, 0x2b, 0xbb, 0x55, 0x1f, 0xdd, 0x7c, 0xb3, 0xeb, 0x3f, 0x63, 0xa1, 0x28, 0x91, 0x21, 0xab, 0x71, 0xc6, 0x4c, 0xd0, 0xe9, 0xb0, 0x21,
/* (2^385)P */ 0xad, 0xc9, 0x77, 0x2b, 0xee, 0x89, 0xa4, 0x7b, 0xfd, 0xf9, 0xf6, 0x14, 0xe4, 0xed, 0x1a, 0x16, 0x9b, 0x78, 0x41, 0x43, 0xa8, 0x83, 0x72, 0x06, 0x2e, 0x7c, 0xdf, 0xeb, 0x7e, 0xdd, 0xd7, 0x8b, 0xea, 0x9a, 0x2b, 0x03, 0xba, 0x57, 0xf3, 0xf1, 0xd9, 0xe5, 0x09, 0xc5, 0x98, 0x61, 0x1c, 0x51, 0x6d, 0x5d, 0x6e, 0xfb, 0x5e, 0x95, 0x9f, 0xb5,
/* (2^386)P */ 0x23, 0xe2, 0x1e, 0x95, 0xa3, 0x5e, 0x42, 0x10, 0xc7, 0xc3, 0x70, 0xbf, 0x4b, 0x6b, 0x83, 0x36, 0x93, 0xb7, 0x68, 0x47, 0x88, 0x3a, 0x10, 0x88, 0x48, 0x7f, 0x8c, 0xae, 0x54, 0x10, 0x02, 0xa4, 0x52, 0x8f, 0x8d, 0xf7, 0x26, 0x4f, 0x50, 0xc3, 0x6a, 0xe2, 0x4e, 0x3b, 0x4c, 0xb9, 0x8a, 0x14, 0x15, 0x6d, 0x21, 0x29, 0xb3, 0x6e, 0x4e, 0xd0,
/* (2^387)P */ 0x4c, 0x8a, 0x18, 0x3f, 0xb7, 0x20, 0xfd, 0x3e, 0x54, 0xca, 0x68, 0x3c, 0xea, 0x6f, 0xf4, 0x6b, 0xa2, 0xbd, 0x01, 0xbd, 0xfe, 0x08, 0xa8, 0xd8, 0xc2, 0x20, 0x36, 0x05, 0xcd, 0xe9, 0xf3, 0x9e, 0xfa, 0x85, 0x66, 0x8f, 0x4b, 0x1d, 0x8c, 0x64, 0x4f, 0xb8, 0xc6, 0x0f, 0x5b, 0x57, 0xd8, 0x24, 0x19, 0x5a, 0x14, 0x4b, 0x92, 0xd3, 0x96, 0xbc,
/* (2^388)P */ 0xa9, 0x3f, 0xc9, 0x6c, 0xca, 0x64, 0x1e, 0x6f, 0xdf, 0x65, 0x7f, 0x9a, 0x47, 0x6b, 0x8a, 0x60, 0x31, 0xa6, 0x06, 0xac, 0x69, 0x30, 0xe6, 0xea, 0x63, 0x42, 0x26, 0x5f, 0xdb, 0xd0, 0xf2, 0x8e, 0x34, 0x0a, 0x3a, 0xeb, 0xf3, 0x79, 0xc8, 0xb7, 0x60, 0x56, 0x5c, 0x37, 0x95, 0x71, 0xf8, 0x7f, 0x49, 0x3e, 0x9e, 0x01, 0x26, 0x1e, 0x80, 0x9f,
/* (2^389)P */ 0xf8, 0x16, 0x9a, 0xaa, 0xb0, 0x28, 0xb5, 0x8e, 0xd0, 0x60, 0xe5, 0x26, 0xa9, 0x47, 0xc4, 0x5c, 0xa9, 0x39, 0xfe, 0x0a, 0xd8, 0x07, 0x2b, 0xb3, 0xce, 0xf1, 0xea, 0x1a, 0xf4, 0x7b, 0x98, 0x31, 0x3d, 0x13, 0x29, 0x80, 0xe8, 0x0d, 0xcf, 0x56, 0x39, 0x86, 0x50, 0x0c, 0xb3, 0x18, 0xf4, 0xc5, 0xca, 0xf2, 0x6f, 0xcd, 0x8d, 0xd5, 0x02, 0xb0,
/* (2^390)P */ 0xbf, 0x39, 0x3f, 0xac, 0x6d, 0x1a, 0x6a, 0xe4, 0x42, 0x24, 0xd6, 0x41, 0x9d, 0xb9, 0x5b, 0x46, 0x73, 0x93, 0x76, 0xaa, 0xb7, 0x37, 0x36, 0xa6, 0x09, 0xe5, 0x04, 0x3b, 0x66, 0xc4, 0x29, 0x3e, 0x41, 0xc2, 0xcb, 0xe5, 0x17, 0xd7, 0x34, 0x67, 0x1d, 0x2c, 0x12, 0xec, 0x24, 0x7a, 0x40, 0xa2, 0x45, 0x41, 0xf0, 0x75, 0xed, 0x43, 0x30, 0xc9,
/* (2^391)P */ 0x80, 0xf6, 0x47, 0x5b, 0xad, 0x54, 0x02, 0xbc, 0xdd, 0xa4, 0xb2, 0xd7, 0x42, 0x95, 0xf2, 0x0d, 0x1b, 0xef, 0x37, 0xa7, 0xb4, 0x34, 0x04, 0x08, 0x71, 0x1b, 0xd3, 0xdf, 0xa1, 0xf0, 0x2b, 0xfa, 0xc0, 0x1f, 0xf3, 0x44, 0xb5, 0xc6, 0x47, 0x3d, 0x65, 0x67, 0x45, 0x4d, 0x2f, 0xde, 0x52, 0x73, 0xfc, 0x30, 0x01, 0x6b, 0xc1, 0x03, 0xd8, 0xd7,
/* (2^392)P */ 0x1c, 0x67, 0x55, 0x3e, 0x01, 0x17, 0x0f, 0x3e, 0xe5, 0x34, 0x58, 0xfc, 0xcb, 0x71, 0x24, 0x74, 0x5d, 0x36, 0x1e, 0x89, 0x2a, 0x63, 0xf8, 0xf8, 0x9f, 0x50, 0x9f, 0x32, 0x92, 0x29, 0xd8, 0x1a, 0xec, 0x76, 0x57, 0x6c, 0x67, 0x12, 0x6a, 0x6e, 0xef, 0x97, 0x1f, 0xc3, 0x77, 0x60, 0x3c, 0x22, 0xcb, 0xc7, 0x04, 0x1a, 0x89, 0x2d, 0x10, 0xa6,
/* (2^393)P */ 0x12, 0xf5, 0xa9, 0x26, 0x16, 0xd9, 0x3c, 0x65, 0x5d, 0x83, 0xab, 0xd1, 0x70, 0x6b, 0x1c, 0xdb, 0xe7, 0x86, 0x0d, 0xfb, 0xe7, 0xf8, 0x2a, 0x58, 0x6e, 0x7a, 0x66, 0x13, 0x53, 0x3a, 0x6f, 0x8d, 0x43, 0x5f, 0x14, 0x23, 0x14, 0xff, 0x3d, 0x52, 0x7f, 0xee, 0xbd, 0x7a, 0x34, 0x8b, 0x35, 0x24, 0xc3, 0x7a, 0xdb, 0xcf, 0x22, 0x74, 0x9a, 0x8f,
/* (2^394)P */ 0xdb, 0x20, 0xfc, 0xe5, 0x39, 0x4e, 0x7d, 0x78, 0xee, 0x0b, 0xbf, 0x1d, 0x80, 0xd4, 0x05, 0x4f, 0xb9, 0xd7, 0x4e, 0x94, 0x88, 0x9a, 0x50, 0x78, 0x1a, 0x70, 0x8c, 0xcc, 0x25, 0xb6, 0x61, 0x09, 0xdc, 0x7b, 0xea, 0x3f, 0x7f, 0xea, 0x2a, 0x0d, 0x47, 0x1c, 0x8e, 0xa6, 0x5b, 0xd2, 0xa3, 0x61, 0x93, 0x3c, 0x68, 0x9f, 0x8b, 0xea, 0xb0, 0xcb,
/* (2^395)P */ 0xff, 0x54, 0x02, 0x19, 0xae, 0x8b, 0x4c, 0x2c, 0x3a, 0xe0, 0xe4, 0xac, 0x87, 0xf7, 0x51, 0x45, 0x41, 0x43, 0xdc, 0xaa, 0xcd, 0xcb, 0xdc, 0x40, 0xe3, 0x44, 0x3b, 0x1d, 0x9e, 0x3d, 0xb9, 0x82, 0xcc, 0x7a, 0xc5, 0x12, 0xf8, 0x1e, 0xdd, 0xdb, 0x8d, 0xb0, 0x2a, 0xe8, 0xe6, 0x6c, 0x94, 0x3b, 0xb7, 0x2d, 0xba, 0x79, 0x3b, 0xb5, 0x86, 0xfb,
/* (2^396)P */ 0x82, 0x88, 0x13, 0xdd, 0x6c, 0xcd, 0x85, 0x2b, 0x90, 0x86, 0xb7, 0xac, 0x16, 0xa6, 0x6e, 0x6a, 0x94, 0xd8, 0x1e, 0x4e, 0x41, 0x0f, 0xce, 0x81, 0x6a, 0xa8, 0x26, 0x56, 0x43, 0x52, 0x52, 0xe6, 0xff, 0x88, 0xcf, 0x47, 0x05, 0x1d, 0xff, 0xf3, 0xa0, 0x10, 0xb2, 0x97, 0x87, 0xeb, 0x47, 0xbb, 0xfa, 0x1f, 0xe8, 0x4c, 0xce, 0xc4, 0xcd, 0x93,
/* (2^397)P */ 0xf4, 0x11, 0xf5, 0x8d, 0x89, 0x29, 0x79, 0xb3, 0x59, 0x0b, 0x29, 0x7d, 0x9c, 0x12, 0x4a, 0x65, 0x72, 0x3a, 0xf9, 0xec, 0x37, 0x18, 0x86, 0xef, 0x44, 0x07, 0x25, 0x74, 0x76, 0x53, 0xed, 0x51, 0x01, 0xc6, 0x28, 0xc5, 0xc3, 0x4a, 0x0f, 0x99, 0xec, 0xc8, 0x40, 0x5a, 0x83, 0x30, 0x79, 0xa2, 0x3e, 0x63, 0x09, 0x2d, 0x6f, 0x23, 0x54, 0x1c,
/* (2^398)P */ 0x5c, 0x6f, 0x3b, 0x1c, 0x30, 0x77, 0x7e, 0x87, 0x66, 0x83, 0x2e, 0x7e, 0x85, 0x50, 0xfd, 0xa0, 0x7a, 0xc2, 0xf5, 0x0f, 0xc1, 0x64, 0xe7, 0x0b, 0xbd, 0x59, 0xa7, 0xe7, 0x65, 0x53, 0xc3, 0xf5, 0x55, 0x5b, 0xe1, 0x82, 0x30, 0x5a, 0x61, 0xcd, 0xa0, 0x89, 0x32, 0xdb, 0x87, 0xfc, 0x21, 0x8a, 0xab, 0x6d, 0x82, 0xa8, 0x42, 0x81, 0x4f, 0xf2,
/* (2^399)P */ 0xb3, 0xeb, 0x88, 0x18, 0xf6, 0x56, 0x96, 0xbf, 0xba, 0x5d, 0x71, 0xa1, 0x5a, 0xd1, 0x04, 0x7b, 0xd5, 0x46, 0x01, 0x74, 0xfe, 0x15, 0x25, 0xb7, 0xff, 0x0c, 0x24, 0x47, 0xac, 0xfd, 0xab, 0x47, 0x32, 0xe1, 0x6a, 0x4e, 0xca, 0xcf, 0x7f, 0xdd, 0xf8, 0xd2, 0x4b, 0x3b, 0xf5, 0x17, 0xba, 0xba, 0x8b, 0xa1, 0xec, 0x28, 0x3f, 0x97, 0xab, 0x2a,
/* (2^400)P */ 0x51, 0x38, 0xc9, 0x5e, 0xc6, 0xb3, 0x64, 0xf2, 0x24, 0x4d, 0x04, 0x7d, 0xc8, 0x39, 0x0c, 0x4a, 0xc9, 0x73, 0x74, 0x1b, 0x5c, 0xb2, 0xc5, 0x41, 0x62, 0xa0, 0x4c, 0x6d, 0x8d, 0x91, 0x9a, 0x7b, 0x88, 0xab, 0x9c, 0x7e, 0x23, 0xdb, 0x6f, 0xb5, 0x72, 0xd6, 0x47, 0x40, 0xef, 0x22, 0x58, 0x62, 0x19, 0x6c, 0x38, 0xba, 0x5b, 0x00, 0x30, 0x9f,
/* (2^401)P */ 0x65, 0xbb, 0x3b, 0x9b, 0xe9, 0xae, 0xbf, 0xbe, 0xe4, 0x13, 0x95, 0xf3, 0xe3, 0x77, 0xcb, 0xe4, 0x9a, 0x22, 0xb5, 0x4a, 0x08, 0x9d, 0xb3, 0x9e, 0x27, 0xe0, 0x15, 0x6c, 0x9f, 0x7e, 0x9a, 0x5e, 0x15, 0x45, 0x25, 0x8d, 0x01, 0x0a, 0xd2, 0x2b, 0xbd, 0x48, 0x06, 0x0d, 0x18, 0x97, 0x4b, 0xdc, 0xbc, 0xf0, 0xcd, 0xb2, 0x52, 0x3c, 0xac, 0xf5,
/* (2^402)P */ 0x3e, 0xed, 0x47, 0x6b, 0x5c, 0xf6, 0x76, 0xd0, 0xe9, 0x15, 0xa3, 0xcb, 0x36, 0x00, 0x21, 0xa3, 0x79, 0x20, 0xa5, 0x3e, 0x88, 0x03, 0xcb, 0x7e, 0x63, 0xbb, 0xed, 0xa9, 0x13, 0x35, 0x16, 0xaf, 0x2e, 0xb4, 0x70, 0x14, 0x93, 0xfb, 0xc4, 0x9b, 0xd8, 0xb1, 0xbe, 0x43, 0xd1, 0x85, 0xb8, 0x97, 0xef, 0xea, 0x88, 0xa1, 0x25, 0x52, 0x62, 0x75,
/* (2^403)P */ 0x8e, 0x4f, 0xaa, 0x23, 0x62, 0x7e, 0x2b, 0x37, 0x89, 0x00, 0x11, 0x30, 0xc5, 0x33, 0x4a, 0x89, 0x8a, 0xe2, 0xfc, 0x5c, 0x6a, 0x75, 0xe5, 0xf7, 0x02, 0x4a, 0x9b, 0xf7, 0xb5, 0x6a, 0x85, 0x31, 0xd3, 0x5a, 0xcf, 0xc3, 0xf8, 0xde, 0x2f, 0xcf, 0xb5, 0x24, 0xf4, 0xe3, 0xa1, 0xad, 0x42, 0xae, 0x09, 0xb9, 0x2e, 0x04, 0x2d, 0x01, 0x22, 0x3f,
/* (2^404)P */ 0x41, 0x16, 0xfb, 0x7d, 0x50, 0xfd, 0xb5, 0xba, 0x88, 0x24, 0xba, 0xfd, 0x3d, 0xb2, 0x90, 0x15, 0xb7, 0xfa, 0xa2, 0xe1, 0x4c, 0x7d, 0xb9, 0xc6, 0xff, 0x81, 0x57, 0xb6, 0xc2, 0x9e, 0xcb, 0xc4, 0x35, 0xbd, 0x01, 0xb7, 0xaa, 0xce, 0xd0, 0xe9, 0xb5, 0xd6, 0x72, 0xbf, 0xd2, 0xee, 0xc7, 0xac, 0x94, 0xff, 0x29, 0x57, 0x02, 0x49, 0x09, 0xad,
/* (2^405)P */ 0x27, 0xa5, 0x78, 0x1b, 0xbf, 0x6b, 0xaf, 0x0b, 0x8c, 0xd9, 0xa8, 0x37, 0xb0, 0x67, 0x18, 0xb6, 0xc7, 0x05, 0x8a, 0x67, 0x03, 0x30, 0x62, 0x6e, 0x56, 0x82, 0xa9, 0x54, 0x3e, 0x0c, 0x4e, 0x07, 0xe1, 0x5a, 0x38, 0xed, 0xfa, 0xc8, 0x55, 0x6b, 0x08, 0xa3, 0x6b, 0x64, 0x2a, 0x15, 0xd6, 0x39, 0x6f, 0x47, 0x99, 0x42, 0x3f, 0x33, 0x84, 0x8f,
/* (2^406)P */ 0xbc, 0x45, 0x29, 0x81, 0x0e, 0xa4, 0xc5, 0x72, 0x3a, 0x10, 0xe1, 0xc4, 0x1e, 0xda, 0xc3, 0xfe, 0xb0, 0xce, 0xd2, 0x13, 0x34, 0x67, 0x21, 0xc6, 0x7e, 0xf9, 0x8c, 0xff, 0x39, 0x50, 0xae, 0x92, 0x60, 0x35, 0x2f, 0x8b, 0x6e, 0xc9, 0xc1, 0x27, 0x3a, 0x94, 0x66, 0x3e, 0x26, 0x84, 0x93, 0xc8, 0x6c, 0xcf, 0xd2, 0x03, 0xa1, 0x10, 0xcf, 0xb7,
/* (2^407)P */ 0x64, 0xda, 0x19, 0xf6, 0xc5, 0x73, 0x17, 0x44, 0x88, 0x81, 0x07, 0x0d, 0x34, 0xb2, 0x75, 0xf9, 0xd9, 0xe2, 0xe0, 0x8b, 0x71, 0xcf, 0x72, 0x34, 0x83, 0xb4, 0xce, 0xfc, 0xd7, 0x29, 0x09, 0x5a, 0x98, 0xbf, 0x14, 0xac, 0x77, 0x55, 0x38, 0x47, 0x5b, 0x0f, 0x40, 0x24, 0xe5, 0xa5, 0xa6, 0xac, 0x2d, 0xa6, 0xff, 0x9c, 0x73, 0xfe, 0x5c, 0x7e,
/* (2^408)P */ 0x1e, 0x33, 0xcc, 0x68, 0xb2, 0xbc, 0x8c, 0x93, 0xaf, 0xcc, 0x38, 0xf8, 0xd9, 0x16, 0x72, 0x50, 0xac, 0xd9, 0xb5, 0x0b, 0x9a, 0xbe, 0x46, 0x7a, 0xf1, 0xee, 0xf1, 0xad, 0xec, 0x5b, 0x59, 0x27, 0x9c, 0x05, 0xa3, 0x87, 0xe0, 0x37, 0x2c, 0x83, 0xce, 0xb3, 0x65, 0x09, 0x8e, 0xc3, 0x9c, 0xbf, 0x6a, 0xa2, 0x00, 0xcc, 0x12, 0x36, 0xc5, 0x95,
/* (2^409)P */ 0x36, 0x11, 0x02, 0x14, 0x9c, 0x3c, 0xeb, 0x2f, 0x23, 0x5b, 0x6b, 0x2b, 0x08, 0x54, 0x53, 0xac, 0xb2, 0xa3, 0xe0, 0x26, 0x62, 0x3c, 0xe4, 0xe1, 0x81, 0xee, 0x13, 0x3e, 0xa4, 0x97, 0xef, 0xf9, 0x92, 0x27, 0x01, 0xce, 0x54, 0x8b, 0x3e, 0x31, 0xbe, 0xa7, 0x88, 0xcf, 0x47, 0x99, 0x3c, 0x10, 0x6f, 0x60, 0xb3, 0x06, 0x4e, 0xee, 0x1b, 0xf0,
/* (2^410)P */ 0x59, 0x49, 0x66, 0xcf, 0x22, 0xe6, 0xf6, 0x73, 0xfe, 0xa3, 0x1c, 0x09, 0xfa, 0x5f, 0x65, 0xa8, 0xf0, 0x82, 0xc2, 0xef, 0x16, 0x63, 0x6e, 0x79, 0x69, 0x51, 0x39, 0x07, 0x65, 0xc4, 0x81, 0xec, 0x73, 0x0f, 0x15, 0x93, 0xe1, 0x30, 0x33, 0xe9, 0x37, 0x86, 0x42, 0x4c, 0x1f, 0x9b, 0xad, 0xee, 0x3f, 0xf1, 0x2a, 0x8e, 0x6a, 0xa3, 0xc8, 0x35,
/* (2^411)P */ 0x1e, 0x49, 0xf1, 0xdd, 0xd2, 0x9c, 0x8e, 0x78, 0xb2, 0x06, 0xe4, 0x6a, 0xab, 0x3a, 0xdc, 0xcd, 0xf4, 0xeb, 0xe1, 0xe7, 0x2f, 0xaa, 0xeb, 0x40, 0x31, 0x9f, 0xb9, 0xab, 0x13, 0xa9, 0x78, 0xbf, 0x38, 0x89, 0x0e, 0x85, 0x14, 0x8b, 0x46, 0x76, 0x14, 0xda, 0xcf, 0x33, 0xc8, 0x79, 0xd3, 0xd5, 0xa3, 0x6a, 0x69, 0x45, 0x70, 0x34, 0xc3, 0xe9,
/* (2^412)P */ 0x5e, 0xe7, 0x78, 0xe9, 0x24, 0xcc, 0xe9, 0xf4, 0xc8, 0x6b, 0xe0, 0xfb, 0x3a, 0xbe, 0xcc, 0x42, 0x4a, 0x00, 0x22, 0xf8, 0xe6, 0x32, 0xbe, 0x6d, 0x18, 0x55, 0x60, 0xe9, 0x72, 0x69, 0x50, 0x56, 0xca, 0x04, 0x18, 0x38, 0xa1, 0xee, 0xd8, 0x38, 0x3c, 0xa7, 0x70, 0xe2, 0xb9, 0x4c, 0xa0, 0xc8, 0x89, 0x72, 0xcf, 0x49, 0x7f, 0xdf, 0xbc, 0x67,
/* (2^413)P */ 0x1d, 0x17, 0xcb, 0x0b, 0xbd, 0xb2, 0x36, 0xe3, 0xa8, 0x99, 0x31, 0xb6, 0x26, 0x9c, 0x0c, 0x74, 0xaf, 0x4d, 0x24, 0x61, 0xcf, 0x31, 0x7b, 0xed, 0xdd, 0xc3, 0xf6, 0x32, 0x70, 0xfe, 0x17, 0xf6, 0x51, 0x37, 0x65, 0xce, 0x5d, 0xaf, 0xa5, 0x2f, 0x2a, 0xfe, 0x00, 0x71, 0x7c, 0x50, 0xbe, 0x21, 0xc7, 0xed, 0xc6, 0xfc, 0x67, 0xcf, 0x9c, 0xdd,
/* (2^414)P */ 0x26, 0x3e, 0xf8, 0xbb, 0xd0, 0xb1, 0x01, 0xd8, 0xeb, 0x0b, 0x62, 0x87, 0x35, 0x4c, 0xde, 0xca, 0x99, 0x9c, 0x6d, 0xf7, 0xb6, 0xf0, 0x57, 0x0a, 0x52, 0x29, 0x6a, 0x3f, 0x26, 0x31, 0x04, 0x07, 0x2a, 0xc9, 0xfa, 0x9b, 0x0e, 0x62, 0x8e, 0x72, 0xf2, 0xad, 0xce, 0xb6, 0x35, 0x7a, 0xc1, 0xae, 0x35, 0xc7, 0xa3, 0x14, 0xcf, 0x0c, 0x28, 0xb7,
/* (2^415)P */ 0xa6, 0xf1, 0x32, 0x3a, 0x20, 0xd2, 0x24, 0x97, 0xcf, 0x5d, 0x37, 0x99, 0xaf, 0x33, 0x7a, 0x5b, 0x7a, 0xcc, 0x4e, 0x41, 0x38, 0xb1, 0x4e, 0xad, 0xc9, 0xd9, 0x71, 0x7e, 0xb2, 0xf5, 0xd5, 0x01, 0x6c, 0x4d, 0xfd, 0xa1, 0xda, 0x03, 0x38, 0x9b, 0x3d, 0x92, 0x92, 0xf2, 0xca, 0xbf, 0x1f, 0x24, 0xa4, 0xbb, 0x30, 0x6a, 0x74, 0x56, 0xc8, 0xce,
/* (2^416)P */ 0x27, 0xf4, 0xed, 0xc9, 0xc3, 0xb1, 0x79, 0x85, 0xbe, 0xf6, 0xeb, 0xf3, 0x55, 0xc7, 0xaa, 0xa6, 0xe9, 0x07, 0x5d, 0xf4, 0xeb, 0xa6, 0x81, 0xe3, 0x0e, 0xcf, 0xa3, 0xc1, 0xef, 0xe7, 0x34, 0xb2, 0x03, 0x73, 0x8a, 0x91, 0xf1, 0xad, 0x05, 0xc7, 0x0b, 0x43, 0x99, 0x12, 0x31, 0xc8, 0xc7, 0xc5, 0xa4, 0x3d, 0xcd, 0xe5, 0x4e, 0x6d, 0x24, 0xdd,
/* (2^417)P */ 0x61, 0x54, 0xd0, 0x95, 0x2c, 0x45, 0x75, 0xac, 0xb5, 0x1a, 0x9d, 0x11, 0xeb, 0xed, 0x6b, 0x57, 0xa3, 0xe6, 0xcd, 0x77, 0xd4, 0x83, 0x8e, 0x39, 0xf1, 0x0f, 0x98, 0xcb, 0x40, 0x02, 0x6e, 0x10, 0x82, 0x9e, 0xb4, 0x93, 0x76, 0xd7, 0x97, 0xa3, 0x53, 0x12, 0x86, 0xc6, 0x15, 0x78, 0x73, 0x93, 0xe7, 0x7f, 0xcf, 0x1f, 0xbf, 0xcd, 0xd2, 0x7a,
/* (2^418)P */ 0xc2, 0x21, 0xdc, 0xd5, 0x69, 0xff, 0xca, 0x49, 0x3a, 0xe1, 0xc3, 0x69, 0x41, 0x56, 0xc1, 0x76, 0x63, 0x24, 0xbd, 0x64, 0x1b, 0x3d, 0x92, 0xf9, 0x13, 0x04, 0x25, 0xeb, 0x27, 0xa6, 0xef, 0x39, 0x3a, 0x80, 0xe0, 0xf8, 0x27, 0xee, 0xc9, 0x49, 0x77, 0xef, 0x3f, 0x29, 0x3d, 0x5e, 0xe6, 0x66, 0x83, 0xd1, 0xf6, 0xfe, 0x9d, 0xbc, 0xf1, 0x96,
/* (2^419)P */ 0x6b, 0xc6, 0x99, 0x26, 0x3c, 0xf3, 0x63, 0xf9, 0xc7, 0x29, 0x8c, 0x52, 0x62, 0x2d, 0xdc, 0x8a, 0x66, 0xce, 0x2c, 0xa7, 0xe4, 0xf0, 0xd7, 0x37, 0x17, 0x1e, 0xe4, 0xa3, 0x53, 0x7b, 0x29, 0x8e, 0x60, 0x99, 0xf9, 0x0c, 0x7c, 0x6f, 0xa2, 0xcc, 0x9f, 0x80, 0xdd, 0x5e, 0x46, 0xaa, 0x0d, 0x6c, 0xc9, 0x6c, 0xf7, 0x78, 0x5b, 0x38, 0xe3, 0x24,
/* (2^420)P */ 0x4b, 0x75, 0x6a, 0x2f, 0x08, 0xe1, 0x72, 0x76, 0xab, 0x82, 0x96, 0xdf, 0x3b, 0x1f, 0x9b, 0xd8, 0xed, 0xdb, 0xcd, 0x15, 0x09, 0x5a, 0x1e, 0xb7, 0xc5, 0x26, 0x72, 0x07, 0x0c, 0x50, 0xcd, 0x3b, 0x4d, 0x3f, 0xa2, 0x67, 0xc2, 0x02, 0x61, 0x2e, 0x68, 0xe9, 0x6f, 0xf0, 0x21, 0x2a, 0xa7, 0x3b, 0x88, 0x04, 0x11, 0x64, 0x49, 0x0d, 0xb4, 0x46,
/* (2^421)P */ 0x63, 0x85, 0xf3, 0xc5, 0x2b, 0x5a, 0x9f, 0xf0, 0x17, 0xcb, 0x45, 0x0a, 0xf3, 0x6e, 0x7e, 0xb0, 0x7c, 0xbc, 0xf0, 0x4f, 0x3a, 0xb0, 0xbc, 0x36, 0x36, 0x52, 0x51, 0xcb, 0xfe, 0x9a, 0xcb, 0xe8, 0x7e, 0x4b, 0x06, 0x7f, 0xaa, 0x35, 0xc8, 0x0e, 0x7a, 0x30, 0xa3, 0xb1, 0x09, 0xbb, 0x86, 0x4c, 0xbe, 0xb8, 0xbd, 0xe0, 0x32, 0xa5, 0xd4, 0xf7,
/* (2^422)P */ 0x7d, 0x50, 0x37, 0x68, 0x4e, 0x22, 0xb2, 0x2c, 0xd5, 0x0f, 0x2b, 0x6d, 0xb1, 0x51, 0xf2, 0x82, 0xe9, 0x98, 0x7c, 0x50, 0xc7, 0x96, 0x7e, 0x0e, 0xdc, 0xb1, 0x0e, 0xb2, 0x63, 0x8c, 0x30, 0x37, 0x72, 0x21, 0x9c, 0x61, 0xc2, 0xa7, 0x33, 0xd9, 0xb2, 0x63, 0x93, 0xd1, 0x6b, 0x6a, 0x73, 0xa5, 0x58, 0x80, 0xff, 0x04, 0xc7, 0x83, 0x21, 0x29,
/* (2^423)P */ 0x29, 0x04, 0xbc, 0x99, 0x39, 0xc9, 0x58, 0xc9, 0x6b, 0x17, 0xe8, 0x90, 0xb3, 0xe6, 0xa9, 0xb6, 0x28, 0x9b, 0xcb, 0x3b, 0x28, 0x90, 0x68, 0x71, 0xff, 0xcf, 0x08, 0x78, 0xc9, 0x8d, 0xa8, 0x4e, 0x43, 0xd1, 0x1c, 0x9e, 0xa4, 0xe3, 0xdf, 0xbf, 0x92, 0xf4, 0xf9, 0x41, 0xba, 0x4d, 0x1c, 0xf9, 0xdd, 0x74, 0x76, 0x1c, 0x6e, 0x3e, 0x94, 0x87,
/* (2^424)P */ 0xe4, 0xda, 0xc5, 0xd7, 0xfb, 0x87, 0xc5, 0x4d, 0x6b, 0x19, 0xaa, 0xb9, 0xbc, 0x8c, 0xf2, 0x8a, 0xd8, 0x5d, 0xdb, 0x4d, 0xef, 0xa6, 0xf2, 0x65, 0xf1, 0x22, 0x9c, 0xf1, 0x46, 0x30, 0x71, 0x7c, 0xe4, 0x53, 0x8e, 0x55, 0x2e, 0x9c, 0x9a, 0x31, 0x2a, 0xc3, 0xab, 0x0f, 0xde, 0xe4, 0xbe, 0xd8, 0x96, 0x50, 0x6e, 0x0c, 0x54, 0x49, 0xe6, 0xec,
/* (2^425)P */ 0x3c, 0x1d, 0x5a, 0xa5, 0xda, 0xad, 0xdd, 0xc2, 0xae, 0xac, 0x6f, 0x86, 0x75, 0x31, 0x91, 0x64, 0x45, 0x9d, 0xa4, 0xf0, 0x81, 0xf1, 0x0e, 0xba, 0x74, 0xaf, 0x7b, 0xcd, 0x6f, 0xfe, 0xac, 0x4e, 0xdb, 0x4e, 0x45, 0x35, 0x36, 0xc5, 0xc0, 0x6c, 0x3d, 0x64, 0xf4, 0xd8, 0x07, 0x62, 0xd1, 0xec, 0xf3, 0xfc, 0x93, 0xc9, 0x28, 0x0c, 0x2c, 0xf3,
/* (2^426)P */ 0x0c, 0x69, 0x2b, 0x5c, 0xb6, 0x41, 0x69, 0xf1, 0xa4, 0xf1, 0x5b, 0x75, 0x4c, 0x42, 0x8b, 0x47, 0xeb, 0x69, 0xfb, 0xa8, 0xe6, 0xf9, 0x7b, 0x48, 0x50, 0xaf, 0xd3, 0xda, 0xb2, 0x35, 0x10, 0xb5, 0x5b, 0x40, 0x90, 0x39, 0xc9, 0x07, 0x06, 0x73, 0x26, 0x20, 0x95, 0x01, 0xa4, 0x2d, 0xf0, 0xe7, 0x2e, 0x00, 0x7d, 0x41, 0x09, 0x68, 0x13, 0xc4,
/* (2^427)P */ 0xbe, 0x38, 0x78, 0xcf, 0xc9, 0x4f, 0x36, 0xca, 0x09, 0x61, 0x31, 0x3c, 0x57, 0x2e, 0xec, 0x17, 0xa4, 0x7d, 0x19, 0x2b, 0x9b, 0x5b, 0xbe, 0x8f, 0xd6, 0xc5, 0x2f, 0x86, 0xf2, 0x64, 0x76, 0x17, 0x00, 0x6e, 0x1a, 0x8c, 0x67, 0x1b, 0x68, 0xeb, 0x15, 0xa2, 0xd6, 0x09, 0x91, 0xdd, 0x23, 0x0d, 0x98, 0xb2, 0x10, 0x19, 0x55, 0x9b, 0x63, 0xf2,
/* (2^428)P */ 0x51, 0x1f, 0x93, 0xea, 0x2a, 0x3a, 0xfa, 0x41, 0xc0, 0x57, 0xfb, 0x74, 0xa6, 0x65, 0x09, 0x56, 0x14, 0xb6, 0x12, 0xaa, 0xb3, 0x1a, 0x8d, 0x3b, 0x76, 0x91, 0x7a, 0x23, 0x56, 0x9c, 0x6a, 0xc0, 0xe0, 0x3c, 0x3f, 0xb5, 0x1a, 0xf4, 0x57, 0x71, 0x93, 0x2b, 0xb1, 0xa7, 0x70, 0x57, 0x22, 0x80, 0xf5, 0xb8, 0x07, 0x77, 0x87, 0x0c, 0xbe, 0x83,
/* (2^429)P */ 0x07, 0x9b, 0x0e, 0x52, 0x38, 0x63, 0x13, 0x86, 0x6a, 0xa6, 0xb4, 0xd2, 0x60, 0x68, 0x9a, 0x99, 0x82, 0x0a, 0x04, 0x5f, 0x89, 0x7a, 0x1a, 0x2a, 0xae, 0x2d, 0x35, 0x0c, 0x1e, 0xad, 0xef, 0x4f, 0x9a, 0xfc, 0xc8, 0xd9, 0xcf, 0x9d, 0x48, 0x71, 0xa5, 0x55, 0x79, 0x73, 0x39, 0x1b, 0xd8, 0x73, 0xec, 0x9b, 0x03, 0x16, 0xd8, 0x82, 0xf7, 0x67,
/* (2^430)P */ 0x52, 0x67, 0x42, 0x21, 0xc9, 0x40, 0x78, 0x82, 0x2b, 0x95, 0x2d, 0x20, 0x92, 0xd1, 0xe2, 0x61, 0x25, 0xb0, 0xc6, 0x9c, 0x20, 0x59, 0x8e, 0x28, 0x6f, 0xf3, 0xfd, 0xd3, 0xc1, 0x32, 0x43, 0xc9, 0xa6, 0x08, 0x7a, 0x77, 0x9c, 0x4c, 0x8c, 0x33, 0x71, 0x13, 0x69, 0xe3, 0x52, 0x30, 0xa7, 0xf5, 0x07, 0x67, 0xac, 0xad, 0x46, 0x8a, 0x26, 0x25,
/* (2^431)P */ 0xda, 0x86, 0xc4, 0xa2, 0x71, 0x56, 0xdd, 0xd2, 0x48, 0xd3, 0xde, 0x42, 0x63, 0x01, 0xa7, 0x2c, 0x92, 0x83, 0x6f, 0x2e, 0xd8, 0x1e, 0x3f, 0xc1, 0xc5, 0x42, 0x4e, 0x34, 0x19, 0x54, 0x6e, 0x35, 0x2c, 0x51, 0x2e, 0xfd, 0x0f, 0x9a, 0x45, 0x66, 0x5e, 0x4a, 0x83, 0xda, 0x0a, 0x53, 0x68, 0x63, 0xfa, 0xce, 0x47, 0x20, 0xd3, 0x34, 0xba, 0x0d,
/* (2^432)P */ 0xd0, 0xe9, 0x64, 0xa4, 0x61, 0x4b, 0x86, 0xe5, 0x93, 0x6f, 0xda, 0x0e, 0x31, 0x7e, 0x6e, 0xe3, 0xc6, 0x73, 0xd8, 0xa3, 0x08, 0x57, 0x52, 0xcd, 0x51, 0x63, 0x1d, 0x9f, 0x93, 0x00, 0x62, 0x91, 0x26, 0x21, 0xa7, 0xdd, 0x25, 0x0f, 0x09, 0x0d, 0x35, 0xad, 0xcf, 0x11, 0x8e, 0x6e, 0xe8, 0xae, 0x1d, 0x95, 0xcb, 0x88, 0xf8, 0x70, 0x7b, 0x91,
/* (2^433)P */ 0x0c, 0x19, 0x5c, 0xd9, 0x8d, 0xda, 0x9d, 0x2c, 0x90, 0x54, 0x65, 0xe8, 0xb6, 0x35, 0x50, 0xae, 0xea, 0xae, 0x43, 0xb7, 0x1e, 0x99, 0x8b, 0x4c, 0x36, 0x4e, 0xe4, 0x1e, 0xc4, 0x64, 0x43, 0xb6, 0xeb, 0xd4, 0xe9, 0x60, 0x22, 0xee, 0xcf, 0xb8, 0x52, 0x1b, 0xf0, 0x04, 0xce, 0xbc, 0x2b, 0xf0, 0xbe, 0xcd, 0x44, 0x74, 0x1e, 0x1f, 0x63, 0xf9,
/* (2^434)P */ 0xe1, 0x3f, 0x95, 0x94, 0xb2, 0xb6, 0x31, 0xa9, 0x1b, 0xdb, 0xfd, 0x0e, 0xdb, 0xdd, 0x1a, 0x22, 0x78, 0x60, 0x9f, 0x75, 0x5f, 0x93, 0x06, 0x0c, 0xd8, 0xbb, 0xa2, 0x85, 0x2b, 0x5e, 0xc0, 0x9b, 0xa8, 0x5d, 0xaf, 0x93, 0x91, 0x91, 0x47, 0x41, 0x1a, 0xfc, 0xb4, 0x51, 0x85, 0xad, 0x69, 0x4d, 0x73, 0x69, 0xd5, 0x4e, 0x82, 0xfb, 0x66, 0xcb,
/* (2^435)P */ 0x7c, 0xbe, 0xc7, 0x51, 0xc4, 0x74, 0x6e, 0xab, 0xfd, 0x41, 0x4f, 0x76, 0x4f, 0x24, 0x03, 0xd6, 0x2a, 0xb7, 0x42, 0xb4, 0xda, 0x41, 0x2c, 0x82, 0x48, 0x4c, 0x7f, 0x6f, 0x25, 0x5d, 0x36, 0xd4, 0x69, 0xf5, 0xef, 0x02, 0x81, 0xea, 0x6f, 0x19, 0x69, 0xe8, 0x6f, 0x5b, 0x2f, 0x14, 0x0e, 0x6f, 0x89, 0xb4, 0xb5, 0xd8, 0xae, 0xef, 0x7b, 0x87,
/* (2^436)P */ 0xe9, 0x91, 0xa0, 0x8b, 0xc9, 0xe0, 0x01, 0x90, 0x37, 0xc1, 0x6f, 0xdc, 0x5e, 0xf7, 0xbf, 0x43, 0x00, 0xaa, 0x10, 0x76, 0x76, 0x18, 0x6e, 0x19, 0x1e, 0x94, 0x50, 0x11, 0x0a, 0xd1, 0xe2, 0xdb, 0x08, 0x21, 0xa0, 0x1f, 0xdb, 0x54, 0xfe, 0xea, 0x6e, 0xa3, 0x68, 0x56, 0x87, 0x0b, 0x22, 0x4e, 0x66, 0xf3, 0x82, 0x82, 0x00, 0xcd, 0xd4, 0x12,
/* (2^437)P */ 0x25, 0x8e, 0x24, 0x77, 0x64, 0x4c, 0xe0, 0xf8, 0x18, 0xc0, 0xdc, 0xc7, 0x1b, 0x35, 0x65, 0xde, 0x67, 0x41, 0x5e, 0x6f, 0x90, 0x82, 0xa7, 0x2e, 0x6d, 0xf1, 0x47, 0xb4, 0x92, 0x9c, 0xfd, 0x6a, 0x9a, 0x41, 0x36, 0x20, 0x24, 0x58, 0xc3, 0x59, 0x07, 0x9a, 0xfa, 0x9f, 0x03, 0xcb, 0xc7, 0x69, 0x37, 0x60, 0xe1, 0xab, 0x13, 0x72, 0xee, 0xa2,
/* (2^438)P */ 0x74, 0x78, 0xfb, 0x13, 0xcb, 0x8e, 0x37, 0x1a, 0xf6, 0x1d, 0x17, 0x83, 0x06, 0xd4, 0x27, 0x06, 0x21, 0xe8, 0xda, 0xdf, 0x6b, 0xf3, 0x83, 0x6b, 0x34, 0x8a, 0x8c, 0xee, 0x01, 0x05, 0x5b, 0xed, 0xd3, 0x1b, 0xc9, 0x64, 0x83, 0xc9, 0x49, 0xc2, 0x57, 0x1b, 0xdd, 0xcf, 0xf1, 0x9d, 0x63, 0xee, 0x1c, 0x0d, 0xa0, 0x0a, 0x73, 0x1f, 0x5b, 0x32,
/* (2^439)P */ 0x29, 0xce, 0x1e, 0xc0, 0x6a, 0xf5, 0xeb, 0x99, 0x5a, 0x39, 0x23, 0xe9, 0xdd, 0xac, 0x44, 0x88, 0xbc, 0x80, 0x22, 0xde, 0x2c, 0xcb, 0xa8, 0x3b, 0xff, 0xf7, 0x6f, 0xc7, 0x71, 0x72, 0xa8, 0xa3, 0xf6, 0x4d, 0xc6, 0x75, 0xda, 0x80, 0xdc, 0xd9, 0x30, 0xd9, 0x07, 0x50, 0x5a, 0x54, 0x7d, 0xda, 0x39, 0x6f, 0x78, 0x94, 0xbf, 0x25, 0x98, 0xdc,
/* (2^440)P */ 0x01, 0x26, 0x62, 0x44, 0xfb, 0x0f, 0x11, 0x72, 0x73, 0x0a, 0x16, 0xc7, 0x16, 0x9c, 0x9b, 0x37, 0xd8, 0xff, 0x4f, 0xfe, 0x57, 0xdb, 0xae, 0xef, 0x7d, 0x94, 0x30, 0x04, 0x70, 0x83, 0xde, 0x3c, 0xd4, 0xb5, 0x70, 0xda, 0xa7, 0x55, 0xc8, 0x19, 0xe1, 0x36, 0x15, 0x61, 0xe7, 0x3b, 0x7d, 0x85, 0xbb, 0xf3, 0x42, 0x5a, 0x94, 0xf4, 0x53, 0x2a,
/* (2^441)P */ 0x14, 0x60, 0xa6, 0x0b, 0x83, 0xe1, 0x23, 0x77, 0xc0, 0xce, 0x50, 0xed, 0x35, 0x8d, 0x98, 0x99, 0x7d, 0xf5, 0x8d, 0xce, 0x94, 0x25, 0xc8, 0x0f, 0x6d, 0xfa, 0x4a, 0xa4, 0x3a, 0x1f, 0x66, 0xfb, 0x5a, 0x64, 0xaf, 0x8b, 0x54, 0x54, 0x44, 0x3f, 0x5b, 0x88, 0x61, 0xe4, 0x48, 0x45, 0x26, 0x20, 0xbe, 0x0d, 0x06, 0xbb, 0x65, 0x59, 0xe1, 0x36,
/* (2^442)P */ 0xb7, 0x98, 0xce, 0xa3, 0xe3, 0xee, 0x11, 0x1b, 0x9e, 0x24, 0x59, 0x75, 0x31, 0x37, 0x44, 0x6f, 0x6b, 0x9e, 0xec, 0xb7, 0x44, 0x01, 0x7e, 0xab, 0xbb, 0x69, 0x5d, 0x11, 0xb0, 0x30, 0x64, 0xea, 0x91, 0xb4, 0x7a, 0x8c, 0x02, 0x4c, 0xb9, 0x10, 0xa7, 0xc7, 0x79, 0xe6, 0xdc, 0x77, 0xe3, 0xc8, 0xef, 0x3e, 0xf9, 0x38, 0x81, 0xce, 0x9a, 0xb2,
/* (2^443)P */ 0x91, 0x12, 0x76, 0xd0, 0x10, 0xb4, 0xaf, 0xe1, 0x89, 0x3a, 0x93, 0x6b, 0x5c, 0x19, 0x5f, 0x24, 0xed, 0x04, 0x92, 0xc7, 0xf0, 0x00, 0x08, 0xc1, 0x92, 0xff, 0x90, 0xdb, 0xb2, 0xbf, 0xdf, 0x49, 0xcd, 0xbd, 0x5c, 0x6e, 0xbf, 0x16, 0xbb, 0x61, 0xf9, 0x20, 0x33, 0x35, 0x93, 0x11, 0xbc, 0x59, 0x69, 0xce, 0x18, 0x9f, 0xf8, 0x7b, 0xa1, 0x6e,
/* (2^444)P */ 0xa1, 0xf4, 0xaf, 0xad, 0xf8, 0xe6, 0x99, 0xd2, 0xa1, 0x4d, 0xde, 0x56, 0xc9, 0x7b, 0x0b, 0x11, 0x3e, 0xbf, 0x89, 0x1a, 0x9a, 0x90, 0xe5, 0xe2, 0xa6, 0x37, 0x88, 0xa1, 0x68, 0x59, 0xae, 0x8c, 0xec, 0x02, 0x14, 0x8d, 0xb7, 0x2e, 0x25, 0x75, 0x7f, 0x76, 0x1a, 0xd3, 0x4d, 0xad, 0x8a, 0x00, 0x6c, 0x96, 0x49, 0xa4, 0xc3, 0x2e, 0x5c, 0x7b,
/* (2^445)P */ 0x26, 0x53, 0xf7, 0xda, 0xa8, 0x01, 0x14, 0xb1, 0x63, 0xe3, 0xc3, 0x89, 0x88, 0xb0, 0x85, 0x40, 0x2b, 0x26, 0x9a, 0x10, 0x1a, 0x70, 0x33, 0xf4, 0x50, 0x9d, 0x4d, 0xd8, 0x64, 0xc6, 0x0f, 0xe1, 0x17, 0xc8, 0x10, 0x4b, 0xfc, 0xa0, 0xc9, 0xba, 0x2c, 0x98, 0x09, 0xf5, 0x84, 0xb6, 0x7c, 0x4e, 0xa3, 0xe3, 0x81, 0x1b, 0x32, 0x60, 0x02, 0xdd,
/* (2^446)P */ 0xa3, 0xe5, 0x86, 0xd4, 0x43, 0xa8, 0xd1, 0x98, 0x9d, 0x9d, 0xdb, 0x04, 0xcf, 0x6e, 0x35, 0x05, 0x30, 0x53, 0x3b, 0xbc, 0x90, 0x00, 0x4a, 0xc5, 0x40, 0x2a, 0x0f, 0xde, 0x1a, 0xd7, 0x36, 0x27, 0x44, 0x62, 0xa6, 0xac, 0x9d, 0xd2, 0x70, 0x69, 0x14, 0x39, 0x9b, 0xd1, 0xc3, 0x0a, 0x3a, 0x82, 0x0e, 0xf1, 0x94, 0xd7, 0x42, 0x94, 0xd5, 0x7d,
/* (2^447)P */ 0x04, 0xc0, 0x6e, 0x12, 0x90, 0x70, 0xf9, 0xdf, 0xf7, 0xc9, 0x86, 0xc0, 0xe6, 0x92, 0x8b, 0x0a, 0xa1, 0xc1, 0x3b, 0xcc, 0x33, 0xb7, 0xf0, 0xeb, 0x51, 0x50, 0x80, 0x20, 0x69, 0x1c, 0x4f, 0x89, 0x05, 0x1e, 0xe4, 0x7a, 0x0a, 0xc2, 0xf0, 0xf5, 0x78, 0x91, 0x76, 0x34, 0x45, 0xdc, 0x24, 0x53, 0x24, 0x98, 0xe2, 0x73, 0x6f, 0xe6, 0x46, 0x67,
}

View File

@ -0,0 +1,140 @@
package conv
import (
"encoding/binary"
"fmt"
"math/big"
"strings"
)
// BytesLe2Hex returns an hexadecimal string of a number stored in a
// little-endian order slice x.
func BytesLe2Hex(x []byte) string {
b := &strings.Builder{}
b.Grow(2*len(x) + 2)
fmt.Fprint(b, "0x")
if len(x) == 0 {
fmt.Fprint(b, "00")
}
for i := len(x) - 1; i >= 0; i-- {
fmt.Fprintf(b, "%02x", x[i])
}
return b.String()
}
// BytesLe2BigInt converts a little-endian slice x into a big-endian
// math/big.Int.
func BytesLe2BigInt(x []byte) *big.Int {
n := len(x)
b := new(big.Int)
if len(x) > 0 {
y := make([]byte, n)
for i := 0; i < n; i++ {
y[n-1-i] = x[i]
}
b.SetBytes(y)
}
return b
}
// BytesBe2Uint64Le converts a big-endian slice x to a little-endian slice of uint64.
func BytesBe2Uint64Le(x []byte) []uint64 {
l := len(x)
z := make([]uint64, (l+7)/8)
blocks := l / 8
for i := 0; i < blocks; i++ {
z[i] = binary.BigEndian.Uint64(x[l-8*(i+1):])
}
remBytes := l % 8
for i := 0; i < remBytes; i++ {
z[blocks] |= uint64(x[l-1-8*blocks-i]) << uint(8*i)
}
return z
}
// BigInt2BytesLe stores a positive big.Int number x into a little-endian slice z.
// The slice is modified if the bitlength of x <= 8*len(z) (padding with zeros).
// If x does not fit in the slice or is negative, z is not modified.
func BigInt2BytesLe(z []byte, x *big.Int) {
xLen := (x.BitLen() + 7) >> 3
zLen := len(z)
if zLen >= xLen && x.Sign() >= 0 {
y := x.Bytes()
for i := 0; i < xLen; i++ {
z[i] = y[xLen-1-i]
}
for i := xLen; i < zLen; i++ {
z[i] = 0
}
}
}
// Uint64Le2BigInt converts a little-endian slice x into a big number.
func Uint64Le2BigInt(x []uint64) *big.Int {
n := len(x)
b := new(big.Int)
var bi big.Int
for i := n - 1; i >= 0; i-- {
bi.SetUint64(x[i])
b.Lsh(b, 64)
b.Add(b, &bi)
}
return b
}
// Uint64Le2BytesLe converts a little-endian slice x to a little-endian slice of bytes.
func Uint64Le2BytesLe(x []uint64) []byte {
b := make([]byte, 8*len(x))
n := len(x)
for i := 0; i < n; i++ {
binary.LittleEndian.PutUint64(b[i*8:], x[i])
}
return b
}
// Uint64Le2BytesBe converts a little-endian slice x to a big-endian slice of bytes.
func Uint64Le2BytesBe(x []uint64) []byte {
b := make([]byte, 8*len(x))
n := len(x)
for i := 0; i < n; i++ {
binary.BigEndian.PutUint64(b[i*8:], x[n-1-i])
}
return b
}
// Uint64Le2Hex returns an hexadecimal string of a number stored in a
// little-endian order slice x.
func Uint64Le2Hex(x []uint64) string {
b := new(strings.Builder)
b.Grow(16*len(x) + 2)
fmt.Fprint(b, "0x")
if len(x) == 0 {
fmt.Fprint(b, "00")
}
for i := len(x) - 1; i >= 0; i-- {
fmt.Fprintf(b, "%016x", x[i])
}
return b.String()
}
// BigInt2Uint64Le stores a positive big.Int number x into a little-endian slice z.
// The slice is modified if the bitlength of x <= 8*len(z) (padding with zeros).
// If x does not fit in the slice or is negative, z is not modified.
func BigInt2Uint64Le(z []uint64, x *big.Int) {
xLen := (x.BitLen() + 63) >> 6 // number of 64-bit words
zLen := len(z)
if zLen >= xLen && x.Sign() > 0 {
var y, yi big.Int
y.Set(x)
two64 := big.NewInt(1)
two64.Lsh(two64, 64).Sub(two64, big.NewInt(1))
for i := 0; i < xLen; i++ {
yi.And(&y, two64)
z[i] = yi.Uint64()
y.Rsh(&y, 64)
}
}
for i := xLen; i < zLen; i++ {
z[i] = 0
}
}

View File

@ -0,0 +1,62 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package sha3 implements the SHA-3 fixed-output-length hash functions and
// the SHAKE variable-output-length hash functions defined by FIPS-202.
//
// Both types of hash function use the "sponge" construction and the Keccak
// permutation. For a detailed specification see http://keccak.noekeon.org/
//
// # Guidance
//
// If you aren't sure what function you need, use SHAKE256 with at least 64
// bytes of output. The SHAKE instances are faster than the SHA3 instances;
// the latter have to allocate memory to conform to the hash.Hash interface.
//
// If you need a secret-key MAC (message authentication code), prepend the
// secret key to the input, hash with SHAKE256 and read at least 32 bytes of
// output.
//
// # Security strengths
//
// The SHA3-x (x equals 224, 256, 384, or 512) functions have a security
// strength against preimage attacks of x bits. Since they only produce "x"
// bits of output, their collision-resistance is only "x/2" bits.
//
// The SHAKE-256 and -128 functions have a generic security strength of 256 and
// 128 bits against all attacks, provided that at least 2x bits of their output
// is used. Requesting more than 64 or 32 bytes of output, respectively, does
// not increase the collision-resistance of the SHAKE functions.
//
// # The sponge construction
//
// A sponge builds a pseudo-random function from a public pseudo-random
// permutation, by applying the permutation to a state of "rate + capacity"
// bytes, but hiding "capacity" of the bytes.
//
// A sponge starts out with a zero state. To hash an input using a sponge, up
// to "rate" bytes of the input are XORed into the sponge's state. The sponge
// is then "full" and the permutation is applied to "empty" it. This process is
// repeated until all the input has been "absorbed". The input is then padded.
// The digest is "squeezed" from the sponge in the same way, except that output
// is copied out instead of input being XORed in.
//
// A sponge is parameterized by its generic security strength, which is equal
// to half its capacity; capacity + rate is equal to the permutation's width.
// Since the KeccakF-1600 permutation is 1600 bits (200 bytes) wide, this means
// that the security strength of a sponge instance is equal to (1600 - bitrate) / 2.
//
// # Recommendations
//
// The SHAKE functions are recommended for most new uses. They can produce
// output of arbitrary length. SHAKE256, with an output length of at least
// 64 bytes, provides 256-bit security against all attacks. The Keccak team
// recommends it for most applications upgrading from SHA2-512. (NIST chose a
// much stronger, but much slower, sponge instance for SHA3-512.)
//
// The SHA-3 functions are "drop-in" replacements for the SHA-2 functions.
// They produce output of the same length, with the same security strengths
// against all attacks. This means, in particular, that SHA3-256 only has
// 128-bit collision resistance, because its output length is 32 bytes.
package sha3

View File

@ -0,0 +1,69 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sha3
// This file provides functions for creating instances of the SHA-3
// and SHAKE hash functions, as well as utility functions for hashing
// bytes.
// New224 creates a new SHA3-224 hash.
// Its generic security strength is 224 bits against preimage attacks,
// and 112 bits against collision attacks.
func New224() State {
return State{rate: 144, outputLen: 28, dsbyte: 0x06}
}
// New256 creates a new SHA3-256 hash.
// Its generic security strength is 256 bits against preimage attacks,
// and 128 bits against collision attacks.
func New256() State {
return State{rate: 136, outputLen: 32, dsbyte: 0x06}
}
// New384 creates a new SHA3-384 hash.
// Its generic security strength is 384 bits against preimage attacks,
// and 192 bits against collision attacks.
func New384() State {
return State{rate: 104, outputLen: 48, dsbyte: 0x06}
}
// New512 creates a new SHA3-512 hash.
// Its generic security strength is 512 bits against preimage attacks,
// and 256 bits against collision attacks.
func New512() State {
return State{rate: 72, outputLen: 64, dsbyte: 0x06}
}
// Sum224 returns the SHA3-224 digest of the data.
func Sum224(data []byte) (digest [28]byte) {
h := New224()
_, _ = h.Write(data)
h.Sum(digest[:0])
return
}
// Sum256 returns the SHA3-256 digest of the data.
func Sum256(data []byte) (digest [32]byte) {
h := New256()
_, _ = h.Write(data)
h.Sum(digest[:0])
return
}
// Sum384 returns the SHA3-384 digest of the data.
func Sum384(data []byte) (digest [48]byte) {
h := New384()
_, _ = h.Write(data)
h.Sum(digest[:0])
return
}
// Sum512 returns the SHA3-512 digest of the data.
func Sum512(data []byte) (digest [64]byte) {
h := New512()
_, _ = h.Write(data)
h.Sum(digest[:0])
return
}

View File

@ -0,0 +1,385 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !amd64 || appengine || gccgo
// +build !amd64 appengine gccgo
package sha3
// KeccakF1600 applies the Keccak permutation to a 1600b-wide
// state represented as a slice of 25 uint64s.
func KeccakF1600(a *[25]uint64) {
// Implementation translated from Keccak-inplace.c
// in the keccak reference code.
var t, bc0, bc1, bc2, bc3, bc4, d0, d1, d2, d3, d4 uint64
for i := 0; i < 24; i += 4 {
// Combines the 5 steps in each round into 2 steps.
// Unrolls 4 rounds per loop and spreads some steps across rounds.
// Round 1
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
d0 = bc4 ^ (bc1<<1 | bc1>>63)
d1 = bc0 ^ (bc2<<1 | bc2>>63)
d2 = bc1 ^ (bc3<<1 | bc3>>63)
d3 = bc2 ^ (bc4<<1 | bc4>>63)
d4 = bc3 ^ (bc0<<1 | bc0>>63)
bc0 = a[0] ^ d0
t = a[6] ^ d1
bc1 = t<<44 | t>>(64-44)
t = a[12] ^ d2
bc2 = t<<43 | t>>(64-43)
t = a[18] ^ d3
bc3 = t<<21 | t>>(64-21)
t = a[24] ^ d4
bc4 = t<<14 | t>>(64-14)
a[0] = bc0 ^ (bc2 &^ bc1) ^ RC[i]
a[6] = bc1 ^ (bc3 &^ bc2)
a[12] = bc2 ^ (bc4 &^ bc3)
a[18] = bc3 ^ (bc0 &^ bc4)
a[24] = bc4 ^ (bc1 &^ bc0)
t = a[10] ^ d0
bc2 = t<<3 | t>>(64-3)
t = a[16] ^ d1
bc3 = t<<45 | t>>(64-45)
t = a[22] ^ d2
bc4 = t<<61 | t>>(64-61)
t = a[3] ^ d3
bc0 = t<<28 | t>>(64-28)
t = a[9] ^ d4
bc1 = t<<20 | t>>(64-20)
a[10] = bc0 ^ (bc2 &^ bc1)
a[16] = bc1 ^ (bc3 &^ bc2)
a[22] = bc2 ^ (bc4 &^ bc3)
a[3] = bc3 ^ (bc0 &^ bc4)
a[9] = bc4 ^ (bc1 &^ bc0)
t = a[20] ^ d0
bc4 = t<<18 | t>>(64-18)
t = a[1] ^ d1
bc0 = t<<1 | t>>(64-1)
t = a[7] ^ d2
bc1 = t<<6 | t>>(64-6)
t = a[13] ^ d3
bc2 = t<<25 | t>>(64-25)
t = a[19] ^ d4
bc3 = t<<8 | t>>(64-8)
a[20] = bc0 ^ (bc2 &^ bc1)
a[1] = bc1 ^ (bc3 &^ bc2)
a[7] = bc2 ^ (bc4 &^ bc3)
a[13] = bc3 ^ (bc0 &^ bc4)
a[19] = bc4 ^ (bc1 &^ bc0)
t = a[5] ^ d0
bc1 = t<<36 | t>>(64-36)
t = a[11] ^ d1
bc2 = t<<10 | t>>(64-10)
t = a[17] ^ d2
bc3 = t<<15 | t>>(64-15)
t = a[23] ^ d3
bc4 = t<<56 | t>>(64-56)
t = a[4] ^ d4
bc0 = t<<27 | t>>(64-27)
a[5] = bc0 ^ (bc2 &^ bc1)
a[11] = bc1 ^ (bc3 &^ bc2)
a[17] = bc2 ^ (bc4 &^ bc3)
a[23] = bc3 ^ (bc0 &^ bc4)
a[4] = bc4 ^ (bc1 &^ bc0)
t = a[15] ^ d0
bc3 = t<<41 | t>>(64-41)
t = a[21] ^ d1
bc4 = t<<2 | t>>(64-2)
t = a[2] ^ d2
bc0 = t<<62 | t>>(64-62)
t = a[8] ^ d3
bc1 = t<<55 | t>>(64-55)
t = a[14] ^ d4
bc2 = t<<39 | t>>(64-39)
a[15] = bc0 ^ (bc2 &^ bc1)
a[21] = bc1 ^ (bc3 &^ bc2)
a[2] = bc2 ^ (bc4 &^ bc3)
a[8] = bc3 ^ (bc0 &^ bc4)
a[14] = bc4 ^ (bc1 &^ bc0)
// Round 2
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
d0 = bc4 ^ (bc1<<1 | bc1>>63)
d1 = bc0 ^ (bc2<<1 | bc2>>63)
d2 = bc1 ^ (bc3<<1 | bc3>>63)
d3 = bc2 ^ (bc4<<1 | bc4>>63)
d4 = bc3 ^ (bc0<<1 | bc0>>63)
bc0 = a[0] ^ d0
t = a[16] ^ d1
bc1 = t<<44 | t>>(64-44)
t = a[7] ^ d2
bc2 = t<<43 | t>>(64-43)
t = a[23] ^ d3
bc3 = t<<21 | t>>(64-21)
t = a[14] ^ d4
bc4 = t<<14 | t>>(64-14)
a[0] = bc0 ^ (bc2 &^ bc1) ^ RC[i+1]
a[16] = bc1 ^ (bc3 &^ bc2)
a[7] = bc2 ^ (bc4 &^ bc3)
a[23] = bc3 ^ (bc0 &^ bc4)
a[14] = bc4 ^ (bc1 &^ bc0)
t = a[20] ^ d0
bc2 = t<<3 | t>>(64-3)
t = a[11] ^ d1
bc3 = t<<45 | t>>(64-45)
t = a[2] ^ d2
bc4 = t<<61 | t>>(64-61)
t = a[18] ^ d3
bc0 = t<<28 | t>>(64-28)
t = a[9] ^ d4
bc1 = t<<20 | t>>(64-20)
a[20] = bc0 ^ (bc2 &^ bc1)
a[11] = bc1 ^ (bc3 &^ bc2)
a[2] = bc2 ^ (bc4 &^ bc3)
a[18] = bc3 ^ (bc0 &^ bc4)
a[9] = bc4 ^ (bc1 &^ bc0)
t = a[15] ^ d0
bc4 = t<<18 | t>>(64-18)
t = a[6] ^ d1
bc0 = t<<1 | t>>(64-1)
t = a[22] ^ d2
bc1 = t<<6 | t>>(64-6)
t = a[13] ^ d3
bc2 = t<<25 | t>>(64-25)
t = a[4] ^ d4
bc3 = t<<8 | t>>(64-8)
a[15] = bc0 ^ (bc2 &^ bc1)
a[6] = bc1 ^ (bc3 &^ bc2)
a[22] = bc2 ^ (bc4 &^ bc3)
a[13] = bc3 ^ (bc0 &^ bc4)
a[4] = bc4 ^ (bc1 &^ bc0)
t = a[10] ^ d0
bc1 = t<<36 | t>>(64-36)
t = a[1] ^ d1
bc2 = t<<10 | t>>(64-10)
t = a[17] ^ d2
bc3 = t<<15 | t>>(64-15)
t = a[8] ^ d3
bc4 = t<<56 | t>>(64-56)
t = a[24] ^ d4
bc0 = t<<27 | t>>(64-27)
a[10] = bc0 ^ (bc2 &^ bc1)
a[1] = bc1 ^ (bc3 &^ bc2)
a[17] = bc2 ^ (bc4 &^ bc3)
a[8] = bc3 ^ (bc0 &^ bc4)
a[24] = bc4 ^ (bc1 &^ bc0)
t = a[5] ^ d0
bc3 = t<<41 | t>>(64-41)
t = a[21] ^ d1
bc4 = t<<2 | t>>(64-2)
t = a[12] ^ d2
bc0 = t<<62 | t>>(64-62)
t = a[3] ^ d3
bc1 = t<<55 | t>>(64-55)
t = a[19] ^ d4
bc2 = t<<39 | t>>(64-39)
a[5] = bc0 ^ (bc2 &^ bc1)
a[21] = bc1 ^ (bc3 &^ bc2)
a[12] = bc2 ^ (bc4 &^ bc3)
a[3] = bc3 ^ (bc0 &^ bc4)
a[19] = bc4 ^ (bc1 &^ bc0)
// Round 3
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
d0 = bc4 ^ (bc1<<1 | bc1>>63)
d1 = bc0 ^ (bc2<<1 | bc2>>63)
d2 = bc1 ^ (bc3<<1 | bc3>>63)
d3 = bc2 ^ (bc4<<1 | bc4>>63)
d4 = bc3 ^ (bc0<<1 | bc0>>63)
bc0 = a[0] ^ d0
t = a[11] ^ d1
bc1 = t<<44 | t>>(64-44)
t = a[22] ^ d2
bc2 = t<<43 | t>>(64-43)
t = a[8] ^ d3
bc3 = t<<21 | t>>(64-21)
t = a[19] ^ d4
bc4 = t<<14 | t>>(64-14)
a[0] = bc0 ^ (bc2 &^ bc1) ^ RC[i+2]
a[11] = bc1 ^ (bc3 &^ bc2)
a[22] = bc2 ^ (bc4 &^ bc3)
a[8] = bc3 ^ (bc0 &^ bc4)
a[19] = bc4 ^ (bc1 &^ bc0)
t = a[15] ^ d0
bc2 = t<<3 | t>>(64-3)
t = a[1] ^ d1
bc3 = t<<45 | t>>(64-45)
t = a[12] ^ d2
bc4 = t<<61 | t>>(64-61)
t = a[23] ^ d3
bc0 = t<<28 | t>>(64-28)
t = a[9] ^ d4
bc1 = t<<20 | t>>(64-20)
a[15] = bc0 ^ (bc2 &^ bc1)
a[1] = bc1 ^ (bc3 &^ bc2)
a[12] = bc2 ^ (bc4 &^ bc3)
a[23] = bc3 ^ (bc0 &^ bc4)
a[9] = bc4 ^ (bc1 &^ bc0)
t = a[5] ^ d0
bc4 = t<<18 | t>>(64-18)
t = a[16] ^ d1
bc0 = t<<1 | t>>(64-1)
t = a[2] ^ d2
bc1 = t<<6 | t>>(64-6)
t = a[13] ^ d3
bc2 = t<<25 | t>>(64-25)
t = a[24] ^ d4
bc3 = t<<8 | t>>(64-8)
a[5] = bc0 ^ (bc2 &^ bc1)
a[16] = bc1 ^ (bc3 &^ bc2)
a[2] = bc2 ^ (bc4 &^ bc3)
a[13] = bc3 ^ (bc0 &^ bc4)
a[24] = bc4 ^ (bc1 &^ bc0)
t = a[20] ^ d0
bc1 = t<<36 | t>>(64-36)
t = a[6] ^ d1
bc2 = t<<10 | t>>(64-10)
t = a[17] ^ d2
bc3 = t<<15 | t>>(64-15)
t = a[3] ^ d3
bc4 = t<<56 | t>>(64-56)
t = a[14] ^ d4
bc0 = t<<27 | t>>(64-27)
a[20] = bc0 ^ (bc2 &^ bc1)
a[6] = bc1 ^ (bc3 &^ bc2)
a[17] = bc2 ^ (bc4 &^ bc3)
a[3] = bc3 ^ (bc0 &^ bc4)
a[14] = bc4 ^ (bc1 &^ bc0)
t = a[10] ^ d0
bc3 = t<<41 | t>>(64-41)
t = a[21] ^ d1
bc4 = t<<2 | t>>(64-2)
t = a[7] ^ d2
bc0 = t<<62 | t>>(64-62)
t = a[18] ^ d3
bc1 = t<<55 | t>>(64-55)
t = a[4] ^ d4
bc2 = t<<39 | t>>(64-39)
a[10] = bc0 ^ (bc2 &^ bc1)
a[21] = bc1 ^ (bc3 &^ bc2)
a[7] = bc2 ^ (bc4 &^ bc3)
a[18] = bc3 ^ (bc0 &^ bc4)
a[4] = bc4 ^ (bc1 &^ bc0)
// Round 4
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
d0 = bc4 ^ (bc1<<1 | bc1>>63)
d1 = bc0 ^ (bc2<<1 | bc2>>63)
d2 = bc1 ^ (bc3<<1 | bc3>>63)
d3 = bc2 ^ (bc4<<1 | bc4>>63)
d4 = bc3 ^ (bc0<<1 | bc0>>63)
bc0 = a[0] ^ d0
t = a[1] ^ d1
bc1 = t<<44 | t>>(64-44)
t = a[2] ^ d2
bc2 = t<<43 | t>>(64-43)
t = a[3] ^ d3
bc3 = t<<21 | t>>(64-21)
t = a[4] ^ d4
bc4 = t<<14 | t>>(64-14)
a[0] = bc0 ^ (bc2 &^ bc1) ^ RC[i+3]
a[1] = bc1 ^ (bc3 &^ bc2)
a[2] = bc2 ^ (bc4 &^ bc3)
a[3] = bc3 ^ (bc0 &^ bc4)
a[4] = bc4 ^ (bc1 &^ bc0)
t = a[5] ^ d0
bc2 = t<<3 | t>>(64-3)
t = a[6] ^ d1
bc3 = t<<45 | t>>(64-45)
t = a[7] ^ d2
bc4 = t<<61 | t>>(64-61)
t = a[8] ^ d3
bc0 = t<<28 | t>>(64-28)
t = a[9] ^ d4
bc1 = t<<20 | t>>(64-20)
a[5] = bc0 ^ (bc2 &^ bc1)
a[6] = bc1 ^ (bc3 &^ bc2)
a[7] = bc2 ^ (bc4 &^ bc3)
a[8] = bc3 ^ (bc0 &^ bc4)
a[9] = bc4 ^ (bc1 &^ bc0)
t = a[10] ^ d0
bc4 = t<<18 | t>>(64-18)
t = a[11] ^ d1
bc0 = t<<1 | t>>(64-1)
t = a[12] ^ d2
bc1 = t<<6 | t>>(64-6)
t = a[13] ^ d3
bc2 = t<<25 | t>>(64-25)
t = a[14] ^ d4
bc3 = t<<8 | t>>(64-8)
a[10] = bc0 ^ (bc2 &^ bc1)
a[11] = bc1 ^ (bc3 &^ bc2)
a[12] = bc2 ^ (bc4 &^ bc3)
a[13] = bc3 ^ (bc0 &^ bc4)
a[14] = bc4 ^ (bc1 &^ bc0)
t = a[15] ^ d0
bc1 = t<<36 | t>>(64-36)
t = a[16] ^ d1
bc2 = t<<10 | t>>(64-10)
t = a[17] ^ d2
bc3 = t<<15 | t>>(64-15)
t = a[18] ^ d3
bc4 = t<<56 | t>>(64-56)
t = a[19] ^ d4
bc0 = t<<27 | t>>(64-27)
a[15] = bc0 ^ (bc2 &^ bc1)
a[16] = bc1 ^ (bc3 &^ bc2)
a[17] = bc2 ^ (bc4 &^ bc3)
a[18] = bc3 ^ (bc0 &^ bc4)
a[19] = bc4 ^ (bc1 &^ bc0)
t = a[20] ^ d0
bc3 = t<<41 | t>>(64-41)
t = a[21] ^ d1
bc4 = t<<2 | t>>(64-2)
t = a[22] ^ d2
bc0 = t<<62 | t>>(64-62)
t = a[23] ^ d3
bc1 = t<<55 | t>>(64-55)
t = a[24] ^ d4
bc2 = t<<39 | t>>(64-39)
a[20] = bc0 ^ (bc2 &^ bc1)
a[21] = bc1 ^ (bc3 &^ bc2)
a[22] = bc2 ^ (bc4 &^ bc3)
a[23] = bc3 ^ (bc0 &^ bc4)
a[24] = bc4 ^ (bc1 &^ bc0)
}
}

View File

@ -0,0 +1,14 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build amd64 && !appengine && !gccgo
// +build amd64,!appengine,!gccgo
package sha3
// This function is implemented in keccakf_amd64.s.
//go:noescape
func KeccakF1600(state *[25]uint64)

View File

@ -0,0 +1,390 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build amd64,!appengine,!gccgo
// This code was translated into a form compatible with 6a from the public
// domain sources at https://github.com/gvanas/KeccakCodePackage
// Offsets in state
#define _ba (0*8)
#define _be (1*8)
#define _bi (2*8)
#define _bo (3*8)
#define _bu (4*8)
#define _ga (5*8)
#define _ge (6*8)
#define _gi (7*8)
#define _go (8*8)
#define _gu (9*8)
#define _ka (10*8)
#define _ke (11*8)
#define _ki (12*8)
#define _ko (13*8)
#define _ku (14*8)
#define _ma (15*8)
#define _me (16*8)
#define _mi (17*8)
#define _mo (18*8)
#define _mu (19*8)
#define _sa (20*8)
#define _se (21*8)
#define _si (22*8)
#define _so (23*8)
#define _su (24*8)
// Temporary registers
#define rT1 AX
// Round vars
#define rpState DI
#define rpStack SP
#define rDa BX
#define rDe CX
#define rDi DX
#define rDo R8
#define rDu R9
#define rBa R10
#define rBe R11
#define rBi R12
#define rBo R13
#define rBu R14
#define rCa SI
#define rCe BP
#define rCi rBi
#define rCo rBo
#define rCu R15
#define MOVQ_RBI_RCE MOVQ rBi, rCe
#define XORQ_RT1_RCA XORQ rT1, rCa
#define XORQ_RT1_RCE XORQ rT1, rCe
#define XORQ_RBA_RCU XORQ rBa, rCu
#define XORQ_RBE_RCU XORQ rBe, rCu
#define XORQ_RDU_RCU XORQ rDu, rCu
#define XORQ_RDA_RCA XORQ rDa, rCa
#define XORQ_RDE_RCE XORQ rDe, rCe
#define mKeccakRound(iState, oState, rc, B_RBI_RCE, G_RT1_RCA, G_RT1_RCE, G_RBA_RCU, K_RT1_RCA, K_RT1_RCE, K_RBA_RCU, M_RT1_RCA, M_RT1_RCE, M_RBE_RCU, S_RDU_RCU, S_RDA_RCA, S_RDE_RCE) \
/* Prepare round */ \
MOVQ rCe, rDa; \
ROLQ $1, rDa; \
\
MOVQ _bi(iState), rCi; \
XORQ _gi(iState), rDi; \
XORQ rCu, rDa; \
XORQ _ki(iState), rCi; \
XORQ _mi(iState), rDi; \
XORQ rDi, rCi; \
\
MOVQ rCi, rDe; \
ROLQ $1, rDe; \
\
MOVQ _bo(iState), rCo; \
XORQ _go(iState), rDo; \
XORQ rCa, rDe; \
XORQ _ko(iState), rCo; \
XORQ _mo(iState), rDo; \
XORQ rDo, rCo; \
\
MOVQ rCo, rDi; \
ROLQ $1, rDi; \
\
MOVQ rCu, rDo; \
XORQ rCe, rDi; \
ROLQ $1, rDo; \
\
MOVQ rCa, rDu; \
XORQ rCi, rDo; \
ROLQ $1, rDu; \
\
/* Result b */ \
MOVQ _ba(iState), rBa; \
MOVQ _ge(iState), rBe; \
XORQ rCo, rDu; \
MOVQ _ki(iState), rBi; \
MOVQ _mo(iState), rBo; \
MOVQ _su(iState), rBu; \
XORQ rDe, rBe; \
ROLQ $44, rBe; \
XORQ rDi, rBi; \
XORQ rDa, rBa; \
ROLQ $43, rBi; \
\
MOVQ rBe, rCa; \
MOVQ rc, rT1; \
ORQ rBi, rCa; \
XORQ rBa, rT1; \
XORQ rT1, rCa; \
MOVQ rCa, _ba(oState); \
\
XORQ rDu, rBu; \
ROLQ $14, rBu; \
MOVQ rBa, rCu; \
ANDQ rBe, rCu; \
XORQ rBu, rCu; \
MOVQ rCu, _bu(oState); \
\
XORQ rDo, rBo; \
ROLQ $21, rBo; \
MOVQ rBo, rT1; \
ANDQ rBu, rT1; \
XORQ rBi, rT1; \
MOVQ rT1, _bi(oState); \
\
NOTQ rBi; \
ORQ rBa, rBu; \
ORQ rBo, rBi; \
XORQ rBo, rBu; \
XORQ rBe, rBi; \
MOVQ rBu, _bo(oState); \
MOVQ rBi, _be(oState); \
B_RBI_RCE; \
\
/* Result g */ \
MOVQ _gu(iState), rBe; \
XORQ rDu, rBe; \
MOVQ _ka(iState), rBi; \
ROLQ $20, rBe; \
XORQ rDa, rBi; \
ROLQ $3, rBi; \
MOVQ _bo(iState), rBa; \
MOVQ rBe, rT1; \
ORQ rBi, rT1; \
XORQ rDo, rBa; \
MOVQ _me(iState), rBo; \
MOVQ _si(iState), rBu; \
ROLQ $28, rBa; \
XORQ rBa, rT1; \
MOVQ rT1, _ga(oState); \
G_RT1_RCA; \
\
XORQ rDe, rBo; \
ROLQ $45, rBo; \
MOVQ rBi, rT1; \
ANDQ rBo, rT1; \
XORQ rBe, rT1; \
MOVQ rT1, _ge(oState); \
G_RT1_RCE; \
\
XORQ rDi, rBu; \
ROLQ $61, rBu; \
MOVQ rBu, rT1; \
ORQ rBa, rT1; \
XORQ rBo, rT1; \
MOVQ rT1, _go(oState); \
\
ANDQ rBe, rBa; \
XORQ rBu, rBa; \
MOVQ rBa, _gu(oState); \
NOTQ rBu; \
G_RBA_RCU; \
\
ORQ rBu, rBo; \
XORQ rBi, rBo; \
MOVQ rBo, _gi(oState); \
\
/* Result k */ \
MOVQ _be(iState), rBa; \
MOVQ _gi(iState), rBe; \
MOVQ _ko(iState), rBi; \
MOVQ _mu(iState), rBo; \
MOVQ _sa(iState), rBu; \
XORQ rDi, rBe; \
ROLQ $6, rBe; \
XORQ rDo, rBi; \
ROLQ $25, rBi; \
MOVQ rBe, rT1; \
ORQ rBi, rT1; \
XORQ rDe, rBa; \
ROLQ $1, rBa; \
XORQ rBa, rT1; \
MOVQ rT1, _ka(oState); \
K_RT1_RCA; \
\
XORQ rDu, rBo; \
ROLQ $8, rBo; \
MOVQ rBi, rT1; \
ANDQ rBo, rT1; \
XORQ rBe, rT1; \
MOVQ rT1, _ke(oState); \
K_RT1_RCE; \
\
XORQ rDa, rBu; \
ROLQ $18, rBu; \
NOTQ rBo; \
MOVQ rBo, rT1; \
ANDQ rBu, rT1; \
XORQ rBi, rT1; \
MOVQ rT1, _ki(oState); \
\
MOVQ rBu, rT1; \
ORQ rBa, rT1; \
XORQ rBo, rT1; \
MOVQ rT1, _ko(oState); \
\
ANDQ rBe, rBa; \
XORQ rBu, rBa; \
MOVQ rBa, _ku(oState); \
K_RBA_RCU; \
\
/* Result m */ \
MOVQ _ga(iState), rBe; \
XORQ rDa, rBe; \
MOVQ _ke(iState), rBi; \
ROLQ $36, rBe; \
XORQ rDe, rBi; \
MOVQ _bu(iState), rBa; \
ROLQ $10, rBi; \
MOVQ rBe, rT1; \
MOVQ _mi(iState), rBo; \
ANDQ rBi, rT1; \
XORQ rDu, rBa; \
MOVQ _so(iState), rBu; \
ROLQ $27, rBa; \
XORQ rBa, rT1; \
MOVQ rT1, _ma(oState); \
M_RT1_RCA; \
\
XORQ rDi, rBo; \
ROLQ $15, rBo; \
MOVQ rBi, rT1; \
ORQ rBo, rT1; \
XORQ rBe, rT1; \
MOVQ rT1, _me(oState); \
M_RT1_RCE; \
\
XORQ rDo, rBu; \
ROLQ $56, rBu; \
NOTQ rBo; \
MOVQ rBo, rT1; \
ORQ rBu, rT1; \
XORQ rBi, rT1; \
MOVQ rT1, _mi(oState); \
\
ORQ rBa, rBe; \
XORQ rBu, rBe; \
MOVQ rBe, _mu(oState); \
\
ANDQ rBa, rBu; \
XORQ rBo, rBu; \
MOVQ rBu, _mo(oState); \
M_RBE_RCU; \
\
/* Result s */ \
MOVQ _bi(iState), rBa; \
MOVQ _go(iState), rBe; \
MOVQ _ku(iState), rBi; \
XORQ rDi, rBa; \
MOVQ _ma(iState), rBo; \
ROLQ $62, rBa; \
XORQ rDo, rBe; \
MOVQ _se(iState), rBu; \
ROLQ $55, rBe; \
\
XORQ rDu, rBi; \
MOVQ rBa, rDu; \
XORQ rDe, rBu; \
ROLQ $2, rBu; \
ANDQ rBe, rDu; \
XORQ rBu, rDu; \
MOVQ rDu, _su(oState); \
\
ROLQ $39, rBi; \
S_RDU_RCU; \
NOTQ rBe; \
XORQ rDa, rBo; \
MOVQ rBe, rDa; \
ANDQ rBi, rDa; \
XORQ rBa, rDa; \
MOVQ rDa, _sa(oState); \
S_RDA_RCA; \
\
ROLQ $41, rBo; \
MOVQ rBi, rDe; \
ORQ rBo, rDe; \
XORQ rBe, rDe; \
MOVQ rDe, _se(oState); \
S_RDE_RCE; \
\
MOVQ rBo, rDi; \
MOVQ rBu, rDo; \
ANDQ rBu, rDi; \
ORQ rBa, rDo; \
XORQ rBi, rDi; \
XORQ rBo, rDo; \
MOVQ rDi, _si(oState); \
MOVQ rDo, _so(oState) \
// func KeccakF1600(state *[25]uint64)
TEXT ·KeccakF1600(SB), 0, $200-8
MOVQ state+0(FP), rpState
// Convert the user state into an internal state
NOTQ _be(rpState)
NOTQ _bi(rpState)
NOTQ _go(rpState)
NOTQ _ki(rpState)
NOTQ _mi(rpState)
NOTQ _sa(rpState)
// Execute the KeccakF permutation
MOVQ _ba(rpState), rCa
MOVQ _be(rpState), rCe
MOVQ _bu(rpState), rCu
XORQ _ga(rpState), rCa
XORQ _ge(rpState), rCe
XORQ _gu(rpState), rCu
XORQ _ka(rpState), rCa
XORQ _ke(rpState), rCe
XORQ _ku(rpState), rCu
XORQ _ma(rpState), rCa
XORQ _me(rpState), rCe
XORQ _mu(rpState), rCu
XORQ _sa(rpState), rCa
XORQ _se(rpState), rCe
MOVQ _si(rpState), rDi
MOVQ _so(rpState), rDo
XORQ _su(rpState), rCu
mKeccakRound(rpState, rpStack, $0x0000000000000001, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpStack, rpState, $0x0000000000008082, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpState, rpStack, $0x800000000000808a, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpStack, rpState, $0x8000000080008000, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpState, rpStack, $0x000000000000808b, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpStack, rpState, $0x0000000080000001, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpState, rpStack, $0x8000000080008081, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpStack, rpState, $0x8000000000008009, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpState, rpStack, $0x000000000000008a, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpStack, rpState, $0x0000000000000088, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpState, rpStack, $0x0000000080008009, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpStack, rpState, $0x000000008000000a, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpState, rpStack, $0x000000008000808b, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpStack, rpState, $0x800000000000008b, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpState, rpStack, $0x8000000000008089, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpStack, rpState, $0x8000000000008003, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpState, rpStack, $0x8000000000008002, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpStack, rpState, $0x8000000000000080, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpState, rpStack, $0x000000000000800a, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpStack, rpState, $0x800000008000000a, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpState, rpStack, $0x8000000080008081, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpStack, rpState, $0x8000000000008080, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpState, rpStack, $0x0000000080000001, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpStack, rpState, $0x8000000080008008, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP)
// Revert the internal state to the user state
NOTQ _be(rpState)
NOTQ _bi(rpState)
NOTQ _go(rpState)
NOTQ _ki(rpState)
NOTQ _mi(rpState)
NOTQ _sa(rpState)
RET

29
vendor/github.com/cloudflare/circl/internal/sha3/rc.go generated vendored Normal file
View File

@ -0,0 +1,29 @@
package sha3
// RC stores the round constants for use in the ι step.
var RC = [24]uint64{
0x0000000000000001,
0x0000000000008082,
0x800000000000808A,
0x8000000080008000,
0x000000000000808B,
0x0000000080000001,
0x8000000080008081,
0x8000000000008009,
0x000000000000008A,
0x0000000000000088,
0x0000000080008009,
0x000000008000000A,
0x000000008000808B,
0x800000000000008B,
0x8000000000008089,
0x8000000000008003,
0x8000000000008002,
0x8000000000000080,
0x000000000000800A,
0x800000008000000A,
0x8000000080008081,
0x8000000000008080,
0x0000000080000001,
0x8000000080008008,
}

View File

@ -0,0 +1,195 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sha3
// spongeDirection indicates the direction bytes are flowing through the sponge.
type spongeDirection int
const (
// spongeAbsorbing indicates that the sponge is absorbing input.
spongeAbsorbing spongeDirection = iota
// spongeSqueezing indicates that the sponge is being squeezed.
spongeSqueezing
)
const (
// maxRate is the maximum size of the internal buffer. SHAKE-256
// currently needs the largest buffer.
maxRate = 168
)
func (d *State) buf() []byte {
return d.storage.asBytes()[d.bufo:d.bufe]
}
type State struct {
// Generic sponge components.
a [25]uint64 // main state of the hash
rate int // the number of bytes of state to use
bufo int // offset of buffer in storage
bufe int // end of buffer in storage
// dsbyte contains the "domain separation" bits and the first bit of
// the padding. Sections 6.1 and 6.2 of [1] separate the outputs of the
// SHA-3 and SHAKE functions by appending bitstrings to the message.
// Using a little-endian bit-ordering convention, these are "01" for SHA-3
// and "1111" for SHAKE, or 00000010b and 00001111b, respectively. Then the
// padding rule from section 5.1 is applied to pad the message to a multiple
// of the rate, which involves adding a "1" bit, zero or more "0" bits, and
// a final "1" bit. We merge the first "1" bit from the padding into dsbyte,
// giving 00000110b (0x06) and 00011111b (0x1f).
// [1] http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf
// "Draft FIPS 202: SHA-3 Standard: Permutation-Based Hash and
// Extendable-Output Functions (May 2014)"
dsbyte byte
storage storageBuf
// Specific to SHA-3 and SHAKE.
outputLen int // the default output size in bytes
state spongeDirection // whether the sponge is absorbing or squeezing
}
// BlockSize returns the rate of sponge underlying this hash function.
func (d *State) BlockSize() int { return d.rate }
// Size returns the output size of the hash function in bytes.
func (d *State) Size() int { return d.outputLen }
// Reset clears the internal state by zeroing the sponge state and
// the byte buffer, and setting Sponge.state to absorbing.
func (d *State) Reset() {
// Zero the permutation's state.
for i := range d.a {
d.a[i] = 0
}
d.state = spongeAbsorbing
d.bufo = 0
d.bufe = 0
}
func (d *State) clone() *State {
ret := *d
return &ret
}
// permute applies the KeccakF-1600 permutation. It handles
// any input-output buffering.
func (d *State) permute() {
switch d.state {
case spongeAbsorbing:
// If we're absorbing, we need to xor the input into the state
// before applying the permutation.
xorIn(d, d.buf())
d.bufe = 0
d.bufo = 0
KeccakF1600(&d.a)
case spongeSqueezing:
// If we're squeezing, we need to apply the permutation before
// copying more output.
KeccakF1600(&d.a)
d.bufe = d.rate
d.bufo = 0
copyOut(d, d.buf())
}
}
// pads appends the domain separation bits in dsbyte, applies
// the multi-bitrate 10..1 padding rule, and permutes the state.
func (d *State) padAndPermute(dsbyte byte) {
// Pad with this instance's domain-separator bits. We know that there's
// at least one byte of space in d.buf() because, if it were full,
// permute would have been called to empty it. dsbyte also contains the
// first one bit for the padding. See the comment in the state struct.
zerosStart := d.bufe + 1
d.bufe = d.rate
buf := d.buf()
buf[zerosStart-1] = dsbyte
for i := zerosStart; i < d.rate; i++ {
buf[i] = 0
}
// This adds the final one bit for the padding. Because of the way that
// bits are numbered from the LSB upwards, the final bit is the MSB of
// the last byte.
buf[d.rate-1] ^= 0x80
// Apply the permutation
d.permute()
d.state = spongeSqueezing
d.bufe = d.rate
copyOut(d, buf)
}
// Write absorbs more data into the hash's state. It produces an error
// if more data is written to the ShakeHash after writing
func (d *State) Write(p []byte) (written int, err error) {
if d.state != spongeAbsorbing {
panic("sha3: write to sponge after read")
}
written = len(p)
for len(p) > 0 {
bufl := d.bufe - d.bufo
if bufl == 0 && len(p) >= d.rate {
// The fast path; absorb a full "rate" bytes of input and apply the permutation.
xorIn(d, p[:d.rate])
p = p[d.rate:]
KeccakF1600(&d.a)
} else {
// The slow path; buffer the input until we can fill the sponge, and then xor it in.
todo := d.rate - bufl
if todo > len(p) {
todo = len(p)
}
d.bufe += todo
buf := d.buf()
copy(buf[bufl:], p[:todo])
p = p[todo:]
// If the sponge is full, apply the permutation.
if d.bufe == d.rate {
d.permute()
}
}
}
return written, nil
}
// Read squeezes an arbitrary number of bytes from the sponge.
func (d *State) Read(out []byte) (n int, err error) {
// If we're still absorbing, pad and apply the permutation.
if d.state == spongeAbsorbing {
d.padAndPermute(d.dsbyte)
}
n = len(out)
// Now, do the squeezing.
for len(out) > 0 {
buf := d.buf()
n := copy(out, buf)
d.bufo += n
out = out[n:]
// Apply the permutation if we've squeezed the sponge dry.
if d.bufo == d.bufe {
d.permute()
}
}
return
}
// Sum applies padding to the hash state and then squeezes out the desired
// number of output bytes.
func (d *State) Sum(in []byte) []byte {
// Make a copy of the original hash so that caller can keep writing
// and summing.
dup := d.clone()
hash := make([]byte, dup.outputLen)
_, _ = dup.Read(hash)
return append(in, hash...)
}

View File

@ -0,0 +1,33 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !gccgo,!appengine
#include "textflag.h"
// func kimd(function code, chain *[200]byte, src []byte)
TEXT ·kimd(SB), NOFRAME|NOSPLIT, $0-40
MOVD function+0(FP), R0
MOVD chain+8(FP), R1
LMG src+16(FP), R2, R3 // R2=base, R3=len
continue:
WORD $0xB93E0002 // KIMD --, R2
BVS continue // continue if interrupted
MOVD $0, R0 // reset R0 for pre-go1.8 compilers
RET
// func klmd(function code, chain *[200]byte, dst, src []byte)
TEXT ·klmd(SB), NOFRAME|NOSPLIT, $0-64
// TODO: SHAKE support
MOVD function+0(FP), R0
MOVD chain+8(FP), R1
LMG dst+16(FP), R2, R3 // R2=base, R3=len
LMG src+40(FP), R4, R5 // R4=base, R5=len
continue:
WORD $0xB93F0024 // KLMD R2, R4
BVS continue // continue if interrupted
MOVD $0, R0 // reset R0 for pre-go1.8 compilers
RET

View File

@ -0,0 +1,79 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sha3
// This file defines the ShakeHash interface, and provides
// functions for creating SHAKE and cSHAKE instances, as well as utility
// functions for hashing bytes to arbitrary-length output.
//
//
// SHAKE implementation is based on FIPS PUB 202 [1]
// cSHAKE implementations is based on NIST SP 800-185 [2]
//
// [1] https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
// [2] https://doi.org/10.6028/NIST.SP.800-185
import (
"io"
)
// ShakeHash defines the interface to hash functions that
// support arbitrary-length output.
type ShakeHash interface {
// Write absorbs more data into the hash's state. It panics if input is
// written to it after output has been read from it.
io.Writer
// Read reads more output from the hash; reading affects the hash's
// state. (ShakeHash.Read is thus very different from Hash.Sum)
// It never returns an error.
io.Reader
// Clone returns a copy of the ShakeHash in its current state.
Clone() ShakeHash
// Reset resets the ShakeHash to its initial state.
Reset()
}
// Consts for configuring initial SHA-3 state
const (
dsbyteShake = 0x1f
rate128 = 168
rate256 = 136
)
// Clone returns copy of SHAKE context within its current state.
func (d *State) Clone() ShakeHash {
return d.clone()
}
// NewShake128 creates a new SHAKE128 variable-output-length ShakeHash.
// Its generic security strength is 128 bits against all attacks if at
// least 32 bytes of its output are used.
func NewShake128() State {
return State{rate: rate128, dsbyte: dsbyteShake}
}
// NewShake256 creates a new SHAKE256 variable-output-length ShakeHash.
// Its generic security strength is 256 bits against all attacks if
// at least 64 bytes of its output are used.
func NewShake256() State {
return State{rate: rate256, dsbyte: dsbyteShake}
}
// ShakeSum128 writes an arbitrary-length digest of data into hash.
func ShakeSum128(hash, data []byte) {
h := NewShake128()
_, _ = h.Write(data)
_, _ = h.Read(hash)
}
// ShakeSum256 writes an arbitrary-length digest of data into hash.
func ShakeSum256(hash, data []byte) {
h := NewShake256()
_, _ = h.Write(data)
_, _ = h.Read(hash)
}

View File

@ -0,0 +1,15 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build (!amd64 && !386 && !ppc64le) || appengine
// +build !amd64,!386,!ppc64le appengine
package sha3
// A storageBuf is an aligned array of maxRate bytes.
type storageBuf [maxRate]byte
func (b *storageBuf) asBytes() *[maxRate]byte {
return (*[maxRate]byte)(b)
}

View File

@ -0,0 +1,33 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build (!amd64 || appengine) && (!386 || appengine) && (!ppc64le || appengine)
// +build !amd64 appengine
// +build !386 appengine
// +build !ppc64le appengine
package sha3
import "encoding/binary"
// xorIn xors the bytes in buf into the state; it
// makes no non-portable assumptions about memory layout
// or alignment.
func xorIn(d *State, buf []byte) {
n := len(buf) / 8
for i := 0; i < n; i++ {
a := binary.LittleEndian.Uint64(buf)
d.a[i] ^= a
buf = buf[8:]
}
}
// copyOut copies ulint64s to a byte buffer.
func copyOut(d *State, b []byte) {
for i := 0; len(b) >= 8; i++ {
binary.LittleEndian.PutUint64(b, d.a[i])
b = b[8:]
}
}

View File

@ -0,0 +1,61 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build (amd64 || 386 || ppc64le) && !appengine
// +build amd64 386 ppc64le
// +build !appengine
package sha3
import "unsafe"
// A storageBuf is an aligned array of maxRate bytes.
type storageBuf [maxRate / 8]uint64
func (b *storageBuf) asBytes() *[maxRate]byte {
return (*[maxRate]byte)(unsafe.Pointer(b))
}
// xorInuses unaligned reads and writes to update d.a to contain d.a
// XOR buf.
func xorIn(d *State, buf []byte) {
n := len(buf)
bw := (*[maxRate / 8]uint64)(unsafe.Pointer(&buf[0]))[: n/8 : n/8]
if n >= 72 {
d.a[0] ^= bw[0]
d.a[1] ^= bw[1]
d.a[2] ^= bw[2]
d.a[3] ^= bw[3]
d.a[4] ^= bw[4]
d.a[5] ^= bw[5]
d.a[6] ^= bw[6]
d.a[7] ^= bw[7]
d.a[8] ^= bw[8]
}
if n >= 104 {
d.a[9] ^= bw[9]
d.a[10] ^= bw[10]
d.a[11] ^= bw[11]
d.a[12] ^= bw[12]
}
if n >= 136 {
d.a[13] ^= bw[13]
d.a[14] ^= bw[14]
d.a[15] ^= bw[15]
d.a[16] ^= bw[16]
}
if n >= 144 {
d.a[17] ^= bw[17]
}
if n >= 168 {
d.a[18] ^= bw[18]
d.a[19] ^= bw[19]
d.a[20] ^= bw[20]
}
}
func copyOut(d *State, buf []byte) {
ab := (*[maxRate]uint8)(unsafe.Pointer(&d.a[0]))
copy(buf, ab[:])
}

335
vendor/github.com/cloudflare/circl/kem/hybrid/hybrid.go generated vendored Normal file
View File

@ -0,0 +1,335 @@
// Package hybrid defines several hybrid classical/quantum KEMs.
//
// KEMs are combined by simple concatenation of shared secrets, cipher texts,
// public keys, etc, see
//
// https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/
// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr2.pdf
//
// Note that this is only fine if the shared secret is used in its entirety
// in a next step, such as being hashed or used as key.
//
// For deriving a KEM keypair deterministically and encapsulating
// deterministically, we expand a single seed to both using SHAKE256,
// so that a non-uniform seed (such as a shared secret generated by a hybrid
// KEM where one of the KEMs is weak) doesn't impact just one of the KEMs.
//
// Of our XOF (SHAKE256), we desire two security properties:
//
// 1. The internal state of the XOF should be big enough so that we
// do not loose entropy.
// 2. From one of the new seeds, we shouldn't be able to derive
// the other or the original seed.
//
// SHAKE256, and all siblings in the SHA3 family, have a 200B internal
// state, so (1) is fine if our seeds are less than 200B.
// If SHAKE256 is computationally indistinguishable from a random
// sponge, then it affords us 256b security against (2) by the
// flat sponge claim [https://keccak.team/files/SpongeFunctions.pdf].
// None of the implemented schemes claim more than 256b security
// and so SHAKE256 will do fine.
package hybrid
import (
"errors"
"github.com/cloudflare/circl/internal/sha3"
"github.com/cloudflare/circl/kem"
"github.com/cloudflare/circl/kem/kyber/kyber1024"
"github.com/cloudflare/circl/kem/kyber/kyber512"
"github.com/cloudflare/circl/kem/kyber/kyber768"
)
var ErrUninitialized = errors.New("public or private key not initialized")
// Returns the hybrid KEM of Kyber512 and X25519.
func Kyber512X25519() kem.Scheme { return kyber512X }
// Returns the hybrid KEM of Kyber768 and X25519.
func Kyber768X25519() kem.Scheme { return kyber768X }
// Returns the hybrid KEM of Kyber768 and X448.
func Kyber768X448() kem.Scheme { return kyber768X4 }
// Returns the hybrid KEM of Kyber1024 and X448.
func Kyber1024X448() kem.Scheme { return kyber1024X }
var kyber512X kem.Scheme = &scheme{
"Kyber512-X25519",
x25519Kem,
kyber512.Scheme(),
}
var kyber768X kem.Scheme = &scheme{
"Kyber768-X25519",
x25519Kem,
kyber768.Scheme(),
}
var kyber768X4 kem.Scheme = &scheme{
"Kyber768-X448",
x448Kem,
kyber768.Scheme(),
}
var kyber1024X kem.Scheme = &scheme{
"Kyber1024-X448",
x448Kem,
kyber1024.Scheme(),
}
// Public key of a hybrid KEM.
type publicKey struct {
scheme *scheme
first kem.PublicKey
second kem.PublicKey
}
// Private key of a hybrid KEM.
type privateKey struct {
scheme *scheme
first kem.PrivateKey
second kem.PrivateKey
}
// Scheme for a hybrid KEM.
type scheme struct {
name string
first kem.Scheme
second kem.Scheme
}
func (sch *scheme) Name() string { return sch.name }
func (sch *scheme) PublicKeySize() int {
return sch.first.PublicKeySize() + sch.second.PublicKeySize()
}
func (sch *scheme) PrivateKeySize() int {
return sch.first.PrivateKeySize() + sch.second.PrivateKeySize()
}
func (sch *scheme) SeedSize() int {
first := sch.first.SeedSize()
second := sch.second.SeedSize()
ret := second
if first > second {
ret = first
}
return ret
}
func (sch *scheme) SharedKeySize() int {
return sch.first.SharedKeySize() + sch.second.SharedKeySize()
}
func (sch *scheme) CiphertextSize() int {
return sch.first.CiphertextSize() + sch.second.CiphertextSize()
}
func (sch *scheme) EncapsulationSeedSize() int {
first := sch.first.EncapsulationSeedSize()
second := sch.second.EncapsulationSeedSize()
ret := second
if first > second {
ret = first
}
return ret
}
func (sk *privateKey) Scheme() kem.Scheme { return sk.scheme }
func (pk *publicKey) Scheme() kem.Scheme { return pk.scheme }
func (sk *privateKey) MarshalBinary() ([]byte, error) {
if sk.first == nil || sk.second == nil {
return nil, ErrUninitialized
}
first, err := sk.first.MarshalBinary()
if err != nil {
return nil, err
}
second, err := sk.second.MarshalBinary()
if err != nil {
return nil, err
}
return append(first, second...), nil
}
func (sk *privateKey) Equal(other kem.PrivateKey) bool {
oth, ok := other.(*privateKey)
if !ok {
return false
}
if sk.first == nil && sk.second == nil && oth.first == nil && oth.second == nil {
return true
}
if sk.first == nil || sk.second == nil || oth.first == nil || oth.second == nil {
return false
}
return sk.first.Equal(oth.first) && sk.second.Equal(oth.second)
}
func (sk *privateKey) Public() kem.PublicKey {
return &publicKey{sk.scheme, sk.first.Public(), sk.second.Public()}
}
func (pk *publicKey) Equal(other kem.PublicKey) bool {
oth, ok := other.(*publicKey)
if !ok {
return false
}
if pk.first == nil && pk.second == nil && oth.first == nil && oth.second == nil {
return true
}
if pk.first == nil || pk.second == nil || oth.first == nil || oth.second == nil {
return false
}
return pk.first.Equal(oth.first) && pk.second.Equal(oth.second)
}
func (pk *publicKey) MarshalBinary() ([]byte, error) {
if pk.first == nil || pk.second == nil {
return nil, ErrUninitialized
}
first, err := pk.first.MarshalBinary()
if err != nil {
return nil, err
}
second, err := pk.second.MarshalBinary()
if err != nil {
return nil, err
}
return append(first, second...), nil
}
func (sch *scheme) GenerateKeyPair() (kem.PublicKey, kem.PrivateKey, error) {
pk1, sk1, err := sch.first.GenerateKeyPair()
if err != nil {
return nil, nil, err
}
pk2, sk2, err := sch.second.GenerateKeyPair()
if err != nil {
return nil, nil, err
}
return &publicKey{sch, pk1, pk2}, &privateKey{sch, sk1, sk2}, nil
}
func (sch *scheme) DeriveKeyPair(seed []byte) (kem.PublicKey, kem.PrivateKey) {
if len(seed) != sch.SeedSize() {
panic(kem.ErrSeedSize)
}
h := sha3.NewShake256()
_, _ = h.Write(seed)
first := make([]byte, sch.first.SeedSize())
second := make([]byte, sch.second.SeedSize())
_, _ = h.Read(first)
_, _ = h.Read(second)
pk1, sk1 := sch.first.DeriveKeyPair(first)
pk2, sk2 := sch.second.DeriveKeyPair(second)
return &publicKey{sch, pk1, pk2}, &privateKey{sch, sk1, sk2}
}
func (sch *scheme) Encapsulate(pk kem.PublicKey) (ct, ss []byte, err error) {
pub, ok := pk.(*publicKey)
if !ok {
return nil, nil, kem.ErrTypeMismatch
}
ct1, ss1, err := sch.first.Encapsulate(pub.first)
if err != nil {
return nil, nil, err
}
ct2, ss2, err := sch.second.Encapsulate(pub.second)
if err != nil {
return nil, nil, err
}
return append(ct1, ct2...), append(ss1, ss2...), nil
}
func (sch *scheme) EncapsulateDeterministically(
pk kem.PublicKey, seed []byte,
) (ct, ss []byte, err error) {
if len(seed) != sch.EncapsulationSeedSize() {
return nil, nil, kem.ErrSeedSize
}
h := sha3.NewShake256()
_, _ = h.Write(seed)
first := make([]byte, sch.first.EncapsulationSeedSize())
second := make([]byte, sch.second.EncapsulationSeedSize())
_, _ = h.Read(first)
_, _ = h.Read(second)
pub, ok := pk.(*publicKey)
if !ok {
return nil, nil, kem.ErrTypeMismatch
}
ct1, ss1, err := sch.first.EncapsulateDeterministically(pub.first, first)
if err != nil {
return nil, nil, err
}
ct2, ss2, err := sch.second.EncapsulateDeterministically(pub.second, second)
if err != nil {
return nil, nil, err
}
return append(ct1, ct2...), append(ss1, ss2...), nil
}
func (sch *scheme) Decapsulate(sk kem.PrivateKey, ct []byte) ([]byte, error) {
if len(ct) != sch.CiphertextSize() {
return nil, kem.ErrCiphertextSize
}
priv, ok := sk.(*privateKey)
if !ok {
return nil, kem.ErrTypeMismatch
}
firstSize := sch.first.CiphertextSize()
ss1, err := sch.first.Decapsulate(priv.first, ct[:firstSize])
if err != nil {
return nil, err
}
ss2, err := sch.second.Decapsulate(priv.second, ct[firstSize:])
if err != nil {
return nil, err
}
return append(ss1, ss2...), nil
}
func (sch *scheme) UnmarshalBinaryPublicKey(buf []byte) (kem.PublicKey, error) {
if len(buf) != sch.PublicKeySize() {
return nil, kem.ErrPubKeySize
}
firstSize := sch.first.PublicKeySize()
pk1, err := sch.first.UnmarshalBinaryPublicKey(buf[:firstSize])
if err != nil {
return nil, err
}
pk2, err := sch.second.UnmarshalBinaryPublicKey(buf[firstSize:])
if err != nil {
return nil, err
}
return &publicKey{sch, pk1, pk2}, nil
}
func (sch *scheme) UnmarshalBinaryPrivateKey(buf []byte) (kem.PrivateKey, error) {
if len(buf) != sch.PrivateKeySize() {
return nil, kem.ErrPrivKeySize
}
firstSize := sch.first.PrivateKeySize()
sk1, err := sch.first.UnmarshalBinaryPrivateKey(buf[:firstSize])
if err != nil {
return nil, err
}
sk2, err := sch.second.UnmarshalBinaryPrivateKey(buf[firstSize:])
if err != nil {
return nil, err
}
return &privateKey{sch, sk1, sk2}, nil
}

208
vendor/github.com/cloudflare/circl/kem/hybrid/xkem.go generated vendored Normal file
View File

@ -0,0 +1,208 @@
package hybrid
import (
"bytes"
cryptoRand "crypto/rand"
"crypto/subtle"
"github.com/cloudflare/circl/dh/x25519"
"github.com/cloudflare/circl/dh/x448"
"github.com/cloudflare/circl/internal/sha3"
"github.com/cloudflare/circl/kem"
)
type xPublicKey struct {
scheme *xScheme
key []byte
}
type xPrivateKey struct {
scheme *xScheme
key []byte
}
type xScheme struct {
size int
}
var (
x25519Kem = &xScheme{x25519.Size}
x448Kem = &xScheme{x448.Size}
)
func (sch *xScheme) Name() string {
switch sch.size {
case x25519.Size:
return "X25519"
case x448.Size:
return "X448"
}
panic(kem.ErrTypeMismatch)
}
func (sch *xScheme) PublicKeySize() int { return sch.size }
func (sch *xScheme) PrivateKeySize() int { return sch.size }
func (sch *xScheme) SeedSize() int { return sch.size }
func (sch *xScheme) SharedKeySize() int { return sch.size }
func (sch *xScheme) CiphertextSize() int { return sch.size }
func (sch *xScheme) EncapsulationSeedSize() int { return sch.size }
func (sk *xPrivateKey) Scheme() kem.Scheme { return sk.scheme }
func (pk *xPublicKey) Scheme() kem.Scheme { return pk.scheme }
func (sk *xPrivateKey) MarshalBinary() ([]byte, error) {
ret := make([]byte, len(sk.key))
copy(ret, sk.key)
return ret, nil
}
func (sk *xPrivateKey) Equal(other kem.PrivateKey) bool {
oth, ok := other.(*xPrivateKey)
if !ok {
return false
}
if oth.scheme != sk.scheme {
return false
}
return subtle.ConstantTimeCompare(oth.key, sk.key) == 1
}
func (sk *xPrivateKey) Public() kem.PublicKey {
pk := xPublicKey{sk.scheme, make([]byte, sk.scheme.size)}
switch sk.scheme.size {
case x25519.Size:
var sk2, pk2 x25519.Key
copy(sk2[:], sk.key)
x25519.KeyGen(&pk2, &sk2)
copy(pk.key, pk2[:])
case x448.Size:
var sk2, pk2 x448.Key
copy(sk2[:], sk.key)
x448.KeyGen(&pk2, &sk2)
copy(pk.key, pk2[:])
}
return &pk
}
func (pk *xPublicKey) Equal(other kem.PublicKey) bool {
oth, ok := other.(*xPublicKey)
if !ok {
return false
}
if oth.scheme != pk.scheme {
return false
}
return bytes.Equal(oth.key, pk.key)
}
func (pk *xPublicKey) MarshalBinary() ([]byte, error) {
ret := make([]byte, pk.scheme.size)
copy(ret, pk.key)
return ret, nil
}
func (sch *xScheme) GenerateKeyPair() (kem.PublicKey, kem.PrivateKey, error) {
seed := make([]byte, sch.SeedSize())
_, err := cryptoRand.Read(seed)
if err != nil {
return nil, nil, err
}
pk, sk := sch.DeriveKeyPair(seed)
return pk, sk, nil
}
func (sch *xScheme) DeriveKeyPair(seed []byte) (kem.PublicKey, kem.PrivateKey) {
if len(seed) != sch.SeedSize() {
panic(kem.ErrSeedSize)
}
sk := xPrivateKey{scheme: sch, key: make([]byte, sch.size)}
h := sha3.NewShake256()
_, _ = h.Write(seed)
_, _ = h.Read(sk.key)
return sk.Public(), &sk
}
func (sch *xScheme) Encapsulate(pk kem.PublicKey) (ct, ss []byte, err error) {
seed := make([]byte, sch.EncapsulationSeedSize())
_, err = cryptoRand.Read(seed)
if err != nil {
return
}
return sch.EncapsulateDeterministically(pk, seed)
}
func (pk *xPublicKey) X(sk *xPrivateKey) []byte {
if pk.scheme != sk.scheme {
panic(kem.ErrTypeMismatch)
}
switch pk.scheme.size {
case x25519.Size:
var ss2, pk2, sk2 x25519.Key
copy(pk2[:], pk.key)
copy(sk2[:], sk.key)
x25519.Shared(&ss2, &sk2, &pk2)
return ss2[:]
case x448.Size:
var ss2, pk2, sk2 x448.Key
copy(pk2[:], pk.key)
copy(sk2[:], sk.key)
x448.Shared(&ss2, &sk2, &pk2)
return ss2[:]
}
panic(kem.ErrTypeMismatch)
}
func (sch *xScheme) EncapsulateDeterministically(
pk kem.PublicKey, seed []byte,
) (ct, ss []byte, err error) {
if len(seed) != sch.EncapsulationSeedSize() {
return nil, nil, kem.ErrSeedSize
}
pub, ok := pk.(*xPublicKey)
if !ok || pub.scheme != sch {
return nil, nil, kem.ErrTypeMismatch
}
pk2, sk2 := sch.DeriveKeyPair(seed)
ss = pub.X(sk2.(*xPrivateKey))
ct, _ = pk2.MarshalBinary()
return
}
func (sch *xScheme) Decapsulate(sk kem.PrivateKey, ct []byte) ([]byte, error) {
if len(ct) != sch.CiphertextSize() {
return nil, kem.ErrCiphertextSize
}
priv, ok := sk.(*xPrivateKey)
if !ok || priv.scheme != sch {
return nil, kem.ErrTypeMismatch
}
pk, err := sch.UnmarshalBinaryPublicKey(ct)
if err != nil {
return nil, err
}
ss := pk.(*xPublicKey).X(priv)
return ss, nil
}
func (sch *xScheme) UnmarshalBinaryPublicKey(buf []byte) (kem.PublicKey, error) {
if len(buf) != sch.PublicKeySize() {
return nil, kem.ErrPubKeySize
}
ret := xPublicKey{sch, make([]byte, sch.size)}
copy(ret.key, buf)
return &ret, nil
}
func (sch *xScheme) UnmarshalBinaryPrivateKey(buf []byte) (kem.PrivateKey, error) {
if len(buf) != sch.PrivateKeySize() {
return nil, kem.ErrPrivKeySize
}
ret := xPrivateKey{sch, make([]byte, sch.size)}
copy(ret.key, buf)
return &ret, nil
}

118
vendor/github.com/cloudflare/circl/kem/kem.go generated vendored Normal file
View File

@ -0,0 +1,118 @@
// Package kem provides a unified interface for KEM schemes.
//
// A register of schemes is available in the package
//
// github.com/cloudflare/circl/kem/schemes
package kem
import (
"encoding"
"errors"
)
// A KEM public key
type PublicKey interface {
// Returns the scheme for this public key
Scheme() Scheme
encoding.BinaryMarshaler
Equal(PublicKey) bool
}
// A KEM private key
type PrivateKey interface {
// Returns the scheme for this private key
Scheme() Scheme
encoding.BinaryMarshaler
Equal(PrivateKey) bool
Public() PublicKey
}
// A Scheme represents a specific instance of a KEM.
type Scheme interface {
// Name of the scheme
Name() string
// GenerateKeyPair creates a new key pair.
GenerateKeyPair() (PublicKey, PrivateKey, error)
// Encapsulate generates a shared key ss for the public key and
// encapsulates it into a ciphertext ct.
Encapsulate(pk PublicKey) (ct, ss []byte, err error)
// Returns the shared key encapsulated in ciphertext ct for the
// private key sk.
Decapsulate(sk PrivateKey, ct []byte) ([]byte, error)
// Unmarshals a PublicKey from the provided buffer.
UnmarshalBinaryPublicKey([]byte) (PublicKey, error)
// Unmarshals a PrivateKey from the provided buffer.
UnmarshalBinaryPrivateKey([]byte) (PrivateKey, error)
// Size of encapsulated keys.
CiphertextSize() int
// Size of established shared keys.
SharedKeySize() int
// Size of packed private keys.
PrivateKeySize() int
// Size of packed public keys.
PublicKeySize() int
// DeriveKeyPair deterministicallly derives a pair of keys from a seed.
// Panics if the length of seed is not equal to the value returned by
// SeedSize.
DeriveKeyPair(seed []byte) (PublicKey, PrivateKey)
// Size of seed used in DeriveKey
SeedSize() int
// EncapsulateDeterministically generates a shared key ss for the public
// key deterministically from the given seed and encapsulates it into
// a ciphertext ct. If unsure, you're better off using Encapsulate().
EncapsulateDeterministically(pk PublicKey, seed []byte) (
ct, ss []byte, err error)
// Size of seed used in EncapsulateDeterministically().
EncapsulationSeedSize() int
}
// AuthScheme represents a KEM that supports authenticated key encapsulation.
type AuthScheme interface {
Scheme
AuthEncapsulate(pkr PublicKey, sks PrivateKey) (ct, ss []byte, err error)
AuthEncapsulateDeterministically(pkr PublicKey, sks PrivateKey, seed []byte) (ct, ss []byte, err error)
AuthDecapsulate(skr PrivateKey, ct []byte, pks PublicKey) ([]byte, error)
}
var (
// ErrTypeMismatch is the error used if types of, for instance, private
// and public keys don't match
ErrTypeMismatch = errors.New("types mismatch")
// ErrSeedSize is the error used if the provided seed is of the wrong
// size.
ErrSeedSize = errors.New("wrong seed size")
// ErrPubKeySize is the error used if the provided public key is of
// the wrong size.
ErrPubKeySize = errors.New("wrong size for public key")
// ErrCiphertextSize is the error used if the provided ciphertext
// is of the wrong size.
ErrCiphertextSize = errors.New("wrong size for ciphertext")
// ErrPrivKeySize is the error used if the provided private key is of
// the wrong size.
ErrPrivKeySize = errors.New("wrong size for private key")
// ErrPubKey is the error used if the provided public key is invalid.
ErrPubKey = errors.New("invalid public key")
// ErrCipherText is the error used if the provided ciphertext is invalid.
ErrCipherText = errors.New("invalid ciphertext")
)

View File

@ -0,0 +1,402 @@
// Code generated from pkg.templ.go. DO NOT EDIT.
// Package kyber1024 implements the IND-CCA2 secure key encapsulation mechanism
// Kyber1024.CCAKEM as submitted to round 3 of the NIST PQC competition and
// described in
//
// https://pq-crystals.org/kyber/data/kyber-specification-round3.pdf
package kyber1024
import (
"bytes"
"crypto/subtle"
"io"
cryptoRand "crypto/rand"
"github.com/cloudflare/circl/internal/sha3"
"github.com/cloudflare/circl/kem"
cpapke "github.com/cloudflare/circl/pke/kyber/kyber1024"
)
const (
// Size of seed for NewKeyFromSeed
KeySeedSize = cpapke.KeySeedSize + 32
// Size of seed for EncapsulateTo.
EncapsulationSeedSize = 32
// Size of the established shared key.
SharedKeySize = 32
// Size of the encapsulated shared key.
CiphertextSize = cpapke.CiphertextSize
// Size of a packed public key.
PublicKeySize = cpapke.PublicKeySize
// Size of a packed private key.
PrivateKeySize = cpapke.PrivateKeySize + cpapke.PublicKeySize + 64
)
// Type of a Kyber1024.CCAKEM public key
type PublicKey struct {
pk *cpapke.PublicKey
hpk [32]byte // H(pk)
}
// Type of a Kyber1024.CCAKEM private key
type PrivateKey struct {
sk *cpapke.PrivateKey
pk *cpapke.PublicKey
hpk [32]byte // H(pk)
z [32]byte
}
// NewKeyFromSeed derives a public/private keypair deterministically
// from the given seed.
//
// Panics if seed is not of length KeySeedSize.
func NewKeyFromSeed(seed []byte) (*PublicKey, *PrivateKey) {
var sk PrivateKey
var pk PublicKey
if len(seed) != KeySeedSize {
panic("seed must be of length KeySeedSize")
}
pk.pk, sk.sk = cpapke.NewKeyFromSeed(seed[:cpapke.KeySeedSize])
sk.pk = pk.pk
copy(sk.z[:], seed[cpapke.KeySeedSize:])
// Compute H(pk)
var ppk [cpapke.PublicKeySize]byte
sk.pk.Pack(ppk[:])
h := sha3.New256()
h.Write(ppk[:])
h.Read(sk.hpk[:])
copy(pk.hpk[:], sk.hpk[:])
return &pk, &sk
}
// GenerateKeyPair generates public and private keys using entropy from rand.
// If rand is nil, crypto/rand.Reader will be used.
func GenerateKeyPair(rand io.Reader) (*PublicKey, *PrivateKey, error) {
var seed [KeySeedSize]byte
if rand == nil {
rand = cryptoRand.Reader
}
_, err := io.ReadFull(rand, seed[:])
if err != nil {
return nil, nil, err
}
pk, sk := NewKeyFromSeed(seed[:])
return pk, sk, nil
}
// EncapsulateTo generates a shared key and ciphertext that contains it
// for the public key using randomness from seed and writes the shared key
// to ss and ciphertext to ct.
//
// Panics if ss, ct or seed are not of length SharedKeySize, CiphertextSize
// and EncapsulationSeedSize respectively.
//
// seed may be nil, in which case crypto/rand.Reader is used to generate one.
func (pk *PublicKey) EncapsulateTo(ct, ss []byte, seed []byte) {
if seed == nil {
seed = make([]byte, EncapsulationSeedSize)
cryptoRand.Read(seed[:])
} else {
if len(seed) != EncapsulationSeedSize {
panic("seed must be of length EncapsulationSeedSize")
}
}
if len(ct) != CiphertextSize {
panic("ct must be of length CiphertextSize")
}
if len(ss) != SharedKeySize {
panic("ss must be of length SharedKeySize")
}
// m = H(seed)
var m [32]byte
h := sha3.New256()
h.Write(seed[:])
h.Read(m[:])
// (K', r) = G(m ‖ H(pk))
var kr [64]byte
g := sha3.New512()
g.Write(m[:])
g.Write(pk.hpk[:])
g.Read(kr[:])
// c = Kyber.CPAPKE.Enc(pk, m, r)
pk.pk.EncryptTo(ct, m[:], kr[32:])
// Compute H(c) and put in second slot of kr, which will be (K', H(c)).
h.Reset()
h.Write(ct[:CiphertextSize])
h.Read(kr[32:])
// K = KDF(K' ‖ H(c))
kdf := sha3.NewShake256()
kdf.Write(kr[:])
kdf.Read(ss[:SharedKeySize])
}
// DecapsulateTo computes the shared key which is encapsulated in ct
// for the private key.
//
// Panics if ct or ss are not of length CiphertextSize and SharedKeySize
// respectively.
func (sk *PrivateKey) DecapsulateTo(ss, ct []byte) {
if len(ct) != CiphertextSize {
panic("ct must be of length CiphertextSize")
}
if len(ss) != SharedKeySize {
panic("ss must be of length SharedKeySize")
}
// m' = Kyber.CPAPKE.Dec(sk, ct)
var m2 [32]byte
sk.sk.DecryptTo(m2[:], ct)
// (K'', r') = G(m' ‖ H(pk))
var kr2 [64]byte
g := sha3.New512()
g.Write(m2[:])
g.Write(sk.hpk[:])
g.Read(kr2[:])
// c' = Kyber.CPAPKE.Enc(pk, m', r')
var ct2 [CiphertextSize]byte
sk.pk.EncryptTo(ct2[:], m2[:], kr2[32:])
// Compute H(c) and put in second slot of kr2, which will be (K'', H(c)).
h := sha3.New256()
h.Write(ct[:CiphertextSize])
h.Read(kr2[32:])
// Replace K'' by z in the first slot of kr2 if c ≠ c'.
subtle.ConstantTimeCopy(
1-subtle.ConstantTimeCompare(ct, ct2[:]),
kr2[:32],
sk.z[:],
)
// K = KDF(K''/z, H(c))
kdf := sha3.NewShake256()
kdf.Write(kr2[:])
kdf.Read(ss[:SharedKeySize])
}
// Packs sk to buf.
//
// Panics if buf is not of size PrivateKeySize.
func (sk *PrivateKey) Pack(buf []byte) {
if len(buf) != PrivateKeySize {
panic("buf must be of length PrivateKeySize")
}
sk.sk.Pack(buf[:cpapke.PrivateKeySize])
buf = buf[cpapke.PrivateKeySize:]
sk.pk.Pack(buf[:cpapke.PublicKeySize])
buf = buf[cpapke.PublicKeySize:]
copy(buf, sk.hpk[:])
buf = buf[32:]
copy(buf, sk.z[:])
}
// Unpacks sk from buf.
//
// Panics if buf is not of size PrivateKeySize.
func (sk *PrivateKey) Unpack(buf []byte) {
if len(buf) != PrivateKeySize {
panic("buf must be of length PrivateKeySize")
}
sk.sk = new(cpapke.PrivateKey)
sk.sk.Unpack(buf[:cpapke.PrivateKeySize])
buf = buf[cpapke.PrivateKeySize:]
sk.pk = new(cpapke.PublicKey)
sk.pk.Unpack(buf[:cpapke.PublicKeySize])
buf = buf[cpapke.PublicKeySize:]
copy(sk.hpk[:], buf[:32])
copy(sk.z[:], buf[32:])
}
// Packs pk to buf.
//
// Panics if buf is not of size PublicKeySize.
func (pk *PublicKey) Pack(buf []byte) {
if len(buf) != PublicKeySize {
panic("buf must be of length PublicKeySize")
}
pk.pk.Pack(buf)
}
// Unpacks pk from buf.
//
// Panics if buf is not of size PublicKeySize.
func (pk *PublicKey) Unpack(buf []byte) {
if len(buf) != PublicKeySize {
panic("buf must be of length PublicKeySize")
}
pk.pk = new(cpapke.PublicKey)
pk.pk.Unpack(buf)
// Compute cached H(pk)
h := sha3.New256()
h.Write(buf)
h.Read(pk.hpk[:])
}
// Boilerplate down below for the KEM scheme API.
type scheme struct{}
var sch kem.Scheme = &scheme{}
// Scheme returns a KEM interface.
func Scheme() kem.Scheme { return sch }
func (*scheme) Name() string { return "Kyber1024" }
func (*scheme) PublicKeySize() int { return PublicKeySize }
func (*scheme) PrivateKeySize() int { return PrivateKeySize }
func (*scheme) SeedSize() int { return KeySeedSize }
func (*scheme) SharedKeySize() int { return SharedKeySize }
func (*scheme) CiphertextSize() int { return CiphertextSize }
func (*scheme) EncapsulationSeedSize() int { return EncapsulationSeedSize }
func (sk *PrivateKey) Scheme() kem.Scheme { return sch }
func (pk *PublicKey) Scheme() kem.Scheme { return sch }
func (sk *PrivateKey) MarshalBinary() ([]byte, error) {
var ret [PrivateKeySize]byte
sk.Pack(ret[:])
return ret[:], nil
}
func (sk *PrivateKey) Equal(other kem.PrivateKey) bool {
oth, ok := other.(*PrivateKey)
if !ok {
return false
}
if sk.pk == nil && oth.pk == nil {
return true
}
if sk.pk == nil || oth.pk == nil {
return false
}
if !bytes.Equal(sk.hpk[:], oth.hpk[:]) ||
!bytes.Equal(sk.z[:], oth.z[:]) {
return false
}
return sk.sk.Equal(oth.sk)
}
func (pk *PublicKey) Equal(other kem.PublicKey) bool {
oth, ok := other.(*PublicKey)
if !ok {
return false
}
if pk.pk == nil && oth.pk == nil {
return true
}
if pk.pk == nil || oth.pk == nil {
return false
}
return bytes.Equal(pk.hpk[:], oth.hpk[:])
}
func (sk *PrivateKey) Public() kem.PublicKey {
pk := new(PublicKey)
pk.pk = sk.pk
copy(pk.hpk[:], sk.hpk[:])
return pk
}
func (pk *PublicKey) MarshalBinary() ([]byte, error) {
var ret [PublicKeySize]byte
pk.Pack(ret[:])
return ret[:], nil
}
func (*scheme) GenerateKeyPair() (kem.PublicKey, kem.PrivateKey, error) {
return GenerateKeyPair(cryptoRand.Reader)
}
func (*scheme) DeriveKeyPair(seed []byte) (kem.PublicKey, kem.PrivateKey) {
if len(seed) != KeySeedSize {
panic(kem.ErrSeedSize)
}
return NewKeyFromSeed(seed[:])
}
func (*scheme) Encapsulate(pk kem.PublicKey) (ct, ss []byte, err error) {
ct = make([]byte, CiphertextSize)
ss = make([]byte, SharedKeySize)
pub, ok := pk.(*PublicKey)
if !ok {
return nil, nil, kem.ErrTypeMismatch
}
pub.EncapsulateTo(ct, ss, nil)
return
}
func (*scheme) EncapsulateDeterministically(pk kem.PublicKey, seed []byte) (
ct, ss []byte, err error) {
if len(seed) != EncapsulationSeedSize {
return nil, nil, kem.ErrSeedSize
}
ct = make([]byte, CiphertextSize)
ss = make([]byte, SharedKeySize)
pub, ok := pk.(*PublicKey)
if !ok {
return nil, nil, kem.ErrTypeMismatch
}
pub.EncapsulateTo(ct, ss, seed)
return
}
func (*scheme) Decapsulate(sk kem.PrivateKey, ct []byte) ([]byte, error) {
if len(ct) != CiphertextSize {
return nil, kem.ErrCiphertextSize
}
priv, ok := sk.(*PrivateKey)
if !ok {
return nil, kem.ErrTypeMismatch
}
ss := make([]byte, SharedKeySize)
priv.DecapsulateTo(ss, ct)
return ss, nil
}
func (*scheme) UnmarshalBinaryPublicKey(buf []byte) (kem.PublicKey, error) {
if len(buf) != PublicKeySize {
return nil, kem.ErrPubKeySize
}
var ret PublicKey
ret.Unpack(buf)
return &ret, nil
}
func (*scheme) UnmarshalBinaryPrivateKey(buf []byte) (kem.PrivateKey, error) {
if len(buf) != PrivateKeySize {
return nil, kem.ErrPrivKeySize
}
var ret PrivateKey
ret.Unpack(buf)
return &ret, nil
}

View File

@ -0,0 +1,402 @@
// Code generated from pkg.templ.go. DO NOT EDIT.
// Package kyber512 implements the IND-CCA2 secure key encapsulation mechanism
// Kyber512.CCAKEM as submitted to round 3 of the NIST PQC competition and
// described in
//
// https://pq-crystals.org/kyber/data/kyber-specification-round3.pdf
package kyber512
import (
"bytes"
"crypto/subtle"
"io"
cryptoRand "crypto/rand"
"github.com/cloudflare/circl/internal/sha3"
"github.com/cloudflare/circl/kem"
cpapke "github.com/cloudflare/circl/pke/kyber/kyber512"
)
const (
// Size of seed for NewKeyFromSeed
KeySeedSize = cpapke.KeySeedSize + 32
// Size of seed for EncapsulateTo.
EncapsulationSeedSize = 32
// Size of the established shared key.
SharedKeySize = 32
// Size of the encapsulated shared key.
CiphertextSize = cpapke.CiphertextSize
// Size of a packed public key.
PublicKeySize = cpapke.PublicKeySize
// Size of a packed private key.
PrivateKeySize = cpapke.PrivateKeySize + cpapke.PublicKeySize + 64
)
// Type of a Kyber512.CCAKEM public key
type PublicKey struct {
pk *cpapke.PublicKey
hpk [32]byte // H(pk)
}
// Type of a Kyber512.CCAKEM private key
type PrivateKey struct {
sk *cpapke.PrivateKey
pk *cpapke.PublicKey
hpk [32]byte // H(pk)
z [32]byte
}
// NewKeyFromSeed derives a public/private keypair deterministically
// from the given seed.
//
// Panics if seed is not of length KeySeedSize.
func NewKeyFromSeed(seed []byte) (*PublicKey, *PrivateKey) {
var sk PrivateKey
var pk PublicKey
if len(seed) != KeySeedSize {
panic("seed must be of length KeySeedSize")
}
pk.pk, sk.sk = cpapke.NewKeyFromSeed(seed[:cpapke.KeySeedSize])
sk.pk = pk.pk
copy(sk.z[:], seed[cpapke.KeySeedSize:])
// Compute H(pk)
var ppk [cpapke.PublicKeySize]byte
sk.pk.Pack(ppk[:])
h := sha3.New256()
h.Write(ppk[:])
h.Read(sk.hpk[:])
copy(pk.hpk[:], sk.hpk[:])
return &pk, &sk
}
// GenerateKeyPair generates public and private keys using entropy from rand.
// If rand is nil, crypto/rand.Reader will be used.
func GenerateKeyPair(rand io.Reader) (*PublicKey, *PrivateKey, error) {
var seed [KeySeedSize]byte
if rand == nil {
rand = cryptoRand.Reader
}
_, err := io.ReadFull(rand, seed[:])
if err != nil {
return nil, nil, err
}
pk, sk := NewKeyFromSeed(seed[:])
return pk, sk, nil
}
// EncapsulateTo generates a shared key and ciphertext that contains it
// for the public key using randomness from seed and writes the shared key
// to ss and ciphertext to ct.
//
// Panics if ss, ct or seed are not of length SharedKeySize, CiphertextSize
// and EncapsulationSeedSize respectively.
//
// seed may be nil, in which case crypto/rand.Reader is used to generate one.
func (pk *PublicKey) EncapsulateTo(ct, ss []byte, seed []byte) {
if seed == nil {
seed = make([]byte, EncapsulationSeedSize)
cryptoRand.Read(seed[:])
} else {
if len(seed) != EncapsulationSeedSize {
panic("seed must be of length EncapsulationSeedSize")
}
}
if len(ct) != CiphertextSize {
panic("ct must be of length CiphertextSize")
}
if len(ss) != SharedKeySize {
panic("ss must be of length SharedKeySize")
}
// m = H(seed)
var m [32]byte
h := sha3.New256()
h.Write(seed[:])
h.Read(m[:])
// (K', r) = G(m ‖ H(pk))
var kr [64]byte
g := sha3.New512()
g.Write(m[:])
g.Write(pk.hpk[:])
g.Read(kr[:])
// c = Kyber.CPAPKE.Enc(pk, m, r)
pk.pk.EncryptTo(ct, m[:], kr[32:])
// Compute H(c) and put in second slot of kr, which will be (K', H(c)).
h.Reset()
h.Write(ct[:CiphertextSize])
h.Read(kr[32:])
// K = KDF(K' ‖ H(c))
kdf := sha3.NewShake256()
kdf.Write(kr[:])
kdf.Read(ss[:SharedKeySize])
}
// DecapsulateTo computes the shared key which is encapsulated in ct
// for the private key.
//
// Panics if ct or ss are not of length CiphertextSize and SharedKeySize
// respectively.
func (sk *PrivateKey) DecapsulateTo(ss, ct []byte) {
if len(ct) != CiphertextSize {
panic("ct must be of length CiphertextSize")
}
if len(ss) != SharedKeySize {
panic("ss must be of length SharedKeySize")
}
// m' = Kyber.CPAPKE.Dec(sk, ct)
var m2 [32]byte
sk.sk.DecryptTo(m2[:], ct)
// (K'', r') = G(m' ‖ H(pk))
var kr2 [64]byte
g := sha3.New512()
g.Write(m2[:])
g.Write(sk.hpk[:])
g.Read(kr2[:])
// c' = Kyber.CPAPKE.Enc(pk, m', r')
var ct2 [CiphertextSize]byte
sk.pk.EncryptTo(ct2[:], m2[:], kr2[32:])
// Compute H(c) and put in second slot of kr2, which will be (K'', H(c)).
h := sha3.New256()
h.Write(ct[:CiphertextSize])
h.Read(kr2[32:])
// Replace K'' by z in the first slot of kr2 if c ≠ c'.
subtle.ConstantTimeCopy(
1-subtle.ConstantTimeCompare(ct, ct2[:]),
kr2[:32],
sk.z[:],
)
// K = KDF(K''/z, H(c))
kdf := sha3.NewShake256()
kdf.Write(kr2[:])
kdf.Read(ss[:SharedKeySize])
}
// Packs sk to buf.
//
// Panics if buf is not of size PrivateKeySize.
func (sk *PrivateKey) Pack(buf []byte) {
if len(buf) != PrivateKeySize {
panic("buf must be of length PrivateKeySize")
}
sk.sk.Pack(buf[:cpapke.PrivateKeySize])
buf = buf[cpapke.PrivateKeySize:]
sk.pk.Pack(buf[:cpapke.PublicKeySize])
buf = buf[cpapke.PublicKeySize:]
copy(buf, sk.hpk[:])
buf = buf[32:]
copy(buf, sk.z[:])
}
// Unpacks sk from buf.
//
// Panics if buf is not of size PrivateKeySize.
func (sk *PrivateKey) Unpack(buf []byte) {
if len(buf) != PrivateKeySize {
panic("buf must be of length PrivateKeySize")
}
sk.sk = new(cpapke.PrivateKey)
sk.sk.Unpack(buf[:cpapke.PrivateKeySize])
buf = buf[cpapke.PrivateKeySize:]
sk.pk = new(cpapke.PublicKey)
sk.pk.Unpack(buf[:cpapke.PublicKeySize])
buf = buf[cpapke.PublicKeySize:]
copy(sk.hpk[:], buf[:32])
copy(sk.z[:], buf[32:])
}
// Packs pk to buf.
//
// Panics if buf is not of size PublicKeySize.
func (pk *PublicKey) Pack(buf []byte) {
if len(buf) != PublicKeySize {
panic("buf must be of length PublicKeySize")
}
pk.pk.Pack(buf)
}
// Unpacks pk from buf.
//
// Panics if buf is not of size PublicKeySize.
func (pk *PublicKey) Unpack(buf []byte) {
if len(buf) != PublicKeySize {
panic("buf must be of length PublicKeySize")
}
pk.pk = new(cpapke.PublicKey)
pk.pk.Unpack(buf)
// Compute cached H(pk)
h := sha3.New256()
h.Write(buf)
h.Read(pk.hpk[:])
}
// Boilerplate down below for the KEM scheme API.
type scheme struct{}
var sch kem.Scheme = &scheme{}
// Scheme returns a KEM interface.
func Scheme() kem.Scheme { return sch }
func (*scheme) Name() string { return "Kyber512" }
func (*scheme) PublicKeySize() int { return PublicKeySize }
func (*scheme) PrivateKeySize() int { return PrivateKeySize }
func (*scheme) SeedSize() int { return KeySeedSize }
func (*scheme) SharedKeySize() int { return SharedKeySize }
func (*scheme) CiphertextSize() int { return CiphertextSize }
func (*scheme) EncapsulationSeedSize() int { return EncapsulationSeedSize }
func (sk *PrivateKey) Scheme() kem.Scheme { return sch }
func (pk *PublicKey) Scheme() kem.Scheme { return sch }
func (sk *PrivateKey) MarshalBinary() ([]byte, error) {
var ret [PrivateKeySize]byte
sk.Pack(ret[:])
return ret[:], nil
}
func (sk *PrivateKey) Equal(other kem.PrivateKey) bool {
oth, ok := other.(*PrivateKey)
if !ok {
return false
}
if sk.pk == nil && oth.pk == nil {
return true
}
if sk.pk == nil || oth.pk == nil {
return false
}
if !bytes.Equal(sk.hpk[:], oth.hpk[:]) ||
!bytes.Equal(sk.z[:], oth.z[:]) {
return false
}
return sk.sk.Equal(oth.sk)
}
func (pk *PublicKey) Equal(other kem.PublicKey) bool {
oth, ok := other.(*PublicKey)
if !ok {
return false
}
if pk.pk == nil && oth.pk == nil {
return true
}
if pk.pk == nil || oth.pk == nil {
return false
}
return bytes.Equal(pk.hpk[:], oth.hpk[:])
}
func (sk *PrivateKey) Public() kem.PublicKey {
pk := new(PublicKey)
pk.pk = sk.pk
copy(pk.hpk[:], sk.hpk[:])
return pk
}
func (pk *PublicKey) MarshalBinary() ([]byte, error) {
var ret [PublicKeySize]byte
pk.Pack(ret[:])
return ret[:], nil
}
func (*scheme) GenerateKeyPair() (kem.PublicKey, kem.PrivateKey, error) {
return GenerateKeyPair(cryptoRand.Reader)
}
func (*scheme) DeriveKeyPair(seed []byte) (kem.PublicKey, kem.PrivateKey) {
if len(seed) != KeySeedSize {
panic(kem.ErrSeedSize)
}
return NewKeyFromSeed(seed[:])
}
func (*scheme) Encapsulate(pk kem.PublicKey) (ct, ss []byte, err error) {
ct = make([]byte, CiphertextSize)
ss = make([]byte, SharedKeySize)
pub, ok := pk.(*PublicKey)
if !ok {
return nil, nil, kem.ErrTypeMismatch
}
pub.EncapsulateTo(ct, ss, nil)
return
}
func (*scheme) EncapsulateDeterministically(pk kem.PublicKey, seed []byte) (
ct, ss []byte, err error) {
if len(seed) != EncapsulationSeedSize {
return nil, nil, kem.ErrSeedSize
}
ct = make([]byte, CiphertextSize)
ss = make([]byte, SharedKeySize)
pub, ok := pk.(*PublicKey)
if !ok {
return nil, nil, kem.ErrTypeMismatch
}
pub.EncapsulateTo(ct, ss, seed)
return
}
func (*scheme) Decapsulate(sk kem.PrivateKey, ct []byte) ([]byte, error) {
if len(ct) != CiphertextSize {
return nil, kem.ErrCiphertextSize
}
priv, ok := sk.(*PrivateKey)
if !ok {
return nil, kem.ErrTypeMismatch
}
ss := make([]byte, SharedKeySize)
priv.DecapsulateTo(ss, ct)
return ss, nil
}
func (*scheme) UnmarshalBinaryPublicKey(buf []byte) (kem.PublicKey, error) {
if len(buf) != PublicKeySize {
return nil, kem.ErrPubKeySize
}
var ret PublicKey
ret.Unpack(buf)
return &ret, nil
}
func (*scheme) UnmarshalBinaryPrivateKey(buf []byte) (kem.PrivateKey, error) {
if len(buf) != PrivateKeySize {
return nil, kem.ErrPrivKeySize
}
var ret PrivateKey
ret.Unpack(buf)
return &ret, nil
}

View File

@ -0,0 +1,402 @@
// Code generated from pkg.templ.go. DO NOT EDIT.
// Package kyber768 implements the IND-CCA2 secure key encapsulation mechanism
// Kyber768.CCAKEM as submitted to round 3 of the NIST PQC competition and
// described in
//
// https://pq-crystals.org/kyber/data/kyber-specification-round3.pdf
package kyber768
import (
"bytes"
"crypto/subtle"
"io"
cryptoRand "crypto/rand"
"github.com/cloudflare/circl/internal/sha3"
"github.com/cloudflare/circl/kem"
cpapke "github.com/cloudflare/circl/pke/kyber/kyber768"
)
const (
// Size of seed for NewKeyFromSeed
KeySeedSize = cpapke.KeySeedSize + 32
// Size of seed for EncapsulateTo.
EncapsulationSeedSize = 32
// Size of the established shared key.
SharedKeySize = 32
// Size of the encapsulated shared key.
CiphertextSize = cpapke.CiphertextSize
// Size of a packed public key.
PublicKeySize = cpapke.PublicKeySize
// Size of a packed private key.
PrivateKeySize = cpapke.PrivateKeySize + cpapke.PublicKeySize + 64
)
// Type of a Kyber768.CCAKEM public key
type PublicKey struct {
pk *cpapke.PublicKey
hpk [32]byte // H(pk)
}
// Type of a Kyber768.CCAKEM private key
type PrivateKey struct {
sk *cpapke.PrivateKey
pk *cpapke.PublicKey
hpk [32]byte // H(pk)
z [32]byte
}
// NewKeyFromSeed derives a public/private keypair deterministically
// from the given seed.
//
// Panics if seed is not of length KeySeedSize.
func NewKeyFromSeed(seed []byte) (*PublicKey, *PrivateKey) {
var sk PrivateKey
var pk PublicKey
if len(seed) != KeySeedSize {
panic("seed must be of length KeySeedSize")
}
pk.pk, sk.sk = cpapke.NewKeyFromSeed(seed[:cpapke.KeySeedSize])
sk.pk = pk.pk
copy(sk.z[:], seed[cpapke.KeySeedSize:])
// Compute H(pk)
var ppk [cpapke.PublicKeySize]byte
sk.pk.Pack(ppk[:])
h := sha3.New256()
h.Write(ppk[:])
h.Read(sk.hpk[:])
copy(pk.hpk[:], sk.hpk[:])
return &pk, &sk
}
// GenerateKeyPair generates public and private keys using entropy from rand.
// If rand is nil, crypto/rand.Reader will be used.
func GenerateKeyPair(rand io.Reader) (*PublicKey, *PrivateKey, error) {
var seed [KeySeedSize]byte
if rand == nil {
rand = cryptoRand.Reader
}
_, err := io.ReadFull(rand, seed[:])
if err != nil {
return nil, nil, err
}
pk, sk := NewKeyFromSeed(seed[:])
return pk, sk, nil
}
// EncapsulateTo generates a shared key and ciphertext that contains it
// for the public key using randomness from seed and writes the shared key
// to ss and ciphertext to ct.
//
// Panics if ss, ct or seed are not of length SharedKeySize, CiphertextSize
// and EncapsulationSeedSize respectively.
//
// seed may be nil, in which case crypto/rand.Reader is used to generate one.
func (pk *PublicKey) EncapsulateTo(ct, ss []byte, seed []byte) {
if seed == nil {
seed = make([]byte, EncapsulationSeedSize)
cryptoRand.Read(seed[:])
} else {
if len(seed) != EncapsulationSeedSize {
panic("seed must be of length EncapsulationSeedSize")
}
}
if len(ct) != CiphertextSize {
panic("ct must be of length CiphertextSize")
}
if len(ss) != SharedKeySize {
panic("ss must be of length SharedKeySize")
}
// m = H(seed)
var m [32]byte
h := sha3.New256()
h.Write(seed[:])
h.Read(m[:])
// (K', r) = G(m ‖ H(pk))
var kr [64]byte
g := sha3.New512()
g.Write(m[:])
g.Write(pk.hpk[:])
g.Read(kr[:])
// c = Kyber.CPAPKE.Enc(pk, m, r)
pk.pk.EncryptTo(ct, m[:], kr[32:])
// Compute H(c) and put in second slot of kr, which will be (K', H(c)).
h.Reset()
h.Write(ct[:CiphertextSize])
h.Read(kr[32:])
// K = KDF(K' ‖ H(c))
kdf := sha3.NewShake256()
kdf.Write(kr[:])
kdf.Read(ss[:SharedKeySize])
}
// DecapsulateTo computes the shared key which is encapsulated in ct
// for the private key.
//
// Panics if ct or ss are not of length CiphertextSize and SharedKeySize
// respectively.
func (sk *PrivateKey) DecapsulateTo(ss, ct []byte) {
if len(ct) != CiphertextSize {
panic("ct must be of length CiphertextSize")
}
if len(ss) != SharedKeySize {
panic("ss must be of length SharedKeySize")
}
// m' = Kyber.CPAPKE.Dec(sk, ct)
var m2 [32]byte
sk.sk.DecryptTo(m2[:], ct)
// (K'', r') = G(m' ‖ H(pk))
var kr2 [64]byte
g := sha3.New512()
g.Write(m2[:])
g.Write(sk.hpk[:])
g.Read(kr2[:])
// c' = Kyber.CPAPKE.Enc(pk, m', r')
var ct2 [CiphertextSize]byte
sk.pk.EncryptTo(ct2[:], m2[:], kr2[32:])
// Compute H(c) and put in second slot of kr2, which will be (K'', H(c)).
h := sha3.New256()
h.Write(ct[:CiphertextSize])
h.Read(kr2[32:])
// Replace K'' by z in the first slot of kr2 if c ≠ c'.
subtle.ConstantTimeCopy(
1-subtle.ConstantTimeCompare(ct, ct2[:]),
kr2[:32],
sk.z[:],
)
// K = KDF(K''/z, H(c))
kdf := sha3.NewShake256()
kdf.Write(kr2[:])
kdf.Read(ss[:SharedKeySize])
}
// Packs sk to buf.
//
// Panics if buf is not of size PrivateKeySize.
func (sk *PrivateKey) Pack(buf []byte) {
if len(buf) != PrivateKeySize {
panic("buf must be of length PrivateKeySize")
}
sk.sk.Pack(buf[:cpapke.PrivateKeySize])
buf = buf[cpapke.PrivateKeySize:]
sk.pk.Pack(buf[:cpapke.PublicKeySize])
buf = buf[cpapke.PublicKeySize:]
copy(buf, sk.hpk[:])
buf = buf[32:]
copy(buf, sk.z[:])
}
// Unpacks sk from buf.
//
// Panics if buf is not of size PrivateKeySize.
func (sk *PrivateKey) Unpack(buf []byte) {
if len(buf) != PrivateKeySize {
panic("buf must be of length PrivateKeySize")
}
sk.sk = new(cpapke.PrivateKey)
sk.sk.Unpack(buf[:cpapke.PrivateKeySize])
buf = buf[cpapke.PrivateKeySize:]
sk.pk = new(cpapke.PublicKey)
sk.pk.Unpack(buf[:cpapke.PublicKeySize])
buf = buf[cpapke.PublicKeySize:]
copy(sk.hpk[:], buf[:32])
copy(sk.z[:], buf[32:])
}
// Packs pk to buf.
//
// Panics if buf is not of size PublicKeySize.
func (pk *PublicKey) Pack(buf []byte) {
if len(buf) != PublicKeySize {
panic("buf must be of length PublicKeySize")
}
pk.pk.Pack(buf)
}
// Unpacks pk from buf.
//
// Panics if buf is not of size PublicKeySize.
func (pk *PublicKey) Unpack(buf []byte) {
if len(buf) != PublicKeySize {
panic("buf must be of length PublicKeySize")
}
pk.pk = new(cpapke.PublicKey)
pk.pk.Unpack(buf)
// Compute cached H(pk)
h := sha3.New256()
h.Write(buf)
h.Read(pk.hpk[:])
}
// Boilerplate down below for the KEM scheme API.
type scheme struct{}
var sch kem.Scheme = &scheme{}
// Scheme returns a KEM interface.
func Scheme() kem.Scheme { return sch }
func (*scheme) Name() string { return "Kyber768" }
func (*scheme) PublicKeySize() int { return PublicKeySize }
func (*scheme) PrivateKeySize() int { return PrivateKeySize }
func (*scheme) SeedSize() int { return KeySeedSize }
func (*scheme) SharedKeySize() int { return SharedKeySize }
func (*scheme) CiphertextSize() int { return CiphertextSize }
func (*scheme) EncapsulationSeedSize() int { return EncapsulationSeedSize }
func (sk *PrivateKey) Scheme() kem.Scheme { return sch }
func (pk *PublicKey) Scheme() kem.Scheme { return sch }
func (sk *PrivateKey) MarshalBinary() ([]byte, error) {
var ret [PrivateKeySize]byte
sk.Pack(ret[:])
return ret[:], nil
}
func (sk *PrivateKey) Equal(other kem.PrivateKey) bool {
oth, ok := other.(*PrivateKey)
if !ok {
return false
}
if sk.pk == nil && oth.pk == nil {
return true
}
if sk.pk == nil || oth.pk == nil {
return false
}
if !bytes.Equal(sk.hpk[:], oth.hpk[:]) ||
!bytes.Equal(sk.z[:], oth.z[:]) {
return false
}
return sk.sk.Equal(oth.sk)
}
func (pk *PublicKey) Equal(other kem.PublicKey) bool {
oth, ok := other.(*PublicKey)
if !ok {
return false
}
if pk.pk == nil && oth.pk == nil {
return true
}
if pk.pk == nil || oth.pk == nil {
return false
}
return bytes.Equal(pk.hpk[:], oth.hpk[:])
}
func (sk *PrivateKey) Public() kem.PublicKey {
pk := new(PublicKey)
pk.pk = sk.pk
copy(pk.hpk[:], sk.hpk[:])
return pk
}
func (pk *PublicKey) MarshalBinary() ([]byte, error) {
var ret [PublicKeySize]byte
pk.Pack(ret[:])
return ret[:], nil
}
func (*scheme) GenerateKeyPair() (kem.PublicKey, kem.PrivateKey, error) {
return GenerateKeyPair(cryptoRand.Reader)
}
func (*scheme) DeriveKeyPair(seed []byte) (kem.PublicKey, kem.PrivateKey) {
if len(seed) != KeySeedSize {
panic(kem.ErrSeedSize)
}
return NewKeyFromSeed(seed[:])
}
func (*scheme) Encapsulate(pk kem.PublicKey) (ct, ss []byte, err error) {
ct = make([]byte, CiphertextSize)
ss = make([]byte, SharedKeySize)
pub, ok := pk.(*PublicKey)
if !ok {
return nil, nil, kem.ErrTypeMismatch
}
pub.EncapsulateTo(ct, ss, nil)
return
}
func (*scheme) EncapsulateDeterministically(pk kem.PublicKey, seed []byte) (
ct, ss []byte, err error) {
if len(seed) != EncapsulationSeedSize {
return nil, nil, kem.ErrSeedSize
}
ct = make([]byte, CiphertextSize)
ss = make([]byte, SharedKeySize)
pub, ok := pk.(*PublicKey)
if !ok {
return nil, nil, kem.ErrTypeMismatch
}
pub.EncapsulateTo(ct, ss, seed)
return
}
func (*scheme) Decapsulate(sk kem.PrivateKey, ct []byte) ([]byte, error) {
if len(ct) != CiphertextSize {
return nil, kem.ErrCiphertextSize
}
priv, ok := sk.(*PrivateKey)
if !ok {
return nil, kem.ErrTypeMismatch
}
ss := make([]byte, SharedKeySize)
priv.DecapsulateTo(ss, ct)
return ss, nil
}
func (*scheme) UnmarshalBinaryPublicKey(buf []byte) (kem.PublicKey, error) {
if len(buf) != PublicKeySize {
return nil, kem.ErrPubKeySize
}
var ret PublicKey
ret.Unpack(buf)
return &ret, nil
}
func (*scheme) UnmarshalBinaryPrivateKey(buf []byte) (kem.PrivateKey, error) {
if len(buf) != PrivateKeySize {
return nil, kem.ErrPrivKeySize
}
var ret PrivateKey
ret.Unpack(buf)
return &ret, nil
}

205
vendor/github.com/cloudflare/circl/math/fp25519/fp.go generated vendored Normal file
View File

@ -0,0 +1,205 @@
// Package fp25519 provides prime field arithmetic over GF(2^255-19).
package fp25519
import (
"errors"
"github.com/cloudflare/circl/internal/conv"
)
// Size in bytes of an element.
const Size = 32
// Elt is a prime field element.
type Elt [Size]byte
func (e Elt) String() string { return conv.BytesLe2Hex(e[:]) }
// p is the prime modulus 2^255-19.
var p = Elt{
0xed, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f,
}
// P returns the prime modulus 2^255-19.
func P() Elt { return p }
// ToBytes stores in b the little-endian byte representation of x.
func ToBytes(b []byte, x *Elt) error {
if len(b) != Size {
return errors.New("wrong size")
}
Modp(x)
copy(b, x[:])
return nil
}
// IsZero returns true if x is equal to 0.
func IsZero(x *Elt) bool { Modp(x); return *x == Elt{} }
// SetOne assigns x=1.
func SetOne(x *Elt) { *x = Elt{}; x[0] = 1 }
// Neg calculates z = -x.
func Neg(z, x *Elt) { Sub(z, &p, x) }
// InvSqrt calculates z = sqrt(x/y) iff x/y is a quadratic-residue, which is
// indicated by returning isQR = true. Otherwise, when x/y is a quadratic
// non-residue, z will have an undetermined value and isQR = false.
func InvSqrt(z, x, y *Elt) (isQR bool) {
sqrtMinusOne := &Elt{
0xb0, 0xa0, 0x0e, 0x4a, 0x27, 0x1b, 0xee, 0xc4,
0x78, 0xe4, 0x2f, 0xad, 0x06, 0x18, 0x43, 0x2f,
0xa7, 0xd7, 0xfb, 0x3d, 0x99, 0x00, 0x4d, 0x2b,
0x0b, 0xdf, 0xc1, 0x4f, 0x80, 0x24, 0x83, 0x2b,
}
t0, t1, t2, t3 := &Elt{}, &Elt{}, &Elt{}, &Elt{}
Mul(t0, x, y) // t0 = u*v
Sqr(t1, y) // t1 = v^2
Mul(t2, t0, t1) // t2 = u*v^3
Sqr(t0, t1) // t0 = v^4
Mul(t1, t0, t2) // t1 = u*v^7
var Tab [4]*Elt
Tab[0] = &Elt{}
Tab[1] = &Elt{}
Tab[2] = t3
Tab[3] = t1
*Tab[0] = *t1
Sqr(Tab[0], Tab[0])
Sqr(Tab[1], Tab[0])
Sqr(Tab[1], Tab[1])
Mul(Tab[1], Tab[1], Tab[3])
Mul(Tab[0], Tab[0], Tab[1])
Sqr(Tab[0], Tab[0])
Mul(Tab[0], Tab[0], Tab[1])
Sqr(Tab[1], Tab[0])
for i := 0; i < 4; i++ {
Sqr(Tab[1], Tab[1])
}
Mul(Tab[1], Tab[1], Tab[0])
Sqr(Tab[2], Tab[1])
for i := 0; i < 4; i++ {
Sqr(Tab[2], Tab[2])
}
Mul(Tab[2], Tab[2], Tab[0])
Sqr(Tab[1], Tab[2])
for i := 0; i < 14; i++ {
Sqr(Tab[1], Tab[1])
}
Mul(Tab[1], Tab[1], Tab[2])
Sqr(Tab[2], Tab[1])
for i := 0; i < 29; i++ {
Sqr(Tab[2], Tab[2])
}
Mul(Tab[2], Tab[2], Tab[1])
Sqr(Tab[1], Tab[2])
for i := 0; i < 59; i++ {
Sqr(Tab[1], Tab[1])
}
Mul(Tab[1], Tab[1], Tab[2])
for i := 0; i < 5; i++ {
Sqr(Tab[1], Tab[1])
}
Mul(Tab[1], Tab[1], Tab[0])
Sqr(Tab[2], Tab[1])
for i := 0; i < 124; i++ {
Sqr(Tab[2], Tab[2])
}
Mul(Tab[2], Tab[2], Tab[1])
Sqr(Tab[2], Tab[2])
Sqr(Tab[2], Tab[2])
Mul(Tab[2], Tab[2], Tab[3])
Mul(z, t3, t2) // z = xy^(p+3)/8 = xy^3*(xy^7)^(p-5)/8
// Checking whether y z^2 == x
Sqr(t0, z) // t0 = z^2
Mul(t0, t0, y) // t0 = yz^2
Sub(t1, t0, x) // t1 = t0-u
Add(t2, t0, x) // t2 = t0+u
if IsZero(t1) {
return true
} else if IsZero(t2) {
Mul(z, z, sqrtMinusOne) // z = z*sqrt(-1)
return true
} else {
return false
}
}
// Inv calculates z = 1/x mod p.
func Inv(z, x *Elt) {
x0, x1, x2 := &Elt{}, &Elt{}, &Elt{}
Sqr(x1, x)
Sqr(x0, x1)
Sqr(x0, x0)
Mul(x0, x0, x)
Mul(z, x0, x1)
Sqr(x1, z)
Mul(x0, x0, x1)
Sqr(x1, x0)
for i := 0; i < 4; i++ {
Sqr(x1, x1)
}
Mul(x0, x0, x1)
Sqr(x1, x0)
for i := 0; i < 9; i++ {
Sqr(x1, x1)
}
Mul(x1, x1, x0)
Sqr(x2, x1)
for i := 0; i < 19; i++ {
Sqr(x2, x2)
}
Mul(x2, x2, x1)
for i := 0; i < 10; i++ {
Sqr(x2, x2)
}
Mul(x2, x2, x0)
Sqr(x0, x2)
for i := 0; i < 49; i++ {
Sqr(x0, x0)
}
Mul(x0, x0, x2)
Sqr(x1, x0)
for i := 0; i < 99; i++ {
Sqr(x1, x1)
}
Mul(x1, x1, x0)
for i := 0; i < 50; i++ {
Sqr(x1, x1)
}
Mul(x1, x1, x2)
for i := 0; i < 5; i++ {
Sqr(x1, x1)
}
Mul(z, z, x1)
}
// Cmov assigns y to x if n is 1.
func Cmov(x, y *Elt, n uint) { cmov(x, y, n) }
// Cswap interchanges x and y if n is 1.
func Cswap(x, y *Elt, n uint) { cswap(x, y, n) }
// Add calculates z = x+y mod p.
func Add(z, x, y *Elt) { add(z, x, y) }
// Sub calculates z = x-y mod p.
func Sub(z, x, y *Elt) { sub(z, x, y) }
// AddSub calculates (x,y) = (x+y mod p, x-y mod p).
func AddSub(x, y *Elt) { addsub(x, y) }
// Mul calculates z = x*y mod p.
func Mul(z, x, y *Elt) { mul(z, x, y) }
// Sqr calculates z = x^2 mod p.
func Sqr(z, x *Elt) { sqr(z, x) }
// Modp ensures that z is between [0,p-1].
func Modp(z *Elt) { modp(z) }

View File

@ -0,0 +1,45 @@
//go:build amd64 && !purego
// +build amd64,!purego
package fp25519
import (
"golang.org/x/sys/cpu"
)
var hasBmi2Adx = cpu.X86.HasBMI2 && cpu.X86.HasADX
var _ = hasBmi2Adx
func cmov(x, y *Elt, n uint) { cmovAmd64(x, y, n) }
func cswap(x, y *Elt, n uint) { cswapAmd64(x, y, n) }
func add(z, x, y *Elt) { addAmd64(z, x, y) }
func sub(z, x, y *Elt) { subAmd64(z, x, y) }
func addsub(x, y *Elt) { addsubAmd64(x, y) }
func mul(z, x, y *Elt) { mulAmd64(z, x, y) }
func sqr(z, x *Elt) { sqrAmd64(z, x) }
func modp(z *Elt) { modpAmd64(z) }
//go:noescape
func cmovAmd64(x, y *Elt, n uint)
//go:noescape
func cswapAmd64(x, y *Elt, n uint)
//go:noescape
func addAmd64(z, x, y *Elt)
//go:noescape
func subAmd64(z, x, y *Elt)
//go:noescape
func addsubAmd64(x, y *Elt)
//go:noescape
func mulAmd64(z, x, y *Elt)
//go:noescape
func sqrAmd64(z, x *Elt)
//go:noescape
func modpAmd64(z *Elt)

View File

@ -0,0 +1,350 @@
// This code was imported from https://github.com/armfazh/rfc7748_precomputed
// CHECK_BMI2ADX triggers bmi2adx if supported,
// otherwise it fallbacks to legacy code.
#define CHECK_BMI2ADX(label, legacy, bmi2adx) \
CMPB ·hasBmi2Adx(SB), $0 \
JE label \
bmi2adx \
RET \
label: \
legacy \
RET
// cselect is a conditional move
// if b=1: it copies y into x;
// if b=0: x remains with the same value;
// if b<> 0,1: undefined.
// Uses: AX, DX, FLAGS
// Instr: x86_64, cmov
#define cselect(x,y,b) \
TESTQ b, b \
MOVQ 0+x, AX; MOVQ 0+y, DX; CMOVQNE DX, AX; MOVQ AX, 0+x; \
MOVQ 8+x, AX; MOVQ 8+y, DX; CMOVQNE DX, AX; MOVQ AX, 8+x; \
MOVQ 16+x, AX; MOVQ 16+y, DX; CMOVQNE DX, AX; MOVQ AX, 16+x; \
MOVQ 24+x, AX; MOVQ 24+y, DX; CMOVQNE DX, AX; MOVQ AX, 24+x;
// cswap is a conditional swap
// if b=1: x,y <- y,x;
// if b=0: x,y remain with the same values;
// if b<> 0,1: undefined.
// Uses: AX, DX, R8, FLAGS
// Instr: x86_64, cmov
#define cswap(x,y,b) \
TESTQ b, b \
MOVQ 0+x, AX; MOVQ AX, R8; MOVQ 0+y, DX; CMOVQNE DX, AX; CMOVQNE R8, DX; MOVQ AX, 0+x; MOVQ DX, 0+y; \
MOVQ 8+x, AX; MOVQ AX, R8; MOVQ 8+y, DX; CMOVQNE DX, AX; CMOVQNE R8, DX; MOVQ AX, 8+x; MOVQ DX, 8+y; \
MOVQ 16+x, AX; MOVQ AX, R8; MOVQ 16+y, DX; CMOVQNE DX, AX; CMOVQNE R8, DX; MOVQ AX, 16+x; MOVQ DX, 16+y; \
MOVQ 24+x, AX; MOVQ AX, R8; MOVQ 24+y, DX; CMOVQNE DX, AX; CMOVQNE R8, DX; MOVQ AX, 24+x; MOVQ DX, 24+y;
// additionLeg adds x and y and stores in z
// Uses: AX, DX, R8-R11, FLAGS
// Instr: x86_64, cmov
#define additionLeg(z,x,y) \
MOVL $38, AX; \
MOVL $0, DX; \
MOVQ 0+x, R8; ADDQ 0+y, R8; \
MOVQ 8+x, R9; ADCQ 8+y, R9; \
MOVQ 16+x, R10; ADCQ 16+y, R10; \
MOVQ 24+x, R11; ADCQ 24+y, R11; \
CMOVQCS AX, DX; \
ADDQ DX, R8; \
ADCQ $0, R9; MOVQ R9, 8+z; \
ADCQ $0, R10; MOVQ R10, 16+z; \
ADCQ $0, R11; MOVQ R11, 24+z; \
MOVL $0, DX; \
CMOVQCS AX, DX; \
ADDQ DX, R8; MOVQ R8, 0+z;
// additionAdx adds x and y and stores in z
// Uses: AX, DX, R8-R11, FLAGS
// Instr: x86_64, cmov, adx
#define additionAdx(z,x,y) \
MOVL $38, AX; \
XORL DX, DX; \
MOVQ 0+x, R8; ADCXQ 0+y, R8; \
MOVQ 8+x, R9; ADCXQ 8+y, R9; \
MOVQ 16+x, R10; ADCXQ 16+y, R10; \
MOVQ 24+x, R11; ADCXQ 24+y, R11; \
CMOVQCS AX, DX ; \
XORL AX, AX; \
ADCXQ DX, R8; \
ADCXQ AX, R9; MOVQ R9, 8+z; \
ADCXQ AX, R10; MOVQ R10, 16+z; \
ADCXQ AX, R11; MOVQ R11, 24+z; \
MOVL $38, DX; \
CMOVQCS DX, AX; \
ADDQ AX, R8; MOVQ R8, 0+z;
// subtraction subtracts y from x and stores in z
// Uses: AX, DX, R8-R11, FLAGS
// Instr: x86_64, cmov
#define subtraction(z,x,y) \
MOVL $38, AX; \
MOVQ 0+x, R8; SUBQ 0+y, R8; \
MOVQ 8+x, R9; SBBQ 8+y, R9; \
MOVQ 16+x, R10; SBBQ 16+y, R10; \
MOVQ 24+x, R11; SBBQ 24+y, R11; \
MOVL $0, DX; \
CMOVQCS AX, DX; \
SUBQ DX, R8; \
SBBQ $0, R9; MOVQ R9, 8+z; \
SBBQ $0, R10; MOVQ R10, 16+z; \
SBBQ $0, R11; MOVQ R11, 24+z; \
MOVL $0, DX; \
CMOVQCS AX, DX; \
SUBQ DX, R8; MOVQ R8, 0+z;
// integerMulAdx multiplies x and y and stores in z
// Uses: AX, DX, R8-R15, FLAGS
// Instr: x86_64, bmi2, adx
#define integerMulAdx(z,x,y) \
MOVQ 0+y, DX; XORL AX, AX; \
MULXQ 0+x, AX, R8; MOVQ AX, 0+z; \
MULXQ 8+x, AX, R9; ADCXQ AX, R8; \
MULXQ 16+x, AX, R10; ADCXQ AX, R9; \
MULXQ 24+x, AX, R11; ADCXQ AX, R10; \
MOVL $0, AX;;;;;;;;; ADCXQ AX, R11; \
MOVQ 8+y, DX; XORL AX, AX; \
MULXQ 0+x, AX, R12; ADCXQ R8, AX; MOVQ AX, 8+z; \
MULXQ 8+x, AX, R13; ADCXQ R9, R12; ADOXQ AX, R12; \
MULXQ 16+x, AX, R14; ADCXQ R10, R13; ADOXQ AX, R13; \
MULXQ 24+x, AX, R15; ADCXQ R11, R14; ADOXQ AX, R14; \
MOVL $0, AX;;;;;;;;; ADCXQ AX, R15; ADOXQ AX, R15; \
MOVQ 16+y, DX; XORL AX, AX; \
MULXQ 0+x, AX, R8; ADCXQ R12, AX; MOVQ AX, 16+z; \
MULXQ 8+x, AX, R9; ADCXQ R13, R8; ADOXQ AX, R8; \
MULXQ 16+x, AX, R10; ADCXQ R14, R9; ADOXQ AX, R9; \
MULXQ 24+x, AX, R11; ADCXQ R15, R10; ADOXQ AX, R10; \
MOVL $0, AX;;;;;;;;; ADCXQ AX, R11; ADOXQ AX, R11; \
MOVQ 24+y, DX; XORL AX, AX; \
MULXQ 0+x, AX, R12; ADCXQ R8, AX; MOVQ AX, 24+z; \
MULXQ 8+x, AX, R13; ADCXQ R9, R12; ADOXQ AX, R12; MOVQ R12, 32+z; \
MULXQ 16+x, AX, R14; ADCXQ R10, R13; ADOXQ AX, R13; MOVQ R13, 40+z; \
MULXQ 24+x, AX, R15; ADCXQ R11, R14; ADOXQ AX, R14; MOVQ R14, 48+z; \
MOVL $0, AX;;;;;;;;; ADCXQ AX, R15; ADOXQ AX, R15; MOVQ R15, 56+z;
// integerMulLeg multiplies x and y and stores in z
// Uses: AX, DX, R8-R15, FLAGS
// Instr: x86_64
#define integerMulLeg(z,x,y) \
MOVQ 0+y, R8; \
MOVQ 0+x, AX; MULQ R8; MOVQ AX, 0+z; MOVQ DX, R15; \
MOVQ 8+x, AX; MULQ R8; MOVQ AX, R13; MOVQ DX, R10; \
MOVQ 16+x, AX; MULQ R8; MOVQ AX, R14; MOVQ DX, R11; \
MOVQ 24+x, AX; MULQ R8; \
ADDQ R13, R15; \
ADCQ R14, R10; MOVQ R10, 16+z; \
ADCQ AX, R11; MOVQ R11, 24+z; \
ADCQ $0, DX; MOVQ DX, 32+z; \
MOVQ 8+y, R8; \
MOVQ 0+x, AX; MULQ R8; MOVQ AX, R12; MOVQ DX, R9; \
MOVQ 8+x, AX; MULQ R8; MOVQ AX, R13; MOVQ DX, R10; \
MOVQ 16+x, AX; MULQ R8; MOVQ AX, R14; MOVQ DX, R11; \
MOVQ 24+x, AX; MULQ R8; \
ADDQ R12, R15; MOVQ R15, 8+z; \
ADCQ R13, R9; \
ADCQ R14, R10; \
ADCQ AX, R11; \
ADCQ $0, DX; \
ADCQ 16+z, R9; MOVQ R9, R15; \
ADCQ 24+z, R10; MOVQ R10, 24+z; \
ADCQ 32+z, R11; MOVQ R11, 32+z; \
ADCQ $0, DX; MOVQ DX, 40+z; \
MOVQ 16+y, R8; \
MOVQ 0+x, AX; MULQ R8; MOVQ AX, R12; MOVQ DX, R9; \
MOVQ 8+x, AX; MULQ R8; MOVQ AX, R13; MOVQ DX, R10; \
MOVQ 16+x, AX; MULQ R8; MOVQ AX, R14; MOVQ DX, R11; \
MOVQ 24+x, AX; MULQ R8; \
ADDQ R12, R15; MOVQ R15, 16+z; \
ADCQ R13, R9; \
ADCQ R14, R10; \
ADCQ AX, R11; \
ADCQ $0, DX; \
ADCQ 24+z, R9; MOVQ R9, R15; \
ADCQ 32+z, R10; MOVQ R10, 32+z; \
ADCQ 40+z, R11; MOVQ R11, 40+z; \
ADCQ $0, DX; MOVQ DX, 48+z; \
MOVQ 24+y, R8; \
MOVQ 0+x, AX; MULQ R8; MOVQ AX, R12; MOVQ DX, R9; \
MOVQ 8+x, AX; MULQ R8; MOVQ AX, R13; MOVQ DX, R10; \
MOVQ 16+x, AX; MULQ R8; MOVQ AX, R14; MOVQ DX, R11; \
MOVQ 24+x, AX; MULQ R8; \
ADDQ R12, R15; MOVQ R15, 24+z; \
ADCQ R13, R9; \
ADCQ R14, R10; \
ADCQ AX, R11; \
ADCQ $0, DX; \
ADCQ 32+z, R9; MOVQ R9, 32+z; \
ADCQ 40+z, R10; MOVQ R10, 40+z; \
ADCQ 48+z, R11; MOVQ R11, 48+z; \
ADCQ $0, DX; MOVQ DX, 56+z;
// integerSqrLeg squares x and stores in z
// Uses: AX, CX, DX, R8-R15, FLAGS
// Instr: x86_64
#define integerSqrLeg(z,x) \
MOVQ 0+x, R8; \
MOVQ 8+x, AX; MULQ R8; MOVQ AX, R9; MOVQ DX, R10; /* A[0]*A[1] */ \
MOVQ 16+x, AX; MULQ R8; MOVQ AX, R14; MOVQ DX, R11; /* A[0]*A[2] */ \
MOVQ 24+x, AX; MULQ R8; MOVQ AX, R15; MOVQ DX, R12; /* A[0]*A[3] */ \
MOVQ 24+x, R8; \
MOVQ 8+x, AX; MULQ R8; MOVQ AX, CX; MOVQ DX, R13; /* A[3]*A[1] */ \
MOVQ 16+x, AX; MULQ R8; /* A[3]*A[2] */ \
\
ADDQ R14, R10;\
ADCQ R15, R11; MOVL $0, R15;\
ADCQ CX, R12;\
ADCQ AX, R13;\
ADCQ $0, DX; MOVQ DX, R14;\
MOVQ 8+x, AX; MULQ 16+x;\
\
ADDQ AX, R11;\
ADCQ DX, R12;\
ADCQ $0, R13;\
ADCQ $0, R14;\
ADCQ $0, R15;\
\
SHLQ $1, R14, R15; MOVQ R15, 56+z;\
SHLQ $1, R13, R14; MOVQ R14, 48+z;\
SHLQ $1, R12, R13; MOVQ R13, 40+z;\
SHLQ $1, R11, R12; MOVQ R12, 32+z;\
SHLQ $1, R10, R11; MOVQ R11, 24+z;\
SHLQ $1, R9, R10; MOVQ R10, 16+z;\
SHLQ $1, R9; MOVQ R9, 8+z;\
\
MOVQ 0+x,AX; MULQ AX; MOVQ AX, 0+z; MOVQ DX, R9;\
MOVQ 8+x,AX; MULQ AX; MOVQ AX, R10; MOVQ DX, R11;\
MOVQ 16+x,AX; MULQ AX; MOVQ AX, R12; MOVQ DX, R13;\
MOVQ 24+x,AX; MULQ AX; MOVQ AX, R14; MOVQ DX, R15;\
\
ADDQ 8+z, R9; MOVQ R9, 8+z;\
ADCQ 16+z, R10; MOVQ R10, 16+z;\
ADCQ 24+z, R11; MOVQ R11, 24+z;\
ADCQ 32+z, R12; MOVQ R12, 32+z;\
ADCQ 40+z, R13; MOVQ R13, 40+z;\
ADCQ 48+z, R14; MOVQ R14, 48+z;\
ADCQ 56+z, R15; MOVQ R15, 56+z;
// integerSqrAdx squares x and stores in z
// Uses: AX, CX, DX, R8-R15, FLAGS
// Instr: x86_64, bmi2, adx
#define integerSqrAdx(z,x) \
MOVQ 0+x, DX; /* A[0] */ \
MULXQ 8+x, R8, R14; /* A[1]*A[0] */ XORL R15, R15; \
MULXQ 16+x, R9, R10; /* A[2]*A[0] */ ADCXQ R14, R9; \
MULXQ 24+x, AX, CX; /* A[3]*A[0] */ ADCXQ AX, R10; \
MOVQ 24+x, DX; /* A[3] */ \
MULXQ 8+x, R11, R12; /* A[1]*A[3] */ ADCXQ CX, R11; \
MULXQ 16+x, AX, R13; /* A[2]*A[3] */ ADCXQ AX, R12; \
MOVQ 8+x, DX; /* A[1] */ ADCXQ R15, R13; \
MULXQ 16+x, AX, CX; /* A[2]*A[1] */ MOVL $0, R14; \
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ADCXQ R15, R14; \
XORL R15, R15; \
ADOXQ AX, R10; ADCXQ R8, R8; \
ADOXQ CX, R11; ADCXQ R9, R9; \
ADOXQ R15, R12; ADCXQ R10, R10; \
ADOXQ R15, R13; ADCXQ R11, R11; \
ADOXQ R15, R14; ADCXQ R12, R12; \
;;;;;;;;;;;;;;; ADCXQ R13, R13; \
;;;;;;;;;;;;;;; ADCXQ R14, R14; \
MOVQ 0+x, DX; MULXQ DX, AX, CX; /* A[0]^2 */ \
;;;;;;;;;;;;;;; MOVQ AX, 0+z; \
ADDQ CX, R8; MOVQ R8, 8+z; \
MOVQ 8+x, DX; MULXQ DX, AX, CX; /* A[1]^2 */ \
ADCQ AX, R9; MOVQ R9, 16+z; \
ADCQ CX, R10; MOVQ R10, 24+z; \
MOVQ 16+x, DX; MULXQ DX, AX, CX; /* A[2]^2 */ \
ADCQ AX, R11; MOVQ R11, 32+z; \
ADCQ CX, R12; MOVQ R12, 40+z; \
MOVQ 24+x, DX; MULXQ DX, AX, CX; /* A[3]^2 */ \
ADCQ AX, R13; MOVQ R13, 48+z; \
ADCQ CX, R14; MOVQ R14, 56+z;
// reduceFromDouble finds z congruent to x modulo p such that 0<z<2^256
// Uses: AX, DX, R8-R13, FLAGS
// Instr: x86_64
#define reduceFromDoubleLeg(z,x) \
/* 2*C = 38 = 2^256 */ \
MOVL $38, AX; MULQ 32+x; MOVQ AX, R8; MOVQ DX, R9; /* C*C[4] */ \
MOVL $38, AX; MULQ 40+x; MOVQ AX, R12; MOVQ DX, R10; /* C*C[5] */ \
MOVL $38, AX; MULQ 48+x; MOVQ AX, R13; MOVQ DX, R11; /* C*C[6] */ \
MOVL $38, AX; MULQ 56+x; /* C*C[7] */ \
ADDQ R12, R9; \
ADCQ R13, R10; \
ADCQ AX, R11; \
ADCQ $0, DX; \
ADDQ 0+x, R8; \
ADCQ 8+x, R9; \
ADCQ 16+x, R10; \
ADCQ 24+x, R11; \
ADCQ $0, DX; \
MOVL $38, AX; \
IMULQ AX, DX; /* C*C[4], CF=0, OF=0 */ \
ADDQ DX, R8; \
ADCQ $0, R9; MOVQ R9, 8+z; \
ADCQ $0, R10; MOVQ R10, 16+z; \
ADCQ $0, R11; MOVQ R11, 24+z; \
MOVL $0, DX; \
CMOVQCS AX, DX; \
ADDQ DX, R8; MOVQ R8, 0+z;
// reduceFromDoubleAdx finds z congruent to x modulo p such that 0<z<2^256
// Uses: AX, DX, R8-R13, FLAGS
// Instr: x86_64, bmi2, adx
#define reduceFromDoubleAdx(z,x) \
MOVL $38, DX; /* 2*C = 38 = 2^256 */ \
MULXQ 32+x, R8, R10; /* C*C[4] */ XORL AX, AX; ADOXQ 0+x, R8; \
MULXQ 40+x, R9, R11; /* C*C[5] */ ADCXQ R10, R9; ADOXQ 8+x, R9; \
MULXQ 48+x, R10, R13; /* C*C[6] */ ADCXQ R11, R10; ADOXQ 16+x, R10; \
MULXQ 56+x, R11, R12; /* C*C[7] */ ADCXQ R13, R11; ADOXQ 24+x, R11; \
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ADCXQ AX, R12; ADOXQ AX, R12; \
IMULQ DX, R12; /* C*C[4], CF=0, OF=0 */ \
ADCXQ R12, R8; \
ADCXQ AX, R9; MOVQ R9, 8+z; \
ADCXQ AX, R10; MOVQ R10, 16+z; \
ADCXQ AX, R11; MOVQ R11, 24+z; \
MOVL $0, R12; \
CMOVQCS DX, R12; \
ADDQ R12, R8; MOVQ R8, 0+z;
// addSub calculates two operations: x,y = x+y,x-y
// Uses: AX, DX, R8-R15, FLAGS
#define addSub(x,y) \
MOVL $38, AX; \
XORL DX, DX; \
MOVQ 0+x, R8; MOVQ R8, R12; ADDQ 0+y, R8; \
MOVQ 8+x, R9; MOVQ R9, R13; ADCQ 8+y, R9; \
MOVQ 16+x, R10; MOVQ R10, R14; ADCQ 16+y, R10; \
MOVQ 24+x, R11; MOVQ R11, R15; ADCQ 24+y, R11; \
CMOVQCS AX, DX; \
XORL AX, AX; \
ADDQ DX, R8; \
ADCQ $0, R9; \
ADCQ $0, R10; \
ADCQ $0, R11; \
MOVL $38, DX; \
CMOVQCS DX, AX; \
ADDQ AX, R8; \
MOVL $38, AX; \
SUBQ 0+y, R12; \
SBBQ 8+y, R13; \
SBBQ 16+y, R14; \
SBBQ 24+y, R15; \
MOVL $0, DX; \
CMOVQCS AX, DX; \
SUBQ DX, R12; \
SBBQ $0, R13; \
SBBQ $0, R14; \
SBBQ $0, R15; \
MOVL $0, DX; \
CMOVQCS AX, DX; \
SUBQ DX, R12; \
MOVQ R8, 0+x; \
MOVQ R9, 8+x; \
MOVQ R10, 16+x; \
MOVQ R11, 24+x; \
MOVQ R12, 0+y; \
MOVQ R13, 8+y; \
MOVQ R14, 16+y; \
MOVQ R15, 24+y;

View File

@ -0,0 +1,111 @@
// +build amd64
#include "textflag.h"
#include "fp_amd64.h"
// func cmovAmd64(x, y *Elt, n uint)
TEXT ·cmovAmd64(SB),NOSPLIT,$0-24
MOVQ x+0(FP), DI
MOVQ y+8(FP), SI
MOVQ n+16(FP), BX
cselect(0(DI),0(SI),BX)
RET
// func cswapAmd64(x, y *Elt, n uint)
TEXT ·cswapAmd64(SB),NOSPLIT,$0-24
MOVQ x+0(FP), DI
MOVQ y+8(FP), SI
MOVQ n+16(FP), BX
cswap(0(DI),0(SI),BX)
RET
// func subAmd64(z, x, y *Elt)
TEXT ·subAmd64(SB),NOSPLIT,$0-24
MOVQ z+0(FP), DI
MOVQ x+8(FP), SI
MOVQ y+16(FP), BX
subtraction(0(DI),0(SI),0(BX))
RET
// func addsubAmd64(x, y *Elt)
TEXT ·addsubAmd64(SB),NOSPLIT,$0-16
MOVQ x+0(FP), DI
MOVQ y+8(FP), SI
addSub(0(DI),0(SI))
RET
#define addLegacy \
additionLeg(0(DI),0(SI),0(BX))
#define addBmi2Adx \
additionAdx(0(DI),0(SI),0(BX))
#define mulLegacy \
integerMulLeg(0(SP),0(SI),0(BX)) \
reduceFromDoubleLeg(0(DI),0(SP))
#define mulBmi2Adx \
integerMulAdx(0(SP),0(SI),0(BX)) \
reduceFromDoubleAdx(0(DI),0(SP))
#define sqrLegacy \
integerSqrLeg(0(SP),0(SI)) \
reduceFromDoubleLeg(0(DI),0(SP))
#define sqrBmi2Adx \
integerSqrAdx(0(SP),0(SI)) \
reduceFromDoubleAdx(0(DI),0(SP))
// func addAmd64(z, x, y *Elt)
TEXT ·addAmd64(SB),NOSPLIT,$0-24
MOVQ z+0(FP), DI
MOVQ x+8(FP), SI
MOVQ y+16(FP), BX
CHECK_BMI2ADX(LADD, addLegacy, addBmi2Adx)
// func mulAmd64(z, x, y *Elt)
TEXT ·mulAmd64(SB),NOSPLIT,$64-24
MOVQ z+0(FP), DI
MOVQ x+8(FP), SI
MOVQ y+16(FP), BX
CHECK_BMI2ADX(LMUL, mulLegacy, mulBmi2Adx)
// func sqrAmd64(z, x *Elt)
TEXT ·sqrAmd64(SB),NOSPLIT,$64-16
MOVQ z+0(FP), DI
MOVQ x+8(FP), SI
CHECK_BMI2ADX(LSQR, sqrLegacy, sqrBmi2Adx)
// func modpAmd64(z *Elt)
TEXT ·modpAmd64(SB),NOSPLIT,$0-8
MOVQ z+0(FP), DI
MOVQ (DI), R8
MOVQ 8(DI), R9
MOVQ 16(DI), R10
MOVQ 24(DI), R11
MOVL $19, AX
MOVL $38, CX
BTRQ $63, R11 // PUT BIT 255 IN CARRY FLAG AND CLEAR
CMOVLCC AX, CX // C[255] ? 38 : 19
// ADD EITHER 19 OR 38 TO C
ADDQ CX, R8
ADCQ $0, R9
ADCQ $0, R10
ADCQ $0, R11
// TEST FOR BIT 255 AGAIN; ONLY TRIGGERED ON OVERFLOW MODULO 2^255-19
MOVL $0, CX
CMOVLPL AX, CX // C[255] ? 0 : 19
BTRQ $63, R11 // CLEAR BIT 255
// SUBTRACT 19 IF NECESSARY
SUBQ CX, R8
MOVQ R8, (DI)
SBBQ $0, R9
MOVQ R9, 8(DI)
SBBQ $0, R10
MOVQ R10, 16(DI)
SBBQ $0, R11
MOVQ R11, 24(DI)
RET

View File

@ -0,0 +1,317 @@
package fp25519
import (
"encoding/binary"
"math/bits"
)
func cmovGeneric(x, y *Elt, n uint) {
m := -uint64(n & 0x1)
x0 := binary.LittleEndian.Uint64(x[0*8 : 1*8])
x1 := binary.LittleEndian.Uint64(x[1*8 : 2*8])
x2 := binary.LittleEndian.Uint64(x[2*8 : 3*8])
x3 := binary.LittleEndian.Uint64(x[3*8 : 4*8])
y0 := binary.LittleEndian.Uint64(y[0*8 : 1*8])
y1 := binary.LittleEndian.Uint64(y[1*8 : 2*8])
y2 := binary.LittleEndian.Uint64(y[2*8 : 3*8])
y3 := binary.LittleEndian.Uint64(y[3*8 : 4*8])
x0 = (x0 &^ m) | (y0 & m)
x1 = (x1 &^ m) | (y1 & m)
x2 = (x2 &^ m) | (y2 & m)
x3 = (x3 &^ m) | (y3 & m)
binary.LittleEndian.PutUint64(x[0*8:1*8], x0)
binary.LittleEndian.PutUint64(x[1*8:2*8], x1)
binary.LittleEndian.PutUint64(x[2*8:3*8], x2)
binary.LittleEndian.PutUint64(x[3*8:4*8], x3)
}
func cswapGeneric(x, y *Elt, n uint) {
m := -uint64(n & 0x1)
x0 := binary.LittleEndian.Uint64(x[0*8 : 1*8])
x1 := binary.LittleEndian.Uint64(x[1*8 : 2*8])
x2 := binary.LittleEndian.Uint64(x[2*8 : 3*8])
x3 := binary.LittleEndian.Uint64(x[3*8 : 4*8])
y0 := binary.LittleEndian.Uint64(y[0*8 : 1*8])
y1 := binary.LittleEndian.Uint64(y[1*8 : 2*8])
y2 := binary.LittleEndian.Uint64(y[2*8 : 3*8])
y3 := binary.LittleEndian.Uint64(y[3*8 : 4*8])
t0 := m & (x0 ^ y0)
t1 := m & (x1 ^ y1)
t2 := m & (x2 ^ y2)
t3 := m & (x3 ^ y3)
x0 ^= t0
x1 ^= t1
x2 ^= t2
x3 ^= t3
y0 ^= t0
y1 ^= t1
y2 ^= t2
y3 ^= t3
binary.LittleEndian.PutUint64(x[0*8:1*8], x0)
binary.LittleEndian.PutUint64(x[1*8:2*8], x1)
binary.LittleEndian.PutUint64(x[2*8:3*8], x2)
binary.LittleEndian.PutUint64(x[3*8:4*8], x3)
binary.LittleEndian.PutUint64(y[0*8:1*8], y0)
binary.LittleEndian.PutUint64(y[1*8:2*8], y1)
binary.LittleEndian.PutUint64(y[2*8:3*8], y2)
binary.LittleEndian.PutUint64(y[3*8:4*8], y3)
}
func addGeneric(z, x, y *Elt) {
x0 := binary.LittleEndian.Uint64(x[0*8 : 1*8])
x1 := binary.LittleEndian.Uint64(x[1*8 : 2*8])
x2 := binary.LittleEndian.Uint64(x[2*8 : 3*8])
x3 := binary.LittleEndian.Uint64(x[3*8 : 4*8])
y0 := binary.LittleEndian.Uint64(y[0*8 : 1*8])
y1 := binary.LittleEndian.Uint64(y[1*8 : 2*8])
y2 := binary.LittleEndian.Uint64(y[2*8 : 3*8])
y3 := binary.LittleEndian.Uint64(y[3*8 : 4*8])
z0, c0 := bits.Add64(x0, y0, 0)
z1, c1 := bits.Add64(x1, y1, c0)
z2, c2 := bits.Add64(x2, y2, c1)
z3, c3 := bits.Add64(x3, y3, c2)
z0, c0 = bits.Add64(z0, (-c3)&38, 0)
z1, c1 = bits.Add64(z1, 0, c0)
z2, c2 = bits.Add64(z2, 0, c1)
z3, c3 = bits.Add64(z3, 0, c2)
z0, _ = bits.Add64(z0, (-c3)&38, 0)
binary.LittleEndian.PutUint64(z[0*8:1*8], z0)
binary.LittleEndian.PutUint64(z[1*8:2*8], z1)
binary.LittleEndian.PutUint64(z[2*8:3*8], z2)
binary.LittleEndian.PutUint64(z[3*8:4*8], z3)
}
func subGeneric(z, x, y *Elt) {
x0 := binary.LittleEndian.Uint64(x[0*8 : 1*8])
x1 := binary.LittleEndian.Uint64(x[1*8 : 2*8])
x2 := binary.LittleEndian.Uint64(x[2*8 : 3*8])
x3 := binary.LittleEndian.Uint64(x[3*8 : 4*8])
y0 := binary.LittleEndian.Uint64(y[0*8 : 1*8])
y1 := binary.LittleEndian.Uint64(y[1*8 : 2*8])
y2 := binary.LittleEndian.Uint64(y[2*8 : 3*8])
y3 := binary.LittleEndian.Uint64(y[3*8 : 4*8])
z0, c0 := bits.Sub64(x0, y0, 0)
z1, c1 := bits.Sub64(x1, y1, c0)
z2, c2 := bits.Sub64(x2, y2, c1)
z3, c3 := bits.Sub64(x3, y3, c2)
z0, c0 = bits.Sub64(z0, (-c3)&38, 0)
z1, c1 = bits.Sub64(z1, 0, c0)
z2, c2 = bits.Sub64(z2, 0, c1)
z3, c3 = bits.Sub64(z3, 0, c2)
z0, _ = bits.Sub64(z0, (-c3)&38, 0)
binary.LittleEndian.PutUint64(z[0*8:1*8], z0)
binary.LittleEndian.PutUint64(z[1*8:2*8], z1)
binary.LittleEndian.PutUint64(z[2*8:3*8], z2)
binary.LittleEndian.PutUint64(z[3*8:4*8], z3)
}
func addsubGeneric(x, y *Elt) {
z := &Elt{}
addGeneric(z, x, y)
subGeneric(y, x, y)
*x = *z
}
func mulGeneric(z, x, y *Elt) {
x0 := binary.LittleEndian.Uint64(x[0*8 : 1*8])
x1 := binary.LittleEndian.Uint64(x[1*8 : 2*8])
x2 := binary.LittleEndian.Uint64(x[2*8 : 3*8])
x3 := binary.LittleEndian.Uint64(x[3*8 : 4*8])
y0 := binary.LittleEndian.Uint64(y[0*8 : 1*8])
y1 := binary.LittleEndian.Uint64(y[1*8 : 2*8])
y2 := binary.LittleEndian.Uint64(y[2*8 : 3*8])
y3 := binary.LittleEndian.Uint64(y[3*8 : 4*8])
yi := y0
h0, l0 := bits.Mul64(x0, yi)
h1, l1 := bits.Mul64(x1, yi)
h2, l2 := bits.Mul64(x2, yi)
h3, l3 := bits.Mul64(x3, yi)
z0 := l0
a0, c0 := bits.Add64(h0, l1, 0)
a1, c1 := bits.Add64(h1, l2, c0)
a2, c2 := bits.Add64(h2, l3, c1)
a3, _ := bits.Add64(h3, 0, c2)
yi = y1
h0, l0 = bits.Mul64(x0, yi)
h1, l1 = bits.Mul64(x1, yi)
h2, l2 = bits.Mul64(x2, yi)
h3, l3 = bits.Mul64(x3, yi)
z1, c0 := bits.Add64(a0, l0, 0)
h0, c1 = bits.Add64(h0, l1, c0)
h1, c2 = bits.Add64(h1, l2, c1)
h2, c3 := bits.Add64(h2, l3, c2)
h3, _ = bits.Add64(h3, 0, c3)
a0, c0 = bits.Add64(a1, h0, 0)
a1, c1 = bits.Add64(a2, h1, c0)
a2, c2 = bits.Add64(a3, h2, c1)
a3, _ = bits.Add64(0, h3, c2)
yi = y2
h0, l0 = bits.Mul64(x0, yi)
h1, l1 = bits.Mul64(x1, yi)
h2, l2 = bits.Mul64(x2, yi)
h3, l3 = bits.Mul64(x3, yi)
z2, c0 := bits.Add64(a0, l0, 0)
h0, c1 = bits.Add64(h0, l1, c0)
h1, c2 = bits.Add64(h1, l2, c1)
h2, c3 = bits.Add64(h2, l3, c2)
h3, _ = bits.Add64(h3, 0, c3)
a0, c0 = bits.Add64(a1, h0, 0)
a1, c1 = bits.Add64(a2, h1, c0)
a2, c2 = bits.Add64(a3, h2, c1)
a3, _ = bits.Add64(0, h3, c2)
yi = y3
h0, l0 = bits.Mul64(x0, yi)
h1, l1 = bits.Mul64(x1, yi)
h2, l2 = bits.Mul64(x2, yi)
h3, l3 = bits.Mul64(x3, yi)
z3, c0 := bits.Add64(a0, l0, 0)
h0, c1 = bits.Add64(h0, l1, c0)
h1, c2 = bits.Add64(h1, l2, c1)
h2, c3 = bits.Add64(h2, l3, c2)
h3, _ = bits.Add64(h3, 0, c3)
z4, c0 := bits.Add64(a1, h0, 0)
z5, c1 := bits.Add64(a2, h1, c0)
z6, c2 := bits.Add64(a3, h2, c1)
z7, _ := bits.Add64(0, h3, c2)
red64(z, z0, z1, z2, z3, z4, z5, z6, z7)
}
func sqrGeneric(z, x *Elt) {
x0 := binary.LittleEndian.Uint64(x[0*8 : 1*8])
x1 := binary.LittleEndian.Uint64(x[1*8 : 2*8])
x2 := binary.LittleEndian.Uint64(x[2*8 : 3*8])
x3 := binary.LittleEndian.Uint64(x[3*8 : 4*8])
h0, a0 := bits.Mul64(x0, x1)
h1, l1 := bits.Mul64(x0, x2)
h2, l2 := bits.Mul64(x0, x3)
h3, l3 := bits.Mul64(x3, x1)
h4, l4 := bits.Mul64(x3, x2)
h, l := bits.Mul64(x1, x2)
a1, c0 := bits.Add64(l1, h0, 0)
a2, c1 := bits.Add64(l2, h1, c0)
a3, c2 := bits.Add64(l3, h2, c1)
a4, c3 := bits.Add64(l4, h3, c2)
a5, _ := bits.Add64(h4, 0, c3)
a2, c0 = bits.Add64(a2, l, 0)
a3, c1 = bits.Add64(a3, h, c0)
a4, c2 = bits.Add64(a4, 0, c1)
a5, c3 = bits.Add64(a5, 0, c2)
a6, _ := bits.Add64(0, 0, c3)
a0, c0 = bits.Add64(a0, a0, 0)
a1, c1 = bits.Add64(a1, a1, c0)
a2, c2 = bits.Add64(a2, a2, c1)
a3, c3 = bits.Add64(a3, a3, c2)
a4, c4 := bits.Add64(a4, a4, c3)
a5, c5 := bits.Add64(a5, a5, c4)
a6, _ = bits.Add64(a6, a6, c5)
b1, b0 := bits.Mul64(x0, x0)
b3, b2 := bits.Mul64(x1, x1)
b5, b4 := bits.Mul64(x2, x2)
b7, b6 := bits.Mul64(x3, x3)
b1, c0 = bits.Add64(b1, a0, 0)
b2, c1 = bits.Add64(b2, a1, c0)
b3, c2 = bits.Add64(b3, a2, c1)
b4, c3 = bits.Add64(b4, a3, c2)
b5, c4 = bits.Add64(b5, a4, c3)
b6, c5 = bits.Add64(b6, a5, c4)
b7, _ = bits.Add64(b7, a6, c5)
red64(z, b0, b1, b2, b3, b4, b5, b6, b7)
}
func modpGeneric(x *Elt) {
x0 := binary.LittleEndian.Uint64(x[0*8 : 1*8])
x1 := binary.LittleEndian.Uint64(x[1*8 : 2*8])
x2 := binary.LittleEndian.Uint64(x[2*8 : 3*8])
x3 := binary.LittleEndian.Uint64(x[3*8 : 4*8])
// CX = C[255] ? 38 : 19
cx := uint64(19) << (x3 >> 63)
// PUT BIT 255 IN CARRY FLAG AND CLEAR
x3 &^= 1 << 63
x0, c0 := bits.Add64(x0, cx, 0)
x1, c1 := bits.Add64(x1, 0, c0)
x2, c2 := bits.Add64(x2, 0, c1)
x3, _ = bits.Add64(x3, 0, c2)
// TEST FOR BIT 255 AGAIN; ONLY TRIGGERED ON OVERFLOW MODULO 2^255-19
// cx = C[255] ? 0 : 19
cx = uint64(19) &^ (-(x3 >> 63))
// CLEAR BIT 255
x3 &^= 1 << 63
x0, c0 = bits.Sub64(x0, cx, 0)
x1, c1 = bits.Sub64(x1, 0, c0)
x2, c2 = bits.Sub64(x2, 0, c1)
x3, _ = bits.Sub64(x3, 0, c2)
binary.LittleEndian.PutUint64(x[0*8:1*8], x0)
binary.LittleEndian.PutUint64(x[1*8:2*8], x1)
binary.LittleEndian.PutUint64(x[2*8:3*8], x2)
binary.LittleEndian.PutUint64(x[3*8:4*8], x3)
}
func red64(z *Elt, x0, x1, x2, x3, x4, x5, x6, x7 uint64) {
h0, l0 := bits.Mul64(x4, 38)
h1, l1 := bits.Mul64(x5, 38)
h2, l2 := bits.Mul64(x6, 38)
h3, l3 := bits.Mul64(x7, 38)
l1, c0 := bits.Add64(h0, l1, 0)
l2, c1 := bits.Add64(h1, l2, c0)
l3, c2 := bits.Add64(h2, l3, c1)
l4, _ := bits.Add64(h3, 0, c2)
l0, c0 = bits.Add64(l0, x0, 0)
l1, c1 = bits.Add64(l1, x1, c0)
l2, c2 = bits.Add64(l2, x2, c1)
l3, c3 := bits.Add64(l3, x3, c2)
l4, _ = bits.Add64(l4, 0, c3)
_, l4 = bits.Mul64(l4, 38)
l0, c0 = bits.Add64(l0, l4, 0)
z1, c1 := bits.Add64(l1, 0, c0)
z2, c2 := bits.Add64(l2, 0, c1)
z3, c3 := bits.Add64(l3, 0, c2)
z0, _ := bits.Add64(l0, (-c3)&38, 0)
binary.LittleEndian.PutUint64(z[0*8:1*8], z0)
binary.LittleEndian.PutUint64(z[1*8:2*8], z1)
binary.LittleEndian.PutUint64(z[2*8:3*8], z2)
binary.LittleEndian.PutUint64(z[3*8:4*8], z3)
}

View File

@ -0,0 +1,13 @@
//go:build !amd64 || purego
// +build !amd64 purego
package fp25519
func cmov(x, y *Elt, n uint) { cmovGeneric(x, y, n) }
func cswap(x, y *Elt, n uint) { cswapGeneric(x, y, n) }
func add(z, x, y *Elt) { addGeneric(z, x, y) }
func sub(z, x, y *Elt) { subGeneric(z, x, y) }
func addsub(x, y *Elt) { addsubGeneric(x, y) }
func mul(z, x, y *Elt) { mulGeneric(z, x, y) }
func sqr(z, x *Elt) { sqrGeneric(z, x) }
func modp(z *Elt) { modpGeneric(z) }

164
vendor/github.com/cloudflare/circl/math/fp448/fp.go generated vendored Normal file
View File

@ -0,0 +1,164 @@
// Package fp448 provides prime field arithmetic over GF(2^448-2^224-1).
package fp448
import (
"errors"
"github.com/cloudflare/circl/internal/conv"
)
// Size in bytes of an element.
const Size = 56
// Elt is a prime field element.
type Elt [Size]byte
func (e Elt) String() string { return conv.BytesLe2Hex(e[:]) }
// p is the prime modulus 2^448-2^224-1.
var p = Elt{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
}
// P returns the prime modulus 2^448-2^224-1.
func P() Elt { return p }
// ToBytes stores in b the little-endian byte representation of x.
func ToBytes(b []byte, x *Elt) error {
if len(b) != Size {
return errors.New("wrong size")
}
Modp(x)
copy(b, x[:])
return nil
}
// IsZero returns true if x is equal to 0.
func IsZero(x *Elt) bool { Modp(x); return *x == Elt{} }
// IsOne returns true if x is equal to 1.
func IsOne(x *Elt) bool { Modp(x); return *x == Elt{1} }
// SetOne assigns x=1.
func SetOne(x *Elt) { *x = Elt{1} }
// One returns the 1 element.
func One() (x Elt) { x = Elt{1}; return }
// Neg calculates z = -x.
func Neg(z, x *Elt) { Sub(z, &p, x) }
// Modp ensures that z is between [0,p-1].
func Modp(z *Elt) { Sub(z, z, &p) }
// InvSqrt calculates z = sqrt(x/y) iff x/y is a quadratic-residue. If so,
// isQR = true; otherwise, isQR = false, since x/y is a quadratic non-residue,
// and z = sqrt(-x/y).
func InvSqrt(z, x, y *Elt) (isQR bool) {
// First note that x^(2(k+1)) = x^(p-1)/2 * x = legendre(x) * x
// so that's x if x is a quadratic residue and -x otherwise.
// Next, y^(6k+3) = y^(4k+2) * y^(2k+1) = y^(p-1) * y^((p-1)/2) = legendre(y).
// So the z we compute satisfies z^2 y = x^(2(k+1)) y^(6k+3) = legendre(x)*legendre(y).
// Thus if x and y are quadratic residues, then z is indeed sqrt(x/y).
t0, t1 := &Elt{}, &Elt{}
Mul(t0, x, y) // x*y
Sqr(t1, y) // y^2
Mul(t1, t0, t1) // x*y^3
powPminus3div4(z, t1) // (x*y^3)^k
Mul(z, z, t0) // z = x*y*(x*y^3)^k = x^(k+1) * y^(3k+1)
// Check if x/y is a quadratic residue
Sqr(t0, z) // z^2
Mul(t0, t0, y) // y*z^2
Sub(t0, t0, x) // y*z^2-x
return IsZero(t0)
}
// Inv calculates z = 1/x mod p.
func Inv(z, x *Elt) {
// Calculates z = x^(4k+1) = x^(p-3+1) = x^(p-2) = x^-1, where k = (p-3)/4.
t := &Elt{}
powPminus3div4(t, x) // t = x^k
Sqr(t, t) // t = x^2k
Sqr(t, t) // t = x^4k
Mul(z, t, x) // z = x^(4k+1)
}
// powPminus3div4 calculates z = x^k mod p, where k = (p-3)/4.
func powPminus3div4(z, x *Elt) {
x0, x1 := &Elt{}, &Elt{}
Sqr(z, x)
Mul(z, z, x)
Sqr(x0, z)
Mul(x0, x0, x)
Sqr(z, x0)
Sqr(z, z)
Sqr(z, z)
Mul(z, z, x0)
Sqr(x1, z)
for i := 0; i < 5; i++ {
Sqr(x1, x1)
}
Mul(x1, x1, z)
Sqr(z, x1)
for i := 0; i < 11; i++ {
Sqr(z, z)
}
Mul(z, z, x1)
Sqr(z, z)
Sqr(z, z)
Sqr(z, z)
Mul(z, z, x0)
Sqr(x1, z)
for i := 0; i < 26; i++ {
Sqr(x1, x1)
}
Mul(x1, x1, z)
Sqr(z, x1)
for i := 0; i < 53; i++ {
Sqr(z, z)
}
Mul(z, z, x1)
Sqr(z, z)
Sqr(z, z)
Sqr(z, z)
Mul(z, z, x0)
Sqr(x1, z)
for i := 0; i < 110; i++ {
Sqr(x1, x1)
}
Mul(x1, x1, z)
Sqr(z, x1)
Mul(z, z, x)
for i := 0; i < 223; i++ {
Sqr(z, z)
}
Mul(z, z, x1)
}
// Cmov assigns y to x if n is 1.
func Cmov(x, y *Elt, n uint) { cmov(x, y, n) }
// Cswap interchanges x and y if n is 1.
func Cswap(x, y *Elt, n uint) { cswap(x, y, n) }
// Add calculates z = x+y mod p.
func Add(z, x, y *Elt) { add(z, x, y) }
// Sub calculates z = x-y mod p.
func Sub(z, x, y *Elt) { sub(z, x, y) }
// AddSub calculates (x,y) = (x+y mod p, x-y mod p).
func AddSub(x, y *Elt) { addsub(x, y) }
// Mul calculates z = x*y mod p.
func Mul(z, x, y *Elt) { mul(z, x, y) }
// Sqr calculates z = x^2 mod p.
func Sqr(z, x *Elt) { sqr(z, x) }

View File

@ -0,0 +1,43 @@
//go:build amd64 && !purego
// +build amd64,!purego
package fp448
import (
"golang.org/x/sys/cpu"
)
var hasBmi2Adx = cpu.X86.HasBMI2 && cpu.X86.HasADX
var _ = hasBmi2Adx
func cmov(x, y *Elt, n uint) { cmovAmd64(x, y, n) }
func cswap(x, y *Elt, n uint) { cswapAmd64(x, y, n) }
func add(z, x, y *Elt) { addAmd64(z, x, y) }
func sub(z, x, y *Elt) { subAmd64(z, x, y) }
func addsub(x, y *Elt) { addsubAmd64(x, y) }
func mul(z, x, y *Elt) { mulAmd64(z, x, y) }
func sqr(z, x *Elt) { sqrAmd64(z, x) }
/* Functions defined in fp_amd64.s */
//go:noescape
func cmovAmd64(x, y *Elt, n uint)
//go:noescape
func cswapAmd64(x, y *Elt, n uint)
//go:noescape
func addAmd64(z, x, y *Elt)
//go:noescape
func subAmd64(z, x, y *Elt)
//go:noescape
func addsubAmd64(x, y *Elt)
//go:noescape
func mulAmd64(z, x, y *Elt)
//go:noescape
func sqrAmd64(z, x *Elt)

View File

@ -0,0 +1,590 @@
// This code was imported from https://github.com/armfazh/rfc7748_precomputed
// CHECK_BMI2ADX triggers bmi2adx if supported,
// otherwise it fallbacks to legacy code.
#define CHECK_BMI2ADX(label, legacy, bmi2adx) \
CMPB ·hasBmi2Adx(SB), $0 \
JE label \
bmi2adx \
RET \
label: \
legacy \
RET
// cselect is a conditional move
// if b=1: it copies y into x;
// if b=0: x remains with the same value;
// if b<> 0,1: undefined.
// Uses: AX, DX, FLAGS
// Instr: x86_64, cmov
#define cselect(x,y,b) \
TESTQ b, b \
MOVQ 0+x, AX; MOVQ 0+y, DX; CMOVQNE DX, AX; MOVQ AX, 0+x; \
MOVQ 8+x, AX; MOVQ 8+y, DX; CMOVQNE DX, AX; MOVQ AX, 8+x; \
MOVQ 16+x, AX; MOVQ 16+y, DX; CMOVQNE DX, AX; MOVQ AX, 16+x; \
MOVQ 24+x, AX; MOVQ 24+y, DX; CMOVQNE DX, AX; MOVQ AX, 24+x; \
MOVQ 32+x, AX; MOVQ 32+y, DX; CMOVQNE DX, AX; MOVQ AX, 32+x; \
MOVQ 40+x, AX; MOVQ 40+y, DX; CMOVQNE DX, AX; MOVQ AX, 40+x; \
MOVQ 48+x, AX; MOVQ 48+y, DX; CMOVQNE DX, AX; MOVQ AX, 48+x;
// cswap is a conditional swap
// if b=1: x,y <- y,x;
// if b=0: x,y remain with the same values;
// if b<> 0,1: undefined.
// Uses: AX, DX, R8, FLAGS
// Instr: x86_64, cmov
#define cswap(x,y,b) \
TESTQ b, b \
MOVQ 0+x, AX; MOVQ AX, R8; MOVQ 0+y, DX; CMOVQNE DX, AX; CMOVQNE R8, DX; MOVQ AX, 0+x; MOVQ DX, 0+y; \
MOVQ 8+x, AX; MOVQ AX, R8; MOVQ 8+y, DX; CMOVQNE DX, AX; CMOVQNE R8, DX; MOVQ AX, 8+x; MOVQ DX, 8+y; \
MOVQ 16+x, AX; MOVQ AX, R8; MOVQ 16+y, DX; CMOVQNE DX, AX; CMOVQNE R8, DX; MOVQ AX, 16+x; MOVQ DX, 16+y; \
MOVQ 24+x, AX; MOVQ AX, R8; MOVQ 24+y, DX; CMOVQNE DX, AX; CMOVQNE R8, DX; MOVQ AX, 24+x; MOVQ DX, 24+y; \
MOVQ 32+x, AX; MOVQ AX, R8; MOVQ 32+y, DX; CMOVQNE DX, AX; CMOVQNE R8, DX; MOVQ AX, 32+x; MOVQ DX, 32+y; \
MOVQ 40+x, AX; MOVQ AX, R8; MOVQ 40+y, DX; CMOVQNE DX, AX; CMOVQNE R8, DX; MOVQ AX, 40+x; MOVQ DX, 40+y; \
MOVQ 48+x, AX; MOVQ AX, R8; MOVQ 48+y, DX; CMOVQNE DX, AX; CMOVQNE R8, DX; MOVQ AX, 48+x; MOVQ DX, 48+y;
// additionLeg adds x and y and stores in z
// Uses: AX, DX, R8-R14, FLAGS
// Instr: x86_64
#define additionLeg(z,x,y) \
MOVQ 0+x, R8; ADDQ 0+y, R8; \
MOVQ 8+x, R9; ADCQ 8+y, R9; \
MOVQ 16+x, R10; ADCQ 16+y, R10; \
MOVQ 24+x, R11; ADCQ 24+y, R11; \
MOVQ 32+x, R12; ADCQ 32+y, R12; \
MOVQ 40+x, R13; ADCQ 40+y, R13; \
MOVQ 48+x, R14; ADCQ 48+y, R14; \
MOVQ $0, AX; ADCQ $0, AX; \
MOVQ AX, DX; \
SHLQ $32, DX; \
ADDQ AX, R8; MOVQ $0, AX; \
ADCQ $0, R9; \
ADCQ $0, R10; \
ADCQ DX, R11; \
ADCQ $0, R12; \
ADCQ $0, R13; \
ADCQ $0, R14; \
ADCQ $0, AX; \
MOVQ AX, DX; \
SHLQ $32, DX; \
ADDQ AX, R8; MOVQ R8, 0+z; \
ADCQ $0, R9; MOVQ R9, 8+z; \
ADCQ $0, R10; MOVQ R10, 16+z; \
ADCQ DX, R11; MOVQ R11, 24+z; \
ADCQ $0, R12; MOVQ R12, 32+z; \
ADCQ $0, R13; MOVQ R13, 40+z; \
ADCQ $0, R14; MOVQ R14, 48+z;
// additionAdx adds x and y and stores in z
// Uses: AX, DX, R8-R15, FLAGS
// Instr: x86_64, adx
#define additionAdx(z,x,y) \
MOVL $32, R15; \
XORL DX, DX; \
MOVQ 0+x, R8; ADCXQ 0+y, R8; \
MOVQ 8+x, R9; ADCXQ 8+y, R9; \
MOVQ 16+x, R10; ADCXQ 16+y, R10; \
MOVQ 24+x, R11; ADCXQ 24+y, R11; \
MOVQ 32+x, R12; ADCXQ 32+y, R12; \
MOVQ 40+x, R13; ADCXQ 40+y, R13; \
MOVQ 48+x, R14; ADCXQ 48+y, R14; \
;;;;;;;;;;;;;;; ADCXQ DX, DX; \
XORL AX, AX; \
ADCXQ DX, R8; SHLXQ R15, DX, DX; \
ADCXQ AX, R9; \
ADCXQ AX, R10; \
ADCXQ DX, R11; \
ADCXQ AX, R12; \
ADCXQ AX, R13; \
ADCXQ AX, R14; \
ADCXQ AX, AX; \
XORL DX, DX; \
ADCXQ AX, R8; MOVQ R8, 0+z; SHLXQ R15, AX, AX; \
ADCXQ DX, R9; MOVQ R9, 8+z; \
ADCXQ DX, R10; MOVQ R10, 16+z; \
ADCXQ AX, R11; MOVQ R11, 24+z; \
ADCXQ DX, R12; MOVQ R12, 32+z; \
ADCXQ DX, R13; MOVQ R13, 40+z; \
ADCXQ DX, R14; MOVQ R14, 48+z;
// subtraction subtracts y from x and stores in z
// Uses: AX, DX, R8-R14, FLAGS
// Instr: x86_64
#define subtraction(z,x,y) \
MOVQ 0+x, R8; SUBQ 0+y, R8; \
MOVQ 8+x, R9; SBBQ 8+y, R9; \
MOVQ 16+x, R10; SBBQ 16+y, R10; \
MOVQ 24+x, R11; SBBQ 24+y, R11; \
MOVQ 32+x, R12; SBBQ 32+y, R12; \
MOVQ 40+x, R13; SBBQ 40+y, R13; \
MOVQ 48+x, R14; SBBQ 48+y, R14; \
MOVQ $0, AX; SETCS AX; \
MOVQ AX, DX; \
SHLQ $32, DX; \
SUBQ AX, R8; MOVQ $0, AX; \
SBBQ $0, R9; \
SBBQ $0, R10; \
SBBQ DX, R11; \
SBBQ $0, R12; \
SBBQ $0, R13; \
SBBQ $0, R14; \
SETCS AX; \
MOVQ AX, DX; \
SHLQ $32, DX; \
SUBQ AX, R8; MOVQ R8, 0+z; \
SBBQ $0, R9; MOVQ R9, 8+z; \
SBBQ $0, R10; MOVQ R10, 16+z; \
SBBQ DX, R11; MOVQ R11, 24+z; \
SBBQ $0, R12; MOVQ R12, 32+z; \
SBBQ $0, R13; MOVQ R13, 40+z; \
SBBQ $0, R14; MOVQ R14, 48+z;
// maddBmi2Adx multiplies x and y and accumulates in z
// Uses: AX, DX, R15, FLAGS
// Instr: x86_64, bmi2, adx
#define maddBmi2Adx(z,x,y,i,r0,r1,r2,r3,r4,r5,r6) \
MOVQ i+y, DX; XORL AX, AX; \
MULXQ 0+x, AX, R8; ADOXQ AX, r0; ADCXQ R8, r1; MOVQ r0,i+z; \
MULXQ 8+x, AX, r0; ADOXQ AX, r1; ADCXQ r0, r2; MOVQ $0, R8; \
MULXQ 16+x, AX, r0; ADOXQ AX, r2; ADCXQ r0, r3; \
MULXQ 24+x, AX, r0; ADOXQ AX, r3; ADCXQ r0, r4; \
MULXQ 32+x, AX, r0; ADOXQ AX, r4; ADCXQ r0, r5; \
MULXQ 40+x, AX, r0; ADOXQ AX, r5; ADCXQ r0, r6; \
MULXQ 48+x, AX, r0; ADOXQ AX, r6; ADCXQ R8, r0; \
;;;;;;;;;;;;;;;;;;; ADOXQ R8, r0;
// integerMulAdx multiplies x and y and stores in z
// Uses: AX, DX, R8-R15, FLAGS
// Instr: x86_64, bmi2, adx
#define integerMulAdx(z,x,y) \
MOVQ 0+y, DX; XORL AX, AX; MOVQ $0, R8; \
MULXQ 0+x, AX, R9; MOVQ AX, 0+z; \
MULXQ 8+x, AX, R10; ADCXQ AX, R9; \
MULXQ 16+x, AX, R11; ADCXQ AX, R10; \
MULXQ 24+x, AX, R12; ADCXQ AX, R11; \
MULXQ 32+x, AX, R13; ADCXQ AX, R12; \
MULXQ 40+x, AX, R14; ADCXQ AX, R13; \
MULXQ 48+x, AX, R15; ADCXQ AX, R14; \
;;;;;;;;;;;;;;;;;;;; ADCXQ R8, R15; \
maddBmi2Adx(z,x,y, 8, R9,R10,R11,R12,R13,R14,R15) \
maddBmi2Adx(z,x,y,16,R10,R11,R12,R13,R14,R15, R9) \
maddBmi2Adx(z,x,y,24,R11,R12,R13,R14,R15, R9,R10) \
maddBmi2Adx(z,x,y,32,R12,R13,R14,R15, R9,R10,R11) \
maddBmi2Adx(z,x,y,40,R13,R14,R15, R9,R10,R11,R12) \
maddBmi2Adx(z,x,y,48,R14,R15, R9,R10,R11,R12,R13) \
MOVQ R15, 56+z; \
MOVQ R9, 64+z; \
MOVQ R10, 72+z; \
MOVQ R11, 80+z; \
MOVQ R12, 88+z; \
MOVQ R13, 96+z; \
MOVQ R14, 104+z;
// maddLegacy multiplies x and y and accumulates in z
// Uses: AX, DX, R15, FLAGS
// Instr: x86_64
#define maddLegacy(z,x,y,i) \
MOVQ i+y, R15; \
MOVQ 0+x, AX; MULQ R15; MOVQ AX, R8; ;;;;;;;;;;;; MOVQ DX, R9; \
MOVQ 8+x, AX; MULQ R15; ADDQ AX, R9; ADCQ $0, DX; MOVQ DX, R10; \
MOVQ 16+x, AX; MULQ R15; ADDQ AX, R10; ADCQ $0, DX; MOVQ DX, R11; \
MOVQ 24+x, AX; MULQ R15; ADDQ AX, R11; ADCQ $0, DX; MOVQ DX, R12; \
MOVQ 32+x, AX; MULQ R15; ADDQ AX, R12; ADCQ $0, DX; MOVQ DX, R13; \
MOVQ 40+x, AX; MULQ R15; ADDQ AX, R13; ADCQ $0, DX; MOVQ DX, R14; \
MOVQ 48+x, AX; MULQ R15; ADDQ AX, R14; ADCQ $0, DX; \
ADDQ 0+i+z, R8; MOVQ R8, 0+i+z; \
ADCQ 8+i+z, R9; MOVQ R9, 8+i+z; \
ADCQ 16+i+z, R10; MOVQ R10, 16+i+z; \
ADCQ 24+i+z, R11; MOVQ R11, 24+i+z; \
ADCQ 32+i+z, R12; MOVQ R12, 32+i+z; \
ADCQ 40+i+z, R13; MOVQ R13, 40+i+z; \
ADCQ 48+i+z, R14; MOVQ R14, 48+i+z; \
ADCQ $0, DX; MOVQ DX, 56+i+z;
// integerMulLeg multiplies x and y and stores in z
// Uses: AX, DX, R8-R15, FLAGS
// Instr: x86_64
#define integerMulLeg(z,x,y) \
MOVQ 0+y, R15; \
MOVQ 0+x, AX; MULQ R15; MOVQ AX, 0+z; ;;;;;;;;;;;; MOVQ DX, R8; \
MOVQ 8+x, AX; MULQ R15; ADDQ AX, R8; ADCQ $0, DX; MOVQ DX, R9; MOVQ R8, 8+z; \
MOVQ 16+x, AX; MULQ R15; ADDQ AX, R9; ADCQ $0, DX; MOVQ DX, R10; MOVQ R9, 16+z; \
MOVQ 24+x, AX; MULQ R15; ADDQ AX, R10; ADCQ $0, DX; MOVQ DX, R11; MOVQ R10, 24+z; \
MOVQ 32+x, AX; MULQ R15; ADDQ AX, R11; ADCQ $0, DX; MOVQ DX, R12; MOVQ R11, 32+z; \
MOVQ 40+x, AX; MULQ R15; ADDQ AX, R12; ADCQ $0, DX; MOVQ DX, R13; MOVQ R12, 40+z; \
MOVQ 48+x, AX; MULQ R15; ADDQ AX, R13; ADCQ $0, DX; MOVQ DX,56+z; MOVQ R13, 48+z; \
maddLegacy(z,x,y, 8) \
maddLegacy(z,x,y,16) \
maddLegacy(z,x,y,24) \
maddLegacy(z,x,y,32) \
maddLegacy(z,x,y,40) \
maddLegacy(z,x,y,48)
// integerSqrLeg squares x and stores in z
// Uses: AX, CX, DX, R8-R15, FLAGS
// Instr: x86_64
#define integerSqrLeg(z,x) \
XORL R15, R15; \
MOVQ 0+x, CX; \
MOVQ CX, AX; MULQ CX; MOVQ AX, 0+z; MOVQ DX, R8; \
ADDQ CX, CX; ADCQ $0, R15; \
MOVQ 8+x, AX; MULQ CX; ADDQ AX, R8; ADCQ $0, DX; MOVQ DX, R9; MOVQ R8, 8+z; \
MOVQ 16+x, AX; MULQ CX; ADDQ AX, R9; ADCQ $0, DX; MOVQ DX, R10; \
MOVQ 24+x, AX; MULQ CX; ADDQ AX, R10; ADCQ $0, DX; MOVQ DX, R11; \
MOVQ 32+x, AX; MULQ CX; ADDQ AX, R11; ADCQ $0, DX; MOVQ DX, R12; \
MOVQ 40+x, AX; MULQ CX; ADDQ AX, R12; ADCQ $0, DX; MOVQ DX, R13; \
MOVQ 48+x, AX; MULQ CX; ADDQ AX, R13; ADCQ $0, DX; MOVQ DX, R14; \
\
MOVQ 8+x, CX; \
MOVQ CX, AX; ADDQ R15, CX; MOVQ $0, R15; ADCQ $0, R15; \
;;;;;;;;;;;;;; MULQ CX; ADDQ AX, R9; ADCQ $0, DX; MOVQ R9,16+z; \
MOVQ R15, AX; NEGQ AX; ANDQ 8+x, AX; ADDQ AX, DX; ADCQ $0, R11; MOVQ DX, R8; \
ADDQ 8+x, CX; ADCQ $0, R15; \
MOVQ 16+x, AX; MULQ CX; ADDQ AX, R10; ADCQ $0, DX; ADDQ R8, R10; ADCQ $0, DX; MOVQ DX, R8; MOVQ R10, 24+z; \
MOVQ 24+x, AX; MULQ CX; ADDQ AX, R11; ADCQ $0, DX; ADDQ R8, R11; ADCQ $0, DX; MOVQ DX, R8; \
MOVQ 32+x, AX; MULQ CX; ADDQ AX, R12; ADCQ $0, DX; ADDQ R8, R12; ADCQ $0, DX; MOVQ DX, R8; \
MOVQ 40+x, AX; MULQ CX; ADDQ AX, R13; ADCQ $0, DX; ADDQ R8, R13; ADCQ $0, DX; MOVQ DX, R8; \
MOVQ 48+x, AX; MULQ CX; ADDQ AX, R14; ADCQ $0, DX; ADDQ R8, R14; ADCQ $0, DX; MOVQ DX, R9; \
\
MOVQ 16+x, CX; \
MOVQ CX, AX; ADDQ R15, CX; MOVQ $0, R15; ADCQ $0, R15; \
;;;;;;;;;;;;;; MULQ CX; ADDQ AX, R11; ADCQ $0, DX; MOVQ R11, 32+z; \
MOVQ R15, AX; NEGQ AX; ANDQ 16+x,AX; ADDQ AX, DX; ADCQ $0, R13; MOVQ DX, R8; \
ADDQ 16+x, CX; ADCQ $0, R15; \
MOVQ 24+x, AX; MULQ CX; ADDQ AX, R12; ADCQ $0, DX; ADDQ R8, R12; ADCQ $0, DX; MOVQ DX, R8; MOVQ R12, 40+z; \
MOVQ 32+x, AX; MULQ CX; ADDQ AX, R13; ADCQ $0, DX; ADDQ R8, R13; ADCQ $0, DX; MOVQ DX, R8; \
MOVQ 40+x, AX; MULQ CX; ADDQ AX, R14; ADCQ $0, DX; ADDQ R8, R14; ADCQ $0, DX; MOVQ DX, R8; \
MOVQ 48+x, AX; MULQ CX; ADDQ AX, R9; ADCQ $0, DX; ADDQ R8, R9; ADCQ $0, DX; MOVQ DX,R10; \
\
MOVQ 24+x, CX; \
MOVQ CX, AX; ADDQ R15, CX; MOVQ $0, R15; ADCQ $0, R15; \
;;;;;;;;;;;;;; MULQ CX; ADDQ AX, R13; ADCQ $0, DX; MOVQ R13, 48+z; \
MOVQ R15, AX; NEGQ AX; ANDQ 24+x,AX; ADDQ AX, DX; ADCQ $0, R9; MOVQ DX, R8; \
ADDQ 24+x, CX; ADCQ $0, R15; \
MOVQ 32+x, AX; MULQ CX; ADDQ AX, R14; ADCQ $0, DX; ADDQ R8, R14; ADCQ $0, DX; MOVQ DX, R8; MOVQ R14, 56+z; \
MOVQ 40+x, AX; MULQ CX; ADDQ AX, R9; ADCQ $0, DX; ADDQ R8, R9; ADCQ $0, DX; MOVQ DX, R8; \
MOVQ 48+x, AX; MULQ CX; ADDQ AX, R10; ADCQ $0, DX; ADDQ R8, R10; ADCQ $0, DX; MOVQ DX,R11; \
\
MOVQ 32+x, CX; \
MOVQ CX, AX; ADDQ R15, CX; MOVQ $0, R15; ADCQ $0, R15; \
;;;;;;;;;;;;;; MULQ CX; ADDQ AX, R9; ADCQ $0, DX; MOVQ R9, 64+z; \
MOVQ R15, AX; NEGQ AX; ANDQ 32+x,AX; ADDQ AX, DX; ADCQ $0, R11; MOVQ DX, R8; \
ADDQ 32+x, CX; ADCQ $0, R15; \
MOVQ 40+x, AX; MULQ CX; ADDQ AX, R10; ADCQ $0, DX; ADDQ R8, R10; ADCQ $0, DX; MOVQ DX, R8; MOVQ R10, 72+z; \
MOVQ 48+x, AX; MULQ CX; ADDQ AX, R11; ADCQ $0, DX; ADDQ R8, R11; ADCQ $0, DX; MOVQ DX,R12; \
\
XORL R13, R13; \
XORL R14, R14; \
MOVQ 40+x, CX; \
MOVQ CX, AX; ADDQ R15, CX; MOVQ $0, R15; ADCQ $0, R15; \
;;;;;;;;;;;;;; MULQ CX; ADDQ AX, R11; ADCQ $0, DX; MOVQ R11, 80+z; \
MOVQ R15, AX; NEGQ AX; ANDQ 40+x,AX; ADDQ AX, DX; ADCQ $0, R13; MOVQ DX, R8; \
ADDQ 40+x, CX; ADCQ $0, R15; \
MOVQ 48+x, AX; MULQ CX; ADDQ AX, R12; ADCQ $0, DX; ADDQ R8, R12; ADCQ $0, DX; MOVQ DX, R8; MOVQ R12, 88+z; \
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ADDQ R8, R13; ADCQ $0,R14; \
\
XORL R9, R9; \
MOVQ 48+x, CX; \
MOVQ CX, AX; ADDQ R15, CX; MOVQ $0, R15; ADCQ $0, R15; \
;;;;;;;;;;;;;; MULQ CX; ADDQ AX, R13; ADCQ $0, DX; MOVQ R13, 96+z; \
MOVQ R15, AX; NEGQ AX; ANDQ 48+x,AX; ADDQ AX, DX; ADCQ $0, R9; MOVQ DX, R8; \
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ADDQ R8,R14; ADCQ $0, R9; MOVQ R14, 104+z;
// integerSqrAdx squares x and stores in z
// Uses: AX, CX, DX, R8-R15, FLAGS
// Instr: x86_64, bmi2, adx
#define integerSqrAdx(z,x) \
XORL R15, R15; \
MOVQ 0+x, DX; \
;;;;;;;;;;;;;; MULXQ DX, AX, R8; MOVQ AX, 0+z; \
ADDQ DX, DX; ADCQ $0, R15; CLC; \
MULXQ 8+x, AX, R9; ADCXQ AX, R8; MOVQ R8, 8+z; \
MULXQ 16+x, AX, R10; ADCXQ AX, R9; MOVQ $0, R8;\
MULXQ 24+x, AX, R11; ADCXQ AX, R10; \
MULXQ 32+x, AX, R12; ADCXQ AX, R11; \
MULXQ 40+x, AX, R13; ADCXQ AX, R12; \
MULXQ 48+x, AX, R14; ADCXQ AX, R13; \
;;;;;;;;;;;;;;;;;;;; ADCXQ R8, R14; \
\
MOVQ 8+x, DX; \
MOVQ DX, AX; ADDQ R15, DX; MOVQ $0, R15; ADCQ $0, R15; \
MULXQ AX, AX, CX; \
MOVQ R15, R8; NEGQ R8; ANDQ 8+x, R8; \
ADDQ AX, R9; MOVQ R9, 16+z; \
ADCQ CX, R8; \
ADCQ $0, R11; \
ADDQ 8+x, DX; \
ADCQ $0, R15; \
XORL R9, R9; ;;;;;;;;;;;;;;;;;;;;; ADOXQ R8, R10; \
MULXQ 16+x, AX, CX; ADCXQ AX, R10; ADOXQ CX, R11; MOVQ R10, 24+z; \
MULXQ 24+x, AX, CX; ADCXQ AX, R11; ADOXQ CX, R12; MOVQ $0, R10; \
MULXQ 32+x, AX, CX; ADCXQ AX, R12; ADOXQ CX, R13; \
MULXQ 40+x, AX, CX; ADCXQ AX, R13; ADOXQ CX, R14; \
MULXQ 48+x, AX, CX; ADCXQ AX, R14; ADOXQ CX, R9; \
;;;;;;;;;;;;;;;;;;; ADCXQ R10, R9; \
\
MOVQ 16+x, DX; \
MOVQ DX, AX; ADDQ R15, DX; MOVQ $0, R15; ADCQ $0, R15; \
MULXQ AX, AX, CX; \
MOVQ R15, R8; NEGQ R8; ANDQ 16+x, R8; \
ADDQ AX, R11; MOVQ R11, 32+z; \
ADCQ CX, R8; \
ADCQ $0, R13; \
ADDQ 16+x, DX; \
ADCQ $0, R15; \
XORL R11, R11; ;;;;;;;;;;;;;;;;;;; ADOXQ R8, R12; \
MULXQ 24+x, AX, CX; ADCXQ AX, R12; ADOXQ CX, R13; MOVQ R12, 40+z; \
MULXQ 32+x, AX, CX; ADCXQ AX, R13; ADOXQ CX, R14; MOVQ $0, R12; \
MULXQ 40+x, AX, CX; ADCXQ AX, R14; ADOXQ CX, R9; \
MULXQ 48+x, AX, CX; ADCXQ AX, R9; ADOXQ CX, R10; \
;;;;;;;;;;;;;;;;;;; ADCXQ R11,R10; \
\
MOVQ 24+x, DX; \
MOVQ DX, AX; ADDQ R15, DX; MOVQ $0, R15; ADCQ $0, R15; \
MULXQ AX, AX, CX; \
MOVQ R15, R8; NEGQ R8; ANDQ 24+x, R8; \
ADDQ AX, R13; MOVQ R13, 48+z; \
ADCQ CX, R8; \
ADCQ $0, R9; \
ADDQ 24+x, DX; \
ADCQ $0, R15; \
XORL R13, R13; ;;;;;;;;;;;;;;;;;;; ADOXQ R8, R14; \
MULXQ 32+x, AX, CX; ADCXQ AX, R14; ADOXQ CX, R9; MOVQ R14, 56+z; \
MULXQ 40+x, AX, CX; ADCXQ AX, R9; ADOXQ CX, R10; MOVQ $0, R14; \
MULXQ 48+x, AX, CX; ADCXQ AX, R10; ADOXQ CX, R11; \
;;;;;;;;;;;;;;;;;;; ADCXQ R12,R11; \
\
MOVQ 32+x, DX; \
MOVQ DX, AX; ADDQ R15, DX; MOVQ $0, R15; ADCQ $0, R15; \
MULXQ AX, AX, CX; \
MOVQ R15, R8; NEGQ R8; ANDQ 32+x, R8; \
ADDQ AX, R9; MOVQ R9, 64+z; \
ADCQ CX, R8; \
ADCQ $0, R11; \
ADDQ 32+x, DX; \
ADCQ $0, R15; \
XORL R9, R9; ;;;;;;;;;;;;;;;;;;;;; ADOXQ R8, R10; \
MULXQ 40+x, AX, CX; ADCXQ AX, R10; ADOXQ CX, R11; MOVQ R10, 72+z; \
MULXQ 48+x, AX, CX; ADCXQ AX, R11; ADOXQ CX, R12; \
;;;;;;;;;;;;;;;;;;; ADCXQ R13,R12; \
\
MOVQ 40+x, DX; \
MOVQ DX, AX; ADDQ R15, DX; MOVQ $0, R15; ADCQ $0, R15; \
MULXQ AX, AX, CX; \
MOVQ R15, R8; NEGQ R8; ANDQ 40+x, R8; \
ADDQ AX, R11; MOVQ R11, 80+z; \
ADCQ CX, R8; \
ADCQ $0, R13; \
ADDQ 40+x, DX; \
ADCQ $0, R15; \
XORL R11, R11; ;;;;;;;;;;;;;;;;;;; ADOXQ R8, R12; \
MULXQ 48+x, AX, CX; ADCXQ AX, R12; ADOXQ CX, R13; MOVQ R12, 88+z; \
;;;;;;;;;;;;;;;;;;; ADCXQ R14,R13; \
\
MOVQ 48+x, DX; \
MOVQ DX, AX; ADDQ R15, DX; MOVQ $0, R15; ADCQ $0, R15; \
MULXQ AX, AX, CX; \
MOVQ R15, R8; NEGQ R8; ANDQ 48+x, R8; \
XORL R10, R10; ;;;;;;;;;;;;;; ADOXQ CX, R14; \
;;;;;;;;;;;;;; ADCXQ AX, R13; ;;;;;;;;;;;;;; MOVQ R13, 96+z; \
;;;;;;;;;;;;;; ADCXQ R8, R14; MOVQ R14, 104+z;
// reduceFromDoubleLeg finds a z=x modulo p such that z<2^448 and stores in z
// Uses: AX, R8-R15, FLAGS
// Instr: x86_64
#define reduceFromDoubleLeg(z,x) \
/* ( ,2C13,2C12,2C11,2C10|C10,C9,C8, C7) + (C6,...,C0) */ \
/* (r14, r13, r12, r11, r10,r9,r8,r15) */ \
MOVQ 80+x,AX; MOVQ AX,R10; \
MOVQ $0xFFFFFFFF00000000, R8; \
ANDQ R8,R10; \
\
MOVQ $0,R14; \
MOVQ 104+x,R13; SHLQ $1,R13,R14; \
MOVQ 96+x,R12; SHLQ $1,R12,R13; \
MOVQ 88+x,R11; SHLQ $1,R11,R12; \
MOVQ 72+x, R9; SHLQ $1,R10,R11; \
MOVQ 64+x, R8; SHLQ $1,R10; \
MOVQ $0xFFFFFFFF,R15; ANDQ R15,AX; ORQ AX,R10; \
MOVQ 56+x,R15; \
\
ADDQ 0+x,R15; MOVQ R15, 0+z; MOVQ 56+x,R15; \
ADCQ 8+x, R8; MOVQ R8, 8+z; MOVQ 64+x, R8; \
ADCQ 16+x, R9; MOVQ R9,16+z; MOVQ 72+x, R9; \
ADCQ 24+x,R10; MOVQ R10,24+z; MOVQ 80+x,R10; \
ADCQ 32+x,R11; MOVQ R11,32+z; MOVQ 88+x,R11; \
ADCQ 40+x,R12; MOVQ R12,40+z; MOVQ 96+x,R12; \
ADCQ 48+x,R13; MOVQ R13,48+z; MOVQ 104+x,R13; \
ADCQ $0,R14; \
/* (c10c9,c9c8,c8c7,c7c13,c13c12,c12c11,c11c10) + (c6,...,c0) */ \
/* ( r9, r8, r15, r13, r12, r11, r10) */ \
MOVQ R10, AX; \
SHRQ $32,R11,R10; \
SHRQ $32,R12,R11; \
SHRQ $32,R13,R12; \
SHRQ $32,R15,R13; \
SHRQ $32, R8,R15; \
SHRQ $32, R9, R8; \
SHRQ $32, AX, R9; \
\
ADDQ 0+z,R10; \
ADCQ 8+z,R11; \
ADCQ 16+z,R12; \
ADCQ 24+z,R13; \
ADCQ 32+z,R15; \
ADCQ 40+z, R8; \
ADCQ 48+z, R9; \
ADCQ $0,R14; \
/* ( c7) + (c6,...,c0) */ \
/* (r14) */ \
MOVQ R14, AX; SHLQ $32, AX; \
ADDQ R14,R10; MOVQ $0,R14; \
ADCQ $0,R11; \
ADCQ $0,R12; \
ADCQ AX,R13; \
ADCQ $0,R15; \
ADCQ $0, R8; \
ADCQ $0, R9; \
ADCQ $0,R14; \
/* ( c7) + (c6,...,c0) */ \
/* (r14) */ \
MOVQ R14, AX; SHLQ $32,AX; \
ADDQ R14,R10; MOVQ R10, 0+z; \
ADCQ $0,R11; MOVQ R11, 8+z; \
ADCQ $0,R12; MOVQ R12,16+z; \
ADCQ AX,R13; MOVQ R13,24+z; \
ADCQ $0,R15; MOVQ R15,32+z; \
ADCQ $0, R8; MOVQ R8,40+z; \
ADCQ $0, R9; MOVQ R9,48+z;
// reduceFromDoubleAdx finds a z=x modulo p such that z<2^448 and stores in z
// Uses: AX, R8-R15, FLAGS
// Instr: x86_64, adx
#define reduceFromDoubleAdx(z,x) \
/* ( ,2C13,2C12,2C11,2C10|C10,C9,C8, C7) + (C6,...,C0) */ \
/* (r14, r13, r12, r11, r10,r9,r8,r15) */ \
MOVQ 80+x,AX; MOVQ AX,R10; \
MOVQ $0xFFFFFFFF00000000, R8; \
ANDQ R8,R10; \
\
MOVQ $0,R14; \
MOVQ 104+x,R13; SHLQ $1,R13,R14; \
MOVQ 96+x,R12; SHLQ $1,R12,R13; \
MOVQ 88+x,R11; SHLQ $1,R11,R12; \
MOVQ 72+x, R9; SHLQ $1,R10,R11; \
MOVQ 64+x, R8; SHLQ $1,R10; \
MOVQ $0xFFFFFFFF,R15; ANDQ R15,AX; ORQ AX,R10; \
MOVQ 56+x,R15; \
\
XORL AX,AX; \
ADCXQ 0+x,R15; MOVQ R15, 0+z; MOVQ 56+x,R15; \
ADCXQ 8+x, R8; MOVQ R8, 8+z; MOVQ 64+x, R8; \
ADCXQ 16+x, R9; MOVQ R9,16+z; MOVQ 72+x, R9; \
ADCXQ 24+x,R10; MOVQ R10,24+z; MOVQ 80+x,R10; \
ADCXQ 32+x,R11; MOVQ R11,32+z; MOVQ 88+x,R11; \
ADCXQ 40+x,R12; MOVQ R12,40+z; MOVQ 96+x,R12; \
ADCXQ 48+x,R13; MOVQ R13,48+z; MOVQ 104+x,R13; \
ADCXQ AX,R14; \
/* (c10c9,c9c8,c8c7,c7c13,c13c12,c12c11,c11c10) + (c6,...,c0) */ \
/* ( r9, r8, r15, r13, r12, r11, r10) */ \
MOVQ R10, AX; \
SHRQ $32,R11,R10; \
SHRQ $32,R12,R11; \
SHRQ $32,R13,R12; \
SHRQ $32,R15,R13; \
SHRQ $32, R8,R15; \
SHRQ $32, R9, R8; \
SHRQ $32, AX, R9; \
\
XORL AX,AX; \
ADCXQ 0+z,R10; \
ADCXQ 8+z,R11; \
ADCXQ 16+z,R12; \
ADCXQ 24+z,R13; \
ADCXQ 32+z,R15; \
ADCXQ 40+z, R8; \
ADCXQ 48+z, R9; \
ADCXQ AX,R14; \
/* ( c7) + (c6,...,c0) */ \
/* (r14) */ \
MOVQ R14, AX; SHLQ $32, AX; \
CLC; \
ADCXQ R14,R10; MOVQ $0,R14; \
ADCXQ R14,R11; \
ADCXQ R14,R12; \
ADCXQ AX,R13; \
ADCXQ R14,R15; \
ADCXQ R14, R8; \
ADCXQ R14, R9; \
ADCXQ R14,R14; \
/* ( c7) + (c6,...,c0) */ \
/* (r14) */ \
MOVQ R14, AX; SHLQ $32, AX; \
CLC; \
ADCXQ R14,R10; MOVQ R10, 0+z; MOVQ $0,R14; \
ADCXQ R14,R11; MOVQ R11, 8+z; \
ADCXQ R14,R12; MOVQ R12,16+z; \
ADCXQ AX,R13; MOVQ R13,24+z; \
ADCXQ R14,R15; MOVQ R15,32+z; \
ADCXQ R14, R8; MOVQ R8,40+z; \
ADCXQ R14, R9; MOVQ R9,48+z;
// addSub calculates two operations: x,y = x+y,x-y
// Uses: AX, DX, R8-R15, FLAGS
#define addSub(x,y) \
MOVQ 0+x, R8; ADDQ 0+y, R8; \
MOVQ 8+x, R9; ADCQ 8+y, R9; \
MOVQ 16+x, R10; ADCQ 16+y, R10; \
MOVQ 24+x, R11; ADCQ 24+y, R11; \
MOVQ 32+x, R12; ADCQ 32+y, R12; \
MOVQ 40+x, R13; ADCQ 40+y, R13; \
MOVQ 48+x, R14; ADCQ 48+y, R14; \
MOVQ $0, AX; ADCQ $0, AX; \
MOVQ AX, DX; \
SHLQ $32, DX; \
ADDQ AX, R8; MOVQ $0, AX; \
ADCQ $0, R9; \
ADCQ $0, R10; \
ADCQ DX, R11; \
ADCQ $0, R12; \
ADCQ $0, R13; \
ADCQ $0, R14; \
ADCQ $0, AX; \
MOVQ AX, DX; \
SHLQ $32, DX; \
ADDQ AX, R8; MOVQ 0+x,AX; MOVQ R8, 0+x; MOVQ AX, R8; \
ADCQ $0, R9; MOVQ 8+x,AX; MOVQ R9, 8+x; MOVQ AX, R9; \
ADCQ $0, R10; MOVQ 16+x,AX; MOVQ R10, 16+x; MOVQ AX, R10; \
ADCQ DX, R11; MOVQ 24+x,AX; MOVQ R11, 24+x; MOVQ AX, R11; \
ADCQ $0, R12; MOVQ 32+x,AX; MOVQ R12, 32+x; MOVQ AX, R12; \
ADCQ $0, R13; MOVQ 40+x,AX; MOVQ R13, 40+x; MOVQ AX, R13; \
ADCQ $0, R14; MOVQ 48+x,AX; MOVQ R14, 48+x; MOVQ AX, R14; \
SUBQ 0+y, R8; \
SBBQ 8+y, R9; \
SBBQ 16+y, R10; \
SBBQ 24+y, R11; \
SBBQ 32+y, R12; \
SBBQ 40+y, R13; \
SBBQ 48+y, R14; \
MOVQ $0, AX; SETCS AX; \
MOVQ AX, DX; \
SHLQ $32, DX; \
SUBQ AX, R8; MOVQ $0, AX; \
SBBQ $0, R9; \
SBBQ $0, R10; \
SBBQ DX, R11; \
SBBQ $0, R12; \
SBBQ $0, R13; \
SBBQ $0, R14; \
SETCS AX; \
MOVQ AX, DX; \
SHLQ $32, DX; \
SUBQ AX, R8; MOVQ R8, 0+y; \
SBBQ $0, R9; MOVQ R9, 8+y; \
SBBQ $0, R10; MOVQ R10, 16+y; \
SBBQ DX, R11; MOVQ R11, 24+y; \
SBBQ $0, R12; MOVQ R12, 32+y; \
SBBQ $0, R13; MOVQ R13, 40+y; \
SBBQ $0, R14; MOVQ R14, 48+y;

View File

@ -0,0 +1,74 @@
// +build amd64
#include "textflag.h"
#include "fp_amd64.h"
// func cmovAmd64(x, y *Elt, n uint)
TEXT ·cmovAmd64(SB),NOSPLIT,$0-24
MOVQ x+0(FP), DI
MOVQ y+8(FP), SI
MOVQ n+16(FP), BX
cselect(0(DI),0(SI),BX)
RET
// func cswapAmd64(x, y *Elt, n uint)
TEXT ·cswapAmd64(SB),NOSPLIT,$0-24
MOVQ x+0(FP), DI
MOVQ y+8(FP), SI
MOVQ n+16(FP), BX
cswap(0(DI),0(SI),BX)
RET
// func subAmd64(z, x, y *Elt)
TEXT ·subAmd64(SB),NOSPLIT,$0-24
MOVQ z+0(FP), DI
MOVQ x+8(FP), SI
MOVQ y+16(FP), BX
subtraction(0(DI),0(SI),0(BX))
RET
// func addsubAmd64(x, y *Elt)
TEXT ·addsubAmd64(SB),NOSPLIT,$0-16
MOVQ x+0(FP), DI
MOVQ y+8(FP), SI
addSub(0(DI),0(SI))
RET
#define addLegacy \
additionLeg(0(DI),0(SI),0(BX))
#define addBmi2Adx \
additionAdx(0(DI),0(SI),0(BX))
#define mulLegacy \
integerMulLeg(0(SP),0(SI),0(BX)) \
reduceFromDoubleLeg(0(DI),0(SP))
#define mulBmi2Adx \
integerMulAdx(0(SP),0(SI),0(BX)) \
reduceFromDoubleAdx(0(DI),0(SP))
#define sqrLegacy \
integerSqrLeg(0(SP),0(SI)) \
reduceFromDoubleLeg(0(DI),0(SP))
#define sqrBmi2Adx \
integerSqrAdx(0(SP),0(SI)) \
reduceFromDoubleAdx(0(DI),0(SP))
// func addAmd64(z, x, y *Elt)
TEXT ·addAmd64(SB),NOSPLIT,$0-24
MOVQ z+0(FP), DI
MOVQ x+8(FP), SI
MOVQ y+16(FP), BX
CHECK_BMI2ADX(LADD, addLegacy, addBmi2Adx)
// func mulAmd64(z, x, y *Elt)
TEXT ·mulAmd64(SB),NOSPLIT,$112-24
MOVQ z+0(FP), DI
MOVQ x+8(FP), SI
MOVQ y+16(FP), BX
CHECK_BMI2ADX(LMUL, mulLegacy, mulBmi2Adx)
// func sqrAmd64(z, x *Elt)
TEXT ·sqrAmd64(SB),NOSPLIT,$112-16
MOVQ z+0(FP), DI
MOVQ x+8(FP), SI
CHECK_BMI2ADX(LSQR, sqrLegacy, sqrBmi2Adx)

View File

@ -0,0 +1,339 @@
package fp448
import (
"encoding/binary"
"math/bits"
)
func cmovGeneric(x, y *Elt, n uint) {
m := -uint64(n & 0x1)
x0 := binary.LittleEndian.Uint64(x[0*8 : 1*8])
x1 := binary.LittleEndian.Uint64(x[1*8 : 2*8])
x2 := binary.LittleEndian.Uint64(x[2*8 : 3*8])
x3 := binary.LittleEndian.Uint64(x[3*8 : 4*8])
x4 := binary.LittleEndian.Uint64(x[4*8 : 5*8])
x5 := binary.LittleEndian.Uint64(x[5*8 : 6*8])
x6 := binary.LittleEndian.Uint64(x[6*8 : 7*8])
y0 := binary.LittleEndian.Uint64(y[0*8 : 1*8])
y1 := binary.LittleEndian.Uint64(y[1*8 : 2*8])
y2 := binary.LittleEndian.Uint64(y[2*8 : 3*8])
y3 := binary.LittleEndian.Uint64(y[3*8 : 4*8])
y4 := binary.LittleEndian.Uint64(y[4*8 : 5*8])
y5 := binary.LittleEndian.Uint64(y[5*8 : 6*8])
y6 := binary.LittleEndian.Uint64(y[6*8 : 7*8])
x0 = (x0 &^ m) | (y0 & m)
x1 = (x1 &^ m) | (y1 & m)
x2 = (x2 &^ m) | (y2 & m)
x3 = (x3 &^ m) | (y3 & m)
x4 = (x4 &^ m) | (y4 & m)
x5 = (x5 &^ m) | (y5 & m)
x6 = (x6 &^ m) | (y6 & m)
binary.LittleEndian.PutUint64(x[0*8:1*8], x0)
binary.LittleEndian.PutUint64(x[1*8:2*8], x1)
binary.LittleEndian.PutUint64(x[2*8:3*8], x2)
binary.LittleEndian.PutUint64(x[3*8:4*8], x3)
binary.LittleEndian.PutUint64(x[4*8:5*8], x4)
binary.LittleEndian.PutUint64(x[5*8:6*8], x5)
binary.LittleEndian.PutUint64(x[6*8:7*8], x6)
}
func cswapGeneric(x, y *Elt, n uint) {
m := -uint64(n & 0x1)
x0 := binary.LittleEndian.Uint64(x[0*8 : 1*8])
x1 := binary.LittleEndian.Uint64(x[1*8 : 2*8])
x2 := binary.LittleEndian.Uint64(x[2*8 : 3*8])
x3 := binary.LittleEndian.Uint64(x[3*8 : 4*8])
x4 := binary.LittleEndian.Uint64(x[4*8 : 5*8])
x5 := binary.LittleEndian.Uint64(x[5*8 : 6*8])
x6 := binary.LittleEndian.Uint64(x[6*8 : 7*8])
y0 := binary.LittleEndian.Uint64(y[0*8 : 1*8])
y1 := binary.LittleEndian.Uint64(y[1*8 : 2*8])
y2 := binary.LittleEndian.Uint64(y[2*8 : 3*8])
y3 := binary.LittleEndian.Uint64(y[3*8 : 4*8])
y4 := binary.LittleEndian.Uint64(y[4*8 : 5*8])
y5 := binary.LittleEndian.Uint64(y[5*8 : 6*8])
y6 := binary.LittleEndian.Uint64(y[6*8 : 7*8])
t0 := m & (x0 ^ y0)
t1 := m & (x1 ^ y1)
t2 := m & (x2 ^ y2)
t3 := m & (x3 ^ y3)
t4 := m & (x4 ^ y4)
t5 := m & (x5 ^ y5)
t6 := m & (x6 ^ y6)
x0 ^= t0
x1 ^= t1
x2 ^= t2
x3 ^= t3
x4 ^= t4
x5 ^= t5
x6 ^= t6
y0 ^= t0
y1 ^= t1
y2 ^= t2
y3 ^= t3
y4 ^= t4
y5 ^= t5
y6 ^= t6
binary.LittleEndian.PutUint64(x[0*8:1*8], x0)
binary.LittleEndian.PutUint64(x[1*8:2*8], x1)
binary.LittleEndian.PutUint64(x[2*8:3*8], x2)
binary.LittleEndian.PutUint64(x[3*8:4*8], x3)
binary.LittleEndian.PutUint64(x[4*8:5*8], x4)
binary.LittleEndian.PutUint64(x[5*8:6*8], x5)
binary.LittleEndian.PutUint64(x[6*8:7*8], x6)
binary.LittleEndian.PutUint64(y[0*8:1*8], y0)
binary.LittleEndian.PutUint64(y[1*8:2*8], y1)
binary.LittleEndian.PutUint64(y[2*8:3*8], y2)
binary.LittleEndian.PutUint64(y[3*8:4*8], y3)
binary.LittleEndian.PutUint64(y[4*8:5*8], y4)
binary.LittleEndian.PutUint64(y[5*8:6*8], y5)
binary.LittleEndian.PutUint64(y[6*8:7*8], y6)
}
func addGeneric(z, x, y *Elt) {
x0 := binary.LittleEndian.Uint64(x[0*8 : 1*8])
x1 := binary.LittleEndian.Uint64(x[1*8 : 2*8])
x2 := binary.LittleEndian.Uint64(x[2*8 : 3*8])
x3 := binary.LittleEndian.Uint64(x[3*8 : 4*8])
x4 := binary.LittleEndian.Uint64(x[4*8 : 5*8])
x5 := binary.LittleEndian.Uint64(x[5*8 : 6*8])
x6 := binary.LittleEndian.Uint64(x[6*8 : 7*8])
y0 := binary.LittleEndian.Uint64(y[0*8 : 1*8])
y1 := binary.LittleEndian.Uint64(y[1*8 : 2*8])
y2 := binary.LittleEndian.Uint64(y[2*8 : 3*8])
y3 := binary.LittleEndian.Uint64(y[3*8 : 4*8])
y4 := binary.LittleEndian.Uint64(y[4*8 : 5*8])
y5 := binary.LittleEndian.Uint64(y[5*8 : 6*8])
y6 := binary.LittleEndian.Uint64(y[6*8 : 7*8])
z0, c0 := bits.Add64(x0, y0, 0)
z1, c1 := bits.Add64(x1, y1, c0)
z2, c2 := bits.Add64(x2, y2, c1)
z3, c3 := bits.Add64(x3, y3, c2)
z4, c4 := bits.Add64(x4, y4, c3)
z5, c5 := bits.Add64(x5, y5, c4)
z6, z7 := bits.Add64(x6, y6, c5)
z0, c0 = bits.Add64(z0, z7, 0)
z1, c1 = bits.Add64(z1, 0, c0)
z2, c2 = bits.Add64(z2, 0, c1)
z3, c3 = bits.Add64(z3, z7<<32, c2)
z4, c4 = bits.Add64(z4, 0, c3)
z5, c5 = bits.Add64(z5, 0, c4)
z6, z7 = bits.Add64(z6, 0, c5)
z0, c0 = bits.Add64(z0, z7, 0)
z1, c1 = bits.Add64(z1, 0, c0)
z2, c2 = bits.Add64(z2, 0, c1)
z3, c3 = bits.Add64(z3, z7<<32, c2)
z4, c4 = bits.Add64(z4, 0, c3)
z5, c5 = bits.Add64(z5, 0, c4)
z6, _ = bits.Add64(z6, 0, c5)
binary.LittleEndian.PutUint64(z[0*8:1*8], z0)
binary.LittleEndian.PutUint64(z[1*8:2*8], z1)
binary.LittleEndian.PutUint64(z[2*8:3*8], z2)
binary.LittleEndian.PutUint64(z[3*8:4*8], z3)
binary.LittleEndian.PutUint64(z[4*8:5*8], z4)
binary.LittleEndian.PutUint64(z[5*8:6*8], z5)
binary.LittleEndian.PutUint64(z[6*8:7*8], z6)
}
func subGeneric(z, x, y *Elt) {
x0 := binary.LittleEndian.Uint64(x[0*8 : 1*8])
x1 := binary.LittleEndian.Uint64(x[1*8 : 2*8])
x2 := binary.LittleEndian.Uint64(x[2*8 : 3*8])
x3 := binary.LittleEndian.Uint64(x[3*8 : 4*8])
x4 := binary.LittleEndian.Uint64(x[4*8 : 5*8])
x5 := binary.LittleEndian.Uint64(x[5*8 : 6*8])
x6 := binary.LittleEndian.Uint64(x[6*8 : 7*8])
y0 := binary.LittleEndian.Uint64(y[0*8 : 1*8])
y1 := binary.LittleEndian.Uint64(y[1*8 : 2*8])
y2 := binary.LittleEndian.Uint64(y[2*8 : 3*8])
y3 := binary.LittleEndian.Uint64(y[3*8 : 4*8])
y4 := binary.LittleEndian.Uint64(y[4*8 : 5*8])
y5 := binary.LittleEndian.Uint64(y[5*8 : 6*8])
y6 := binary.LittleEndian.Uint64(y[6*8 : 7*8])
z0, c0 := bits.Sub64(x0, y0, 0)
z1, c1 := bits.Sub64(x1, y1, c0)
z2, c2 := bits.Sub64(x2, y2, c1)
z3, c3 := bits.Sub64(x3, y3, c2)
z4, c4 := bits.Sub64(x4, y4, c3)
z5, c5 := bits.Sub64(x5, y5, c4)
z6, z7 := bits.Sub64(x6, y6, c5)
z0, c0 = bits.Sub64(z0, z7, 0)
z1, c1 = bits.Sub64(z1, 0, c0)
z2, c2 = bits.Sub64(z2, 0, c1)
z3, c3 = bits.Sub64(z3, z7<<32, c2)
z4, c4 = bits.Sub64(z4, 0, c3)
z5, c5 = bits.Sub64(z5, 0, c4)
z6, z7 = bits.Sub64(z6, 0, c5)
z0, c0 = bits.Sub64(z0, z7, 0)
z1, c1 = bits.Sub64(z1, 0, c0)
z2, c2 = bits.Sub64(z2, 0, c1)
z3, c3 = bits.Sub64(z3, z7<<32, c2)
z4, c4 = bits.Sub64(z4, 0, c3)
z5, c5 = bits.Sub64(z5, 0, c4)
z6, _ = bits.Sub64(z6, 0, c5)
binary.LittleEndian.PutUint64(z[0*8:1*8], z0)
binary.LittleEndian.PutUint64(z[1*8:2*8], z1)
binary.LittleEndian.PutUint64(z[2*8:3*8], z2)
binary.LittleEndian.PutUint64(z[3*8:4*8], z3)
binary.LittleEndian.PutUint64(z[4*8:5*8], z4)
binary.LittleEndian.PutUint64(z[5*8:6*8], z5)
binary.LittleEndian.PutUint64(z[6*8:7*8], z6)
}
func addsubGeneric(x, y *Elt) {
z := &Elt{}
addGeneric(z, x, y)
subGeneric(y, x, y)
*x = *z
}
func mulGeneric(z, x, y *Elt) {
x0 := binary.LittleEndian.Uint64(x[0*8 : 1*8])
x1 := binary.LittleEndian.Uint64(x[1*8 : 2*8])
x2 := binary.LittleEndian.Uint64(x[2*8 : 3*8])
x3 := binary.LittleEndian.Uint64(x[3*8 : 4*8])
x4 := binary.LittleEndian.Uint64(x[4*8 : 5*8])
x5 := binary.LittleEndian.Uint64(x[5*8 : 6*8])
x6 := binary.LittleEndian.Uint64(x[6*8 : 7*8])
y0 := binary.LittleEndian.Uint64(y[0*8 : 1*8])
y1 := binary.LittleEndian.Uint64(y[1*8 : 2*8])
y2 := binary.LittleEndian.Uint64(y[2*8 : 3*8])
y3 := binary.LittleEndian.Uint64(y[3*8 : 4*8])
y4 := binary.LittleEndian.Uint64(y[4*8 : 5*8])
y5 := binary.LittleEndian.Uint64(y[5*8 : 6*8])
y6 := binary.LittleEndian.Uint64(y[6*8 : 7*8])
yy := [7]uint64{y0, y1, y2, y3, y4, y5, y6}
zz := [7]uint64{}
yi := yy[0]
h0, l0 := bits.Mul64(x0, yi)
h1, l1 := bits.Mul64(x1, yi)
h2, l2 := bits.Mul64(x2, yi)
h3, l3 := bits.Mul64(x3, yi)
h4, l4 := bits.Mul64(x4, yi)
h5, l5 := bits.Mul64(x5, yi)
h6, l6 := bits.Mul64(x6, yi)
zz[0] = l0
a0, c0 := bits.Add64(h0, l1, 0)
a1, c1 := bits.Add64(h1, l2, c0)
a2, c2 := bits.Add64(h2, l3, c1)
a3, c3 := bits.Add64(h3, l4, c2)
a4, c4 := bits.Add64(h4, l5, c3)
a5, c5 := bits.Add64(h5, l6, c4)
a6, _ := bits.Add64(h6, 0, c5)
for i := 1; i < 7; i++ {
yi = yy[i]
h0, l0 = bits.Mul64(x0, yi)
h1, l1 = bits.Mul64(x1, yi)
h2, l2 = bits.Mul64(x2, yi)
h3, l3 = bits.Mul64(x3, yi)
h4, l4 = bits.Mul64(x4, yi)
h5, l5 = bits.Mul64(x5, yi)
h6, l6 = bits.Mul64(x6, yi)
zz[i], c0 = bits.Add64(a0, l0, 0)
a0, c1 = bits.Add64(a1, l1, c0)
a1, c2 = bits.Add64(a2, l2, c1)
a2, c3 = bits.Add64(a3, l3, c2)
a3, c4 = bits.Add64(a4, l4, c3)
a4, c5 = bits.Add64(a5, l5, c4)
a5, a6 = bits.Add64(a6, l6, c5)
a0, c0 = bits.Add64(a0, h0, 0)
a1, c1 = bits.Add64(a1, h1, c0)
a2, c2 = bits.Add64(a2, h2, c1)
a3, c3 = bits.Add64(a3, h3, c2)
a4, c4 = bits.Add64(a4, h4, c3)
a5, c5 = bits.Add64(a5, h5, c4)
a6, _ = bits.Add64(a6, h6, c5)
}
red64(z, &zz, &[7]uint64{a0, a1, a2, a3, a4, a5, a6})
}
func sqrGeneric(z, x *Elt) { mulGeneric(z, x, x) }
func red64(z *Elt, l, h *[7]uint64) {
/* (2C13, 2C12, 2C11, 2C10|C10, C9, C8, C7) + (C6,...,C0) */
h0 := h[0]
h1 := h[1]
h2 := h[2]
h3 := ((h[3] & (0xFFFFFFFF << 32)) << 1) | (h[3] & 0xFFFFFFFF)
h4 := (h[3] >> 63) | (h[4] << 1)
h5 := (h[4] >> 63) | (h[5] << 1)
h6 := (h[5] >> 63) | (h[6] << 1)
h7 := (h[6] >> 63)
l0, c0 := bits.Add64(h0, l[0], 0)
l1, c1 := bits.Add64(h1, l[1], c0)
l2, c2 := bits.Add64(h2, l[2], c1)
l3, c3 := bits.Add64(h3, l[3], c2)
l4, c4 := bits.Add64(h4, l[4], c3)
l5, c5 := bits.Add64(h5, l[5], c4)
l6, c6 := bits.Add64(h6, l[6], c5)
l7, _ := bits.Add64(h7, 0, c6)
/* (C10C9, C9C8,C8C7,C7C13,C13C12,C12C11,C11C10) + (C6,...,C0) */
h0 = (h[3] >> 32) | (h[4] << 32)
h1 = (h[4] >> 32) | (h[5] << 32)
h2 = (h[5] >> 32) | (h[6] << 32)
h3 = (h[6] >> 32) | (h[0] << 32)
h4 = (h[0] >> 32) | (h[1] << 32)
h5 = (h[1] >> 32) | (h[2] << 32)
h6 = (h[2] >> 32) | (h[3] << 32)
l0, c0 = bits.Add64(l0, h0, 0)
l1, c1 = bits.Add64(l1, h1, c0)
l2, c2 = bits.Add64(l2, h2, c1)
l3, c3 = bits.Add64(l3, h3, c2)
l4, c4 = bits.Add64(l4, h4, c3)
l5, c5 = bits.Add64(l5, h5, c4)
l6, c6 = bits.Add64(l6, h6, c5)
l7, _ = bits.Add64(l7, 0, c6)
/* (C7) + (C6,...,C0) */
l0, c0 = bits.Add64(l0, l7, 0)
l1, c1 = bits.Add64(l1, 0, c0)
l2, c2 = bits.Add64(l2, 0, c1)
l3, c3 = bits.Add64(l3, l7<<32, c2)
l4, c4 = bits.Add64(l4, 0, c3)
l5, c5 = bits.Add64(l5, 0, c4)
l6, l7 = bits.Add64(l6, 0, c5)
/* (C7) + (C6,...,C0) */
l0, c0 = bits.Add64(l0, l7, 0)
l1, c1 = bits.Add64(l1, 0, c0)
l2, c2 = bits.Add64(l2, 0, c1)
l3, c3 = bits.Add64(l3, l7<<32, c2)
l4, c4 = bits.Add64(l4, 0, c3)
l5, c5 = bits.Add64(l5, 0, c4)
l6, _ = bits.Add64(l6, 0, c5)
binary.LittleEndian.PutUint64(z[0*8:1*8], l0)
binary.LittleEndian.PutUint64(z[1*8:2*8], l1)
binary.LittleEndian.PutUint64(z[2*8:3*8], l2)
binary.LittleEndian.PutUint64(z[3*8:4*8], l3)
binary.LittleEndian.PutUint64(z[4*8:5*8], l4)
binary.LittleEndian.PutUint64(z[5*8:6*8], l5)
binary.LittleEndian.PutUint64(z[6*8:7*8], l6)
}

View File

@ -0,0 +1,12 @@
//go:build !amd64 || purego
// +build !amd64 purego
package fp448
func cmov(x, y *Elt, n uint) { cmovGeneric(x, y, n) }
func cswap(x, y *Elt, n uint) { cswapGeneric(x, y, n) }
func add(z, x, y *Elt) { addGeneric(z, x, y) }
func sub(z, x, y *Elt) { subGeneric(z, x, y) }
func addsub(x, y *Elt) { addsubGeneric(x, y) }
func mul(z, x, y *Elt) { mulGeneric(z, x, y) }
func sqr(z, x *Elt) { sqrGeneric(z, x) }

View File

@ -0,0 +1,75 @@
//go:build gofuzz
// +build gofuzz
// How to run the fuzzer:
//
// $ go get -u github.com/dvyukov/go-fuzz/go-fuzz
// $ go get -u github.com/dvyukov/go-fuzz/go-fuzz-build
// $ go-fuzz-build -libfuzzer -func FuzzReduction -o lib.a
// $ clang -fsanitize=fuzzer lib.a -o fu.exe
// $ ./fu.exe
package fp448
import (
"encoding/binary"
"fmt"
"math/big"
"github.com/cloudflare/circl/internal/conv"
)
// FuzzReduction is a fuzzer target for red64 function, which reduces t
// (112 bits) to a number t' (56 bits) congruent modulo p448.
func FuzzReduction(data []byte) int {
if len(data) != 2*Size {
return -1
}
var got, want Elt
var lo, hi [7]uint64
a := data[:Size]
b := data[Size:]
lo[0] = binary.LittleEndian.Uint64(a[0*8 : 1*8])
lo[1] = binary.LittleEndian.Uint64(a[1*8 : 2*8])
lo[2] = binary.LittleEndian.Uint64(a[2*8 : 3*8])
lo[3] = binary.LittleEndian.Uint64(a[3*8 : 4*8])
lo[4] = binary.LittleEndian.Uint64(a[4*8 : 5*8])
lo[5] = binary.LittleEndian.Uint64(a[5*8 : 6*8])
lo[6] = binary.LittleEndian.Uint64(a[6*8 : 7*8])
hi[0] = binary.LittleEndian.Uint64(b[0*8 : 1*8])
hi[1] = binary.LittleEndian.Uint64(b[1*8 : 2*8])
hi[2] = binary.LittleEndian.Uint64(b[2*8 : 3*8])
hi[3] = binary.LittleEndian.Uint64(b[3*8 : 4*8])
hi[4] = binary.LittleEndian.Uint64(b[4*8 : 5*8])
hi[5] = binary.LittleEndian.Uint64(b[5*8 : 6*8])
hi[6] = binary.LittleEndian.Uint64(b[6*8 : 7*8])
red64(&got, &lo, &hi)
t := conv.BytesLe2BigInt(data[:2*Size])
two448 := big.NewInt(1)
two448.Lsh(two448, 448) // 2^448
mask448 := big.NewInt(1)
mask448.Sub(two448, mask448) // 2^448-1
two224plus1 := big.NewInt(1)
two224plus1.Lsh(two224plus1, 224)
two224plus1.Add(two224plus1, big.NewInt(1)) // 2^224+1
var loBig, hiBig big.Int
for t.Cmp(two448) >= 0 {
loBig.And(t, mask448)
hiBig.Rsh(t, 448)
t.Mul(&hiBig, two224plus1)
t.Add(t, &loBig)
}
conv.BigInt2BytesLe(want[:], t)
if got != want {
fmt.Printf("in: %v\n", conv.BytesLe2BigInt(data[:2*Size]))
fmt.Printf("got: %v\n", got)
fmt.Printf("want: %v\n", want)
panic("error found")
}
return 1
}

View File

@ -0,0 +1,302 @@
//go:build amd64
// +build amd64
package common
import (
"golang.org/x/sys/cpu"
)
// ZetasAVX2 contains all ζ used in NTT (like the Zetas array), but also
// the values int16(zeta * 62209) for each zeta, which is used in
// Montgomery reduction. There is some duplication and reordering as
// compared to Zetas to make it more covenient for use with AVX2.
var ZetasAVX2 = [...]int16{
// level 1: int16(Zetas[1]*62209) and Zetas[1]
31499, 2571,
// level 2
//
// int16(Zetas[2]*62209), Zetas[2], int16(Zetas[3]*62209), Zetas[3]
14746, 2970, 788, 1812,
// level 3, like level 2.
13525, 1493, -12402, 1422, 28191, 287, -16694, 202,
0, 0, // padding
// layer 4. offset: 1*16
//
// The precomputed multiplication and zetas are grouped by 16 at a
// time as used in the set of butterflies, etc.
-20906, -20906, -20906, -20906, -20906, -20906, -20906, -20906,
27758, 27758, 27758, 27758, 27758, 27758, 27758, 27758,
3158, 3158, 3158, 3158, 3158, 3158, 3158, 3158,
622, 622, 622, 622, 622, 622, 622, 622,
-3799, -3799, -3799, -3799, -3799, -3799, -3799, -3799,
-15690, -15690, -15690, -15690, -15690, -15690, -15690, -15690,
1577, 1577, 1577, 1577, 1577, 1577, 1577, 1577,
182, 182, 182, 182, 182, 182, 182, 182,
10690, 10690, 10690, 10690, 10690, 10690, 10690, 10690,
1359, 1359, 1359, 1359, 1359, 1359, 1359, 1359,
962, 962, 962, 962, 962, 962, 962, 962,
2127, 2127, 2127, 2127, 2127, 2127, 2127, 2127,
-11201, -11201, -11201, -11201, -11201, -11201, -11201, -11201,
31164, 31164, 31164, 31164, 31164, 31164, 31164, 31164,
1855, 1855, 1855, 1855, 1855, 1855, 1855, 1855,
1468, 1468, 1468, 1468, 1468, 1468, 1468, 1468,
// layer 5. offset: 9*16
-5827, -5827, -5827, -5827, 17364, 17364, 17364, 17364,
-26360, -26360, -26360, -26360, -29057, -29057, -29057, -29057,
573, 573, 573, 573, 2004, 2004, 2004, 2004,
264, 264, 264, 264, 383, 383, 383, 383,
5572, 5572, 5572, 5572, -1102, -1102, -1102, -1102,
21439, 21439, 21439, 21439, -26241, -26241, -26241, -26241,
2500, 2500, 2500, 2500, 1458, 1458, 1458, 1458,
1727, 1727, 1727, 1727, 3199, 3199, 3199, 3199,
-28072, -28072, -28072, -28072, 24313, 24313, 24313, 24313,
-10532, -10532, -10532, -10532, 8800, 8800, 8800, 8800,
2648, 2648, 2648, 2648, 1017, 1017, 1017, 1017,
732, 732, 732, 732, 608, 608, 608, 608,
18427, 18427, 18427, 18427, 8859, 8859, 8859, 8859,
26676, 26676, 26676, 26676, -16162, -16162, -16162, -16162,
1787, 1787, 1787, 1787, 411, 411, 411, 411,
3124, 3124, 3124, 3124, 1758, 1758, 1758, 1758,
// layer 6. offset: 17*16
-5689, -5689, -6516, -6516, 1497, 1497, 30967, 30967,
-23564, -23564, 20179, 20179, 20711, 20711, 25081, 25081,
1223, 1223, 652, 652, 2777, 2777, 1015, 1015,
2036, 2036, 1491, 1491, 3047, 3047, 1785, 1785,
-12796, -12796, 26617, 26617, 16065, 16065, -12441, -12441,
9135, 9135, -649, -649, -25986, -25986, 27837, 27837,
516, 516, 3321, 3321, 3009, 3009, 2663, 2663,
1711, 1711, 2167, 2167, 126, 126, 1469, 1469,
19884, 19884, -28249, -28249, -15886, -15886, -8898, -8898,
-28309, -28309, 9076, 9076, -30198, -30198, 18250, 18250,
2476, 2476, 3239, 3239, 3058, 3058, 830, 830,
107, 107, 1908, 1908, 3082, 3082, 2378, 2378,
13427, 13427, 14017, 14017, -29155, -29155, -12756, -12756,
16832, 16832, 4312, 4312, -24155, -24155, -17914, -17914,
2931, 2931, 961, 961, 1821, 1821, 2604, 2604,
448, 448, 2264, 2264, 677, 677, 2054, 2054,
// layer 7. offset: 25*16
-334, 11182, -11477, 13387, -32226, -14233, 20494, -21655,
-27738, 13131, 945, -4586, -14882, 23093, 6182, 5493,
2226, 430, 555, 843, 2078, 871, 1550, 105,
422, 587, 177, 3094, 3038, 2869, 1574, 1653,
32011, -32502, 10631, 30318, 29176, -18741, -28761, 12639,
-18485, 20100, 17561, 18525, -14430, 19529, -5275, -12618,
3083, 778, 1159, 3182, 2552, 1483, 2727, 1119,
1739, 644, 2457, 349, 418, 329, 3173, 3254,
-31183, 20297, 25435, 2146, -7382, 15356, 24392, -32384,
-20926, -6279, 10946, -14902, 24215, -11044, 16990, 14470,
817, 1097, 603, 610, 1322, 2044, 1864, 384,
2114, 3193, 1218, 1994, 2455, 220, 2142, 1670,
10336, -21497, -7933, -20198, -22501, 23211, 10907, -17442,
31637, -23859, 28644, -20257, 23998, 7757, -17422, 23132,
2144, 1799, 2051, 794, 1819, 2475, 2459, 478,
3221, 3021, 996, 991, 958, 1869, 1522, 1628,
// layer 1 inverse
23132, -17422, 7757, 23998, -20257, 28644, -23859, 31637,
-17442, 10907, 23211, -22501, -20198, -7933, -21497, 10336,
1628, 1522, 1869, 958, 991, 996, 3021, 3221,
478, 2459, 2475, 1819, 794, 2051, 1799, 2144,
14470, 16990, -11044, 24215, -14902, 10946, -6279, -20926,
-32384, 24392, 15356, -7382, 2146, 25435, 20297, -31183,
1670, 2142, 220, 2455, 1994, 1218, 3193, 2114,
384, 1864, 2044, 1322, 610, 603, 1097, 817,
-12618, -5275, 19529, -14430, 18525, 17561, 20100, -18485,
12639, -28761, -18741, 29176, 30318, 10631, -32502, 32011,
3254, 3173, 329, 418, 349, 2457, 644, 1739,
1119, 2727, 1483, 2552, 3182, 1159, 778, 3083,
5493, 6182, 23093, -14882, -4586, 945, 13131, -27738,
-21655, 20494, -14233, -32226, 13387, -11477, 11182, -334,
1653, 1574, 2869, 3038, 3094, 177, 587, 422,
105, 1550, 871, 2078, 843, 555, 430, 2226,
// layer 2 inverse
-17914, -17914, -24155, -24155, 4312, 4312, 16832, 16832,
-12756, -12756, -29155, -29155, 14017, 14017, 13427, 13427,
2054, 2054, 677, 677, 2264, 2264, 448, 448,
2604, 2604, 1821, 1821, 961, 961, 2931, 2931,
18250, 18250, -30198, -30198, 9076, 9076, -28309, -28309,
-8898, -8898, -15886, -15886, -28249, -28249, 19884, 19884,
2378, 2378, 3082, 3082, 1908, 1908, 107, 107,
830, 830, 3058, 3058, 3239, 3239, 2476, 2476,
27837, 27837, -25986, -25986, -649, -649, 9135, 9135,
-12441, -12441, 16065, 16065, 26617, 26617, -12796, -12796,
1469, 1469, 126, 126, 2167, 2167, 1711, 1711,
2663, 2663, 3009, 3009, 3321, 3321, 516, 516,
25081, 25081, 20711, 20711, 20179, 20179, -23564, -23564,
30967, 30967, 1497, 1497, -6516, -6516, -5689, -5689,
1785, 1785, 3047, 3047, 1491, 1491, 2036, 2036,
1015, 1015, 2777, 2777, 652, 652, 1223, 1223,
// layer 3 inverse
-16162, -16162, -16162, -16162, 26676, 26676, 26676, 26676,
8859, 8859, 8859, 8859, 18427, 18427, 18427, 18427,
1758, 1758, 1758, 1758, 3124, 3124, 3124, 3124,
411, 411, 411, 411, 1787, 1787, 1787, 1787,
8800, 8800, 8800, 8800, -10532, -10532, -10532, -10532,
24313, 24313, 24313, 24313, -28072, -28072, -28072, -28072,
608, 608, 608, 608, 732, 732, 732, 732,
1017, 1017, 1017, 1017, 2648, 2648, 2648, 2648,
-26241, -26241, -26241, -26241, 21439, 21439, 21439, 21439,
-1102, -1102, -1102, -1102, 5572, 5572, 5572, 5572,
3199, 3199, 3199, 3199, 1727, 1727, 1727, 1727,
1458, 1458, 1458, 1458, 2500, 2500, 2500, 2500,
-29057, -29057, -29057, -29057, -26360, -26360, -26360, -26360,
17364, 17364, 17364, 17364, -5827, -5827, -5827, -5827,
383, 383, 383, 383, 264, 264, 264, 264,
2004, 2004, 2004, 2004, 573, 573, 573, 573,
// layer 4 inverse
31164, 31164, 31164, 31164, 31164, 31164, 31164, 31164,
-11201, -11201, -11201, -11201, -11201, -11201, -11201, -11201,
1468, 1468, 1468, 1468, 1468, 1468, 1468, 1468,
1855, 1855, 1855, 1855, 1855, 1855, 1855, 1855,
1359, 1359, 1359, 1359, 1359, 1359, 1359, 1359,
10690, 10690, 10690, 10690, 10690, 10690, 10690, 10690,
2127, 2127, 2127, 2127, 2127, 2127, 2127, 2127,
962, 962, 962, 962, 962, 962, 962, 962,
-15690, -15690, -15690, -15690, -15690, -15690, -15690, -15690,
-3799, -3799, -3799, -3799, -3799, -3799, -3799, -3799,
182, 182, 182, 182, 182, 182, 182, 182,
1577, 1577, 1577, 1577, 1577, 1577, 1577, 1577,
27758, 27758, 27758, 27758, 27758, 27758, 27758, 27758,
-20906, -20906, -20906, -20906, -20906, -20906, -20906, -20906,
622, 622, 622, 622, 622, 622, 622, 622,
3158, 3158, 3158, 3158, 3158, 3158, 3158, 3158,
// layer 5 inverse
-16694, 202, 28191, 287, -12402, 1422, 13525, 1493,
// layer 6 inverse
788, 1812, 14746, 2970,
// layer 7 inverse
31499, 2571,
}
// Sets p to a + b. Does not normalize coefficients.
func (p *Poly) Add(a, b *Poly) {
if cpu.X86.HasAVX2 {
addAVX2(
(*[N]int16)(p),
(*[N]int16)(a),
(*[N]int16)(b),
)
} else {
p.addGeneric(a, b)
}
}
// Sets p to a - b. Does not normalize coefficients.
func (p *Poly) Sub(a, b *Poly) {
if cpu.X86.HasAVX2 {
subAVX2(
(*[N]int16)(p),
(*[N]int16)(a),
(*[N]int16)(b),
)
} else {
p.subGeneric(a, b)
}
}
// Executes an in-place forward "NTT" on p.
//
// Assumes the coefficients are in absolute value ≤q. The resulting
// coefficients are in absolute value ≤7q. If the input is in Montgomery
// form, then the result is in Montgomery form and so (by linearity of the NTT)
// if the input is in regular form, then the result is also in regular form.
// The order of coefficients will be "tangled". These can be put back into
// their proper order by calling Detangle().
func (p *Poly) NTT() {
if cpu.X86.HasAVX2 {
nttAVX2((*[N]int16)(p))
} else {
p.nttGeneric()
}
}
// Executes an in-place inverse "NTT" on p and multiply by the Montgomery
// factor R.
//
// Requires coefficients to be in "tangled" order, see Tangle().
// Assumes the coefficients are in absolute value ≤q. The resulting
// coefficients are in absolute value ≤q. If the input is in Montgomery
// form, then the result is in Montgomery form and so (by linearity)
// if the input is in regular form, then the result is also in regular form.
func (p *Poly) InvNTT() {
if cpu.X86.HasAVX2 {
invNttAVX2((*[N]int16)(p))
} else {
p.invNTTGeneric()
}
}
// Sets p to the "pointwise" multiplication of a and b.
//
// That is: InvNTT(p) = InvNTT(a) * InvNTT(b). Assumes a and b are in
// Montgomery form. Products between coefficients of a and b must be strictly
// bounded in absolute value by 2¹⁵q. p will be in Montgomery form and
// bounded in absolute value by 2q.
//
// Requires a and b to be in "tangled" order, see Tangle(). p will be in
// tangled order as well.
func (p *Poly) MulHat(a, b *Poly) {
if cpu.X86.HasAVX2 {
mulHatAVX2(
(*[N]int16)(p),
(*[N]int16)(a),
(*[N]int16)(b),
)
} else {
p.mulHatGeneric(a, b)
}
}
// Puts p into the right form to be used with (among others) InvNTT().
func (p *Poly) Tangle() {
if cpu.X86.HasAVX2 {
tangleAVX2((*[N]int16)(p))
}
// When AVX2 is not available, we use the standard order.
}
// Puts p back into standard form.
func (p *Poly) Detangle() {
if cpu.X86.HasAVX2 {
detangleAVX2((*[N]int16)(p))
}
// When AVX2 is not available, we use the standard order.
}
// Almost normalizes coefficients.
//
// Ensures each coefficient is in {0, …, q}.
func (p *Poly) BarrettReduce() {
if cpu.X86.HasAVX2 {
barrettReduceAVX2((*[N]int16)(p))
} else {
p.barrettReduceGeneric()
}
}
// Normalizes coefficients.
//
// Ensures each coefficient is in {0, …, q-1}.
func (p *Poly) Normalize() {
if cpu.X86.HasAVX2 {
normalizeAVX2((*[N]int16)(p))
} else {
p.normalizeGeneric()
}
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,74 @@
package common
// Given -2¹⁵ q ≤ x < 2¹⁵ q, returns -q < y < q with x 2⁻¹⁶ = y (mod q).
func montReduce(x int32) int16 {
// This is Montgomery reduction with R=2¹⁶.
//
// Note gcd(2¹⁶, q) = 1 as q is prime. Write q' := 62209 = q⁻¹ mod R.
// First we compute
//
// m := ((x mod R) q') mod R
// = x q' mod R
// = int16(x q')
// = int16(int32(x) * int32(q'))
//
// Note that x q' might be as big as 2³² and could overflow the int32
// multiplication in the last line. However for any int32s a and b,
// we have int32(int64(a)*int64(b)) = int32(a*b) and so the result is ok.
m := int16(x * 62209)
// Note that x - m q is divisable by R; indeed modulo R we have
//
// x - m q ≡ x - x q' q ≡ x - x q⁻¹ q ≡ x - x = 0.
//
// We return y := (x - m q) / R. Note that y is indeed correct as
// modulo q we have
//
// y ≡ x R⁻¹ - m q R⁻¹ = x R⁻¹
//
// and as both 2¹⁵ q ≤ m q, x < 2¹⁵ q, we have
// 2¹⁶ q ≤ x - m q < 2¹⁶ and so q ≤ (x - m q) / R < q as desired.
return int16(uint32(x-int32(m)*int32(Q)) >> 16)
}
// Given any x, returns x R mod q where R=2¹⁶.
func toMont(x int16) int16 {
// Note |1353 x| ≤ 1353 2¹⁵ ≤ 13318 q ≤ 2¹⁵ q and so we're within
// the bounds of montReduce.
return montReduce(int32(x) * 1353) // 1353 = R² mod q.
}
// Given any x, compute 0 ≤ y ≤ q with x = y (mod q).
//
// Beware: we might have barrettReduce(x) = q ≠ 0 for some x. In fact,
// this happens if and only if x = -nq for some positive integer n.
func barrettReduce(x int16) int16 {
// This is standard Barrett reduction.
//
// For any x we have x mod q = x - ⌊x/q⌋ q. We will use 20159/2²⁶ as
// an approximation of 1/q. Note that 0 ≤ 20159/2²⁶ - 1/q ≤ 0.135/2²⁶
// and so | x 20156/2²⁶ - x/q | ≤ 2⁻¹⁰ for |x| ≤ 2¹⁶. For all x
// not a multiple of q, the number x/q is further than 1/q from any integer
// and so ⌊x 20156/2²⁶⌋ = ⌊x/q⌋. If x is a multiple of q and x is positive,
// then x 20156/2²⁶ is larger than x/q so ⌊x 20156/2²⁶⌋ = ⌊x/q⌋ as well.
// Finally, if x is negative multiple of q, then ⌊x 20156/2²⁶⌋ = ⌊x/q⌋-1.
// Thus
// [ q if x=-nq for pos. integer n
// x - ⌊x 20156/2²⁶⌋ q = [
// [ x mod q otherwise
//
// To compute actually compute this, note that
//
// ⌊x 20156/2²⁶⌋ = (20159 x) >> 26.
return x - int16((int32(x)*20159)>>26)*Q
}
// Returns x if x < q and x - q otherwise. Assumes x ≥ -29439.
func csubq(x int16) int16 {
x -= Q // no overflow due to assumption x ≥ -29439.
// If x is positive, then x >> 15 = 0. If x is negative,
// then uint16(x >> 15) = 2¹⁶-1. So this will add back in q
// if x was smaller than q.
x += (x >> 15) & Q
return x
}

View File

@ -0,0 +1,77 @@
//go:build !amd64
// +build !amd64
package common
// Sets p to a + b. Does not normalize coefficients.
func (p *Poly) Add(a, b *Poly) {
p.addGeneric(a, b)
}
// Sets p to a - b. Does not normalize coefficients.
func (p *Poly) Sub(a, b *Poly) {
p.subGeneric(a, b)
}
// Executes an in-place forward "NTT" on p.
//
// Assumes the coefficients are in absolute value ≤q. The resulting
// coefficients are in absolute value ≤7q. If the input is in Montgomery
// form, then the result is in Montgomery form and so (by linearity of the NTT)
// if the input is in regular form, then the result is also in regular form.
// The order of coefficients will be "tangled". These can be put back into
// their proper order by calling Detangle().
func (p *Poly) NTT() {
p.nttGeneric()
}
// Executes an in-place inverse "NTT" on p and multiply by the Montgomery
// factor R.
//
// Requires coefficients to be in "tangled" order, see Tangle().
// Assumes the coefficients are in absolute value ≤q. The resulting
// coefficients are in absolute value ≤q. If the input is in Montgomery
// form, then the result is in Montgomery form and so (by linearity)
// if the input is in regular form, then the result is also in regular form.
func (p *Poly) InvNTT() {
p.invNTTGeneric()
}
// Sets p to the "pointwise" multiplication of a and b.
//
// That is: InvNTT(p) = InvNTT(a) * InvNTT(b). Assumes a and b are in
// Montgomery form. Products between coefficients of a and b must be strictly
// bounded in absolute value by 2¹⁵q. p will be in Montgomery form and
// bounded in absolute value by 2q.
//
// Requires a and b to be in "tangled" order, see Tangle(). p will be in
// tangled order as well.
func (p *Poly) MulHat(a, b *Poly) {
p.mulHatGeneric(a, b)
}
// Puts p into the right form to be used with (among others) InvNTT().
func (p *Poly) Tangle() {
// In the generic implementation there is no advantage to using a
// different order, so we use the standard order everywhere.
}
// Puts p back into standard form.
func (p *Poly) Detangle() {
// In the generic implementation there is no advantage to using a
// different order, so we use the standard order everywhere.
}
// Almost normalizes coefficients.
//
// Ensures each coefficient is in {0, …, q}.
func (p *Poly) BarrettReduce() {
p.barrettReduceGeneric()
}
// Normalizes coefficients.
//
// Ensures each coefficient is in {0, …, q-1}.
func (p *Poly) Normalize() {
p.normalizeGeneric()
}

View File

@ -0,0 +1,193 @@
package common
// Zetas lists precomputed powers of the primitive root of unity in
// Montgomery representation used for the NTT:
//
// Zetas[i] = ζᵇʳᵛ⁽ⁱ⁾ R mod q
//
// where ζ = 17, brv(i) is the bitreversal of a 7-bit number and R=2¹⁶ mod q.
//
// The following Python code generates the Zetas arrays:
//
// q = 13*2**8 + 1; zeta = 17
// R = 2**16 % q # Montgomery const.
// def brv(x): return int(''.join(reversed(bin(x)[2:].zfill(7))),2)
// print([(pow(zeta, brv(i), q)*R)%q for i in range(128)])
var Zetas = [128]int16{
2285, 2571, 2970, 1812, 1493, 1422, 287, 202, 3158, 622, 1577, 182,
962, 2127, 1855, 1468, 573, 2004, 264, 383, 2500, 1458, 1727, 3199,
2648, 1017, 732, 608, 1787, 411, 3124, 1758, 1223, 652, 2777, 1015,
2036, 1491, 3047, 1785, 516, 3321, 3009, 2663, 1711, 2167, 126,
1469, 2476, 3239, 3058, 830, 107, 1908, 3082, 2378, 2931, 961, 1821,
2604, 448, 2264, 677, 2054, 2226, 430, 555, 843, 2078, 871, 1550,
105, 422, 587, 177, 3094, 3038, 2869, 1574, 1653, 3083, 778, 1159,
3182, 2552, 1483, 2727, 1119, 1739, 644, 2457, 349, 418, 329, 3173,
3254, 817, 1097, 603, 610, 1322, 2044, 1864, 384, 2114, 3193, 1218,
1994, 2455, 220, 2142, 1670, 2144, 1799, 2051, 794, 1819, 2475,
2459, 478, 3221, 3021, 996, 991, 958, 1869, 1522, 1628,
}
// InvNTTReductions keeps track of which coefficients to apply Barrett
// reduction to in Poly.InvNTT().
//
// Generated in a lazily: once a butterfly is computed which is about to
// overflow the int16, the largest coefficient is reduced. If that is
// not enough, the other coefficient is reduced as well.
//
// This is actually optimal, as proven in https://eprint.iacr.org/2020/1377.pdf
var InvNTTReductions = [...]int{
-1, // after layer 1
-1, // after layer 2
16, 17, 48, 49, 80, 81, 112, 113, 144, 145, 176, 177, 208, 209, 240,
241, -1, // after layer 3
0, 1, 32, 33, 34, 35, 64, 65, 96, 97, 98, 99, 128, 129, 160, 161, 162, 163,
192, 193, 224, 225, 226, 227, -1, // after layer 4
2, 3, 66, 67, 68, 69, 70, 71, 130, 131, 194, 195, 196, 197, 198,
199, -1, // after layer 5
4, 5, 6, 7, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,
143, -1, // after layer 6
-1, // after layer 7
}
// Executes an in-place forward "NTT" on p.
//
// Assumes the coefficients are in absolute value ≤q. The resulting
// coefficients are in absolute value ≤7q. If the input is in Montgomery
// form, then the result is in Montgomery form and so (by linearity of the NTT)
// if the input is in regular form, then the result is also in regular form.
// The order of coefficients will be "tangled". These can be put back into
// their proper order by calling Detangle().
func (p *Poly) nttGeneric() {
// Note that _q does not have a primitive 512ᵗʰ root of unity (as 512
// does not divide into q-1) and so we cannot do a regular NTT. _q
// does have a primitive 256ᵗʰ root of unity, the smallest of which
// is ζ := 17.
//
// Recall that our base ring R := _q[x] / (x²⁵⁶ + 1). The polynomial
// x²⁵⁶+1 will not split completely (as its roots would be 512ᵗʰ roots
// of unity.) However, it does split almost (using ζ¹²⁸ = -1):
//
// x²⁵⁶ + 1 = (x²)¹²⁸ - ζ¹²⁸
// = ((x²)⁶⁴ - ζ⁶⁴)((x²)⁶⁴ + ζ⁶⁴)
// = ((x²)³² - ζ³²)((x²)³² + ζ³²)((x²)³² - ζ⁹⁶)((x²)³² + ζ⁹⁶)
// ⋮
// = (x² - ζ)(x² + ζ)(x² - ζ⁶⁵)(x² + ζ⁶⁵) … (x² + ζ¹²⁷)
//
// Note that the powers of ζ that appear (from the second line down) are
// in binary
//
// 0100000 1100000
// 0010000 1010000 0110000 1110000
// 0001000 1001000 0101000 1101000 0011000 1011000 0111000 1111000
// …
//
// That is: brv(2), brv(3), brv(4), …, where brv(x) denotes the 7-bit
// bitreversal of x. These powers of ζ are given by the Zetas array.
//
// The polynomials x² ± ζⁱ are irreducible and coprime, hence by
// the Chinese Remainder Theorem we know
//
// _q[x]/(x²⁵⁶+1) → _q[x]/(x²-ζ) x … x _q[x]/(x²+ζ¹²⁷)
//
// given by a ↦ ( a mod x²-ζ, …, a mod x²+ζ¹²⁷ )
// is an isomorphism, which is the "NTT". It can be efficiently computed by
//
//
// a ↦ ( a mod (x²)⁶⁴ - ζ⁶⁴, a mod (x²)⁶⁴ + ζ⁶⁴ )
// ↦ ( a mod (x²)³² - ζ³², a mod (x²)³² + ζ³²,
// a mod (x²)⁹⁶ - ζ⁹⁶, a mod (x²)⁹⁶ + ζ⁹⁶ )
//
// et cetera
//
// If N was 8 then this can be pictured in the following diagram:
//
// https://cnx.org/resources/17ee4dfe517a6adda05377b25a00bf6e6c93c334/File0026.png
//
// Each cross is a Cooley-Tukey butterfly: it's the map
//
// (a, b) ↦ (a + ζb, a - ζb)
//
// for the appropriate power ζ for that column and row group.
k := 0 // Index into Zetas
// l runs effectively over the columns in the diagram above; it is half the
// height of a row group, i.e. the number of butterflies in each row group.
// In the diagram above it would be 4, 2, 1.
for l := N / 2; l > 1; l >>= 1 {
// On the nᵗʰ iteration of the l-loop, the absolute value of the
// coefficients are bounded by nq.
// offset effectively loops over the row groups in this column; it is
// the first row in the row group.
for offset := 0; offset < N-l; offset += 2 * l {
k++
zeta := int32(Zetas[k])
// j loops over each butterfly in the row group.
for j := offset; j < offset+l; j++ {
t := montReduce(zeta * int32(p[j+l]))
p[j+l] = p[j] - t
p[j] += t
}
}
}
}
// Executes an in-place inverse "NTT" on p and multiply by the Montgomery
// factor R.
//
// Requires coefficients to be in "tangled" order, see Tangle().
// Assumes the coefficients are in absolute value ≤q. The resulting
// coefficients are in absolute value ≤q. If the input is in Montgomery
// form, then the result is in Montgomery form and so (by linearity)
// if the input is in regular form, then the result is also in regular form.
func (p *Poly) invNTTGeneric() {
k := 127 // Index into Zetas
r := -1 // Index into InvNTTReductions.
// We basically do the oppposite of NTT, but postpone dividing by 2 in the
// inverse of the Cooley-Tukey butterfly and accumulate that into a big
// division by 2⁷ at the end. See the comments in the NTT() function.
for l := 2; l < N; l <<= 1 {
for offset := 0; offset < N-l; offset += 2 * l {
// As we're inverting, we need powers of ζ⁻¹ (instead of ζ).
// To be precise, we need ζᵇʳᵛ⁽ᵏ⁾⁻¹²⁸. However, as ζ⁻¹²⁸ = -1,
// we can use the existing Zetas table instead of
// keeping a separate InvZetas table as in Dilithium.
minZeta := int32(Zetas[k])
k--
for j := offset; j < offset+l; j++ {
// Gentleman-Sande butterfly: (a, b) ↦ (a + b, ζ(a-b))
t := p[j+l] - p[j]
p[j] += p[j+l]
p[j+l] = montReduce(minZeta * int32(t))
// Note that if we had |a| < αq and |b| < βq before the
// butterfly, then now we have |a| < (α+β)q and |b| < q.
}
}
// We let the InvNTTReductions instruct us which coefficients to
// Barrett reduce. See TestInvNTTReductions, which tests whether
// there is an overflow.
for {
r++
i := InvNTTReductions[r]
if i < 0 {
break
}
p[i] = barrettReduce(p[i])
}
}
for j := 0; j < N; j++ {
// Note 1441 = (128)⁻¹ R². The coefficients are bounded by 9q, so
// as 1441 * 9 ≈ 2¹⁴ < 2¹⁵, we're within the required bounds
// for montReduce().
p[j] = montReduce(1441 * int32(p[j]))
}
}

View File

@ -0,0 +1,22 @@
package common
import (
"github.com/cloudflare/circl/pke/kyber/internal/common/params"
)
const (
// Q is the parameter q ≡ 3329 = 2¹¹ + 2¹⁰ + 2⁸ + 1.
Q = params.Q
// N is the parameter N: the length of the polynomials
N = params.N
// PolySize is the size of a packed polynomial.
PolySize = params.PolySize
// PlaintextSize is the size of the plaintext
PlaintextSize = params.PlaintextSize
// Eta2 is the parameter η₂
Eta2 = params.Eta2
)

View File

@ -0,0 +1,21 @@
package params
// We put these parameters in a separate package so that the Go code,
// such as asm/src.go, that generates assembler can import it.
const (
// Q is the parameter q ≡ 3329 = 2¹¹ + 2¹⁰ + 2⁸ + 1.
Q int16 = 3329
// N is the parameter N: the length of the polynomials
N int = 256
// PolySize is the size of a packed polynomial.
PolySize int = 384
// PlaintextSize is the size of the plaintext
PlaintextSize = 32
// Eta2 is the parameter η₂
Eta2 = 2
)

View File

@ -0,0 +1,324 @@
package common
// An element of our base ring R which are polynomials over _q
// modulo the equation Xᴺ = -1, where q=3329 and N=256.
//
// This type is also used to store NTT-transformed polynomials,
// see Poly.NTT().
//
// Coefficients aren't always reduced. See Normalize().
type Poly [N]int16
// Sets p to a + b. Does not normalize coefficients.
func (p *Poly) addGeneric(a, b *Poly) {
for i := 0; i < N; i++ {
p[i] = a[i] + b[i]
}
}
// Sets p to a - b. Does not normalize coefficients.
func (p *Poly) subGeneric(a, b *Poly) {
for i := 0; i < N; i++ {
p[i] = a[i] - b[i]
}
}
// Almost normalizes coefficients.
//
// Ensures each coefficient is in {0, …, q}.
func (p *Poly) barrettReduceGeneric() {
for i := 0; i < N; i++ {
p[i] = barrettReduce(p[i])
}
}
// Normalizes coefficients.
//
// Ensures each coefficient is in {0, …, q-1}.
func (p *Poly) normalizeGeneric() {
for i := 0; i < N; i++ {
p[i] = csubq(barrettReduce(p[i]))
}
}
// Multiplies p in-place by the Montgomery factor 2¹⁶.
//
// Coefficients of p can be artbitray. Resulting coefficients are bounded
// in absolute value by q.
func (p *Poly) ToMont() {
for i := 0; i < N; i++ {
p[i] = toMont(p[i])
}
}
// Sets p to the "pointwise" multiplication of a and b.
//
// That is: InvNTT(p) = InvNTT(a) * InvNTT(b). Assumes a and b are in
// Montgomery form. Products between coefficients of a and b must be strictly
// bounded in absolute value by 2¹⁵q. p will be in Montgomery form and
// bounded in absolute value by 2q.
//
// Requires a and b to be in "tangled" order, see Tangle(). p will be in
// tangled order as well.
func (p *Poly) mulHatGeneric(a, b *Poly) {
// Recall from the discussion in NTT(), that a transformed polynomial is
// an element of _q[x]/(x²-ζ) x … x _q[x]/(x²+ζ¹²⁷);
// that is: 128 degree-one polynomials instead of simply 256 elements
// from _q as in the regular NTT. So instead of pointwise multiplication,
// we multiply the 128 pairs of degree-one polynomials modulo the
// right equation:
//
// (a₁ + a₂x)(b₁ + b₂x) = a₁b₁ + a₂b₂ζ' + (a₁b₂ + a₂b₁)x,
//
// where ζ' is the appropriate power of ζ.
k := 64
for i := 0; i < N; i += 4 {
zeta := int32(Zetas[k])
k++
p0 := montReduce(int32(a[i+1]) * int32(b[i+1]))
p0 = montReduce(int32(p0) * zeta)
p0 += montReduce(int32(a[i]) * int32(b[i]))
p1 := montReduce(int32(a[i]) * int32(b[i+1]))
p1 += montReduce(int32(a[i+1]) * int32(b[i]))
p[i] = p0
p[i+1] = p1
p2 := montReduce(int32(a[i+3]) * int32(b[i+3]))
p2 = -montReduce(int32(p2) * zeta)
p2 += montReduce(int32(a[i+2]) * int32(b[i+2]))
p3 := montReduce(int32(a[i+2]) * int32(b[i+3]))
p3 += montReduce(int32(a[i+3]) * int32(b[i+2]))
p[i+2] = p2
p[i+3] = p3
}
}
// Packs p into buf. buf should be of length PolySize.
//
// Assumes p is normalized (and not just Barrett reduced) and "tangled",
// see Tangle().
func (p *Poly) Pack(buf []byte) {
q := *p
q.Detangle()
for i := 0; i < 128; i++ {
t0 := q[2*i]
t1 := q[2*i+1]
buf[3*i] = byte(t0)
buf[3*i+1] = byte(t0>>8) | byte(t1<<4)
buf[3*i+2] = byte(t1 >> 4)
}
}
// Unpacks p from buf.
//
// buf should be of length PolySize. p will be "tangled", see Detangle().
//
// p will not be normalized; instead 0 ≤ p[i] < 4096.
func (p *Poly) Unpack(buf []byte) {
for i := 0; i < 128; i++ {
p[2*i] = int16(buf[3*i]) | ((int16(buf[3*i+1]) << 8) & 0xfff)
p[2*i+1] = int16(buf[3*i+1]>>4) | (int16(buf[3*i+2]) << 4)
}
p.Tangle()
}
// Set p to Decompress_q(m, 1).
//
// p will be normalized. m has to be of PlaintextSize.
func (p *Poly) DecompressMessage(m []byte) {
// Decompress_q(x, 1) = ⌈xq/2⌋ = ⌊xq/2+½⌋ = (xq+1) >> 1 and so
// Decompress_q(0, 1) = 0 and Decompress_q(1, 1) = (q+1)/2.
for i := 0; i < 32; i++ {
for j := 0; j < 8; j++ {
bit := (m[i] >> uint(j)) & 1
// Set coefficient to either 0 or (q+1)/2 depending on the bit.
p[8*i+j] = -int16(bit) & ((Q + 1) / 2)
}
}
}
// Writes Compress_q(p, 1) to m.
//
// Assumes p is normalized. m has to be of length at least PlaintextSize.
func (p *Poly) CompressMessageTo(m []byte) {
// Compress_q(x, 1) is 1 on {833, …, 2496} and zero elsewhere.
for i := 0; i < 32; i++ {
m[i] = 0
for j := 0; j < 8; j++ {
x := 1664 - p[8*i+j]
// With the previous substitution, we want to return 1 if
// and only if x is in {831, …, -832}.
x = (x >> 15) ^ x
// Note (x >> 15)ˣ if x≥0 and -x-1 otherwise. Thus now we want
// to return 1 iff x ≤ 831, ie. x - 832 < 0.
x -= 832
m[i] |= ((byte(x >> 15)) & 1) << uint(j)
}
}
}
// Set p to Decompress_q(m, 1).
//
// Assumes d is in {3, 4, 5, 10, 11}. p will be normalized.
func (p *Poly) Decompress(m []byte, d int) {
// Decompress_q(x, d) = ⌈(q/2ᵈ)x⌋
// = ⌊(q/2ᵈ)x+½⌋
// = ⌊(qx + 2ᵈ⁻¹)/2ᵈ⌋
// = (qx + (1<<(d-1))) >> d
switch d {
case 4:
for i := 0; i < N/2; i++ {
p[2*i] = int16(((1 << 3) +
uint32(m[i]&15)*uint32(Q)) >> 4)
p[2*i+1] = int16(((1 << 3) +
uint32(m[i]>>4)*uint32(Q)) >> 4)
}
case 5:
var t [8]uint16
idx := 0
for i := 0; i < N/8; i++ {
t[0] = uint16(m[idx])
t[1] = (uint16(m[idx]) >> 5) | (uint16(m[idx+1] << 3))
t[2] = uint16(m[idx+1]) >> 2
t[3] = (uint16(m[idx+1]) >> 7) | (uint16(m[idx+2] << 1))
t[4] = (uint16(m[idx+2]) >> 4) | (uint16(m[idx+3] << 4))
t[5] = uint16(m[idx+3]) >> 1
t[6] = (uint16(m[idx+3]) >> 6) | (uint16(m[idx+4] << 2))
t[7] = uint16(m[idx+4]) >> 3
for j := 0; j < 8; j++ {
p[8*i+j] = int16(((1 << 4) +
uint32(t[j]&((1<<5)-1))*uint32(Q)) >> 5)
}
idx += 5
}
case 10:
var t [4]uint16
idx := 0
for i := 0; i < N/4; i++ {
t[0] = uint16(m[idx]) | (uint16(m[idx+1]) << 8)
t[1] = (uint16(m[idx+1]) >> 2) | (uint16(m[idx+2]) << 6)
t[2] = (uint16(m[idx+2]) >> 4) | (uint16(m[idx+3]) << 4)
t[3] = (uint16(m[idx+3]) >> 6) | (uint16(m[idx+4]) << 2)
for j := 0; j < 4; j++ {
p[4*i+j] = int16(((1 << 9) +
uint32(t[j]&((1<<10)-1))*uint32(Q)) >> 10)
}
idx += 5
}
case 11:
var t [8]uint16
idx := 0
for i := 0; i < N/8; i++ {
t[0] = uint16(m[idx]) | (uint16(m[idx+1]) << 8)
t[1] = (uint16(m[idx+1]) >> 3) | (uint16(m[idx+2]) << 5)
t[2] = (uint16(m[idx+2]) >> 6) | (uint16(m[idx+3]) << 2) | (uint16(m[idx+4]) << 10)
t[3] = (uint16(m[idx+4]) >> 1) | (uint16(m[idx+5]) << 7)
t[4] = (uint16(m[idx+5]) >> 4) | (uint16(m[idx+6]) << 4)
t[5] = (uint16(m[idx+6]) >> 7) | (uint16(m[idx+7]) << 1) | (uint16(m[idx+8]) << 9)
t[6] = (uint16(m[idx+8]) >> 2) | (uint16(m[idx+9]) << 6)
t[7] = (uint16(m[idx+9]) >> 5) | (uint16(m[idx+10]) << 3)
for j := 0; j < 8; j++ {
p[8*i+j] = int16(((1 << 10) +
uint32(t[j]&((1<<11)-1))*uint32(Q)) >> 11)
}
idx += 11
}
default:
panic("unsupported d")
}
}
// Writes Compress_q(p, d) to m.
//
// Assumes p is normalized and d is in {3, 4, 5, 10, 11}.
func (p *Poly) CompressTo(m []byte, d int) {
// Compress_q(x, d) = ⌈(2ᵈ/q)x⌋ mod⁺ 2ᵈ
// = ⌊(2ᵈ/q)x+½⌋ mod⁺ 2ᵈ
// = ⌊((x << d) + q/2) / q⌋ mod⁺ 2ᵈ
// = DIV((x << d) + q/2, q) & ((1<<d) - 1)
switch d {
case 4:
var t [8]uint16
idx := 0
for i := 0; i < N/8; i++ {
for j := 0; j < 8; j++ {
t[j] = uint16(((uint32(p[8*i+j])<<4)+uint32(Q)/2)/
uint32(Q)) & ((1 << 4) - 1)
}
m[idx] = byte(t[0]) | byte(t[1]<<4)
m[idx+1] = byte(t[2]) | byte(t[3]<<4)
m[idx+2] = byte(t[4]) | byte(t[5]<<4)
m[idx+3] = byte(t[6]) | byte(t[7]<<4)
idx += 4
}
case 5:
var t [8]uint16
idx := 0
for i := 0; i < N/8; i++ {
for j := 0; j < 8; j++ {
t[j] = uint16(((uint32(p[8*i+j])<<5)+uint32(Q)/2)/
uint32(Q)) & ((1 << 5) - 1)
}
m[idx] = byte(t[0]) | byte(t[1]<<5)
m[idx+1] = byte(t[1]>>3) | byte(t[2]<<2) | byte(t[3]<<7)
m[idx+2] = byte(t[3]>>1) | byte(t[4]<<4)
m[idx+3] = byte(t[4]>>4) | byte(t[5]<<1) | byte(t[6]<<6)
m[idx+4] = byte(t[6]>>2) | byte(t[7]<<3)
idx += 5
}
case 10:
var t [4]uint16
idx := 0
for i := 0; i < N/4; i++ {
for j := 0; j < 4; j++ {
t[j] = uint16(((uint32(p[4*i+j])<<10)+uint32(Q)/2)/
uint32(Q)) & ((1 << 10) - 1)
}
m[idx] = byte(t[0])
m[idx+1] = byte(t[0]>>8) | byte(t[1]<<2)
m[idx+2] = byte(t[1]>>6) | byte(t[2]<<4)
m[idx+3] = byte(t[2]>>4) | byte(t[3]<<6)
m[idx+4] = byte(t[3] >> 2)
idx += 5
}
case 11:
var t [8]uint16
idx := 0
for i := 0; i < N/8; i++ {
for j := 0; j < 8; j++ {
t[j] = uint16(((uint32(p[8*i+j])<<11)+uint32(Q)/2)/
uint32(Q)) & ((1 << 11) - 1)
}
m[idx] = byte(t[0])
m[idx+1] = byte(t[0]>>8) | byte(t[1]<<3)
m[idx+2] = byte(t[1]>>5) | byte(t[2]<<6)
m[idx+3] = byte(t[2] >> 2)
m[idx+4] = byte(t[2]>>10) | byte(t[3]<<1)
m[idx+5] = byte(t[3]>>7) | byte(t[4]<<4)
m[idx+6] = byte(t[4]>>4) | byte(t[5]<<7)
m[idx+7] = byte(t[5] >> 1)
m[idx+8] = byte(t[5]>>9) | byte(t[6]<<2)
m[idx+9] = byte(t[6]>>6) | byte(t[7]<<5)
m[idx+10] = byte(t[7] >> 3)
idx += 11
}
default:
panic("unsupported d")
}
}

View File

@ -0,0 +1,236 @@
package common
import (
"encoding/binary"
"github.com/cloudflare/circl/internal/sha3"
"github.com/cloudflare/circl/simd/keccakf1600"
)
// DeriveX4Available indicates whether the system supports the quick fourway
// sampling variants like PolyDeriveUniformX4.
var DeriveX4Available = keccakf1600.IsEnabledX4()
// Samples p from a centered binomial distribution with given η.
//
// Essentially CBD_η(PRF(seed, nonce)) from the specification.
func (p *Poly) DeriveNoise(seed []byte, nonce uint8, eta int) {
switch eta {
case 2:
p.DeriveNoise2(seed, nonce)
case 3:
p.DeriveNoise3(seed, nonce)
default:
panic("unsupported eta")
}
}
// Sample p from a centered binomial distribution with n=6 and p=½ - that is:
// coefficients are in {-3, -2, -1, 0, 1, 2, 3} with probabilities {1/64, 3/32,
// 15/64, 5/16, 16/64, 3/32, 1/64}.
func (p *Poly) DeriveNoise3(seed []byte, nonce uint8) {
keySuffix := [1]byte{nonce}
h := sha3.NewShake256()
_, _ = h.Write(seed[:])
_, _ = h.Write(keySuffix[:])
// The distribution at hand is exactly the same as that
// of (a₁ + a₂ + a₃) - (b₁ + b₂+b₃) where a_i,b_i~U(1). Thus we need
// 6 bits per coefficients, thus 192 bytes of input entropy.
// We add two extra zero bytes in the buffer to be able to read 8 bytes
// at the same time (while using only 6.)
var buf [192 + 2]byte
_, _ = h.Read(buf[:192])
for i := 0; i < 32; i++ {
// t is interpreted as a₁ + 2a₂ + 4a₃ + 8b₁ + 16b₂ + ….
t := binary.LittleEndian.Uint64(buf[6*i:])
d := t & 0x249249249249 // a₁ + 8b₁ + …
d += (t >> 1) & 0x249249249249 // a₁ + a₂ + 8(b₁ + b₂) + …
d += (t >> 2) & 0x249249249249 // a₁ + a₂ + a₃ + 4(b₁ + b₂ + b₃) + …
for j := 0; j < 8; j++ {
a := int16(d) & 0x7 // a₁ + a₂ + a₃
d >>= 3
b := int16(d) & 0x7 // b₁ + b₂ + b₃
d >>= 3
p[8*i+j] = a - b
}
}
}
// Sample p from a centered binomial distribution with n=4 and p=½ - that is:
// coefficients are in {-2, -1, 0, 1, 2} with probabilities {1/16, 1/4,
// 3/8, 1/4, 1/16}.
func (p *Poly) DeriveNoise2(seed []byte, nonce uint8) {
keySuffix := [1]byte{nonce}
h := sha3.NewShake256()
_, _ = h.Write(seed[:])
_, _ = h.Write(keySuffix[:])
// The distribution at hand is exactly the same as that
// of (a + a') - (b + b') where a,a',b,b'~U(1). Thus we need 4 bits per
// coefficients, thus 128 bytes of input entropy.
var buf [128]byte
_, _ = h.Read(buf[:])
for i := 0; i < 16; i++ {
// t is interpreted as a + 2a' + 4b + 8b' + ….
t := binary.LittleEndian.Uint64(buf[8*i:])
d := t & 0x5555555555555555 // a + 4b + …
d += (t >> 1) & 0x5555555555555555 // a+a' + 4(b + b') + …
for j := 0; j < 16; j++ {
a := int16(d) & 0x3
d >>= 2
b := int16(d) & 0x3
d >>= 2
p[16*i+j] = a - b
}
}
}
// For each i, sample ps[i] uniformly from the given seed for coordinates
// xs[i] and ys[i]. ps[i] may be nil and is ignored in that case.
//
// Can only be called when DeriveX4Available is true.
func PolyDeriveUniformX4(ps [4]*Poly, seed *[32]byte, xs, ys [4]uint8) {
var perm keccakf1600.StateX4
state := perm.Initialize()
// Absorb the seed in the four states
for i := 0; i < 4; i++ {
v := binary.LittleEndian.Uint64(seed[8*i : 8*(i+1)])
for j := 0; j < 4; j++ {
state[i*4+j] = v
}
}
// Absorb the coordinates, the SHAKE128 domain separator (0b1111), the
// start of the padding (0b…001) and the end of the padding 0b100….
// Recall that the rate of SHAKE128 is 168; ie. 21 uint64s.
for j := 0; j < 4; j++ {
state[4*4+j] = uint64(xs[j]) | (uint64(ys[j]) << 8) | (0x1f << 16)
state[20*4+j] = 0x80 << 56
}
var idx [4]int // indices into ps
for j := 0; j < 4; j++ {
if ps[j] == nil {
idx[j] = N // mark nil polynomials as completed
}
}
done := false
for !done {
// Applies KeccaK-f[1600] to state to get the next 21 uint64s of each of
// the four SHAKE128 streams.
perm.Permute()
done = true
PolyLoop:
for j := 0; j < 4; j++ {
if idx[j] == N {
continue
}
for i := 0; i < 7; i++ {
var t [16]uint16
v1 := state[i*3*4+j]
v2 := state[(i*3+1)*4+j]
v3 := state[(i*3+2)*4+j]
t[0] = uint16(v1) & 0xfff
t[1] = uint16(v1>>12) & 0xfff
t[2] = uint16(v1>>24) & 0xfff
t[3] = uint16(v1>>36) & 0xfff
t[4] = uint16(v1>>48) & 0xfff
t[5] = uint16((v1>>60)|(v2<<4)) & 0xfff
t[6] = uint16(v2>>8) & 0xfff
t[7] = uint16(v2>>20) & 0xfff
t[8] = uint16(v2>>32) & 0xfff
t[9] = uint16(v2>>44) & 0xfff
t[10] = uint16((v2>>56)|(v3<<8)) & 0xfff
t[11] = uint16(v3>>4) & 0xfff
t[12] = uint16(v3>>16) & 0xfff
t[13] = uint16(v3>>28) & 0xfff
t[14] = uint16(v3>>40) & 0xfff
t[15] = uint16(v3>>52) & 0xfff
for k := 0; k < 16; k++ {
if t[k] < uint16(Q) {
ps[j][idx[j]] = int16(t[k])
idx[j]++
if idx[j] == N {
continue PolyLoop
}
}
}
}
done = false
}
}
for i := 0; i < 4; i++ {
if ps[i] != nil {
ps[i].Tangle()
}
}
}
// Sample p uniformly from the given seed and x and y coordinates.
//
// Coefficients are reduced and will be in "tangled" order. See Tangle().
func (p *Poly) DeriveUniform(seed *[32]byte, x, y uint8) {
var seedSuffix [2]byte
var buf [168]byte // rate of SHAKE-128
seedSuffix[0] = x
seedSuffix[1] = y
h := sha3.NewShake128()
_, _ = h.Write(seed[:])
_, _ = h.Write(seedSuffix[:])
i := 0
for {
_, _ = h.Read(buf[:])
for j := 0; j < 168; j += 3 {
t1 := (uint16(buf[j]) | (uint16(buf[j+1]) << 8)) & 0xfff
t2 := (uint16(buf[j+1]>>4) | (uint16(buf[j+2]) << 4)) & 0xfff
if t1 < uint16(Q) {
p[i] = int16(t1)
i++
if i == N {
break
}
}
if t2 < uint16(Q) {
p[i] = int16(t2)
i++
if i == N {
break
}
}
}
if i == N {
break
}
}
p.Tangle()
}

View File

@ -0,0 +1,33 @@
// Code generated by command: go run src.go -out ../amd64.s -stubs ../stubs_amd64.go -pkg common. DO NOT EDIT.
//go:build amd64
// +build amd64
package common
//go:noescape
func addAVX2(p *[256]int16, a *[256]int16, b *[256]int16)
//go:noescape
func subAVX2(p *[256]int16, a *[256]int16, b *[256]int16)
//go:noescape
func nttAVX2(p *[256]int16)
//go:noescape
func invNttAVX2(p *[256]int16)
//go:noescape
func mulHatAVX2(p *[256]int16, a *[256]int16, b *[256]int16)
//go:noescape
func detangleAVX2(p *[256]int16)
//go:noescape
func tangleAVX2(p *[256]int16)
//go:noescape
func barrettReduceAVX2(p *[256]int16)
//go:noescape
func normalizeAVX2(p *[256]int16)

View File

@ -0,0 +1,176 @@
// Code generated from kyber512/internal/cpapke.go by gen.go
package internal
import (
"github.com/cloudflare/circl/internal/sha3"
"github.com/cloudflare/circl/pke/kyber/internal/common"
)
// A Kyber.CPAPKE private key.
type PrivateKey struct {
sh Vec // NTT(s), normalized
}
// A Kyber.CPAPKE public key.
type PublicKey struct {
rho [32]byte // ρ, the seed for the matrix A
th Vec // NTT(t), normalized
// cached values
aT Mat // the matrix Aᵀ
}
// Packs the private key to buf.
func (sk *PrivateKey) Pack(buf []byte) {
sk.sh.Pack(buf)
}
// Unpacks the private key from buf.
func (sk *PrivateKey) Unpack(buf []byte) {
sk.sh.Unpack(buf)
sk.sh.Normalize()
}
// Packs the public key to buf.
func (pk *PublicKey) Pack(buf []byte) {
pk.th.Pack(buf)
copy(buf[K*common.PolySize:], pk.rho[:])
}
// Unpacks the public key from buf.
func (pk *PublicKey) Unpack(buf []byte) {
pk.th.Unpack(buf)
pk.th.Normalize()
copy(pk.rho[:], buf[K*common.PolySize:])
pk.aT.Derive(&pk.rho, true)
}
// Derives a new Kyber.CPAPKE keypair from the given seed.
func NewKeyFromSeed(seed []byte) (*PublicKey, *PrivateKey) {
var pk PublicKey
var sk PrivateKey
var expandedSeed [64]byte
h := sha3.New512()
_, _ = h.Write(seed)
// This writes hash into expandedSeed. Yes, this is idiomatic Go.
_, _ = h.Read(expandedSeed[:])
copy(pk.rho[:], expandedSeed[:32])
sigma := expandedSeed[32:] // σ, the noise seed
pk.aT.Derive(&pk.rho, false) // Expand ρ to matrix A; we'll transpose later
var eh Vec
sk.sh.DeriveNoise(sigma, 0, Eta1) // Sample secret vector s
sk.sh.NTT()
sk.sh.Normalize()
eh.DeriveNoise(sigma, K, Eta1) // Sample blind e
eh.NTT()
// Next, we compute t = A s + e.
for i := 0; i < K; i++ {
// Note that coefficients of s are bounded by q and those of A
// are bounded by 4.5q and so their product is bounded by 2¹⁵q
// as required for multiplication.
PolyDotHat(&pk.th[i], &pk.aT[i], &sk.sh)
// A and s were not in Montgomery form, so the Montgomery
// multiplications in the inner product added a factor R⁻¹ which
// we'll cancel out now. This will also ensure the coefficients of
// t are bounded in absolute value by q.
pk.th[i].ToMont()
}
pk.th.Add(&pk.th, &eh) // bounded by 8q.
pk.th.Normalize()
pk.aT.Transpose()
return &pk, &sk
}
// Decrypts ciphertext ct meant for private key sk to plaintext pt.
func (sk *PrivateKey) DecryptTo(pt, ct []byte) {
var u Vec
var v, m common.Poly
u.Decompress(ct, DU)
v.Decompress(ct[K*compressedPolySize(DU):], DV)
// Compute m = v - <s, u>
u.NTT()
PolyDotHat(&m, &sk.sh, &u)
m.BarrettReduce()
m.InvNTT()
m.Sub(&v, &m)
m.Normalize()
// Compress polynomial m to original message
m.CompressMessageTo(pt)
}
// Encrypts message pt for the public key to ciphertext ct using randomness
// from seed.
//
// seed has to be of length SeedSize, pt of PlaintextSize and ct of
// CiphertextSize.
func (pk *PublicKey) EncryptTo(ct, pt, seed []byte) {
var rh, e1, u Vec
var e2, v, m common.Poly
// Sample r, e₁ and e₂ from B_η
rh.DeriveNoise(seed, 0, Eta1)
rh.NTT()
rh.BarrettReduce()
e1.DeriveNoise(seed, K, common.Eta2)
e2.DeriveNoise(seed, 2*K, common.Eta2)
// Next we compute u = Aᵀ r + e₁. First Aᵀ.
for i := 0; i < K; i++ {
// Note that coefficients of r are bounded by q and those of Aᵀ
// are bounded by 4.5q and so their product is bounded by 2¹⁵q
// as required for multiplication.
PolyDotHat(&u[i], &pk.aT[i], &rh)
}
u.BarrettReduce()
// Aᵀ and r were not in Montgomery form, so the Montgomery
// multiplications in the inner product added a factor R⁻¹ which
// the InvNTT cancels out.
u.InvNTT()
u.Add(&u, &e1) // u = Aᵀ r + e₁
// Next compute v = <t, r> + e₂ + Decompress_q(m, 1).
PolyDotHat(&v, &pk.th, &rh)
v.BarrettReduce()
v.InvNTT()
m.DecompressMessage(pt)
v.Add(&v, &m)
v.Add(&v, &e2) // v = <t, r> + e₂ + Decompress_q(m, 1)
// Pack ciphertext
u.Normalize()
v.Normalize()
u.CompressTo(ct, DU)
v.CompressTo(ct[K*compressedPolySize(DU):], DV)
}
// Returns whether sk equals other.
func (sk *PrivateKey) Equal(other *PrivateKey) bool {
ret := int16(0)
for i := 0; i < K; i++ {
for j := 0; j < common.N; j++ {
ret |= sk.sh[i][j] ^ other.sh[i][j]
}
}
return ret == 0
}

View File

@ -0,0 +1,85 @@
// Code generated from kyber512/internal/mat.go by gen.go
package internal
import (
"github.com/cloudflare/circl/pke/kyber/internal/common"
)
// A k by k matrix of polynomials.
type Mat [K]Vec
// Expands the given seed to the corresponding matrix A or its transpose Aᵀ.
func (m *Mat) Derive(seed *[32]byte, transpose bool) {
if !common.DeriveX4Available {
if transpose {
for i := 0; i < K; i++ {
for j := 0; j < K; j++ {
m[i][j].DeriveUniform(seed, uint8(i), uint8(j))
}
}
} else {
for i := 0; i < K; i++ {
for j := 0; j < K; j++ {
m[i][j].DeriveUniform(seed, uint8(j), uint8(i))
}
}
}
return
}
var ps [4]*common.Poly
var xs [4]uint8
var ys [4]uint8
x := uint8(0)
y := uint8(0)
for x != K {
idx := 0
for ; idx < 4; idx++ {
ps[idx] = &m[x][y]
if transpose {
xs[idx] = x
ys[idx] = y
} else {
xs[idx] = y
ys[idx] = x
}
y++
if y == K {
x++
y = 0
if x == K {
if idx == 0 {
// If there is just one left, then a plain DeriveUniform
// is quicker than the X4 variant.
ps[0].DeriveUniform(seed, xs[0], ys[0])
return
}
for idx++; idx < 4; idx++ {
ps[idx] = nil
}
break
}
}
}
common.PolyDeriveUniformX4(ps, seed, xs, ys)
}
}
// Tranposes A in place.
func (m *Mat) Transpose() {
for i := 0; i < K-1; i++ {
for j := i + 1; j < K; j++ {
t := m[i][j]
m[i][j] = m[j][i]
m[j][i] = t
}
}
}

View File

@ -0,0 +1,21 @@
// Code generated from params.templ.go. DO NOT EDIT.
package internal
import (
"github.com/cloudflare/circl/pke/kyber/internal/common"
)
const (
K = 4
Eta1 = 2
DU = 11
DV = 5
PublicKeySize = 32 + K*common.PolySize
PrivateKeySize = K * common.PolySize
PlaintextSize = common.PlaintextSize
SeedSize = 32
CiphertextSize = 1568
)

View File

@ -0,0 +1,125 @@
// Code generated from kyber512/internal/vec.go by gen.go
package internal
import (
"github.com/cloudflare/circl/pke/kyber/internal/common"
)
// A vector of K polynomials
type Vec [K]common.Poly
// Samples v[i] from a centered binomial distribution with given η,
// seed and nonce+i.
//
// Essentially CBD_η(PRF(seed, nonce+i)) from the specification.
func (v *Vec) DeriveNoise(seed []byte, nonce uint8, eta int) {
for i := 0; i < K; i++ {
v[i].DeriveNoise(seed, nonce+uint8(i), eta)
}
}
// Sets p to the inner product of a and b using "pointwise" multiplication.
//
// See MulHat() and NTT() for a description of the multiplication.
// Assumes a and b are in Montgomery form. p will be in Montgomery form,
// and its coefficients will be bounded in absolute value by 2kq.
// If a and b are not in Montgomery form, then the action is the same
// as "pointwise" multiplication followed by multiplying by R⁻¹, the inverse
// of the Montgomery factor.
func PolyDotHat(p *common.Poly, a, b *Vec) {
var t common.Poly
*p = common.Poly{} // set p to zero
for i := 0; i < K; i++ {
t.MulHat(&a[i], &b[i])
p.Add(&t, p)
}
}
// Almost normalizes coefficients in-place.
//
// Ensures each coefficient is in {0, …, q}.
func (v *Vec) BarrettReduce() {
for i := 0; i < K; i++ {
v[i].BarrettReduce()
}
}
// Normalizes coefficients in-place.
//
// Ensures each coefficient is in {0, …, q-1}.
func (v *Vec) Normalize() {
for i := 0; i < K; i++ {
v[i].Normalize()
}
}
// Applies in-place inverse NTT(). See Poly.InvNTT() for assumptions.
func (v *Vec) InvNTT() {
for i := 0; i < K; i++ {
v[i].InvNTT()
}
}
// Applies in-place forward NTT(). See Poly.NTT() for assumptions.
func (v *Vec) NTT() {
for i := 0; i < K; i++ {
v[i].NTT()
}
}
// Sets v to a + b.
func (v *Vec) Add(a, b *Vec) {
for i := 0; i < K; i++ {
v[i].Add(&a[i], &b[i])
}
}
// Packs v into buf, which must be of length K*PolySize.
func (v *Vec) Pack(buf []byte) {
for i := 0; i < K; i++ {
v[i].Pack(buf[common.PolySize*i:])
}
}
// Unpacks v from buf which must be of length K*PolySize.
func (v *Vec) Unpack(buf []byte) {
for i := 0; i < K; i++ {
v[i].Unpack(buf[common.PolySize*i:])
}
}
// Writes Compress_q(v, d) to m.
//
// Assumes v is normalized and d is in {3, 4, 5, 10, 11}.
func (v *Vec) CompressTo(m []byte, d int) {
size := compressedPolySize(d)
for i := 0; i < K; i++ {
v[i].CompressTo(m[size*i:], d)
}
}
// Set v to Decompress_q(m, 1).
//
// Assumes d is in {3, 4, 5, 10, 11}. v will be normalized.
func (v *Vec) Decompress(m []byte, d int) {
size := compressedPolySize(d)
for i := 0; i < K; i++ {
v[i].Decompress(m[size*i:], d)
}
}
// ⌈(256 d)/8⌉
func compressedPolySize(d int) int {
switch d {
case 4:
return 128
case 5:
return 160
case 10:
return 320
case 11:
return 352
}
panic("unsupported d")
}

View File

@ -0,0 +1,145 @@
// Code generated from modePkg.templ.go. DO NOT EDIT.
// kyber1024 implements the IND-CPA-secure Public Key Encryption
// scheme Kyber1024.CPAPKE as submitted to round 3 of the NIST PQC competition
// and described in
//
// https://pq-crystals.org/kyber/data/kyber-specification-round3.pdf
package kyber1024
import (
cryptoRand "crypto/rand"
"io"
"github.com/cloudflare/circl/pke/kyber/kyber1024/internal"
)
const (
// Size of seed for NewKeyFromSeed
KeySeedSize = internal.SeedSize
// Size of seed for EncryptTo
EncryptionSeedSize = internal.SeedSize
// Size of a packed PublicKey
PublicKeySize = internal.PublicKeySize
// Size of a packed PrivateKey
PrivateKeySize = internal.PrivateKeySize
// Size of a ciphertext
CiphertextSize = internal.CiphertextSize
// Size of a plaintext
PlaintextSize = internal.PlaintextSize
)
// PublicKey is the type of Kyber1024.CPAPKE public key
type PublicKey internal.PublicKey
// PrivateKey is the type of Kyber1024.CPAPKE private key
type PrivateKey internal.PrivateKey
// GenerateKey generates a public/private key pair using entropy from rand.
// If rand is nil, crypto/rand.Reader will be used.
func GenerateKey(rand io.Reader) (*PublicKey, *PrivateKey, error) {
var seed [KeySeedSize]byte
if rand == nil {
rand = cryptoRand.Reader
}
_, err := io.ReadFull(rand, seed[:])
if err != nil {
return nil, nil, err
}
pk, sk := internal.NewKeyFromSeed(seed[:])
return (*PublicKey)(pk), (*PrivateKey)(sk), nil
}
// NewKeyFromSeed derives a public/private key pair using the given seed.
//
// Panics if seed is not of length KeySeedSize.
func NewKeyFromSeed(seed []byte) (*PublicKey, *PrivateKey) {
if len(seed) != KeySeedSize {
panic("seed must be of length KeySeedSize")
}
pk, sk := internal.NewKeyFromSeed(seed)
return (*PublicKey)(pk), (*PrivateKey)(sk)
}
// EncryptTo encrypts message pt for the public key and writes the ciphertext
// to ct using randomness from seed.
//
// This function panics if the lengths of pt, seed, and ct are not
// PlaintextSize, EncryptionSeedSize, and CiphertextSize respectively.
func (pk *PublicKey) EncryptTo(ct []byte, pt []byte, seed []byte) {
if len(pt) != PlaintextSize {
panic("pt must be of length PlaintextSize")
}
if len(ct) != CiphertextSize {
panic("ct must be of length CiphertextSize")
}
if len(seed) != EncryptionSeedSize {
panic("seed must be of length EncryptionSeedSize")
}
(*internal.PublicKey)(pk).EncryptTo(ct, pt, seed)
}
// DecryptTo decrypts message ct for the private key and writes the
// plaintext to pt.
//
// This function panics if the lengths of ct and pt are not
// CiphertextSize and PlaintextSize respectively.
func (sk *PrivateKey) DecryptTo(pt []byte, ct []byte) {
if len(pt) != PlaintextSize {
panic("pt must be of length PlaintextSize")
}
if len(ct) != CiphertextSize {
panic("ct must be of length CiphertextSize")
}
(*internal.PrivateKey)(sk).DecryptTo(pt, ct)
}
// Packs pk into the given buffer.
//
// Panics if buf is not of length PublicKeySize.
func (pk *PublicKey) Pack(buf []byte) {
if len(buf) != PublicKeySize {
panic("buf must be of size PublicKeySize")
}
(*internal.PublicKey)(pk).Pack(buf)
}
// Packs sk into the given buffer.
//
// Panics if buf is not of length PrivateKeySize.
func (sk *PrivateKey) Pack(buf []byte) {
if len(buf) != PrivateKeySize {
panic("buf must be of size PrivateKeySize")
}
(*internal.PrivateKey)(sk).Pack(buf)
}
// Unpacks pk from the given buffer.
//
// Panics if buf is not of length PublicKeySize.
func (pk *PublicKey) Unpack(buf []byte) {
if len(buf) != PublicKeySize {
panic("buf must be of size PublicKeySize")
}
(*internal.PublicKey)(pk).Unpack(buf)
}
// Unpacks sk from the given buffer.
//
// Panics if buf is not of length PrivateKeySize.
func (sk *PrivateKey) Unpack(buf []byte) {
if len(buf) != PrivateKeySize {
panic("buf must be of size PrivateKeySize")
}
(*internal.PrivateKey)(sk).Unpack(buf)
}
// Returns whether the two private keys are equal.
func (sk *PrivateKey) Equal(other *PrivateKey) bool {
return (*internal.PrivateKey)(sk).Equal((*internal.PrivateKey)(other))
}

View File

@ -0,0 +1,174 @@
package internal
import (
"github.com/cloudflare/circl/internal/sha3"
"github.com/cloudflare/circl/pke/kyber/internal/common"
)
// A Kyber.CPAPKE private key.
type PrivateKey struct {
sh Vec // NTT(s), normalized
}
// A Kyber.CPAPKE public key.
type PublicKey struct {
rho [32]byte // ρ, the seed for the matrix A
th Vec // NTT(t), normalized
// cached values
aT Mat // the matrix Aᵀ
}
// Packs the private key to buf.
func (sk *PrivateKey) Pack(buf []byte) {
sk.sh.Pack(buf)
}
// Unpacks the private key from buf.
func (sk *PrivateKey) Unpack(buf []byte) {
sk.sh.Unpack(buf)
sk.sh.Normalize()
}
// Packs the public key to buf.
func (pk *PublicKey) Pack(buf []byte) {
pk.th.Pack(buf)
copy(buf[K*common.PolySize:], pk.rho[:])
}
// Unpacks the public key from buf.
func (pk *PublicKey) Unpack(buf []byte) {
pk.th.Unpack(buf)
pk.th.Normalize()
copy(pk.rho[:], buf[K*common.PolySize:])
pk.aT.Derive(&pk.rho, true)
}
// Derives a new Kyber.CPAPKE keypair from the given seed.
func NewKeyFromSeed(seed []byte) (*PublicKey, *PrivateKey) {
var pk PublicKey
var sk PrivateKey
var expandedSeed [64]byte
h := sha3.New512()
_, _ = h.Write(seed)
// This writes hash into expandedSeed. Yes, this is idiomatic Go.
_, _ = h.Read(expandedSeed[:])
copy(pk.rho[:], expandedSeed[:32])
sigma := expandedSeed[32:] // σ, the noise seed
pk.aT.Derive(&pk.rho, false) // Expand ρ to matrix A; we'll transpose later
var eh Vec
sk.sh.DeriveNoise(sigma, 0, Eta1) // Sample secret vector s
sk.sh.NTT()
sk.sh.Normalize()
eh.DeriveNoise(sigma, K, Eta1) // Sample blind e
eh.NTT()
// Next, we compute t = A s + e.
for i := 0; i < K; i++ {
// Note that coefficients of s are bounded by q and those of A
// are bounded by 4.5q and so their product is bounded by 2¹⁵q
// as required for multiplication.
PolyDotHat(&pk.th[i], &pk.aT[i], &sk.sh)
// A and s were not in Montgomery form, so the Montgomery
// multiplications in the inner product added a factor R⁻¹ which
// we'll cancel out now. This will also ensure the coefficients of
// t are bounded in absolute value by q.
pk.th[i].ToMont()
}
pk.th.Add(&pk.th, &eh) // bounded by 8q.
pk.th.Normalize()
pk.aT.Transpose()
return &pk, &sk
}
// Decrypts ciphertext ct meant for private key sk to plaintext pt.
func (sk *PrivateKey) DecryptTo(pt, ct []byte) {
var u Vec
var v, m common.Poly
u.Decompress(ct, DU)
v.Decompress(ct[K*compressedPolySize(DU):], DV)
// Compute m = v - <s, u>
u.NTT()
PolyDotHat(&m, &sk.sh, &u)
m.BarrettReduce()
m.InvNTT()
m.Sub(&v, &m)
m.Normalize()
// Compress polynomial m to original message
m.CompressMessageTo(pt)
}
// Encrypts message pt for the public key to ciphertext ct using randomness
// from seed.
//
// seed has to be of length SeedSize, pt of PlaintextSize and ct of
// CiphertextSize.
func (pk *PublicKey) EncryptTo(ct, pt, seed []byte) {
var rh, e1, u Vec
var e2, v, m common.Poly
// Sample r, e₁ and e₂ from B_η
rh.DeriveNoise(seed, 0, Eta1)
rh.NTT()
rh.BarrettReduce()
e1.DeriveNoise(seed, K, common.Eta2)
e2.DeriveNoise(seed, 2*K, common.Eta2)
// Next we compute u = Aᵀ r + e₁. First Aᵀ.
for i := 0; i < K; i++ {
// Note that coefficients of r are bounded by q and those of Aᵀ
// are bounded by 4.5q and so their product is bounded by 2¹⁵q
// as required for multiplication.
PolyDotHat(&u[i], &pk.aT[i], &rh)
}
u.BarrettReduce()
// Aᵀ and r were not in Montgomery form, so the Montgomery
// multiplications in the inner product added a factor R⁻¹ which
// the InvNTT cancels out.
u.InvNTT()
u.Add(&u, &e1) // u = Aᵀ r + e₁
// Next compute v = <t, r> + e₂ + Decompress_q(m, 1).
PolyDotHat(&v, &pk.th, &rh)
v.BarrettReduce()
v.InvNTT()
m.DecompressMessage(pt)
v.Add(&v, &m)
v.Add(&v, &e2) // v = <t, r> + e₂ + Decompress_q(m, 1)
// Pack ciphertext
u.Normalize()
v.Normalize()
u.CompressTo(ct, DU)
v.CompressTo(ct[K*compressedPolySize(DU):], DV)
}
// Returns whether sk equals other.
func (sk *PrivateKey) Equal(other *PrivateKey) bool {
ret := int16(0)
for i := 0; i < K; i++ {
for j := 0; j < common.N; j++ {
ret |= sk.sh[i][j] ^ other.sh[i][j]
}
}
return ret == 0
}

View File

@ -0,0 +1,83 @@
package internal
import (
"github.com/cloudflare/circl/pke/kyber/internal/common"
)
// A k by k matrix of polynomials.
type Mat [K]Vec
// Expands the given seed to the corresponding matrix A or its transpose Aᵀ.
func (m *Mat) Derive(seed *[32]byte, transpose bool) {
if !common.DeriveX4Available {
if transpose {
for i := 0; i < K; i++ {
for j := 0; j < K; j++ {
m[i][j].DeriveUniform(seed, uint8(i), uint8(j))
}
}
} else {
for i := 0; i < K; i++ {
for j := 0; j < K; j++ {
m[i][j].DeriveUniform(seed, uint8(j), uint8(i))
}
}
}
return
}
var ps [4]*common.Poly
var xs [4]uint8
var ys [4]uint8
x := uint8(0)
y := uint8(0)
for x != K {
idx := 0
for ; idx < 4; idx++ {
ps[idx] = &m[x][y]
if transpose {
xs[idx] = x
ys[idx] = y
} else {
xs[idx] = y
ys[idx] = x
}
y++
if y == K {
x++
y = 0
if x == K {
if idx == 0 {
// If there is just one left, then a plain DeriveUniform
// is quicker than the X4 variant.
ps[0].DeriveUniform(seed, xs[0], ys[0])
return
}
for idx++; idx < 4; idx++ {
ps[idx] = nil
}
break
}
}
}
common.PolyDeriveUniformX4(ps, seed, xs, ys)
}
}
// Tranposes A in place.
func (m *Mat) Transpose() {
for i := 0; i < K-1; i++ {
for j := i + 1; j < K; j++ {
t := m[i][j]
m[i][j] = m[j][i]
m[j][i] = t
}
}
}

View File

@ -0,0 +1,21 @@
// Code generated from params.templ.go. DO NOT EDIT.
package internal
import (
"github.com/cloudflare/circl/pke/kyber/internal/common"
)
const (
K = 2
Eta1 = 3
DU = 10
DV = 4
PublicKeySize = 32 + K*common.PolySize
PrivateKeySize = K * common.PolySize
PlaintextSize = common.PlaintextSize
SeedSize = 32
CiphertextSize = 768
)

View File

@ -0,0 +1,123 @@
package internal
import (
"github.com/cloudflare/circl/pke/kyber/internal/common"
)
// A vector of K polynomials
type Vec [K]common.Poly
// Samples v[i] from a centered binomial distribution with given η,
// seed and nonce+i.
//
// Essentially CBD_η(PRF(seed, nonce+i)) from the specification.
func (v *Vec) DeriveNoise(seed []byte, nonce uint8, eta int) {
for i := 0; i < K; i++ {
v[i].DeriveNoise(seed, nonce+uint8(i), eta)
}
}
// Sets p to the inner product of a and b using "pointwise" multiplication.
//
// See MulHat() and NTT() for a description of the multiplication.
// Assumes a and b are in Montgomery form. p will be in Montgomery form,
// and its coefficients will be bounded in absolute value by 2kq.
// If a and b are not in Montgomery form, then the action is the same
// as "pointwise" multiplication followed by multiplying by R⁻¹, the inverse
// of the Montgomery factor.
func PolyDotHat(p *common.Poly, a, b *Vec) {
var t common.Poly
*p = common.Poly{} // set p to zero
for i := 0; i < K; i++ {
t.MulHat(&a[i], &b[i])
p.Add(&t, p)
}
}
// Almost normalizes coefficients in-place.
//
// Ensures each coefficient is in {0, …, q}.
func (v *Vec) BarrettReduce() {
for i := 0; i < K; i++ {
v[i].BarrettReduce()
}
}
// Normalizes coefficients in-place.
//
// Ensures each coefficient is in {0, …, q-1}.
func (v *Vec) Normalize() {
for i := 0; i < K; i++ {
v[i].Normalize()
}
}
// Applies in-place inverse NTT(). See Poly.InvNTT() for assumptions.
func (v *Vec) InvNTT() {
for i := 0; i < K; i++ {
v[i].InvNTT()
}
}
// Applies in-place forward NTT(). See Poly.NTT() for assumptions.
func (v *Vec) NTT() {
for i := 0; i < K; i++ {
v[i].NTT()
}
}
// Sets v to a + b.
func (v *Vec) Add(a, b *Vec) {
for i := 0; i < K; i++ {
v[i].Add(&a[i], &b[i])
}
}
// Packs v into buf, which must be of length K*PolySize.
func (v *Vec) Pack(buf []byte) {
for i := 0; i < K; i++ {
v[i].Pack(buf[common.PolySize*i:])
}
}
// Unpacks v from buf which must be of length K*PolySize.
func (v *Vec) Unpack(buf []byte) {
for i := 0; i < K; i++ {
v[i].Unpack(buf[common.PolySize*i:])
}
}
// Writes Compress_q(v, d) to m.
//
// Assumes v is normalized and d is in {3, 4, 5, 10, 11}.
func (v *Vec) CompressTo(m []byte, d int) {
size := compressedPolySize(d)
for i := 0; i < K; i++ {
v[i].CompressTo(m[size*i:], d)
}
}
// Set v to Decompress_q(m, 1).
//
// Assumes d is in {3, 4, 5, 10, 11}. v will be normalized.
func (v *Vec) Decompress(m []byte, d int) {
size := compressedPolySize(d)
for i := 0; i < K; i++ {
v[i].Decompress(m[size*i:], d)
}
}
// ⌈(256 d)/8⌉
func compressedPolySize(d int) int {
switch d {
case 4:
return 128
case 5:
return 160
case 10:
return 320
case 11:
return 352
}
panic("unsupported d")
}

View File

@ -0,0 +1,145 @@
// Code generated from modePkg.templ.go. DO NOT EDIT.
// kyber512 implements the IND-CPA-secure Public Key Encryption
// scheme Kyber512.CPAPKE as submitted to round 3 of the NIST PQC competition
// and described in
//
// https://pq-crystals.org/kyber/data/kyber-specification-round3.pdf
package kyber512
import (
cryptoRand "crypto/rand"
"io"
"github.com/cloudflare/circl/pke/kyber/kyber512/internal"
)
const (
// Size of seed for NewKeyFromSeed
KeySeedSize = internal.SeedSize
// Size of seed for EncryptTo
EncryptionSeedSize = internal.SeedSize
// Size of a packed PublicKey
PublicKeySize = internal.PublicKeySize
// Size of a packed PrivateKey
PrivateKeySize = internal.PrivateKeySize
// Size of a ciphertext
CiphertextSize = internal.CiphertextSize
// Size of a plaintext
PlaintextSize = internal.PlaintextSize
)
// PublicKey is the type of Kyber512.CPAPKE public key
type PublicKey internal.PublicKey
// PrivateKey is the type of Kyber512.CPAPKE private key
type PrivateKey internal.PrivateKey
// GenerateKey generates a public/private key pair using entropy from rand.
// If rand is nil, crypto/rand.Reader will be used.
func GenerateKey(rand io.Reader) (*PublicKey, *PrivateKey, error) {
var seed [KeySeedSize]byte
if rand == nil {
rand = cryptoRand.Reader
}
_, err := io.ReadFull(rand, seed[:])
if err != nil {
return nil, nil, err
}
pk, sk := internal.NewKeyFromSeed(seed[:])
return (*PublicKey)(pk), (*PrivateKey)(sk), nil
}
// NewKeyFromSeed derives a public/private key pair using the given seed.
//
// Panics if seed is not of length KeySeedSize.
func NewKeyFromSeed(seed []byte) (*PublicKey, *PrivateKey) {
if len(seed) != KeySeedSize {
panic("seed must be of length KeySeedSize")
}
pk, sk := internal.NewKeyFromSeed(seed)
return (*PublicKey)(pk), (*PrivateKey)(sk)
}
// EncryptTo encrypts message pt for the public key and writes the ciphertext
// to ct using randomness from seed.
//
// This function panics if the lengths of pt, seed, and ct are not
// PlaintextSize, EncryptionSeedSize, and CiphertextSize respectively.
func (pk *PublicKey) EncryptTo(ct []byte, pt []byte, seed []byte) {
if len(pt) != PlaintextSize {
panic("pt must be of length PlaintextSize")
}
if len(ct) != CiphertextSize {
panic("ct must be of length CiphertextSize")
}
if len(seed) != EncryptionSeedSize {
panic("seed must be of length EncryptionSeedSize")
}
(*internal.PublicKey)(pk).EncryptTo(ct, pt, seed)
}
// DecryptTo decrypts message ct for the private key and writes the
// plaintext to pt.
//
// This function panics if the lengths of ct and pt are not
// CiphertextSize and PlaintextSize respectively.
func (sk *PrivateKey) DecryptTo(pt []byte, ct []byte) {
if len(pt) != PlaintextSize {
panic("pt must be of length PlaintextSize")
}
if len(ct) != CiphertextSize {
panic("ct must be of length CiphertextSize")
}
(*internal.PrivateKey)(sk).DecryptTo(pt, ct)
}
// Packs pk into the given buffer.
//
// Panics if buf is not of length PublicKeySize.
func (pk *PublicKey) Pack(buf []byte) {
if len(buf) != PublicKeySize {
panic("buf must be of size PublicKeySize")
}
(*internal.PublicKey)(pk).Pack(buf)
}
// Packs sk into the given buffer.
//
// Panics if buf is not of length PrivateKeySize.
func (sk *PrivateKey) Pack(buf []byte) {
if len(buf) != PrivateKeySize {
panic("buf must be of size PrivateKeySize")
}
(*internal.PrivateKey)(sk).Pack(buf)
}
// Unpacks pk from the given buffer.
//
// Panics if buf is not of length PublicKeySize.
func (pk *PublicKey) Unpack(buf []byte) {
if len(buf) != PublicKeySize {
panic("buf must be of size PublicKeySize")
}
(*internal.PublicKey)(pk).Unpack(buf)
}
// Unpacks sk from the given buffer.
//
// Panics if buf is not of length PrivateKeySize.
func (sk *PrivateKey) Unpack(buf []byte) {
if len(buf) != PrivateKeySize {
panic("buf must be of size PrivateKeySize")
}
(*internal.PrivateKey)(sk).Unpack(buf)
}
// Returns whether the two private keys are equal.
func (sk *PrivateKey) Equal(other *PrivateKey) bool {
return (*internal.PrivateKey)(sk).Equal((*internal.PrivateKey)(other))
}

View File

@ -0,0 +1,176 @@
// Code generated from kyber512/internal/cpapke.go by gen.go
package internal
import (
"github.com/cloudflare/circl/internal/sha3"
"github.com/cloudflare/circl/pke/kyber/internal/common"
)
// A Kyber.CPAPKE private key.
type PrivateKey struct {
sh Vec // NTT(s), normalized
}
// A Kyber.CPAPKE public key.
type PublicKey struct {
rho [32]byte // ρ, the seed for the matrix A
th Vec // NTT(t), normalized
// cached values
aT Mat // the matrix Aᵀ
}
// Packs the private key to buf.
func (sk *PrivateKey) Pack(buf []byte) {
sk.sh.Pack(buf)
}
// Unpacks the private key from buf.
func (sk *PrivateKey) Unpack(buf []byte) {
sk.sh.Unpack(buf)
sk.sh.Normalize()
}
// Packs the public key to buf.
func (pk *PublicKey) Pack(buf []byte) {
pk.th.Pack(buf)
copy(buf[K*common.PolySize:], pk.rho[:])
}
// Unpacks the public key from buf.
func (pk *PublicKey) Unpack(buf []byte) {
pk.th.Unpack(buf)
pk.th.Normalize()
copy(pk.rho[:], buf[K*common.PolySize:])
pk.aT.Derive(&pk.rho, true)
}
// Derives a new Kyber.CPAPKE keypair from the given seed.
func NewKeyFromSeed(seed []byte) (*PublicKey, *PrivateKey) {
var pk PublicKey
var sk PrivateKey
var expandedSeed [64]byte
h := sha3.New512()
_, _ = h.Write(seed)
// This writes hash into expandedSeed. Yes, this is idiomatic Go.
_, _ = h.Read(expandedSeed[:])
copy(pk.rho[:], expandedSeed[:32])
sigma := expandedSeed[32:] // σ, the noise seed
pk.aT.Derive(&pk.rho, false) // Expand ρ to matrix A; we'll transpose later
var eh Vec
sk.sh.DeriveNoise(sigma, 0, Eta1) // Sample secret vector s
sk.sh.NTT()
sk.sh.Normalize()
eh.DeriveNoise(sigma, K, Eta1) // Sample blind e
eh.NTT()
// Next, we compute t = A s + e.
for i := 0; i < K; i++ {
// Note that coefficients of s are bounded by q and those of A
// are bounded by 4.5q and so their product is bounded by 2¹⁵q
// as required for multiplication.
PolyDotHat(&pk.th[i], &pk.aT[i], &sk.sh)
// A and s were not in Montgomery form, so the Montgomery
// multiplications in the inner product added a factor R⁻¹ which
// we'll cancel out now. This will also ensure the coefficients of
// t are bounded in absolute value by q.
pk.th[i].ToMont()
}
pk.th.Add(&pk.th, &eh) // bounded by 8q.
pk.th.Normalize()
pk.aT.Transpose()
return &pk, &sk
}
// Decrypts ciphertext ct meant for private key sk to plaintext pt.
func (sk *PrivateKey) DecryptTo(pt, ct []byte) {
var u Vec
var v, m common.Poly
u.Decompress(ct, DU)
v.Decompress(ct[K*compressedPolySize(DU):], DV)
// Compute m = v - <s, u>
u.NTT()
PolyDotHat(&m, &sk.sh, &u)
m.BarrettReduce()
m.InvNTT()
m.Sub(&v, &m)
m.Normalize()
// Compress polynomial m to original message
m.CompressMessageTo(pt)
}
// Encrypts message pt for the public key to ciphertext ct using randomness
// from seed.
//
// seed has to be of length SeedSize, pt of PlaintextSize and ct of
// CiphertextSize.
func (pk *PublicKey) EncryptTo(ct, pt, seed []byte) {
var rh, e1, u Vec
var e2, v, m common.Poly
// Sample r, e₁ and e₂ from B_η
rh.DeriveNoise(seed, 0, Eta1)
rh.NTT()
rh.BarrettReduce()
e1.DeriveNoise(seed, K, common.Eta2)
e2.DeriveNoise(seed, 2*K, common.Eta2)
// Next we compute u = Aᵀ r + e₁. First Aᵀ.
for i := 0; i < K; i++ {
// Note that coefficients of r are bounded by q and those of Aᵀ
// are bounded by 4.5q and so their product is bounded by 2¹⁵q
// as required for multiplication.
PolyDotHat(&u[i], &pk.aT[i], &rh)
}
u.BarrettReduce()
// Aᵀ and r were not in Montgomery form, so the Montgomery
// multiplications in the inner product added a factor R⁻¹ which
// the InvNTT cancels out.
u.InvNTT()
u.Add(&u, &e1) // u = Aᵀ r + e₁
// Next compute v = <t, r> + e₂ + Decompress_q(m, 1).
PolyDotHat(&v, &pk.th, &rh)
v.BarrettReduce()
v.InvNTT()
m.DecompressMessage(pt)
v.Add(&v, &m)
v.Add(&v, &e2) // v = <t, r> + e₂ + Decompress_q(m, 1)
// Pack ciphertext
u.Normalize()
v.Normalize()
u.CompressTo(ct, DU)
v.CompressTo(ct[K*compressedPolySize(DU):], DV)
}
// Returns whether sk equals other.
func (sk *PrivateKey) Equal(other *PrivateKey) bool {
ret := int16(0)
for i := 0; i < K; i++ {
for j := 0; j < common.N; j++ {
ret |= sk.sh[i][j] ^ other.sh[i][j]
}
}
return ret == 0
}

View File

@ -0,0 +1,85 @@
// Code generated from kyber512/internal/mat.go by gen.go
package internal
import (
"github.com/cloudflare/circl/pke/kyber/internal/common"
)
// A k by k matrix of polynomials.
type Mat [K]Vec
// Expands the given seed to the corresponding matrix A or its transpose Aᵀ.
func (m *Mat) Derive(seed *[32]byte, transpose bool) {
if !common.DeriveX4Available {
if transpose {
for i := 0; i < K; i++ {
for j := 0; j < K; j++ {
m[i][j].DeriveUniform(seed, uint8(i), uint8(j))
}
}
} else {
for i := 0; i < K; i++ {
for j := 0; j < K; j++ {
m[i][j].DeriveUniform(seed, uint8(j), uint8(i))
}
}
}
return
}
var ps [4]*common.Poly
var xs [4]uint8
var ys [4]uint8
x := uint8(0)
y := uint8(0)
for x != K {
idx := 0
for ; idx < 4; idx++ {
ps[idx] = &m[x][y]
if transpose {
xs[idx] = x
ys[idx] = y
} else {
xs[idx] = y
ys[idx] = x
}
y++
if y == K {
x++
y = 0
if x == K {
if idx == 0 {
// If there is just one left, then a plain DeriveUniform
// is quicker than the X4 variant.
ps[0].DeriveUniform(seed, xs[0], ys[0])
return
}
for idx++; idx < 4; idx++ {
ps[idx] = nil
}
break
}
}
}
common.PolyDeriveUniformX4(ps, seed, xs, ys)
}
}
// Tranposes A in place.
func (m *Mat) Transpose() {
for i := 0; i < K-1; i++ {
for j := i + 1; j < K; j++ {
t := m[i][j]
m[i][j] = m[j][i]
m[j][i] = t
}
}
}

View File

@ -0,0 +1,21 @@
// Code generated from params.templ.go. DO NOT EDIT.
package internal
import (
"github.com/cloudflare/circl/pke/kyber/internal/common"
)
const (
K = 3
Eta1 = 2
DU = 10
DV = 4
PublicKeySize = 32 + K*common.PolySize
PrivateKeySize = K * common.PolySize
PlaintextSize = common.PlaintextSize
SeedSize = 32
CiphertextSize = 1088
)

View File

@ -0,0 +1,125 @@
// Code generated from kyber512/internal/vec.go by gen.go
package internal
import (
"github.com/cloudflare/circl/pke/kyber/internal/common"
)
// A vector of K polynomials
type Vec [K]common.Poly
// Samples v[i] from a centered binomial distribution with given η,
// seed and nonce+i.
//
// Essentially CBD_η(PRF(seed, nonce+i)) from the specification.
func (v *Vec) DeriveNoise(seed []byte, nonce uint8, eta int) {
for i := 0; i < K; i++ {
v[i].DeriveNoise(seed, nonce+uint8(i), eta)
}
}
// Sets p to the inner product of a and b using "pointwise" multiplication.
//
// See MulHat() and NTT() for a description of the multiplication.
// Assumes a and b are in Montgomery form. p will be in Montgomery form,
// and its coefficients will be bounded in absolute value by 2kq.
// If a and b are not in Montgomery form, then the action is the same
// as "pointwise" multiplication followed by multiplying by R⁻¹, the inverse
// of the Montgomery factor.
func PolyDotHat(p *common.Poly, a, b *Vec) {
var t common.Poly
*p = common.Poly{} // set p to zero
for i := 0; i < K; i++ {
t.MulHat(&a[i], &b[i])
p.Add(&t, p)
}
}
// Almost normalizes coefficients in-place.
//
// Ensures each coefficient is in {0, …, q}.
func (v *Vec) BarrettReduce() {
for i := 0; i < K; i++ {
v[i].BarrettReduce()
}
}
// Normalizes coefficients in-place.
//
// Ensures each coefficient is in {0, …, q-1}.
func (v *Vec) Normalize() {
for i := 0; i < K; i++ {
v[i].Normalize()
}
}
// Applies in-place inverse NTT(). See Poly.InvNTT() for assumptions.
func (v *Vec) InvNTT() {
for i := 0; i < K; i++ {
v[i].InvNTT()
}
}
// Applies in-place forward NTT(). See Poly.NTT() for assumptions.
func (v *Vec) NTT() {
for i := 0; i < K; i++ {
v[i].NTT()
}
}
// Sets v to a + b.
func (v *Vec) Add(a, b *Vec) {
for i := 0; i < K; i++ {
v[i].Add(&a[i], &b[i])
}
}
// Packs v into buf, which must be of length K*PolySize.
func (v *Vec) Pack(buf []byte) {
for i := 0; i < K; i++ {
v[i].Pack(buf[common.PolySize*i:])
}
}
// Unpacks v from buf which must be of length K*PolySize.
func (v *Vec) Unpack(buf []byte) {
for i := 0; i < K; i++ {
v[i].Unpack(buf[common.PolySize*i:])
}
}
// Writes Compress_q(v, d) to m.
//
// Assumes v is normalized and d is in {3, 4, 5, 10, 11}.
func (v *Vec) CompressTo(m []byte, d int) {
size := compressedPolySize(d)
for i := 0; i < K; i++ {
v[i].CompressTo(m[size*i:], d)
}
}
// Set v to Decompress_q(m, 1).
//
// Assumes d is in {3, 4, 5, 10, 11}. v will be normalized.
func (v *Vec) Decompress(m []byte, d int) {
size := compressedPolySize(d)
for i := 0; i < K; i++ {
v[i].Decompress(m[size*i:], d)
}
}
// ⌈(256 d)/8⌉
func compressedPolySize(d int) int {
switch d {
case 4:
return 128
case 5:
return 160
case 10:
return 320
case 11:
return 352
}
panic("unsupported d")
}

View File

@ -0,0 +1,145 @@
// Code generated from modePkg.templ.go. DO NOT EDIT.
// kyber768 implements the IND-CPA-secure Public Key Encryption
// scheme Kyber768.CPAPKE as submitted to round 3 of the NIST PQC competition
// and described in
//
// https://pq-crystals.org/kyber/data/kyber-specification-round3.pdf
package kyber768
import (
cryptoRand "crypto/rand"
"io"
"github.com/cloudflare/circl/pke/kyber/kyber768/internal"
)
const (
// Size of seed for NewKeyFromSeed
KeySeedSize = internal.SeedSize
// Size of seed for EncryptTo
EncryptionSeedSize = internal.SeedSize
// Size of a packed PublicKey
PublicKeySize = internal.PublicKeySize
// Size of a packed PrivateKey
PrivateKeySize = internal.PrivateKeySize
// Size of a ciphertext
CiphertextSize = internal.CiphertextSize
// Size of a plaintext
PlaintextSize = internal.PlaintextSize
)
// PublicKey is the type of Kyber768.CPAPKE public key
type PublicKey internal.PublicKey
// PrivateKey is the type of Kyber768.CPAPKE private key
type PrivateKey internal.PrivateKey
// GenerateKey generates a public/private key pair using entropy from rand.
// If rand is nil, crypto/rand.Reader will be used.
func GenerateKey(rand io.Reader) (*PublicKey, *PrivateKey, error) {
var seed [KeySeedSize]byte
if rand == nil {
rand = cryptoRand.Reader
}
_, err := io.ReadFull(rand, seed[:])
if err != nil {
return nil, nil, err
}
pk, sk := internal.NewKeyFromSeed(seed[:])
return (*PublicKey)(pk), (*PrivateKey)(sk), nil
}
// NewKeyFromSeed derives a public/private key pair using the given seed.
//
// Panics if seed is not of length KeySeedSize.
func NewKeyFromSeed(seed []byte) (*PublicKey, *PrivateKey) {
if len(seed) != KeySeedSize {
panic("seed must be of length KeySeedSize")
}
pk, sk := internal.NewKeyFromSeed(seed)
return (*PublicKey)(pk), (*PrivateKey)(sk)
}
// EncryptTo encrypts message pt for the public key and writes the ciphertext
// to ct using randomness from seed.
//
// This function panics if the lengths of pt, seed, and ct are not
// PlaintextSize, EncryptionSeedSize, and CiphertextSize respectively.
func (pk *PublicKey) EncryptTo(ct []byte, pt []byte, seed []byte) {
if len(pt) != PlaintextSize {
panic("pt must be of length PlaintextSize")
}
if len(ct) != CiphertextSize {
panic("ct must be of length CiphertextSize")
}
if len(seed) != EncryptionSeedSize {
panic("seed must be of length EncryptionSeedSize")
}
(*internal.PublicKey)(pk).EncryptTo(ct, pt, seed)
}
// DecryptTo decrypts message ct for the private key and writes the
// plaintext to pt.
//
// This function panics if the lengths of ct and pt are not
// CiphertextSize and PlaintextSize respectively.
func (sk *PrivateKey) DecryptTo(pt []byte, ct []byte) {
if len(pt) != PlaintextSize {
panic("pt must be of length PlaintextSize")
}
if len(ct) != CiphertextSize {
panic("ct must be of length CiphertextSize")
}
(*internal.PrivateKey)(sk).DecryptTo(pt, ct)
}
// Packs pk into the given buffer.
//
// Panics if buf is not of length PublicKeySize.
func (pk *PublicKey) Pack(buf []byte) {
if len(buf) != PublicKeySize {
panic("buf must be of size PublicKeySize")
}
(*internal.PublicKey)(pk).Pack(buf)
}
// Packs sk into the given buffer.
//
// Panics if buf is not of length PrivateKeySize.
func (sk *PrivateKey) Pack(buf []byte) {
if len(buf) != PrivateKeySize {
panic("buf must be of size PrivateKeySize")
}
(*internal.PrivateKey)(sk).Pack(buf)
}
// Unpacks pk from the given buffer.
//
// Panics if buf is not of length PublicKeySize.
func (pk *PublicKey) Unpack(buf []byte) {
if len(buf) != PublicKeySize {
panic("buf must be of size PublicKeySize")
}
(*internal.PublicKey)(pk).Unpack(buf)
}
// Unpacks sk from the given buffer.
//
// Panics if buf is not of length PrivateKeySize.
func (sk *PrivateKey) Unpack(buf []byte) {
if len(buf) != PrivateKeySize {
panic("buf must be of size PrivateKeySize")
}
(*internal.PrivateKey)(sk).Unpack(buf)
}
// Returns whether the two private keys are equal.
func (sk *PrivateKey) Equal(other *PrivateKey) bool {
return (*internal.PrivateKey)(sk).Equal((*internal.PrivateKey)(other))
}

View File

@ -0,0 +1,149 @@
// Package keccakf1600 provides a two and four-way Keccak-f[1600] permutation in parallel.
//
// Keccak-f[1600] is the permutation underlying several algorithms such as
// Keccak, SHA3 and SHAKE. Running two or four permutations in parallel is
// useful in some scenarios like in hash-based signatures.
//
// # Limitations
//
// Note that not all the architectures support SIMD instructions. This package
// uses AVX2 instructions that are available in some AMD64 architectures
// and NEON instructions that are available in some ARM64 architectures.
//
// For those systems not supporting these, the package still provides the
// expected functionality by means of a generic and slow implementation.
// The recommendation is to beforehand verify IsEnabledX4() and IsEnabledX2()
// to determine if the current system supports the SIMD implementation.
package keccakf1600
import (
"unsafe"
"github.com/cloudflare/circl/internal/sha3"
"golang.org/x/sys/cpu"
)
// StateX4 contains state for the four-way permutation including the four
// interleaved [25]uint64 buffers. Call Initialize() before use to initialize
// and get a pointer to the interleaved buffer.
type StateX4 struct {
// Go guarantees a to be aligned on 8 bytes, whereas we need it to be
// aligned on 32 bytes for bet performance. Thus we leave some headroom
// to be able to move the start of the state.
// 4 x 25 uint64s for the interleaved states and three uint64s headroom
// to fix alignment.
a [103]uint64
// Offset into a that is 32 byte aligned.
offset int
}
// StateX2 contains state for the two-way permutation including the two
// interleaved [25]uint64 buffers. Call Initialize() before use to initialize
// and get a pointer to the interleaved buffer.
type StateX2 struct {
// Go guarantees a to be aligned on 8 bytes, whereas we need it to be
// aligned on 32 bytes for bet performance. Thus we leave some headroom
// to be able to move the start of the state.
// 2 x 25 uint64s for the interleaved states and three uint64s headroom
// to fix alignment.
a [53]uint64
// Offset into a that is 32 byte aligned.
offset int
}
// IsEnabledX4 returns true if the architecture supports a four-way SIMD
// implementation provided in this package.
func IsEnabledX4() bool { return cpu.X86.HasAVX2 }
// IsEnabledX2 returns true if the architecture supports a two-way SIMD
// implementation provided in this package.
func IsEnabledX2() bool {
// After Go 1.16 the flag cpu.ARM64.HasSHA3 is no longer exposed.
return false
}
// Initialize the state and returns the buffer on which the four permutations
// will act: a uint64 slice of length 100. The first permutation will act
// on {a[0], a[4], ..., a[96]}, the second on {a[1], a[5], ..., a[97]}, etc.
func (s *StateX4) Initialize() []uint64 {
rp := unsafe.Pointer(&s.a[0])
// uint64s are always aligned by a multiple of 8. Compute the remainder
// of the address modulo 32 divided by 8.
rem := (int(uintptr(rp)&31) >> 3)
if rem != 0 {
s.offset = 4 - rem
}
// The slice we return will be aligned on 32 byte boundary.
return s.a[s.offset : s.offset+100]
}
// Initialize the state and returns the buffer on which the two permutations
// will act: a uint64 slice of length 50. The first permutation will act
// on {a[0], a[2], ..., a[48]} and the second on {a[1], a[3], ..., a[49]}.
func (s *StateX2) Initialize() []uint64 {
rp := unsafe.Pointer(&s.a[0])
// uint64s are always aligned by a multiple of 8. Compute the remainder
// of the address modulo 32 divided by 8.
rem := (int(uintptr(rp)&31) >> 3)
if rem != 0 {
s.offset = 4 - rem
}
// The slice we return will be aligned on 32 byte boundary.
return s.a[s.offset : s.offset+50]
}
// Permute performs the four parallel Keccak-f[1600]s interleaved on the slice
// returned from Initialize().
func (s *StateX4) Permute() {
if IsEnabledX4() {
permuteSIMDx4(s.a[s.offset:])
} else {
permuteScalarX4(s.a[s.offset:]) // A slower generic implementation.
}
}
// Permute performs the two parallel Keccak-f[1600]s interleaved on the slice
// returned from Initialize().
func (s *StateX2) Permute() {
if IsEnabledX2() {
permuteSIMDx2(s.a[s.offset:])
} else {
permuteScalarX2(s.a[s.offset:]) // A slower generic implementation.
}
}
func permuteScalarX4(a []uint64) {
var buf [25]uint64
for i := 0; i < 4; i++ {
for j := 0; j < 25; j++ {
buf[j] = a[4*j+i]
}
sha3.KeccakF1600(&buf)
for j := 0; j < 25; j++ {
a[4*j+i] = buf[j]
}
}
}
func permuteScalarX2(a []uint64) {
var buf [25]uint64
for i := 0; i < 2; i++ {
for j := 0; j < 25; j++ {
buf[j] = a[2*j+i]
}
sha3.KeccakF1600(&buf)
for j := 0; j < 25; j++ {
a[2*j+i] = buf[j]
}
}
}

View File

@ -0,0 +1,13 @@
//go:build arm64 && go1.16
// +build arm64,go1.16
package keccakf1600
import "github.com/cloudflare/circl/internal/sha3"
func permuteSIMDx2(state []uint64) { f1600x2ARM(&state[0], &sha3.RC) }
func permuteSIMDx4(state []uint64) { permuteScalarX4(state) }
//go:noescape
func f1600x2ARM(state *uint64, rc *[24]uint64)

View File

@ -0,0 +1,130 @@
// +build arm64,go1.16
// Taken from https://github.com/bwesterb/armed-keccak
#include "textflag.h"
// func f1600x2ARM(state *uint64, rc *[24]uint64)
TEXT ·f1600x2ARM(SB), NOSPLIT, $0-16
MOVD state+0(FP), R0
MOVD rc+8(FP), R1
MOVD R0, R2
MOVD $24, R3
VLD1.P 64(R0), [ V0.B16, V1.B16, V2.B16, V3.B16]
VLD1.P 64(R0), [ V4.B16, V5.B16, V6.B16, V7.B16]
VLD1.P 64(R0), [ V8.B16, V9.B16, V10.B16, V11.B16]
VLD1.P 64(R0), [V12.B16, V13.B16, V14.B16, V15.B16]
VLD1.P 64(R0), [V16.B16, V17.B16, V18.B16, V19.B16]
VLD1.P 64(R0), [V20.B16, V21.B16, V22.B16, V23.B16]
VLD1.P (R0), [V24.B16]
loop:
// Execute theta but without xorring into the state yet.
VEOR3 V10.B16, V5.B16, V0.B16, V25.B16
VEOR3 V11.B16, V6.B16, V1.B16, V26.B16
VEOR3 V12.B16, V7.B16, V2.B16, V27.B16
VEOR3 V13.B16, V8.B16, V3.B16, V28.B16
VEOR3 V14.B16, V9.B16, V4.B16, V29.B16
VEOR3 V20.B16, V15.B16, V25.B16, V25.B16
VEOR3 V21.B16, V16.B16, V26.B16, V26.B16
VEOR3 V22.B16, V17.B16, V27.B16, V27.B16
VEOR3 V23.B16, V18.B16, V28.B16, V28.B16
VEOR3 V24.B16, V19.B16, V29.B16, V29.B16
// Xor parities from step theta into the state at the same time as
// exeuting rho and pi.
VRAX1 V26.D2, V29.D2, V30.D2
VRAX1 V29.D2, V27.D2, V29.D2
VRAX1 V27.D2, V25.D2, V27.D2
VRAX1 V25.D2, V28.D2, V25.D2
VRAX1 V28.D2, V26.D2, V28.D2
VEOR V30.B16, V0.B16, V0.B16
VMOV V1.B16, V31.B16
VXAR $20, V27.D2, V6.D2, V1.D2
VXAR $44, V25.D2, V9.D2, V6.D2
VXAR $3 , V28.D2, V22.D2, V9.D2
VXAR $25, V25.D2, V14.D2, V22.D2
VXAR $46, V30.D2, V20.D2, V14.D2
VXAR $2 , V28.D2, V2.D2, V20.D2
VXAR $21, V28.D2, V12.D2, V2.D2
VXAR $39, V29.D2, V13.D2, V12.D2
VXAR $56, V25.D2, V19.D2, V13.D2
VXAR $8 , V29.D2, V23.D2, V19.D2
VXAR $23, V30.D2, V15.D2, V23.D2
VXAR $37, V25.D2, V4.D2, V15.D2
VXAR $50, V25.D2, V24.D2, V4.D2
VXAR $62, V27.D2, V21.D2, V24.D2
VXAR $9 , V29.D2, V8.D2, V21.D2
VXAR $19, V27.D2, V16.D2, V8.D2
VXAR $28, V30.D2, V5.D2, V16.D2
VXAR $36, V29.D2, V3.D2, V5.D2
VXAR $43, V29.D2, V18.D2, V3.D2
VXAR $49, V28.D2, V17.D2, V18.D2
VXAR $54, V27.D2, V11.D2, V17.D2
VXAR $58, V28.D2, V7.D2, V11.D2
VXAR $61, V30.D2, V10.D2, V7.D2
VXAR $63, V27.D2, V31.D2, V10.D2
// Chi
VBCAX V1.B16, V2.B16, V0.B16, V25.B16
VBCAX V2.B16, V3.B16, V1.B16, V26.B16
VBCAX V3.B16, V4.B16, V2.B16, V2.B16
VBCAX V4.B16, V0.B16, V3.B16, V3.B16
VBCAX V0.B16, V1.B16, V4.B16, V4.B16
VMOV V25.B16, V0.B16
VMOV V26.B16, V1.B16
VBCAX V6.B16, V7.B16, V5.B16, V25.B16
VBCAX V7.B16, V8.B16, V6.B16, V26.B16
VBCAX V8.B16, V9.B16, V7.B16, V7.B16
VBCAX V9.B16, V5.B16, V8.B16, V8.B16
VBCAX V5.B16, V6.B16, V9.B16, V9.B16
VMOV V25.B16, V5.B16
VMOV V26.B16, V6.B16
VBCAX V11.B16, V12.B16, V10.B16, V25.B16
VBCAX V12.B16, V13.B16, V11.B16, V26.B16
VBCAX V13.B16, V14.B16, V12.B16, V12.B16
VBCAX V14.B16, V10.B16, V13.B16, V13.B16
VBCAX V10.B16, V11.B16, V14.B16, V14.B16
VMOV V25.B16, V10.B16
VMOV V26.B16, V11.B16
VBCAX V16.B16, V17.B16, V15.B16, V25.B16
VBCAX V17.B16, V18.B16, V16.B16, V26.B16
VBCAX V18.B16, V19.B16, V17.B16, V17.B16
VBCAX V19.B16, V15.B16, V18.B16, V18.B16
VBCAX V15.B16, V16.B16, V19.B16, V19.B16
VMOV V25.B16, V15.B16
VMOV V26.B16, V16.B16
VBCAX V21.B16, V22.B16, V20.B16, V25.B16
VBCAX V22.B16, V23.B16, V21.B16, V26.B16
VBCAX V23.B16, V24.B16, V22.B16, V22.B16
VBCAX V24.B16, V20.B16, V23.B16, V23.B16
VBCAX V20.B16, V21.B16, V24.B16, V24.B16
VMOV V25.B16, V20.B16
VMOV V26.B16, V21.B16
// Iota
VLD1R.P 8(R1), [V25.D2]
VEOR V25.B16, V0.B16, V0.B16
SUBS $1, R3, R3
CBNZ R3, loop
MOVD R2, R0
VST1.P [ V0.B16, V1.B16, V2.B16, V3.B16], 64(R0)
VST1.P [ V4.B16, V5.B16, V6.B16, V7.B16], 64(R0)
VST1.P [ V8.B16, V9.B16, V10.B16, V11.B16], 64(R0)
VST1.P [V12.B16, V13.B16, V14.B16, V15.B16], 64(R0)
VST1.P [V16.B16, V17.B16, V18.B16, V19.B16], 64(R0)
VST1.P [V20.B16, V21.B16, V22.B16, V23.B16], 64(R0)
VST1.P [V24.B16], (R0)
RET

View File

@ -0,0 +1,7 @@
package keccakf1600
import "github.com/cloudflare/circl/internal/sha3"
func permuteSIMDx4(state []uint64) { f1600x4AVX2(&state[0], &sha3.RC) }
func permuteSIMDx2(state []uint64) { permuteScalarX2(state) }

View File

@ -0,0 +1,894 @@
// Code generated by command: go run src.go -out ../../f1600x4_amd64.s -stubs ../../f1600x4stubs_amd64.go -pkg keccakf1600. DO NOT EDIT.
// +build amd64
#include "textflag.h"
// func f1600x4AVX2(state *uint64, rc *[24]uint64)
// Requires: AVX, AVX2
TEXT ·f1600x4AVX2(SB), NOSPLIT, $0-16
MOVQ state+0(FP), AX
MOVQ rc+8(FP), CX
MOVQ $0x0000000000000006, DX
loop:
VMOVDQA (AX), Y0
VMOVDQA 32(AX), Y1
VMOVDQA 64(AX), Y2
VMOVDQA 96(AX), Y3
VMOVDQA 128(AX), Y4
VPXOR 160(AX), Y0, Y0
VPXOR 192(AX), Y1, Y1
VPXOR 224(AX), Y2, Y2
VPXOR 256(AX), Y3, Y3
VPXOR 288(AX), Y4, Y4
VPXOR 320(AX), Y0, Y0
VPXOR 352(AX), Y1, Y1
VPXOR 384(AX), Y2, Y2
VPXOR 416(AX), Y3, Y3
VPXOR 448(AX), Y4, Y4
VPXOR 480(AX), Y0, Y0
VPXOR 512(AX), Y1, Y1
VPXOR 544(AX), Y2, Y2
VPXOR 576(AX), Y3, Y3
VPXOR 608(AX), Y4, Y4
VPXOR 640(AX), Y0, Y0
VPXOR 672(AX), Y1, Y1
VPXOR 704(AX), Y2, Y2
VPXOR 736(AX), Y3, Y3
VPXOR 768(AX), Y4, Y4
VPSLLQ $0x01, Y1, Y5
VPSLLQ $0x01, Y2, Y6
VPSLLQ $0x01, Y3, Y7
VPSLLQ $0x01, Y4, Y8
VPSLLQ $0x01, Y0, Y9
VPSRLQ $0x3f, Y1, Y10
VPSRLQ $0x3f, Y2, Y11
VPSRLQ $0x3f, Y3, Y12
VPSRLQ $0x3f, Y4, Y13
VPSRLQ $0x3f, Y0, Y14
VPOR Y5, Y10, Y10
VPOR Y6, Y11, Y11
VPOR Y7, Y12, Y12
VPOR Y8, Y13, Y13
VPOR Y9, Y14, Y14
VPXOR Y10, Y4, Y10
VPXOR Y11, Y0, Y11
VPXOR Y12, Y1, Y12
VPXOR Y13, Y2, Y13
VPXOR Y14, Y3, Y14
VPXOR (AX), Y10, Y0
VPXOR 192(AX), Y11, Y1
VPXOR 384(AX), Y12, Y2
VPXOR 576(AX), Y13, Y3
VPXOR 768(AX), Y14, Y4
VPSLLQ $0x2c, Y1, Y6
VPSLLQ $0x2b, Y2, Y7
VPSLLQ $0x15, Y3, Y8
VPSLLQ $0x0e, Y4, Y9
VPSRLQ $0x14, Y1, Y1
VPSRLQ $0x15, Y2, Y2
VPSRLQ $0x2b, Y3, Y3
VPSRLQ $0x32, Y4, Y4
VPOR Y6, Y1, Y1
VPOR Y7, Y2, Y2
VPOR Y8, Y3, Y3
VPOR Y9, Y4, Y4
VPANDN Y2, Y1, Y5
VPANDN Y3, Y2, Y6
VPANDN Y4, Y3, Y7
VPANDN Y0, Y4, Y8
VPANDN Y1, Y0, Y9
VPXOR Y0, Y5, Y5
VPXOR Y1, Y6, Y6
VPXOR Y2, Y7, Y7
VPXOR Y3, Y8, Y8
VPXOR Y4, Y9, Y9
VPBROADCASTQ (CX), Y0
VPXOR Y0, Y5, Y5
VMOVDQA Y5, (AX)
VMOVDQA Y6, 192(AX)
VMOVDQA Y7, 384(AX)
VMOVDQA Y8, 576(AX)
VMOVDQA Y9, 768(AX)
VPXOR 96(AX), Y13, Y0
VPXOR 288(AX), Y14, Y1
VPXOR 320(AX), Y10, Y2
VPXOR 512(AX), Y11, Y3
VPXOR 704(AX), Y12, Y4
VPSLLQ $0x1c, Y0, Y5
VPSLLQ $0x14, Y1, Y6
VPSLLQ $0x03, Y2, Y7
VPSLLQ $0x2d, Y3, Y8
VPSLLQ $0x3d, Y4, Y9
VPSRLQ $0x24, Y0, Y0
VPSRLQ $0x2c, Y1, Y1
VPSRLQ $0x3d, Y2, Y2
VPSRLQ $0x13, Y3, Y3
VPSRLQ $0x03, Y4, Y4
VPOR Y5, Y0, Y0
VPOR Y6, Y1, Y1
VPOR Y7, Y2, Y2
VPOR Y8, Y3, Y3
VPOR Y9, Y4, Y4
VPANDN Y2, Y1, Y5
VPANDN Y3, Y2, Y6
VPANDN Y4, Y3, Y7
VPANDN Y0, Y4, Y8
VPANDN Y1, Y0, Y9
VPXOR Y0, Y5, Y5
VPXOR Y1, Y6, Y6
VPXOR Y2, Y7, Y7
VPXOR Y3, Y8, Y8
VPXOR Y4, Y9, Y9
VMOVDQA Y5, 320(AX)
VMOVDQA Y6, 512(AX)
VMOVDQA Y7, 704(AX)
VMOVDQA Y8, 96(AX)
VMOVDQA Y9, 288(AX)
VPXOR 32(AX), Y11, Y0
VPXOR 224(AX), Y12, Y1
VPXOR 416(AX), Y13, Y2
VPXOR 608(AX), Y14, Y3
VPXOR 640(AX), Y10, Y4
VPSLLQ $0x01, Y0, Y5
VPSLLQ $0x06, Y1, Y6
VPSLLQ $0x19, Y2, Y7
VPSLLQ $0x08, Y3, Y8
VPSLLQ $0x12, Y4, Y9
VPSRLQ $0x3f, Y0, Y0
VPSRLQ $0x3a, Y1, Y1
VPSRLQ $0x27, Y2, Y2
VPSRLQ $0x38, Y3, Y3
VPSRLQ $0x2e, Y4, Y4
VPOR Y5, Y0, Y0
VPOR Y6, Y1, Y1
VPOR Y7, Y2, Y2
VPOR Y8, Y3, Y3
VPOR Y9, Y4, Y4
VPANDN Y2, Y1, Y5
VPANDN Y3, Y2, Y6
VPANDN Y4, Y3, Y7
VPANDN Y0, Y4, Y8
VPANDN Y1, Y0, Y9
VPXOR Y0, Y5, Y5
VPXOR Y1, Y6, Y6
VPXOR Y2, Y7, Y7
VPXOR Y3, Y8, Y8
VPXOR Y4, Y9, Y9
VMOVDQA Y5, 640(AX)
VMOVDQA Y6, 32(AX)
VMOVDQA Y7, 224(AX)
VMOVDQA Y8, 416(AX)
VMOVDQA Y9, 608(AX)
VPXOR 128(AX), Y14, Y0
VPXOR 160(AX), Y10, Y1
VPXOR 352(AX), Y11, Y2
VPXOR 544(AX), Y12, Y3
VPXOR 736(AX), Y13, Y4
VPSLLQ $0x1b, Y0, Y5
VPSLLQ $0x24, Y1, Y6
VPSLLQ $0x0a, Y2, Y7
VPSLLQ $0x0f, Y3, Y8
VPSLLQ $0x38, Y4, Y9
VPSRLQ $0x25, Y0, Y0
VPSRLQ $0x1c, Y1, Y1
VPSRLQ $0x36, Y2, Y2
VPSRLQ $0x31, Y3, Y3
VPSRLQ $0x08, Y4, Y4
VPOR Y5, Y0, Y0
VPOR Y6, Y1, Y1
VPOR Y7, Y2, Y2
VPOR Y8, Y3, Y3
VPOR Y9, Y4, Y4
VPANDN Y2, Y1, Y5
VPANDN Y3, Y2, Y6
VPANDN Y4, Y3, Y7
VPANDN Y0, Y4, Y8
VPANDN Y1, Y0, Y9
VPXOR Y0, Y5, Y5
VPXOR Y1, Y6, Y6
VPXOR Y2, Y7, Y7
VPXOR Y3, Y8, Y8
VPXOR Y4, Y9, Y9
VMOVDQA Y5, 160(AX)
VMOVDQA Y6, 352(AX)
VMOVDQA Y7, 544(AX)
VMOVDQA Y8, 736(AX)
VMOVDQA Y9, 128(AX)
VPXOR 64(AX), Y12, Y0
VPXOR 256(AX), Y13, Y1
VPXOR 448(AX), Y14, Y2
VPXOR 480(AX), Y10, Y3
VPXOR 672(AX), Y11, Y4
VPSLLQ $0x3e, Y0, Y5
VPSLLQ $0x37, Y1, Y6
VPSLLQ $0x27, Y2, Y7
VPSLLQ $0x29, Y3, Y8
VPSLLQ $0x02, Y4, Y9
VPSRLQ $0x02, Y0, Y0
VPSRLQ $0x09, Y1, Y1
VPSRLQ $0x19, Y2, Y2
VPSRLQ $0x17, Y3, Y3
VPSRLQ $0x3e, Y4, Y4
VPOR Y5, Y0, Y0
VPOR Y6, Y1, Y1
VPOR Y7, Y2, Y2
VPOR Y8, Y3, Y3
VPOR Y9, Y4, Y4
VPANDN Y2, Y1, Y5
VPANDN Y3, Y2, Y6
VPANDN Y4, Y3, Y7
VPANDN Y0, Y4, Y8
VPANDN Y1, Y0, Y9
VPXOR Y0, Y5, Y5
VPXOR Y1, Y6, Y6
VPXOR Y2, Y7, Y7
VPXOR Y3, Y8, Y8
VPXOR Y4, Y9, Y9
VMOVDQA Y5, 480(AX)
VMOVDQA Y6, 672(AX)
VMOVDQA Y7, 64(AX)
VMOVDQA Y8, 256(AX)
VMOVDQA Y9, 448(AX)
VMOVDQA (AX), Y0
VMOVDQA 32(AX), Y1
VMOVDQA 64(AX), Y2
VMOVDQA 96(AX), Y3
VMOVDQA 128(AX), Y4
VPXOR 160(AX), Y0, Y0
VPXOR 192(AX), Y1, Y1
VPXOR 224(AX), Y2, Y2
VPXOR 256(AX), Y3, Y3
VPXOR 288(AX), Y4, Y4
VPXOR 320(AX), Y0, Y0
VPXOR 352(AX), Y1, Y1
VPXOR 384(AX), Y2, Y2
VPXOR 416(AX), Y3, Y3
VPXOR 448(AX), Y4, Y4
VPXOR 480(AX), Y0, Y0
VPXOR 512(AX), Y1, Y1
VPXOR 544(AX), Y2, Y2
VPXOR 576(AX), Y3, Y3
VPXOR 608(AX), Y4, Y4
VPXOR 640(AX), Y0, Y0
VPXOR 672(AX), Y1, Y1
VPXOR 704(AX), Y2, Y2
VPXOR 736(AX), Y3, Y3
VPXOR 768(AX), Y4, Y4
VPSLLQ $0x01, Y1, Y5
VPSLLQ $0x01, Y2, Y6
VPSLLQ $0x01, Y3, Y7
VPSLLQ $0x01, Y4, Y8
VPSLLQ $0x01, Y0, Y9
VPSRLQ $0x3f, Y1, Y10
VPSRLQ $0x3f, Y2, Y11
VPSRLQ $0x3f, Y3, Y12
VPSRLQ $0x3f, Y4, Y13
VPSRLQ $0x3f, Y0, Y14
VPOR Y5, Y10, Y10
VPOR Y6, Y11, Y11
VPOR Y7, Y12, Y12
VPOR Y8, Y13, Y13
VPOR Y9, Y14, Y14
VPXOR Y10, Y4, Y10
VPXOR Y11, Y0, Y11
VPXOR Y12, Y1, Y12
VPXOR Y13, Y2, Y13
VPXOR Y14, Y3, Y14
VPXOR (AX), Y10, Y0
VPXOR 512(AX), Y11, Y1
VPXOR 224(AX), Y12, Y2
VPXOR 736(AX), Y13, Y3
VPXOR 448(AX), Y14, Y4
VPSLLQ $0x2c, Y1, Y6
VPSLLQ $0x2b, Y2, Y7
VPSLLQ $0x15, Y3, Y8
VPSLLQ $0x0e, Y4, Y9
VPSRLQ $0x14, Y1, Y1
VPSRLQ $0x15, Y2, Y2
VPSRLQ $0x2b, Y3, Y3
VPSRLQ $0x32, Y4, Y4
VPOR Y6, Y1, Y1
VPOR Y7, Y2, Y2
VPOR Y8, Y3, Y3
VPOR Y9, Y4, Y4
VPANDN Y2, Y1, Y5
VPANDN Y3, Y2, Y6
VPANDN Y4, Y3, Y7
VPANDN Y0, Y4, Y8
VPANDN Y1, Y0, Y9
VPXOR Y0, Y5, Y5
VPXOR Y1, Y6, Y6
VPXOR Y2, Y7, Y7
VPXOR Y3, Y8, Y8
VPXOR Y4, Y9, Y9
VPBROADCASTQ 8(CX), Y0
VPXOR Y0, Y5, Y5
VMOVDQA Y5, (AX)
VMOVDQA Y6, 512(AX)
VMOVDQA Y7, 224(AX)
VMOVDQA Y8, 736(AX)
VMOVDQA Y9, 448(AX)
VPXOR 576(AX), Y13, Y0
VPXOR 288(AX), Y14, Y1
VPXOR 640(AX), Y10, Y2
VPXOR 352(AX), Y11, Y3
VPXOR 64(AX), Y12, Y4
VPSLLQ $0x1c, Y0, Y5
VPSLLQ $0x14, Y1, Y6
VPSLLQ $0x03, Y2, Y7
VPSLLQ $0x2d, Y3, Y8
VPSLLQ $0x3d, Y4, Y9
VPSRLQ $0x24, Y0, Y0
VPSRLQ $0x2c, Y1, Y1
VPSRLQ $0x3d, Y2, Y2
VPSRLQ $0x13, Y3, Y3
VPSRLQ $0x03, Y4, Y4
VPOR Y5, Y0, Y0
VPOR Y6, Y1, Y1
VPOR Y7, Y2, Y2
VPOR Y8, Y3, Y3
VPOR Y9, Y4, Y4
VPANDN Y2, Y1, Y5
VPANDN Y3, Y2, Y6
VPANDN Y4, Y3, Y7
VPANDN Y0, Y4, Y8
VPANDN Y1, Y0, Y9
VPXOR Y0, Y5, Y5
VPXOR Y1, Y6, Y6
VPXOR Y2, Y7, Y7
VPXOR Y3, Y8, Y8
VPXOR Y4, Y9, Y9
VMOVDQA Y5, 640(AX)
VMOVDQA Y6, 352(AX)
VMOVDQA Y7, 64(AX)
VMOVDQA Y8, 576(AX)
VMOVDQA Y9, 288(AX)
VPXOR 192(AX), Y11, Y0
VPXOR 704(AX), Y12, Y1
VPXOR 416(AX), Y13, Y2
VPXOR 128(AX), Y14, Y3
VPXOR 480(AX), Y10, Y4
VPSLLQ $0x01, Y0, Y5
VPSLLQ $0x06, Y1, Y6
VPSLLQ $0x19, Y2, Y7
VPSLLQ $0x08, Y3, Y8
VPSLLQ $0x12, Y4, Y9
VPSRLQ $0x3f, Y0, Y0
VPSRLQ $0x3a, Y1, Y1
VPSRLQ $0x27, Y2, Y2
VPSRLQ $0x38, Y3, Y3
VPSRLQ $0x2e, Y4, Y4
VPOR Y5, Y0, Y0
VPOR Y6, Y1, Y1
VPOR Y7, Y2, Y2
VPOR Y8, Y3, Y3
VPOR Y9, Y4, Y4
VPANDN Y2, Y1, Y5
VPANDN Y3, Y2, Y6
VPANDN Y4, Y3, Y7
VPANDN Y0, Y4, Y8
VPANDN Y1, Y0, Y9
VPXOR Y0, Y5, Y5
VPXOR Y1, Y6, Y6
VPXOR Y2, Y7, Y7
VPXOR Y3, Y8, Y8
VPXOR Y4, Y9, Y9
VMOVDQA Y5, 480(AX)
VMOVDQA Y6, 192(AX)
VMOVDQA Y7, 704(AX)
VMOVDQA Y8, 416(AX)
VMOVDQA Y9, 128(AX)
VPXOR 768(AX), Y14, Y0
VPXOR 320(AX), Y10, Y1
VPXOR 32(AX), Y11, Y2
VPXOR 544(AX), Y12, Y3
VPXOR 256(AX), Y13, Y4
VPSLLQ $0x1b, Y0, Y5
VPSLLQ $0x24, Y1, Y6
VPSLLQ $0x0a, Y2, Y7
VPSLLQ $0x0f, Y3, Y8
VPSLLQ $0x38, Y4, Y9
VPSRLQ $0x25, Y0, Y0
VPSRLQ $0x1c, Y1, Y1
VPSRLQ $0x36, Y2, Y2
VPSRLQ $0x31, Y3, Y3
VPSRLQ $0x08, Y4, Y4
VPOR Y5, Y0, Y0
VPOR Y6, Y1, Y1
VPOR Y7, Y2, Y2
VPOR Y8, Y3, Y3
VPOR Y9, Y4, Y4
VPANDN Y2, Y1, Y5
VPANDN Y3, Y2, Y6
VPANDN Y4, Y3, Y7
VPANDN Y0, Y4, Y8
VPANDN Y1, Y0, Y9
VPXOR Y0, Y5, Y5
VPXOR Y1, Y6, Y6
VPXOR Y2, Y7, Y7
VPXOR Y3, Y8, Y8
VPXOR Y4, Y9, Y9
VMOVDQA Y5, 320(AX)
VMOVDQA Y6, 32(AX)
VMOVDQA Y7, 544(AX)
VMOVDQA Y8, 256(AX)
VMOVDQA Y9, 768(AX)
VPXOR 384(AX), Y12, Y0
VPXOR 96(AX), Y13, Y1
VPXOR 608(AX), Y14, Y2
VPXOR 160(AX), Y10, Y3
VPXOR 672(AX), Y11, Y4
VPSLLQ $0x3e, Y0, Y5
VPSLLQ $0x37, Y1, Y6
VPSLLQ $0x27, Y2, Y7
VPSLLQ $0x29, Y3, Y8
VPSLLQ $0x02, Y4, Y9
VPSRLQ $0x02, Y0, Y0
VPSRLQ $0x09, Y1, Y1
VPSRLQ $0x19, Y2, Y2
VPSRLQ $0x17, Y3, Y3
VPSRLQ $0x3e, Y4, Y4
VPOR Y5, Y0, Y0
VPOR Y6, Y1, Y1
VPOR Y7, Y2, Y2
VPOR Y8, Y3, Y3
VPOR Y9, Y4, Y4
VPANDN Y2, Y1, Y5
VPANDN Y3, Y2, Y6
VPANDN Y4, Y3, Y7
VPANDN Y0, Y4, Y8
VPANDN Y1, Y0, Y9
VPXOR Y0, Y5, Y5
VPXOR Y1, Y6, Y6
VPXOR Y2, Y7, Y7
VPXOR Y3, Y8, Y8
VPXOR Y4, Y9, Y9
VMOVDQA Y5, 160(AX)
VMOVDQA Y6, 672(AX)
VMOVDQA Y7, 384(AX)
VMOVDQA Y8, 96(AX)
VMOVDQA Y9, 608(AX)
VMOVDQA (AX), Y0
VMOVDQA 32(AX), Y1
VMOVDQA 64(AX), Y2
VMOVDQA 96(AX), Y3
VMOVDQA 128(AX), Y4
VPXOR 160(AX), Y0, Y0
VPXOR 192(AX), Y1, Y1
VPXOR 224(AX), Y2, Y2
VPXOR 256(AX), Y3, Y3
VPXOR 288(AX), Y4, Y4
VPXOR 320(AX), Y0, Y0
VPXOR 352(AX), Y1, Y1
VPXOR 384(AX), Y2, Y2
VPXOR 416(AX), Y3, Y3
VPXOR 448(AX), Y4, Y4
VPXOR 480(AX), Y0, Y0
VPXOR 512(AX), Y1, Y1
VPXOR 544(AX), Y2, Y2
VPXOR 576(AX), Y3, Y3
VPXOR 608(AX), Y4, Y4
VPXOR 640(AX), Y0, Y0
VPXOR 672(AX), Y1, Y1
VPXOR 704(AX), Y2, Y2
VPXOR 736(AX), Y3, Y3
VPXOR 768(AX), Y4, Y4
VPSLLQ $0x01, Y1, Y5
VPSLLQ $0x01, Y2, Y6
VPSLLQ $0x01, Y3, Y7
VPSLLQ $0x01, Y4, Y8
VPSLLQ $0x01, Y0, Y9
VPSRLQ $0x3f, Y1, Y10
VPSRLQ $0x3f, Y2, Y11
VPSRLQ $0x3f, Y3, Y12
VPSRLQ $0x3f, Y4, Y13
VPSRLQ $0x3f, Y0, Y14
VPOR Y5, Y10, Y10
VPOR Y6, Y11, Y11
VPOR Y7, Y12, Y12
VPOR Y8, Y13, Y13
VPOR Y9, Y14, Y14
VPXOR Y10, Y4, Y10
VPXOR Y11, Y0, Y11
VPXOR Y12, Y1, Y12
VPXOR Y13, Y2, Y13
VPXOR Y14, Y3, Y14
VPXOR (AX), Y10, Y0
VPXOR 352(AX), Y11, Y1
VPXOR 704(AX), Y12, Y2
VPXOR 256(AX), Y13, Y3
VPXOR 608(AX), Y14, Y4
VPSLLQ $0x2c, Y1, Y6
VPSLLQ $0x2b, Y2, Y7
VPSLLQ $0x15, Y3, Y8
VPSLLQ $0x0e, Y4, Y9
VPSRLQ $0x14, Y1, Y1
VPSRLQ $0x15, Y2, Y2
VPSRLQ $0x2b, Y3, Y3
VPSRLQ $0x32, Y4, Y4
VPOR Y6, Y1, Y1
VPOR Y7, Y2, Y2
VPOR Y8, Y3, Y3
VPOR Y9, Y4, Y4
VPANDN Y2, Y1, Y5
VPANDN Y3, Y2, Y6
VPANDN Y4, Y3, Y7
VPANDN Y0, Y4, Y8
VPANDN Y1, Y0, Y9
VPXOR Y0, Y5, Y5
VPXOR Y1, Y6, Y6
VPXOR Y2, Y7, Y7
VPXOR Y3, Y8, Y8
VPXOR Y4, Y9, Y9
VPBROADCASTQ 16(CX), Y0
VPXOR Y0, Y5, Y5
VMOVDQA Y5, (AX)
VMOVDQA Y6, 352(AX)
VMOVDQA Y7, 704(AX)
VMOVDQA Y8, 256(AX)
VMOVDQA Y9, 608(AX)
VPXOR 736(AX), Y13, Y0
VPXOR 288(AX), Y14, Y1
VPXOR 480(AX), Y10, Y2
VPXOR 32(AX), Y11, Y3
VPXOR 384(AX), Y12, Y4
VPSLLQ $0x1c, Y0, Y5
VPSLLQ $0x14, Y1, Y6
VPSLLQ $0x03, Y2, Y7
VPSLLQ $0x2d, Y3, Y8
VPSLLQ $0x3d, Y4, Y9
VPSRLQ $0x24, Y0, Y0
VPSRLQ $0x2c, Y1, Y1
VPSRLQ $0x3d, Y2, Y2
VPSRLQ $0x13, Y3, Y3
VPSRLQ $0x03, Y4, Y4
VPOR Y5, Y0, Y0
VPOR Y6, Y1, Y1
VPOR Y7, Y2, Y2
VPOR Y8, Y3, Y3
VPOR Y9, Y4, Y4
VPANDN Y2, Y1, Y5
VPANDN Y3, Y2, Y6
VPANDN Y4, Y3, Y7
VPANDN Y0, Y4, Y8
VPANDN Y1, Y0, Y9
VPXOR Y0, Y5, Y5
VPXOR Y1, Y6, Y6
VPXOR Y2, Y7, Y7
VPXOR Y3, Y8, Y8
VPXOR Y4, Y9, Y9
VMOVDQA Y5, 480(AX)
VMOVDQA Y6, 32(AX)
VMOVDQA Y7, 384(AX)
VMOVDQA Y8, 736(AX)
VMOVDQA Y9, 288(AX)
VPXOR 512(AX), Y11, Y0
VPXOR 64(AX), Y12, Y1
VPXOR 416(AX), Y13, Y2
VPXOR 768(AX), Y14, Y3
VPXOR 160(AX), Y10, Y4
VPSLLQ $0x01, Y0, Y5
VPSLLQ $0x06, Y1, Y6
VPSLLQ $0x19, Y2, Y7
VPSLLQ $0x08, Y3, Y8
VPSLLQ $0x12, Y4, Y9
VPSRLQ $0x3f, Y0, Y0
VPSRLQ $0x3a, Y1, Y1
VPSRLQ $0x27, Y2, Y2
VPSRLQ $0x38, Y3, Y3
VPSRLQ $0x2e, Y4, Y4
VPOR Y5, Y0, Y0
VPOR Y6, Y1, Y1
VPOR Y7, Y2, Y2
VPOR Y8, Y3, Y3
VPOR Y9, Y4, Y4
VPANDN Y2, Y1, Y5
VPANDN Y3, Y2, Y6
VPANDN Y4, Y3, Y7
VPANDN Y0, Y4, Y8
VPANDN Y1, Y0, Y9
VPXOR Y0, Y5, Y5
VPXOR Y1, Y6, Y6
VPXOR Y2, Y7, Y7
VPXOR Y3, Y8, Y8
VPXOR Y4, Y9, Y9
VMOVDQA Y5, 160(AX)
VMOVDQA Y6, 512(AX)
VMOVDQA Y7, 64(AX)
VMOVDQA Y8, 416(AX)
VMOVDQA Y9, 768(AX)
VPXOR 448(AX), Y14, Y0
VPXOR 640(AX), Y10, Y1
VPXOR 192(AX), Y11, Y2
VPXOR 544(AX), Y12, Y3
VPXOR 96(AX), Y13, Y4
VPSLLQ $0x1b, Y0, Y5
VPSLLQ $0x24, Y1, Y6
VPSLLQ $0x0a, Y2, Y7
VPSLLQ $0x0f, Y3, Y8
VPSLLQ $0x38, Y4, Y9
VPSRLQ $0x25, Y0, Y0
VPSRLQ $0x1c, Y1, Y1
VPSRLQ $0x36, Y2, Y2
VPSRLQ $0x31, Y3, Y3
VPSRLQ $0x08, Y4, Y4
VPOR Y5, Y0, Y0
VPOR Y6, Y1, Y1
VPOR Y7, Y2, Y2
VPOR Y8, Y3, Y3
VPOR Y9, Y4, Y4
VPANDN Y2, Y1, Y5
VPANDN Y3, Y2, Y6
VPANDN Y4, Y3, Y7
VPANDN Y0, Y4, Y8
VPANDN Y1, Y0, Y9
VPXOR Y0, Y5, Y5
VPXOR Y1, Y6, Y6
VPXOR Y2, Y7, Y7
VPXOR Y3, Y8, Y8
VPXOR Y4, Y9, Y9
VMOVDQA Y5, 640(AX)
VMOVDQA Y6, 192(AX)
VMOVDQA Y7, 544(AX)
VMOVDQA Y8, 96(AX)
VMOVDQA Y9, 448(AX)
VPXOR 224(AX), Y12, Y0
VPXOR 576(AX), Y13, Y1
VPXOR 128(AX), Y14, Y2
VPXOR 320(AX), Y10, Y3
VPXOR 672(AX), Y11, Y4
VPSLLQ $0x3e, Y0, Y5
VPSLLQ $0x37, Y1, Y6
VPSLLQ $0x27, Y2, Y7
VPSLLQ $0x29, Y3, Y8
VPSLLQ $0x02, Y4, Y9
VPSRLQ $0x02, Y0, Y0
VPSRLQ $0x09, Y1, Y1
VPSRLQ $0x19, Y2, Y2
VPSRLQ $0x17, Y3, Y3
VPSRLQ $0x3e, Y4, Y4
VPOR Y5, Y0, Y0
VPOR Y6, Y1, Y1
VPOR Y7, Y2, Y2
VPOR Y8, Y3, Y3
VPOR Y9, Y4, Y4
VPANDN Y2, Y1, Y5
VPANDN Y3, Y2, Y6
VPANDN Y4, Y3, Y7
VPANDN Y0, Y4, Y8
VPANDN Y1, Y0, Y9
VPXOR Y0, Y5, Y5
VPXOR Y1, Y6, Y6
VPXOR Y2, Y7, Y7
VPXOR Y3, Y8, Y8
VPXOR Y4, Y9, Y9
VMOVDQA Y5, 320(AX)
VMOVDQA Y6, 672(AX)
VMOVDQA Y7, 224(AX)
VMOVDQA Y8, 576(AX)
VMOVDQA Y9, 128(AX)
VMOVDQA (AX), Y0
VMOVDQA 32(AX), Y1
VMOVDQA 64(AX), Y2
VMOVDQA 96(AX), Y3
VMOVDQA 128(AX), Y4
VPXOR 160(AX), Y0, Y0
VPXOR 192(AX), Y1, Y1
VPXOR 224(AX), Y2, Y2
VPXOR 256(AX), Y3, Y3
VPXOR 288(AX), Y4, Y4
VPXOR 320(AX), Y0, Y0
VPXOR 352(AX), Y1, Y1
VPXOR 384(AX), Y2, Y2
VPXOR 416(AX), Y3, Y3
VPXOR 448(AX), Y4, Y4
VPXOR 480(AX), Y0, Y0
VPXOR 512(AX), Y1, Y1
VPXOR 544(AX), Y2, Y2
VPXOR 576(AX), Y3, Y3
VPXOR 608(AX), Y4, Y4
VPXOR 640(AX), Y0, Y0
VPXOR 672(AX), Y1, Y1
VPXOR 704(AX), Y2, Y2
VPXOR 736(AX), Y3, Y3
VPXOR 768(AX), Y4, Y4
VPSLLQ $0x01, Y1, Y5
VPSLLQ $0x01, Y2, Y6
VPSLLQ $0x01, Y3, Y7
VPSLLQ $0x01, Y4, Y8
VPSLLQ $0x01, Y0, Y9
VPSRLQ $0x3f, Y1, Y10
VPSRLQ $0x3f, Y2, Y11
VPSRLQ $0x3f, Y3, Y12
VPSRLQ $0x3f, Y4, Y13
VPSRLQ $0x3f, Y0, Y14
VPOR Y5, Y10, Y10
VPOR Y6, Y11, Y11
VPOR Y7, Y12, Y12
VPOR Y8, Y13, Y13
VPOR Y9, Y14, Y14
VPXOR Y10, Y4, Y10
VPXOR Y11, Y0, Y11
VPXOR Y12, Y1, Y12
VPXOR Y13, Y2, Y13
VPXOR Y14, Y3, Y14
VPXOR (AX), Y10, Y0
VPXOR 32(AX), Y11, Y1
VPXOR 64(AX), Y12, Y2
VPXOR 96(AX), Y13, Y3
VPXOR 128(AX), Y14, Y4
VPSLLQ $0x2c, Y1, Y6
VPSLLQ $0x2b, Y2, Y7
VPSLLQ $0x15, Y3, Y8
VPSLLQ $0x0e, Y4, Y9
VPSRLQ $0x14, Y1, Y1
VPSRLQ $0x15, Y2, Y2
VPSRLQ $0x2b, Y3, Y3
VPSRLQ $0x32, Y4, Y4
VPOR Y6, Y1, Y1
VPOR Y7, Y2, Y2
VPOR Y8, Y3, Y3
VPOR Y9, Y4, Y4
VPANDN Y2, Y1, Y5
VPANDN Y3, Y2, Y6
VPANDN Y4, Y3, Y7
VPANDN Y0, Y4, Y8
VPANDN Y1, Y0, Y9
VPXOR Y0, Y5, Y5
VPXOR Y1, Y6, Y6
VPXOR Y2, Y7, Y7
VPXOR Y3, Y8, Y8
VPXOR Y4, Y9, Y9
VPBROADCASTQ 24(CX), Y0
VPXOR Y0, Y5, Y5
VMOVDQA Y5, (AX)
VMOVDQA Y6, 32(AX)
VMOVDQA Y7, 64(AX)
VMOVDQA Y8, 96(AX)
VMOVDQA Y9, 128(AX)
VPXOR 256(AX), Y13, Y0
VPXOR 288(AX), Y14, Y1
VPXOR 160(AX), Y10, Y2
VPXOR 192(AX), Y11, Y3
VPXOR 224(AX), Y12, Y4
VPSLLQ $0x1c, Y0, Y5
VPSLLQ $0x14, Y1, Y6
VPSLLQ $0x03, Y2, Y7
VPSLLQ $0x2d, Y3, Y8
VPSLLQ $0x3d, Y4, Y9
VPSRLQ $0x24, Y0, Y0
VPSRLQ $0x2c, Y1, Y1
VPSRLQ $0x3d, Y2, Y2
VPSRLQ $0x13, Y3, Y3
VPSRLQ $0x03, Y4, Y4
VPOR Y5, Y0, Y0
VPOR Y6, Y1, Y1
VPOR Y7, Y2, Y2
VPOR Y8, Y3, Y3
VPOR Y9, Y4, Y4
VPANDN Y2, Y1, Y5
VPANDN Y3, Y2, Y6
VPANDN Y4, Y3, Y7
VPANDN Y0, Y4, Y8
VPANDN Y1, Y0, Y9
VPXOR Y0, Y5, Y5
VPXOR Y1, Y6, Y6
VPXOR Y2, Y7, Y7
VPXOR Y3, Y8, Y8
VPXOR Y4, Y9, Y9
VMOVDQA Y5, 160(AX)
VMOVDQA Y6, 192(AX)
VMOVDQA Y7, 224(AX)
VMOVDQA Y8, 256(AX)
VMOVDQA Y9, 288(AX)
VPXOR 352(AX), Y11, Y0
VPXOR 384(AX), Y12, Y1
VPXOR 416(AX), Y13, Y2
VPXOR 448(AX), Y14, Y3
VPXOR 320(AX), Y10, Y4
VPSLLQ $0x01, Y0, Y5
VPSLLQ $0x06, Y1, Y6
VPSLLQ $0x19, Y2, Y7
VPSLLQ $0x08, Y3, Y8
VPSLLQ $0x12, Y4, Y9
VPSRLQ $0x3f, Y0, Y0
VPSRLQ $0x3a, Y1, Y1
VPSRLQ $0x27, Y2, Y2
VPSRLQ $0x38, Y3, Y3
VPSRLQ $0x2e, Y4, Y4
VPOR Y5, Y0, Y0
VPOR Y6, Y1, Y1
VPOR Y7, Y2, Y2
VPOR Y8, Y3, Y3
VPOR Y9, Y4, Y4
VPANDN Y2, Y1, Y5
VPANDN Y3, Y2, Y6
VPANDN Y4, Y3, Y7
VPANDN Y0, Y4, Y8
VPANDN Y1, Y0, Y9
VPXOR Y0, Y5, Y5
VPXOR Y1, Y6, Y6
VPXOR Y2, Y7, Y7
VPXOR Y3, Y8, Y8
VPXOR Y4, Y9, Y9
VMOVDQA Y5, 320(AX)
VMOVDQA Y6, 352(AX)
VMOVDQA Y7, 384(AX)
VMOVDQA Y8, 416(AX)
VMOVDQA Y9, 448(AX)
VPXOR 608(AX), Y14, Y0
VPXOR 480(AX), Y10, Y1
VPXOR 512(AX), Y11, Y2
VPXOR 544(AX), Y12, Y3
VPXOR 576(AX), Y13, Y4
VPSLLQ $0x1b, Y0, Y5
VPSLLQ $0x24, Y1, Y6
VPSLLQ $0x0a, Y2, Y7
VPSLLQ $0x0f, Y3, Y8
VPSLLQ $0x38, Y4, Y9
VPSRLQ $0x25, Y0, Y0
VPSRLQ $0x1c, Y1, Y1
VPSRLQ $0x36, Y2, Y2
VPSRLQ $0x31, Y3, Y3
VPSRLQ $0x08, Y4, Y4
VPOR Y5, Y0, Y0
VPOR Y6, Y1, Y1
VPOR Y7, Y2, Y2
VPOR Y8, Y3, Y3
VPOR Y9, Y4, Y4
VPANDN Y2, Y1, Y5
VPANDN Y3, Y2, Y6
VPANDN Y4, Y3, Y7
VPANDN Y0, Y4, Y8
VPANDN Y1, Y0, Y9
VPXOR Y0, Y5, Y5
VPXOR Y1, Y6, Y6
VPXOR Y2, Y7, Y7
VPXOR Y3, Y8, Y8
VPXOR Y4, Y9, Y9
VMOVDQA Y5, 480(AX)
VMOVDQA Y6, 512(AX)
VMOVDQA Y7, 544(AX)
VMOVDQA Y8, 576(AX)
VMOVDQA Y9, 608(AX)
VPXOR 704(AX), Y12, Y0
VPXOR 736(AX), Y13, Y1
VPXOR 768(AX), Y14, Y2
VPXOR 640(AX), Y10, Y3
VPXOR 672(AX), Y11, Y4
VPSLLQ $0x3e, Y0, Y5
VPSLLQ $0x37, Y1, Y6
VPSLLQ $0x27, Y2, Y7
VPSLLQ $0x29, Y3, Y8
VPSLLQ $0x02, Y4, Y9
VPSRLQ $0x02, Y0, Y0
VPSRLQ $0x09, Y1, Y1
VPSRLQ $0x19, Y2, Y2
VPSRLQ $0x17, Y3, Y3
VPSRLQ $0x3e, Y4, Y4
VPOR Y5, Y0, Y0
VPOR Y6, Y1, Y1
VPOR Y7, Y2, Y2
VPOR Y8, Y3, Y3
VPOR Y9, Y4, Y4
VPANDN Y2, Y1, Y5
VPANDN Y3, Y2, Y6
VPANDN Y4, Y3, Y7
VPANDN Y0, Y4, Y8
VPANDN Y1, Y0, Y9
VPXOR Y0, Y5, Y5
VPXOR Y1, Y6, Y6
VPXOR Y2, Y7, Y7
VPXOR Y3, Y8, Y8
VPXOR Y4, Y9, Y9
VMOVDQA Y5, 640(AX)
VMOVDQA Y6, 672(AX)
VMOVDQA Y7, 704(AX)
VMOVDQA Y8, 736(AX)
VMOVDQA Y9, 768(AX)
ADDQ $0x20, CX
SUBQ $0x00000001, DX
JNZ loop
RET

View File

@ -0,0 +1,9 @@
// Code generated by command: go run src.go -out ../../f1600x4_amd64.s -stubs ../../f1600x4stubs_amd64.go -pkg keccakf1600. DO NOT EDIT.
//go:build amd64
// +build amd64
package keccakf1600
//go:noescape
func f1600x4AVX2(state *uint64, rc *[24]uint64)

View File

@ -0,0 +1,8 @@
//go:build (!amd64 && !arm64) || (arm64 && !go1.16)
// +build !amd64,!arm64 arm64,!go1.16
package keccakf1600
func permuteSIMDx2(state []uint64) { permuteScalarX2(state) }
func permuteSIMDx4(state []uint64) { permuteScalarX4(state) }

170
vendor/github.com/marten-seemann/qtls-go1-18/cfkem.go generated vendored Normal file
View File

@ -0,0 +1,170 @@
// Copyright 2022 Cloudflare, Inc. All rights reserved. Use of this source code
// is governed by a BSD-style license that can be found in the LICENSE file.
//
// Glue to add Circl's (post-quantum) hybrid KEMs.
//
// To enable set CurvePreferences with the desired scheme as the first element:
//
// import (
// "github.com/cloudflare/circl/kem/tls"
// "github.com/cloudflare/circl/kem/hybrid"
//
// [...]
//
// config.CurvePreferences = []tls.CurveID{
// qtls.X25519Kyber512Draft00,
// qtls.X25519,
// qtls.P256,
// }
package qtls
import (
"github.com/cloudflare/circl/kem"
"github.com/cloudflare/circl/kem/hybrid"
"crypto/tls"
"fmt"
"io"
"sync"
"time"
)
// Either ecdheParameters or kem.PrivateKey
type clientKeySharePrivate interface{}
var (
X25519Kyber512Draft00 = CurveID(0xfe30)
X25519Kyber768Draft00 = CurveID(0xfe31)
invalidCurveID = CurveID(0)
)
func kemSchemeKeyToCurveID(s kem.Scheme) CurveID {
switch s.Name() {
case "Kyber512-X25519":
return X25519Kyber512Draft00
case "Kyber768-X25519":
return X25519Kyber768Draft00
default:
return invalidCurveID
}
}
// Extract CurveID from clientKeySharePrivate
func clientKeySharePrivateCurveID(ks clientKeySharePrivate) CurveID {
switch v := ks.(type) {
case kem.PrivateKey:
ret := kemSchemeKeyToCurveID(v.Scheme())
if ret == invalidCurveID {
panic("cfkem: internal error: don't know CurveID for this KEM")
}
return ret
case ecdheParameters:
return v.CurveID()
default:
panic("cfkem: internal error: unknown clientKeySharePrivate")
}
}
// Returns scheme by CurveID if supported by Circl
func curveIdToCirclScheme(id CurveID) kem.Scheme {
switch id {
case X25519Kyber512Draft00:
return hybrid.Kyber512X25519()
case X25519Kyber768Draft00:
return hybrid.Kyber768X25519()
}
return nil
}
// Generate a new shared secret and encapsulates it for the packed
// public key in ppk using randomness from rnd.
func encapsulateForKem(scheme kem.Scheme, rnd io.Reader, ppk []byte) (
ct, ss []byte, alert alert, err error) {
pk, err := scheme.UnmarshalBinaryPublicKey(ppk)
if err != nil {
return nil, nil, alertIllegalParameter, fmt.Errorf("unpack pk: %w", err)
}
seed := make([]byte, scheme.EncapsulationSeedSize())
if _, err := io.ReadFull(rnd, seed); err != nil {
return nil, nil, alertInternalError, fmt.Errorf("random: %w", err)
}
ct, ss, err = scheme.EncapsulateDeterministically(pk, seed)
return ct, ss, alertIllegalParameter, err
}
// Generate a new keypair using randomness from rnd.
func generateKemKeyPair(scheme kem.Scheme, rnd io.Reader) (
kem.PublicKey, kem.PrivateKey, error) {
seed := make([]byte, scheme.SeedSize())
if _, err := io.ReadFull(rnd, seed); err != nil {
return nil, nil, err
}
pk, sk := scheme.DeriveKeyPair(seed)
return pk, sk, nil
}
// Events. We cannot use the same approach as used in our plain Go fork
// as we cannot change tls.Config, tls.ConnectionState, etc. Also we do
// not want to maintain a fork of quic-go itself as well. This seems
// the simplest option.
// CFEvent. There are two events: one emitted on HRR and one emitted
type CFEvent interface {
// Common to all events
ServerSide() bool // true if server-side; false if on client-side
// HRR event. Emitted when an HRR happened.
IsHRR() bool // true if this is an HRR event
// Handshake event.
IsHandshake() bool // true if this is a handshake event.
Duration() time.Duration // how long did the handshake take?
KEX() tls.CurveID // which kex was established?
}
type CFEventHandler func(CFEvent)
// Registers a handler to be called when a CFEvent is emitted; returns
// the previous handler.
func SetCFEventHandler(handler CFEventHandler) CFEventHandler {
cfEventMux.Lock()
ret := cfEventHandler
cfEventHandler = handler
cfEventMux.Unlock()
return ret
}
func raiseCFEvent(ev CFEvent) {
cfEventMux.Lock()
handler := cfEventHandler
cfEventMux.Unlock()
if handler != nil {
handler(ev)
}
}
var (
cfEventMux sync.Mutex
cfEventHandler CFEventHandler
)
type cfEventHRR struct{ serverSide bool }
func (*cfEventHRR) IsHRR() bool { return true }
func (ev *cfEventHRR) ServerSide() bool { return ev.serverSide }
func (*cfEventHRR) IsHandshake() bool { return false }
func (ev *cfEventHRR) Duration() time.Duration { panic("wrong event") }
func (ev *cfEventHRR) KEX() tls.CurveID { panic("wrong event") }
type cfEventHandshake struct {
serverSide bool
duration time.Duration
kex tls.CurveID
}
func (*cfEventHandshake) IsHRR() bool { return false }
func (ev *cfEventHandshake) ServerSide() bool { return ev.serverSide }
func (*cfEventHandshake) IsHandshake() bool { return true }
func (ev *cfEventHandshake) Duration() time.Duration { return ev.duration }
func (ev *cfEventHandshake) KEX() tls.CurveID { return ev.kex }

View File

@ -345,6 +345,7 @@ type clientSessionState struct {
// goroutines. Up to TLS 1.2, only ticket-based resumption is supported, not
// SessionID-based resumption. In TLS 1.3 they were merged into PSK modes, which
// are supported via this interface.
//
//go:generate sh -c "mockgen -package qtls -destination mock_client_session_cache_test.go github.com/marten-seemann/qtls-go1-17 ClientSessionCache"
type ClientSessionCache = tls.ClientSessionCache

View File

@ -38,7 +38,7 @@ type clientHandshakeState struct {
session *clientSessionState
}
func (c *Conn) makeClientHello() (*clientHelloMsg, ecdheParameters, error) {
func (c *Conn) makeClientHello() (*clientHelloMsg, clientKeySharePrivate, error) {
config := c.config
if len(config.ServerName) == 0 && !config.InsecureSkipVerify {
return nil, nil, errors.New("tls: either ServerName or InsecureSkipVerify must be specified in the tls.Config")
@ -137,7 +137,7 @@ func (c *Conn) makeClientHello() (*clientHelloMsg, ecdheParameters, error) {
hello.supportedSignatureAlgorithms = supportedSignatureAlgorithms
}
var params ecdheParameters
var secret clientKeySharePrivate
if hello.supportedVersions[0] == VersionTLS13 {
var suites []uint16
for _, suiteID := range configCipherSuites {
@ -158,21 +158,37 @@ func (c *Conn) makeClientHello() (*clientHelloMsg, ecdheParameters, error) {
}
curveID := config.curvePreferences()[0]
if _, ok := curveForCurveID(curveID); curveID != X25519 && !ok {
return nil, nil, errors.New("tls: CurvePreferences includes unsupported curve")
if scheme := curveIdToCirclScheme(curveID); scheme != nil {
pk, sk, err := generateKemKeyPair(scheme, config.rand())
if err != nil {
return nil, nil, fmt.Errorf("generateKemKeyPair %s: %w",
scheme.Name(), err)
}
packedPk, err := pk.MarshalBinary()
if err != nil {
return nil, nil, fmt.Errorf("pack circl public key %s: %w",
scheme.Name(), err)
}
hello.keyShares = []keyShare{{group: curveID, data: packedPk}}
secret = sk
} else {
if _, ok := curveForCurveID(curveID); curveID != X25519 && !ok {
return nil, nil, errors.New("tls: CurvePreferences includes unsupported curve")
}
params, err := generateECDHEParameters(config.rand(), curveID)
if err != nil {
return nil, nil, err
}
hello.keyShares = []keyShare{{group: curveID, data: params.PublicKey()}}
secret = params
}
params, err = generateECDHEParameters(config.rand(), curveID)
if err != nil {
return nil, nil, err
}
hello.keyShares = []keyShare{{group: curveID, data: params.PublicKey()}}
}
if hello.supportedVersions[0] == VersionTLS13 && c.extraConfig != nil && c.extraConfig.GetExtensions != nil {
hello.additionalExtensions = c.extraConfig.GetExtensions(typeClientHello)
}
return hello, params, nil
return hello, secret, nil
}
func (c *Conn) clientHandshake(ctx context.Context) (err error) {
@ -258,14 +274,14 @@ func (c *Conn) clientHandshake(ctx context.Context) (err error) {
if c.vers == VersionTLS13 {
hs := &clientHandshakeStateTLS13{
c: c,
ctx: ctx,
serverHello: serverHello,
hello: hello,
ecdheParams: ecdheParams,
session: session,
earlySecret: earlySecret,
binderKey: binderKey,
c: c,
ctx: ctx,
serverHello: serverHello,
hello: hello,
keySharePrivate: ecdheParams,
session: session,
earlySecret: earlySecret,
binderKey: binderKey,
}
// In TLS 1.3, session tickets are delivered after the handshake.

View File

@ -12,10 +12,12 @@ import (
"crypto/rsa"
"encoding/binary"
"errors"
"fmt"
"hash"
"sync/atomic"
"time"
circlKem "github.com/cloudflare/circl/kem"
"golang.org/x/crypto/cryptobyte"
)
@ -24,7 +26,8 @@ type clientHandshakeStateTLS13 struct {
ctx context.Context
serverHello *serverHelloMsg
hello *clientHelloMsg
ecdheParams ecdheParameters
keySharePrivate clientKeySharePrivate
session *clientSessionState
earlySecret []byte
@ -44,6 +47,8 @@ type clientHandshakeStateTLS13 struct {
func (hs *clientHandshakeStateTLS13) handshake() error {
c := hs.c
startTime := time.Now()
// The server must not select TLS 1.3 in a renegotiation. See RFC 8446,
// sections 4.1.2 and 4.1.3.
if c.handshakes > 0 {
@ -52,7 +57,7 @@ func (hs *clientHandshakeStateTLS13) handshake() error {
}
// Consistency check on the presence of a keyShare and its parameters.
if hs.ecdheParams == nil || len(hs.hello.keyShares) != 1 {
if hs.keySharePrivate == nil || len(hs.hello.keyShares) != 1 {
return c.sendAlert(alertInternalError)
}
@ -103,6 +108,12 @@ func (hs *clientHandshakeStateTLS13) handshake() error {
return err
}
raiseCFEvent(&cfEventHandshake{
serverSide: false,
duration: time.Since(startTime),
kex: hs.serverHello.serverShare.group,
})
atomic.StoreUint32(&c.handshakeStatus, 1)
return nil
@ -180,6 +191,8 @@ func (hs *clientHandshakeStateTLS13) sendDummyChangeCipherSpec() error {
func (hs *clientHandshakeStateTLS13) processHelloRetryRequest() error {
c := hs.c
raiseCFEvent(&cfEventHRR{serverSide: false})
// The first ClientHello gets double-hashed into the transcript upon a
// HelloRetryRequest. (The idea is that the server might offload transcript
// storage to the client in the cookie.) See RFC 8446, Section 4.4.1.
@ -221,21 +234,38 @@ func (hs *clientHandshakeStateTLS13) processHelloRetryRequest() error {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: server selected unsupported group")
}
if hs.ecdheParams.CurveID() == curveID {
if clientKeySharePrivateCurveID(hs.keySharePrivate) == curveID {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: server sent an unnecessary HelloRetryRequest key_share")
}
if _, ok := curveForCurveID(curveID); curveID != X25519 && !ok {
c.sendAlert(alertInternalError)
return errors.New("tls: CurvePreferences includes unsupported curve")
if scheme := curveIdToCirclScheme(curveID); scheme != nil {
pk, sk, err := generateKemKeyPair(scheme, c.config.rand())
if err != nil {
c.sendAlert(alertInternalError)
return fmt.Errorf("HRR generateKeyPair %s: %w",
scheme.Name(), err)
}
packedPk, err := pk.MarshalBinary()
if err != nil {
c.sendAlert(alertInternalError)
return fmt.Errorf("HRR pack circl public key %s: %w",
scheme.Name(), err)
}
hs.keySharePrivate = sk
hs.hello.keyShares = []keyShare{{group: curveID, data: packedPk}}
} else {
if _, ok := curveForCurveID(curveID); curveID != X25519 && !ok {
c.sendAlert(alertInternalError)
return errors.New("tls: CurvePreferences includes unsupported curve")
}
params, err := generateECDHEParameters(c.config.rand(), curveID)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
hs.keySharePrivate = params
hs.hello.keyShares = []keyShare{{group: curveID, data: params.PublicKey()}}
}
params, err := generateECDHEParameters(c.config.rand(), curveID)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
hs.ecdheParams = params
hs.hello.keyShares = []keyShare{{group: curveID, data: params.PublicKey()}}
}
hs.hello.raw = nil
@ -314,7 +344,7 @@ func (hs *clientHandshakeStateTLS13) processServerHello() error {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: server did not send a key share")
}
if hs.serverHello.serverShare.group != hs.ecdheParams.CurveID() {
if hs.serverHello.serverShare.group != clientKeySharePrivateCurveID(hs.keySharePrivate) {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: server selected unsupported group")
}
@ -352,7 +382,18 @@ func (hs *clientHandshakeStateTLS13) processServerHello() error {
func (hs *clientHandshakeStateTLS13) establishHandshakeKeys() error {
c := hs.c
sharedKey := hs.ecdheParams.SharedKey(hs.serverHello.serverShare.data)
var sharedKey []byte
if params, ok := hs.keySharePrivate.(ecdheParameters); ok {
sharedKey = params.SharedKey(hs.serverHello.serverShare.data)
} else if sk, ok := hs.keySharePrivate.(circlKem.PrivateKey); ok {
var err error
sharedKey, err = sk.Scheme().Decapsulate(sk, hs.serverHello.serverShare.data)
if err != nil {
c.sendAlert(alertIllegalParameter)
return fmt.Errorf("%s decaps: %w", sk.Scheme().Name(), err)
}
}
if sharedKey == nil {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: invalid server key share")

View File

@ -11,6 +11,7 @@ import (
"crypto/hmac"
"crypto/rsa"
"errors"
"fmt"
"hash"
"io"
"sync/atomic"
@ -46,6 +47,8 @@ type serverHandshakeStateTLS13 struct {
func (hs *serverHandshakeStateTLS13) handshake() error {
c := hs.c
startTime := time.Now()
// For an overview of the TLS 1.3 handshake, see RFC 8446, Section 2.
if err := hs.processClientHello(); err != nil {
return err
@ -79,6 +82,12 @@ func (hs *serverHandshakeStateTLS13) handshake() error {
return err
}
raiseCFEvent(&cfEventHandshake{
serverSide: true,
duration: time.Since(startTime),
kex: hs.hello.serverShare.group,
})
atomic.StoreUint32(&c.handshakeStatus, 1)
return nil
@ -206,17 +215,27 @@ GroupSelection:
clientKeyShare = &hs.clientHello.keyShares[0]
}
if _, ok := curveForCurveID(selectedGroup); selectedGroup != X25519 && !ok {
if _, ok := curveForCurveID(selectedGroup); selectedGroup != X25519 && curveIdToCirclScheme(selectedGroup) == nil && !ok {
c.sendAlert(alertInternalError)
return errors.New("tls: CurvePreferences includes unsupported curve")
}
params, err := generateECDHEParameters(c.config.rand(), selectedGroup)
if err != nil {
c.sendAlert(alertInternalError)
return err
if kem := curveIdToCirclScheme(selectedGroup); kem != nil {
ct, ss, alert, err := encapsulateForKem(kem, c.config.rand(), clientKeyShare.data)
if err != nil {
c.sendAlert(alert)
return fmt.Errorf("%s encap: %w", kem.Name(), err)
}
hs.hello.serverShare = keyShare{group: selectedGroup, data: ct}
hs.sharedKey = ss
} else {
params, err := generateECDHEParameters(c.config.rand(), selectedGroup)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
hs.hello.serverShare = keyShare{group: selectedGroup, data: params.PublicKey()}
hs.sharedKey = params.SharedKey(clientKeyShare.data)
}
hs.hello.serverShare = keyShare{group: selectedGroup, data: params.PublicKey()}
hs.sharedKey = params.SharedKey(clientKeyShare.data)
if hs.sharedKey == nil {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: invalid client key share")
@ -437,6 +456,8 @@ func (hs *serverHandshakeStateTLS13) sendDummyChangeCipherSpec() error {
func (hs *serverHandshakeStateTLS13) doHelloRetryRequest(selectedGroup CurveID) error {
c := hs.c
raiseCFEvent(&cfEventHRR{serverSide: true})
// The first ClientHello gets double-hashed into the transcript upon a
// HelloRetryRequest. See RFC 8446, Section 4.4.1.
hs.transcript.Write(hs.clientHello.marshal())

View File

@ -168,7 +168,7 @@ type ecdheKeyAgreement struct {
func (ka *ecdheKeyAgreement) generateServerKeyExchange(config *config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
var curveID CurveID
for _, c := range clientHello.supportedCurves {
if config.supportsCurve(c) {
if config.supportsCurve(c) && curveIdToCirclScheme(c) == nil {
curveID = c
break
}

Some files were not shown because too many files have changed in this diff Show More